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Abstract

This dissertation investigates self-supervised learning methods for training deep neural net-

work (DNN) models that better align with both human behavior and neural responses in early

visual areas. We first propose VITO, an attention-guided contrastive video-pretraining method,

that improves dramatically on prior work to learn general, robust, and more human-aligned rep-

resentations from natural video data. We specifically demonstrate that dynamic temporal content

is required for the improved robustness and human-alignment. We next explore a complemen-

tary line of work focused on improving the alignment of intermediate DNN representations with

early visual areas. We first provide a simple demonstration that selectivity for visual texture can

be learned via optimizing a single-layer objective in a biologically-inspired architecture mod-

eled off of areas V1 and V2. We then refine and extend this study to a more general layerwise

learning paradigm, capable of learning features simultaneously in a two-layer network. We do

so by leveraging a novel self-supervised layerwise complexity-matched learning paradigm. Our

trained model provides better predictions of neural responses in early visual areas and partic-

ularly achieves state-of-the-art predictions for cortical area V2. Finally, we provide some pre-

liminary analyses probing the limitations of current regression-based evaluations for measuring

alignment with neural responses. Taken together, this thesis lays the foundation for future re-

search in using learned DNNs to reveal new organizing principles for how selectivities are formed

in visual hierarchies, with potential implications for both neuroscience and machine learning.
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1 | Introduction

1.1 Normative models of vision

Humans possess astounding visual systems that allow us to flexibly and robustly solve com-

plex visual tasks. However, even after decades of research, how such a complex cascade of brain

areas coordinates to produce coherent percepts remains a question.

The history of building normative models and theories to understand vision goes back to

seminal work by Hubel and Wiesel (1959; 1962; 1968), who found that single neurons in primary

visual cortex (V1) are selective for orientation of luminnace edges. They further developed a

categorization of these cells into ‘simple cells’ (selective for edges with a specific polarity and

location) or ‘complex cells’ (selective for orientation regardless of polarity and location). These

experiments allowed for proposals for the computations implemented by simple cells (pooling

from LGN cells) and complex cells (pooling from V1 simple cells). Eventually, these results led to

“normative theories” of the computations performed by area V1: simple cells described by a linear

filter and rectifying nonlinearity (Movshon et al., 1978b) and complex cells described by sums of

rectified simple cells (Movshon et al., 1978a). See Fig. 1.1 for a visual depiction of this specifically

using quadrature phase simple cells for constructing the complex cell. Eventually, these mod-

els were extended to include more complex nonlinearities (gain-control) (Carandini et al., 1997;

Shapley and Victor, 1979) and then to population models that could expand the single linear filter

to multiple channels, tiling orientations and spatial frequencies (Simoncelli and Freeman, 1995).
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Figure 1.1: Left: V1 simple cells are captured by an oriented linear receptive field followed by rectifying
nonlinearity. Right: V1 complex cells are captured by pooling quadrature phase subunit simple cells.
Figure adapted from (Ziemba, 2016).

In a similar manner, experimental discoveries have slowly uncovered more complex single

neuron selectivities in other areas of the visual hierarchy, for example texture in area V2 (Freeman

et al., 2013; Ziemba, 2016) and objects in area IT (DiCarlo et al., 2012; Gross, 1973; Mishkin and

Ungerleider, 1982). However, even with an understanding of the selectivities in these stages of

the visual hierarchy, it has proven difficult to hand-craft normative models that can produce such

selectivities (as done in V1). Therefore, while this approach was useful for characterizing and

developing models of early stages of vision, we must take a different path to building models of

the larger visual hierarchy.

1.1.1 Bottom-up learned models

Complementary to the hand-engineered approaches to modeling V1, many have attempted to

specify bottom-up normative principles that govern computations in the brain and use these prin-

ciples to then learn models of early vision. A non-exhaustive list of such principles include spar-

sity, coding efficiency, or temporal prediction (Atick and Redlich, 1990; Bell and Sejnowski, 1997;
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Cadieu and Olshausen, 2012; Hoyer and Hyvärinen, 2002; Karklin and Lewicki, 2009; Karklin and

Simoncelli, 2011; Li, 1996; Olshausen and Field, 1996; Schwartz and Simoncelli, 2001; Van Hateren

and van der Schaaf, 1998; Wiskott and Sejnowski, 2002). While these methods also could not scale

far beyond descriptions of V1, they were critical in framing a new way of approaching modeling

of vision. Specifically, they were the first to use parameterized architectures (with basic compu-

tational units like linear filters, rectifiers, and divisive normalization) where the parameters are

learned based on optimizing an objective function. The goal is to specify the objective function to

satisfy one of the aforementioned normative principles.

1.1.2 The deep learning age

Extending this idea beyond early layers, the emergence of optimized deep neural networks

(DNNs) provided new opportunities for developing models of previously unexplained parts of

the visual hierarchy (Douglas et al., 1989; Fukushima, 1980; Heeger et al., 1996; LeCun et al., 1989;

Riesenhuber and Poggio, 1999). Leveraging networks built from simple parameterized compu-

tational units (linear filters and rectifiers) and new optimization techniques, there has been an

explosion of ‘task-driven’ DNNs optimized to perform specific visual tasks. The most powerful

of these tasks has proven to be object recognition. Optimizing DNNs for this objective has led to

the first models that begin to capture response properties of neurons deep in the visual hierarchy

(Kubilius et al., 2019; Schrimpf et al., 2018; Yamins et al., 2014; Zhuang et al., 2021). Rather than

comparing hand-crafted model filters to receptive fields of neurons, the current best models of

many brain areas are now obtained by extracting responses from intermediate representations

of these trained DNNs and comparing the responses directly to responses of neurons in a cor-

responding brain region. This framework is depicted in Fig. 1.2, and has become the dominant

method for developing hierarchical models of cortical neurons.

Moreover, because these networks are image computable and capable of solving real-world

visual tasks, they can also be compared with primate or human task performance and behavior.
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Figure 1.2: An image is presented to a DNNmodel (Bottom) and a primate brain (Top). Neural responses
in the brain are recorded to the stimulus at a specific layer. Similarly, responses are mapped to a specific
layer (green arrows) responses in the DNN. Figure adapted from Yamins et al. (2014)

Early results showed that these supervisedDNNs are in fact also generally predictive of the overall

category-level decisions of primates during object recognition tasks (Ghodrati et al., 2014; Jozwik

et al., 2016; Kheradpisheh et al., 2016).

1.1.2.1 Self-supervised learning

However, while supervised object recognition has been a powerful objective function for op-

timizing DNNs, it is widely thought that receiving the scale of supervision these networks require

(millions of labeled examples) is biologically-implausible. As a result, in recent years, there has

been a revolution in self-supervised learning.

This dissertation focuses heavily on the use of self-supervised learning for training DNNs, so

it is worth providing a brief conceptual understanding. The term self-supervision, comes from

the intuition that instead of having labeled examples for classification, the supervisory signal

is generated from the original data itself or via another internal process. Examples of early self-

4



supervisedmethods include tasks such as rotation prediction (predicting the rotation of an image)

(Gidaris et al., 2018) and spatial jigsaws (ordering shuffled image patches) (Noroozi and Favaro,

2016). However, for this work we will focus on the class of ‘contrastive’ self-supervised methods.

Contrastive self-supervised methods start with an ‘anchor’ image. A ‘positive’ view, is generated

from this anchor via a deformation (aka augmentation). All other images in a batch or dataset

are considered ‘negatives’. The goal of sample-contrastive methods (that we use in Chapter 2)

is to optimize the weights of the encoder network such that anchor image representations are

closer to the positive representations than to other negative image representations. This process

is depicted in Fig. 1.3. It is important to note that unlike in supervised learning, negative images

Figure 1.3: Anchor imagse and augmented positive images are brought closer in representation space
(normalized hypersphere) than anchor images and negative images. Negative image (red outlined dog)
may still come from the same class as the anchor. Figure adapted from Khosla et al. (2020).

may contain classes that are the same as the anchor class. The network is trained to discriminate

individual images while remaining invariant to the augmentations applied to the anchor view.

As an example, we show a wide range of synthetic augmentations that are normally applied to

images for training of end-to-end self-supervised DNNs. The set of augmentations (ranging from

spatial to photometric deformations) is shown in Fig. 1.4 (taken from Chen et al. (2020b)). The

5



Figure 1.4: Example augmentations used in the SimCLR contrastive learning method. Figure is adapted
from Chen et al. (2020b)

choice of these augmentations has empirically beenmade over time to maximize usefulness of the

learned representations for object-recognition tasks. The magnitude of each augmentation and

the number of composed augmentations, controls the complexity (or difficulty) of the invariance

learning problem, a topic we revisit in Chapter 4.

In the following chapters, we will demonstrate how standard augmentation schemes are far

too aggressive and may lead to learning of invariances that do not align with those learned by

primate visual systems.

Additionally, we note that as a normative learning principle, contrastive self-supervision

seems to be promising, as recent work has shown these networks to be highly predictive of neural

representations in later stages of visual cortex (Zhuang et al., 2021).

1.1.3 Learning spatial representations from temporal experience

Till now we have described procedures for learning visual representations from static im-

age inputs. However, as noted above, some of the early normative principles used to describe

learning in early visual cortex centered on capturing image statistics that are predictable over
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time (Wiskott and Sejnowski, 2002). Even more recent theories have been developed and verified

along similar lines of temporal prediction (Hénaff et al., 2021a; 2019a).

From a behavioral point of view, the impact of temporal learning on static object perception

in particular is even more striking. Work of Kellman and Spelke (1983); Spelke (1990); Spelke and

Kinzler (2007) has shown that infants learn to recognize object structure from motion. Even in

adults, it has been shown that altered spatiotemporal experience that changes learned temporal

associations of object shape before an after saccades, can drastically affect position-invariant

recognition (Cox et al., 2005).

We provide this context to note that visual perception and neural representations of static

objects and scenes are shaped by learning within a temporally evolving world. However, from

the perspective of DNN vision models, the impact of temporal learning (learning from videos) has

largely been constrained to models that are then evaluated on video-level tasks. This motivates

our work in Chapter 2, as we demonstrate how models of static vision can be trained effectively

to leverage and learn from spatiotemporal content.

1.2 Evaluating alignment between brains and machines

The explosion of highly-performant supervised and self-supervised DNNs trained in recent

years has led to a corresponding growth in attempts to take these networks seriously as models

of both human behavior and neural responses. Here we briefly review these evaluation method-

ologies.

1.2.1 Human-behavioral comparisons

Many psychophysical-based evaluations have been proposed in recent years to test DNN abil-

ities to capture basic aspects of human visual perception. These includemethods such as eigendis-

tortions (Berardino et al., 2017), controversial stimuli (Golan et al., 2020) and metamers (Feather
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et al., 2023). While these have been quite useful in demonstrating limitations and/or failings of

current DNNs as models of human perception, they require human extensive evaluation to obtain

quantitative metrics.

On the other hand, there has also been a long line of work attempting to quantitatively mea-

sure how well model decisions match human decisions on the same recognition tasks. Initial

studies showed that DNNs are generally predictive of the overall category-level decisions of pri-

mates during object recognition tasks (Ghodrati et al., 2014; Jozwik et al., 2016; Kheradpisheh

et al., 2016). However, they have not been predictive of more detailed behavior, as measured by

model consistency with human recognition confusion matrices (Rajalingham et al., 2018). More

recent benchmarks have taken these comparisons further by creating datasets to measure the

per-trial consistency between models and humans on recognition tasks using a wide range of

out-of-distribution (OOD) images. The specific benchmark that has obtained prevalence in recent

years was proposed by Geirhos et al. (2021). The benchmark consists of 17 OOD image classes

(examples shown in Fig. 1.5 based on applying both parametric and non-parametric distribution

shifts to original images from the ImageNet-1K dataset (Krizhevsky et al., 2012).

Parametric distortions

Non-parametric manipulations

Figure 1.5: Examples of the 17 OOD distribution shifts applied to images in the model-vs-human bench-
mark. Non-parameteric shifts are shown in the top row, while parameteric (noise-based) shifts are shown
in the bottom row. Figure adapted from Geirhos et al. (2021)
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We use this benchmark in both Chapters 2 and 4 for it’s comprehensiveness. In Chapter 2,

we explore an additional class of alignment evaluations specifically concerning human saliency

data from Linsley et al. (2018).

While these benchmarks still cover a very limited set of the potential ways to evaluate model

alignment with human behavior, we believe they provide a sufficient starting point to test our

hypotheses.

1.2.2 Neural response comparisons

Unlike behavioral benchmarks, comparing DNN repsonses to neural responses in visual cor-

tex is a far more ambiguous task. One line of work centers on understanding and comparing

representational geometries or how responses are organized in a high-dimensional space (Chung

and Abbott, 2021; Chung et al., 2018; Kriegeskorte and Wei, 2021). Quantitative methods for

comparing representational geometries began with representational similarity analysis (RSA)

(Kriegeskorte et al., 2008), and have continued to be developed into many variants (Duong et al.,

2022; Schütt et al., 2023; Williams et al., 2021). These methods have many benefits, but are in

some ways less direct than the second major set of comparison protocols that use regression-

based metrics. Starting in Yamins et al. (2014) and being developed in Schrimpf et al. (2018), the

BrainScore benchmark, has become a highly used evaluation protocol for comparing the direct

ability for model responses to predict corresponding neural responses in the brain. Briefly, this

method uses a form of linear regression (PLS) to linearly weight model responses to a set of visual

stimuli, in order to best predict neural responses to the matched stimuli. We will primarily focus

on this regression-based neural alignment in the following chapters.
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1.2.3 Summary and motivation

Given this background, we provide a brief summary of the current paradigm of using DNNs

as models of behavior and the brain. In Fig. 1.6, we highlight that the current workflow involves

training DNNs based on normative principles (generally supervised or self-supervised learning

objectives). These models are first evaluated on classical image task benchmarks. If a model

doesn’t generalize across basic visual tasks, then we disregard it for not capturing basic visual

capabilities. However, if this threshold is passed, then this model is evaluated in terms of both

human behavior alignment and neural alignment. We now highlight two problems that motivate

Training DNNs from 
normative principles

Classical image-task 
benchmarking

Model fails to capture a diverse set of tasks

Test human alignment

Model succeeds on 
classical benchmarks

Test neural alignment

Problem 1:
Image (supervised and self-
supervised) learning is the 
dominant paradigm.

Using video data to learn image 
representations: endow static 
image models with inductive 
biases learned from temporal 
data

Problem 2:
Successes have mostly been 
limited to explaining later stages 
(object selective) of the ventral 
stream. 
Still a large gap in explaining 
early-intermediate level 
representations. 

Figure 1.6: We depict the flowchart of how DNNmodels are currently designed and evaluated as models
of visual perception. In red, we highlight two of the main current problems and how this motivates our
work.

the primary work in this dissertation.

First, most current state-of-the-art DNNs are only trained on static image datasets. However,

as described in Sec. 1.1.3, there is much psychological and neuroscientific evidence to support

training models of visual perception that leverage learning from time.

Second, while this current paradigm has led to successes in finding models that explain later

stages (IT) of the ventral stream, there is still a surprisingly large gap in explaining responses

from neurons early and intermediate cortical areas.
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Weattempt to take steps towardsmore behaviorally- and biologically-alignedDNNs by specif-

ically addressing these two issues.

1.3 Thesis Organization

The remaining chapters of this thesis are organized as follows. Chapter 2 proposes a novel

method for learning spatial representations from natural video data that improves the model’s

task generality, robustness and alignment with human behavior. Chapters 3 and 4 develop layer-

wise self-supervised learning methods for constraining intermediate ANN representations such

that they better predict neural responses in early visual areas. In Chapter 5, we briefly explore

ways in which current popular benchmarks for measuring alignment of models and brain re-

sponses may be limited. Finally, Chapter 6 provides concluding thoughts and remarks.
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2 | Self-supervised video pretraining

yields robust and more

human-aligned representations

2.1 Overview

The main findings in this work are to be published in the Proceedings of the 37th Conference

on Neural Information Processing Systems. (Parthasarathy et al., 2023a).

Humans learn powerful representations of objects and scenes by observing how they evolve

over time. Yet, outside of specific tasks that require explicit temporal understanding, static image

pretraining remains the dominant paradigm for learning visual foundation models. We question

this mismatch, and ask whether video pretraining can yield visual representations that bear the

hallmarks of human perception: generalisation across tasks, robustness to perturbations, and con-

sistency with human judgements. To that end we propose a novel procedure for curating videos,

and develop a contrastive framework which learns from the complex transformations therein.

This simple paradigm for distilling knowledge from videos, called VITO, yields general repre-

sentations that far outperform prior video pretraining methods on image understanding tasks,

and image pretraining methods on video understanding tasks. Moreover, VITO representations

are significantly more robust to natural and synthetic deformations than image-, video-, and

12



adversarially-trained ones. Finally, VITO’s predictions are strongly aligned with human judge-

ments, surpassing models that were specifically trained for that purpose. Together, these results

suggest that video pretraining could be a simple way of learning unified, robust, and human-

aligned representations of the visual world.

2.2 Introduction

With the explosion of recent AI breakthroughs, humans now interact with and depend on the

outputs of these models at an unprecedented rate. It is therefore increasingly important that these

models be aligned with human abilities, judgements, and preferences. In the context of computer

vision systems, human alignment can be quantified with accurate generalization across a wide

range of tasks (Everingham et al., 2015; Soomro et al., 2012; Zhou et al., 2017), robustness to var-

ious input deformations (Taori et al., 2020), and consistency with human perceptual judgements

(Geirhos et al., 2020b). While each of these challenges has been tackled separately, progress along

one axis has often come at the expense of the others. For example, gains in robustness (Good-

fellow et al., 2014) or temporal understanding (Gordon et al., 2020; Wu and Wang, 2021; Xu and

Wang, 2021) have thus far come at the cost of spatial understanding, and scaling the model and

dataset size, while improving task-generality and robustness (Dehghani et al., 2023; Oquab et al.,

2023), can be detrimental for their consistency with human perception (Dehghani et al., 2023;

Kumar et al., 2022).

In this work we question this trend, and ask whether improvements to all aspects of human

alignment can be made with the appropriate pretraining methodology. Specifically, humans and

animals have long been thought to learn from the dynamic evolution of natural scenes (Barlow

et al., 1961; Palmer et al., 2015; Rao and Ballard, 1999) and we hypothesize that artificial visual

systems will be more aligned by appropriately leveraging natural video pretraining. In particular,

while many current self-supervised methods (Caron et al., 2021; Chen et al., 2020b; He et al., 2020;

13



Hénaff et al., 2019b) learn representations that are invariant to synthetic augmentations that cap-

ture important image priors such as scale-, color-, and translation-invariance, these represent a

small part of the complex (and signal-rich) changes in pose, viewpoint, and motion that are cap-

tured from natural videos. Predicting the evolution of videos is also a natural means of learning

intuitive physics and model-based reasoning (Battaglia et al., 2013; Hénaff et al., 2021a; 2019a).

Practically, we develop a self-supervised contrastive framework which learns to locate the

most stable and distinctive elements in temporally displaced video frames, and maximizes their

invariance. Secondly, we find the statistics of standard video datasets to have a detrimental effect

on the quality of the resulting representations, as measured by their performance on canoni-

cal scene understanding tasks. We therefore introduce a simple, yet powerful video curation

procedure—VideoNet—which aligns their class distribution with that of ImageNet, and which re-

dresses the imbalance between image and video learning. In concert, this paradigm constitues a

new methodology for distilling the knowledge of videos into visual representations: VITO.

VITO yields task-general representations that perform well across both spatial and temporal

understanding tasks. Particularly, VITO shows large gains over prior video pretraining efforts

in scene understanding tasks, while achieving similarly large performance gains over image pre-

training on video understanding tasks. Furthermore, VITO significantly outperforms the default

ImageNet pretraining as well as adversarial pretraining on image classification tasks subject to

natural distribution shifts. Finally, we find that even without a significant expansion in model

size, VITO is not only task-general and robust in performance, but also quantitatively captures

multiple aspects of human perceptual judgements, surpassing models specifically trained for that

purpose.
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Figure 2.1: Learning to attend to related video content. Each augmented frame is encoded by the
network 𝑓 as a spatial array of hidden vectors. The attention module 𝑎 takes as input features from one
view and produces a mask that isolates features that are likely to be predictive of the other, temporally-
displaced view. The attention-gated features are pooled accordingly, and both the feature extractor and
attention module are trained to satisfy the contrastive objective. Subscripts 𝜃 and 𝜉 refer to online and
target (EMA) networks respectively.

2.3 Method

We pretrain image representations using video datasets, then transfer them to a range of

downstream tasks that test image, video, and robust understanding. We adopt the ResNet-50

architecture for our initial exploration, then validate our results with Swin transformers (see Sec.

A.2.4).

2.3.1 Self-supervised pretraining

Our method for distilling videos into image representations, VITO, builds robust visual rep-

resentations by learning to track stable and distinctive content in videos while they evolve over

time.

Natural video pipeline. The key to our method is to distill the natural transformations present

in videos into image-based representations. Given a video-clip, we sample frames according to a
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distribution T and further transform each frame with image-based augmentations:

𝒗1 ∼ A1(𝒙1) 𝒗2 ∼ A2(𝒙2) 𝒙1, 𝒙2 ∼ T ({𝒙𝑡 }𝑡=1,...,𝑇 ) (2.1)

where the distribution T samples frames uniformly from a video clip of length 𝑇 = 2.56𝑠 and

the image transformations A𝑙 include random cropping, flipping, blurring, and point-wise color

transformations (Grill et al., 2020), see appendices A.1.1 and A.2.2, and Figure A.3 for an ablation.

We note that video frames (or even uncurated image data) typically differ from the statistics

of (object centered) ImageNet images, with more variable viewpoints and a larger field-of-view

that can cover multiple objects in complex scenes. As a result, the aggressive random cropping

from Grill et al. (2020) (whose smallest crops cover only 8% of the original image) can result in

“positive” pairs with very different semantic content (e.g. entirely different objects). We therefore

suggest and empirically validate that larger crop sizes (e.g. increasing the minimum crop size to

40%) are beneficial when learning from real-world video frames (see Figure A.2).

Multi-scale contrastive attention pooling. Standard contrastive frameworks use global aver-

age pooling of hidden vectors to obtain a single representation of each view. It has been shown

that using dense contrastive losses can lead to significant improvements (Bai et al., 2022; Hénaff

et al., 2021b; Wang et al., 2021b; Xie et al., 2021c), but these methods require establishing corre-

spondences across views. Whereas correspondences can easily be obtained from static images,

when temporal deformations are introduced they require some form of object or point tracking

(Sharma et al., 2022). Furthermore, with the larger field-of-view of video frames, correspondence

learning becomes an increasingly difficult task. In this work, we propose a more general, adaptive

method for learning correspondences at multiple scales. Our method learns what features should

be attended to in order to solve the contrastive learning problem across temporally displaced

views.

As shown in Figure 2.1, given a view 𝒗𝑙 the feature extractor outputs a spatial map of feature
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vectors 𝒉𝑙,𝑠
𝜃

∈ Rℎ×𝑤×𝑐 at a given scale 𝑠 , where different scales correspond to the outputs of

different blocks of a ResNet for example. At each scale, we introduce a 2-layer attention MLP 𝑎𝑠
𝜃

which outputs a mask 𝒎𝑙,𝑠 = softmax(𝑎𝜃 (𝒉𝑙,𝑠𝜃 )) that we use to spatially weight and pool hidden

vectors:

�̂�𝑙,𝑠
𝜃
=
∑︁
𝑖, 𝑗

𝒎𝑙,𝑠 [𝑖, 𝑗] 𝒉𝑙,𝑠
𝜃
[𝑖, 𝑗] (2.2)

which we we concatenate and transform with the two-layer MLP projector: 𝒛𝑙
𝜃
= 𝑔𝜃 (�̂�𝑙𝜃 ) where

�̂�𝑙
𝜃
= [�̂�𝑙,𝑠

𝜃
, 𝑠 ∈ 1...𝑆]. In our experiments, we find that for the canonical ResNet-50 architec-

ture, attending over the outputs of the last two ResNet blocks (i.e. 𝑆 = 2) is optimal given our

evaluations. These hidden vectors are then transformed with a standard two-layer MLP 𝑔𝜃 , yield-

ing projections 𝒛𝑙
𝜃
= 𝑔𝜃 (�̂�𝑙𝜃 ). We enforce invariance across views using the standard InfoNCE

loss (Oord et al., 2018), encoding targets with slowly-varying target networks 𝑓𝜉 and 𝑔𝜉 that are

exponential moving averages of the online network (Grill et al., 2020)

L𝑖 𝑗 (𝜃 ; 𝜉) = − log
exp(𝒛𝑖

𝜃
· 𝒛 𝑗

𝜉
)

exp(𝒛𝑖
𝜃
· 𝒛 𝑗

𝜉
) +∑

𝑛 exp(𝒛𝑖𝜃 · 𝒛
𝑛
𝜉
)
. (2.3)

{𝒛𝑛
𝜉
}𝑛 are negative features computed from frames from other videos in the batch. The final,

multi-view loss is evaluated for all pairs L(𝜃 ; 𝜉) = ∑
𝑖≠ 𝑗 L𝑖 𝑗 (𝜃 ; 𝜉).

2.3.2 Addressing dataset domain mismatch

We began investigating the potential for learning general representations from videos, using

standard datasets including Kinetics, AudioSet, and YouTube-8M. However, Kinetics is quite small

and is limited in scope to human actions. On the other-hand, AudioSet and YouTube-8M are noisy

and have very imbalanced class distributions. Additionally, prior work has shown that even self-

supervised methods are quite sensitive to the pretraining distribution (Tian et al., 2020). Yet over

the last decade, it has been shown that ImageNet can be used for learning image representations
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that transfer well to many downstream tasks. As a result, we hypothesized that collecting a

minimally-curated video datasetmatched to the rough properties of ImageNetwould be beneficial

for learning a more general visual model from videos.

To test of this hypothesis, we developed a data curation pipeline—VideoNet—to filter online

videos such that our training data more closely matches the distribution of ImageNet categories.

For each of the 1,000 ImageNet categories, we retrieved 5,000 video clips whose title included

the category’s name or a synonym. We then filtered these videos by applying an image classifier

(pretrained ResNet-50 on ImageNet) to verify that the videos contained the intended object cat-

egory. We classified the first 100 frames of each video and discarded videos for which the query

category was not equal to the ResNet’s top-1 prediction for any of the frames. We also discarded

videos of less than 10𝑠 in length.

While the VideoNet procedure is close in conceptualization to the method used to create the

R2V2 dataset proposed by Gordon et al. (2020), it differs in a few ways. First, we utilize full video

clips that allow us to uniformly sample frames at any time point rather than the fixed sampling

of frames that are 5𝑠 apart in R2V2. Second, by using the ImageNet classifier to filter videos, we

can reduce mismatch with the ImageNet distribution that can arise from incorrect tagging and

noisy labeling of online videos. This is verified by the fact that only 1.18M of the 5M retrieved

videos met our filtering criteria. We also note that the use of classification-based filtering is just

one method of curation. While we demonstrate in Sec. 2.4.3, that this curation does provide large

benefits in the context of video pre-training compared with existing datasets, there is still great

potential to make improvements by utilizing larger target datasets (such as ImageNet-22K) and

utilizing alternative curation strategies such as the nearest-neighbor retrieval proposed by Oquab

et al. (2023) in creating the LVD-142M image dataset.
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2.4 Results

Humans are able to solve a range of visual tasks that require complex spatial and temporal

reasoning, including generalizing to noisy or out-of-distribution (OOD) scenarios. Therefore, we

first benchmark VITO against image and video pretrained models on a variety of tasks to demon-

strate sufficient generality and robustness in task performance. We then assess whether VITO

not only captures these task-based properties, but also displays strong quantitative alignment

with human behavior.

2.4.1 VITO generalizes across diverse visual tasks

We present in Table 2.1 the transfer performance of VITO compared to strong supervised and

self-supervised baselines on dense scene understanding (semantic segmentation and object detec-

tion), video understanding (video segmentation and action recognition), and out-of-distribution

(OOD) object recognition. On every benchmark, VITO either outperforms or is competitive with

the best baselines for that specific task.

Scene understanding. Wefirst note that VITO provides large gains over all prior video pretrain-

ing methods on scene understanding and robust object recognition. We further validate these

comparisons on three additional benchmarks and find that VITO strongly outperforms the prior

work across all 5 datasets (PASCAL/ADE20K/COCO/LVIS/IN-1K, see Table A.3). For example,

VITO improves over VIVI (Tschannen et al., 2020) by 2-10%, highlighting the importance of data

curation and our contrastive formulation. VITO improves over VINCE (Gordon et al., 2020) by 1-

12%, highlighting the importance of fine-grained temporal deformations. Finally, VITO improves

even over MMV (Alayrac et al., 2020) by 2-15%, despite their use of large-scale text supervision,

highlighting the relevance of video-only learning.

Compared with the best supervised and self-supervised image-pretraining methods VITO
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Scene Understanding Video Understanding OOD Recognition

Pretraining Dataset ADE20K
(mIoU)

COCO
(mAP)

DAVIS
(J&F
mean)

UCF101
(top-1)

IN-A
(top-1)

IN-Vid
(pm0/
pm10)

Random - 27.9 39.0 - - - -

Standard image pretraining
Supervised IN-1K 33.5 44.2 66.1 83.4 2.2 67.7/52.4
BYOL (Grill et al., 2020) IN-1K 38.8 43.7 66.6 85.6 - -
MoCLR (Tian et al., 2021) IN-1K 39.2 43.9 65.5 85.5 3.7 64.7/50.0
DINO (Caron et al., 2021) IN-1K 39.0 44.3 65.3 85.4 5.0 65.2/52.0

Robust image pretraining
Stylized-IN (?) SIN+IN - - - 83.3 2.0 68.4/51.7
L2-Robust (Madry et al., 2017) IN-1K - - - 83.7 2.1 65.2/51.6

Video pretraining
VIVI (Tschannen et al., 2020) YT8M 34.2 41.3 - - 0.5 57.9/36.5
MMV-VA (Alayrac et al., 2020) AS+HT 32.5 41.3 - - - -
VINCE (Gordon et al., 2020) R2V2 35.7 42.4 66.1 - - -
VFS (Xu and Wang, 2021) K400 31.4 41.6 67.8 - - -
CycleCon (Wu and Wang, 2021) R2V2 35.6 42.8 - 82.8 0.4 50.4/30.1
VITO VidNet 39.4 44.0 68.2 87.4 5.4 70.6/57.2

Table 2.1: VITO representations generalize to a variety of tasks in both image and videomodali-
ties.. VITO surpasses models specialized for each task. For external models, we finetune publicly available
checkpoints.

achieves competitive performance on these same benchmarks (Table 2.1 and Table A.3). To our

knowledge, VITO is the first video pretrained method to close the gap with ImageNet pretraining

on large-scale scene understanding benchmarks such as these.

Video understanding. We next ask whether this increased spatial understanding come at the

cost of traditional benefits of video pretraining on video tasks. We find that this is not the case,

evaluating on DAVIS segmentation and UCF-101 action recognition. On DAVIS, which tests the

ability to segment an object over its dynamic temporal evolution, VITO features capture fine-

grained temporal deformations of objects far better than ImageNet pretraining methods, as well

as the best video pretraining methods (See Table A.4 for additional comparisons). On UCF-101,

which tests the ability to classify global spatio-temporal features, we find that a simple average

pooling of VITO frame representations again outperforms all image pretraining and prior frame-
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based video pretraining significantly. VITO even outperforms a number of recent methods that

use specialized video architectures (See Table A.5). While VITO under-performs relative to the

best video models, we note that these methods either cannot be tested or under-perform on spa-

tial understanding. Additionally, as shown in Table A.5 and Sec. A.1.5, simple learned temporal

pooling strategies on top of VITO representations further close the gap with the best video ar-

chitectures.

Object recognition under distribution shifts. A key feature of human perception is being

able to generalize under distribution shifts away from the training data. The standard ImageNet

benchmark does not test this, as the validation set is drawn from a similar distribution as the

train set. We hypothesize that while ImageNet pretraining can lead to strong performance in-

distribution, pretraining on videos can endow models with better generalization capabilities.

We thus evaluate on a suite of benchmarks designed to test distributional robustness (Taori

et al., 2020). To test recognition under natural shifts we evaluate on the ImageNet-Vid-Robust and

ImageNet-A benchmarks (Table 2.1). ImageNet-Vid-Robust tests generalization of image classi-

fiers to natural deformations over time. The anchor frame is identified as the cleanest frame

capturing the object, and as time evolves, recognition becomes more difficult. We see that VITO

surpasses all models on the anchor frame accuracy (+3% relative to supervised ImageNet training

for pm0), but more importantly, the accuracy gap grows for the largest temporal displacement

(+5% for pm10). ImageNet-A on the other hand contains ImageNet-like images that systematically

fool ImageNet classifiers (i.e. ‘natural adversarial examples’). On this dataset, while performance

is very low across all models, VITO again shows more robustness. For additional comparison, we

also evaluate two models (SIN-IN and L2-Robust (𝜖 = 1)) which are models trained specifically

for robustness (to shape-bias and adversarial attacks respectively). While SIN-IN yields modest

improvements on ImageNet-Vid-Robust, neither method approaches the gains in robustness af-

forded by VITO. Finally, we evaluate robustness on the ImageNet-3DCC dataset, which contains

naturalistic and synthetic corruptions applied to clean images from the ImageNet validation set
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Figure 2.2: VITO is robust to natural, real-world corruptions. ImageNet-3DCC validation accuracy
for different levels of corruption severity. (Left): Comparisons with prior work including methods specifi-
cally designed to enhance robustness (SIN+IN1K and L2-Robust). (Right): comparisons with ablations of
the VITO method/model.

(Kar et al., 2022). To test robustness to conditions of real-world deployment, we choose the sub-

set of corruptions designed with 3D models to be consistent with scene geometry. These include

things like fog, near/far focus, motion blur, etc. and have 5 different severity levels per image.

In Fig. 2.2 (Left), we plot the difference in accuracy between clean (ImageNet val) and corrupted

accuracy across severity levels. This “Δ-accuracy” provides a measure of how robust a model is

as distortion levels increase. We see that across all corruption strengths, VITO shows increased

robustness compared to supervised and self-supervised (MoCLR, DINO) ImageNet pre-trained

models. The robustness gap grows significantly at the highest corruption levels, demonstrating

the generality of this effect (+10% relative to supervised ImageNet training). While the robust

training methods (SIN+1N1K and L2-Robust) outperform supervised and MoCLR models, VITO

remains significantly more robust, demonstrating that learning from video deformations may en-

dow a more general form of robustness than that provided by either style-transfer or adversarial

images.

To quantify further the specific impact of individual components of VITO on robust recog-

nition, we show the same plot (Fig. 2.2 (Right)), now with the ablations described in Sec 2.4.3.
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We find that all components of our method and architecture are necessary for best robustness,

but in particular there is a striking split between models trained with only spatial deformations

(VITO (T=0), MoCLR ImageNet, MoCLR VideoNet) and those trained with video deformations.

We find that the models that learn only from image-level spatial deformations suffer significantly

in robustness against all of the models that learn from video deformations.

2.4.2 Measuring explicit human-alignment

Given that VITO representations display strong generalization across many tasks and robust-

ness to distribution shifts, two signatures of human perceptual intelligence, we now directly ask

whether they align with human perceptual representations.

Visual saliency via contrastive attention. We start by comparing VITO’s learned attention

masks to human saliency data from the ClickMe dataset (Linsley et al., 2018), as well as saliency

maps obtained from a collection of ResNet-50 models. For the supervised andMoCLR ResNets we

use standard gradient-based saliency as in Fel et al. (2022). Since ourmodel contains two attention

maps at two scales of the ResNet, we upsample both maps to the image size and simply average

them to obtain a single map. We compare our attention maps additionally to those obtained

from the modified CLIP ResNet (Radford et al., 2021), which also utilizes attention-pooling in

the final layer but is trained for image-language alignment (the canonical approach for training

state-of-the-art visual language models). Because the CLIP pooling uses multi-head attention, we

upsample these maps and average them across heads. Finally, we also compare to the gradient-

based saliency maps from a “harmonized” model explicitly trained to align with human saliency

(Fel et al., 2022).

Qualitatively, VITO saliency maps appear significantly more aligned with human perception

maps than the supervised andCLIP ResNets (Figure 2.3). Surprisingly, VITO appearsmore aligned

than the Harmonized saliency maps across the 4 examples. Quantitatively (using Spearman rank

correlation) VITO outperforms the supervised, MoCLR, and CLIP models by a large margin, and
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Figure 2.3: VITO attention maps capture
human-defined object saliency. Example human
saliency maps from the ClickMe dataset (Linsley
et al., 2018) and ResNet-50 models. Gradient-based
saliency is shown for Supervised and Harmonized
(Fel et al., 2022). Attention maps are shown for CLIP
and VITO model. We use multi-head attention pool
weights for CLIP and average of weights from last 2
attention pooling scales in VITO.

Method Trained for
alignment

Human
Alignment

MoCLR ✗ 21.4
Supervised ✗ 34.4
CLIP ✗ 41.8
Harmonized ✓ 45.5
VITO ✗ 47.7

Table 2.2: Quantitative comparison
between gradient-based saliency maps
(from Supervised, MoCLR, CLIP-RN50
(attention-map), and Harmonized net-
works), VITO attention weights, with
human saliency maps using a correlation
based alignment score from Linsley et al.
(2018)

even surpasses the Harmonized model which has been specifically trained for this purpose (Table

2.2).

This result suggests that as opposed to image-based objectives or image-language alignment,

human perception of feature importance across the visual scene can be better explained as a

consequence of learning what to attend to in the context of self-supervised video-based learning.

We hypothesize that these attention masks could underlie the formation of high-level concepts

via “semantic binding”, which we investigate in Figure A.1 and Section A.2.1.

Human error consistency in shape-biased tasks. Based on this result relating to object

saliency, we hypothesize that VITO may be capturing global object shape features better than

traditional deep networks which have been shown to heavily rely on textural cues for classifica-
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tion (Geirhos et al., 2018).

Method accuracy diff. ↓ obs. consistency ↑ ceiled error
consistency ↑

Image pretraining
DINO (Caron et al., 2020) 0.236 0.504 0.291
Supervised 0.215 0.511 0.329
SIN+IN1K (Geirhos et al., 2018) 0.203 0.527 0.330
MoCLR (Tian et al., 2021) 0.190 0.536 0.335
L2-Robust (Madry et al., 2017) 0.178 0.544 0.389
CLIP (Radford et al., 2021) 0.108 0.612 0.482

Video pretraining
R3M (Nair et al., 2022) 0.392 0.359 0.054
CycleCon (Wu and Wang, 2021) 0.237 0.484 0.258
VINCE (Gordon et al., 2020) 0.210 0.501 0.269
VITO 0.157 0.564 0.422

Table 2.3: Accuracy difference and consistency with human judgments on stimuli that are biased to
requiring global-shape understanding (instead of texture) for recognition/discrimination. VITO surpasses
all comparable trained models (both image and video pretraining) in all benchmarks, including those
that are trained specifically to be robust (SIN+IN1K, and L2-robust). We underperform the CLIP model;
however, we note that CLIP is trainedwith an order ofmagnitudemore images (400M) and explicit human-
language supervision.

To evaluate this quantitatively, we used a subset of the dataset proposed in Geirhos et al. (2021)

to test both the accuracy and consistency with human judgments of model classifications of stim-

uli that require shape-cues for effective discrimination (Table 2.3). Specifically, these stimuli are

categorized into 4 groups: edge drawings, cue-conflict / stylized (mixing of shapes with contra-

dictory textures through style-transfer), variable low-pass filtering (to remove high-frequency

local content), uniform noise (corrupts local texture features). Based on the original methodol-

ogy proposed in Geirhos et al. (2020b), we report the accuracy difference (from human accuracy),

the raw consistency with human judgments, and ceiled error consistency (method from Geirhos

et al. (2020b)).

We compare to supervised and MoCLR ResNets, the robust training methods cited earlier, as

well as CLIP (Radford et al., 2021). We also compare to various video pre-training methods cited
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earlier and another (R3M (Nair et al., 2022)), which has specifically shown to have human- and

neurally-aligned representations of dynamic, object-centric scenes (Nayebi et al., 2023b). For all

networks, we train linear classifiers on the ImageNet validation set and evaluate on the modi-

fied shape-biased stimuli. Compared with all other comparable image pretrained models, VITO

achieves stronger robustness to shape-biasing transformations (lower accuracy difference rel-

ative to original images). Furthermore, VITO makes predictions more consistent with human

judgements in terms of per-trial classification behavior. This is particularly surprising as VITO

even outperforms the adversarially-trained robust model without requiring any explicit robust

training procedure. Moreover, this improvement is not captured by prior video pretraining efforts

(which are in fact far worse than the image pretraining methods). The R3M model, in particular,

performs surprisingly poorly. Because the images used to collect the human judgments are mod-

ified versions of those from the ImageNet validation set, we hypothesize that this performance

can be attributed to the poor transfer of the Ego4D datasets to the diverse classes present in Ima-

geNet (contrarily to VideoNet). Indeed, the R3M model only achieves 13% accuracy on the clean

ImageNet validation set (see Table A.3). Finally, we note that VITO does underperform CLIP on

this benchmark; however, this comparison is not truly fair as CLIP is trained with explicit human

supervision via large-scale image-language mappings. In fact, we believe that our method can be

augmented with similar language supervision to improve human alignment even further.

In summary, VITO captures aspects of how humans process shape-information that cannot be

captured by other strong visual models. Understanding more about this effect and what aspects

of learning from videos lead to this remain interesting opportunities for future work.

2.4.3 Ablations

To understand more about how the components of VITO training contribute to its perfor-

mance, we vary the different aspects of our paradigm in isolation: our method for data curation

(VideoNet), multi-scale attention pooling, and details of the input data (spatial crop size and the
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temporal sampling scheme). We explore some ablations in detail on an example benchmark (PAS-

CAL segmentation), but also evaluate ablations across many of the benchmarks used in this work.

Finally, we provide a brief exploration demonstrating that our method scales well to larger archi-

tectures.

Effect of pretraining data. To demonstrate the effect of the pretraining data distribution on

transfer performance, we pretrain a baseline MoCLR model (using 2 views) on a variety of image

and video datasets, where we initially treat video datasets as collections of individual frames.

We train each model for 300 ImageNet-equivalent epochs, referred to hereafter as “epochs” (i.e. 1

epoch = learning from 1.28M examples, irrespective of the dataset), such that each model benefits

from the same amount of computation. Figure 2.4 (left) shows their transfer performance on PAS-

CAL semantic segmentation. As expected, ImageNet pretraining works very well, but pretraining

on standard video datasets results in a substantial drop in performance (e.g. −6.8% or −5% mIoU

from pretraining on Kinetics700 or AudioSet). This performance gap between video and image

pretraining can be attributed to a combination of increased complexity and field-of-view of video

frames and domain mismatch between the dataset categories (Figure 2.4, right). Consistent with

this, training on JFT (Sun et al., 2017), an uncurated dataset with a heavy-tailed class distribution,

also results in a loss in performance. Notably, this is despite the much larger size of JFT (300M

images). We find that applying the same baseline pretraining to frames from our curated video

dataset performs better than existing large-scale video datasets like Audioset (+1.6% mIoU), but

still underperforms image pretraining on JFT and ImageNet (Figure 2.4). This demonstrates the

importance of aligning the distribution of video frames with that of common image datasets. We

therefore use VideoNet as our primary pretraining dataset for the rest of the study. In Sec A.2.3

we disentangle the power of our method and dataset by confirming that each independently have

strong effects: MoCLR trained on VideoNet, and VITO trained on standard datasets (Audioset or

YT8M) also outperform all prior work (including models trained on much larger image datasets

like JFT-300M).
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Figure 2.4: VideoNet dataset improves transfer performance to image tasks. Impact of pretraining
data’s spatial content on representation quality. Left: transfer performance of models pretrained on single
frames from image datasets (grey bars) or individual videos (blue bars). Right: example frames from
different video and image datasets.

Multi-scale attention pooling. We decompose the proposed multi-scale contrastive attention

pooling to isolate the effects of multi-scale learning from those of attention pooling (Figure A.2,

right). While we find only modest gains from adding attention pooling to a single-scale version of

the model (+0.2%mIoU), we find that the 2-scale model (without attention pooling) improves over

the single scale model more robustly (+0.6% mIoU). Interestingly, we find that the combination

of the 2-scale model with attention pooling has a synergistic effect (+1% mIoU over the single-

scale attention model), highlighting the importance of handling the variability in scales present

in natural videos.

Spatial and temporal augmentation parameters. We first validate in Figure A.2 (left) our

hypothesis that increasing the minimum crop-scale in the random-resized crop operation during

training leads to models that generalize better to fine-grained tasks like semantic segmentation.

Specifically, we find that a minimum crop scale of 0.4 (as opposed to the traditional 0.08) results

in the best transfer performance (+1.7% mIoU). Note that this conclusion differs slightly from

that of Feichtenhofer et al. (2021) who find more aggressive cropping to be beneficial for action

recognition.

Next, to study the effect of different temporal sampling schemes, for each training example,

28



Pretraining Dataset PASCAL
(mIoU)

UCF101
(top-1)

IN-A
(top-1)

IN-Vid
(pm0/pm10)

Human
error con-
sistency

MoCLR VideoNet 72.8 83.0 2.3 55.5/40.5 0.224
VITO 1scale (w/o attn) VideoNet 75.2 85.5 3.9 67.3/55.5 0.359
VITO 1scale (attn) VideoNet 75.4 85.7 3.5 65.6/52.9 0.368
VITO 2scale (w/o attn) VideoNet 75.8 86.2 4.2 67.4/54.9 0.390
VITO (T=0) VideoNet 74.8 83.2 3.9 63.9/49.5 0.323
VITO AudioSet 73.8 84.8 3.4 55.7/42.4 0.401
VITO VideoNet 76.3 87.4 5.4 70.6/57.2 0.422

Table 2.4: All components of VITO pretraining matter for downstream performance. Summary
of ablation models on key evaluations covering image understanding, video understanding, and human
alignment on ood object recognition. In summary, it is clear that all components (pretraining data, tem-
poral deformations, and the multi-scale attention pooling) are required for best performance across all
tasks.

we sample 3 views using marginal sampling of each frame from the video clip of length 𝑇 =

2.56 seconds. This length determines the distribution of time differences between any pair of

frames, and thus the time-scale over which the contrastive model learns invariances. We verify

our choice by varying the total length of clips. While going to longer time-scales 𝑇 = 3.2𝑠 does

not hurt performance much, we find a significant improvement over using shorter clips (e.g.

𝑇 = 1.28𝑠 , +1.0% mIoU; Figure A.2, center). This suggests that invariance to the rich temporal

deformations present in video clips is indeed a beneficial criterion for learning fine-grained spatial

representations.

Comprehensive ablation summary. In Table 2.4, we extend the above ablation studies to a

more comprehensive benchmark set. In addition to the PASCAL segmentation task, we evaluate

the key ablated models on video understanding (UCF101), OOD recognition (IN-A/IN-Vid) and

human alignment on the shape-bias tasks specified in Sec 2.4.2. We confirm that all of the major

methodological components (VideoNet dataset, multi-scale attention pooling, and using temporal

deformations) work in concert, and are required for best performance across all tasks. Notably,

we see a particularly striking dichotomy between models trained with and without temporal

deformations on human error-consistency. Specifically, models trained without temporal defor-
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mations (MoCLR and VITO (T=0)) have a significant drop in human error-consistency relative

to all other models trained with temporal deformations, highlighting the importance of learning

these kinds of invariances.

Scaling model architectures. We briefly demonstrate that VITO scales to more recent larger

architectures. Specifically, we show preliminary results that VITO achieves highly competitive

performance on four scene understanding benchmarks using the Swin-S transformer architecture

(Liu et al., 2021). In Sec. A.2.4, we show that performance improves dramatically over the ResNet-

50 architecture and is competitive with a strong, specialized ImageNet pretrained baseline for

fine-grained scene understanding (DetCon (Hénaff et al., 2021b)).

2.5 Related work

Learning general visual representations from videos. Many prior works have considered

self-supervised representation learning for capturing spatio-temporal invariances, beginningwith

methods that leveraged temporal coherence, optical flow, and object tracking (Agrawal et al.,

2015; Goroshin et al., 2015; Hurri and Hyvärinen, 2003; Kulkarni et al., 2019; Misra et al., 2016;

Pathak et al., 2017; Srivastava et al., 2015; Wang and Gupta, 2015; Wiskott and Sejnowski, 2002).

More recently, many successful approaches have leveraged contrastive learning, masked autoen-

coding, and other self-supervised pretext tasks to learn strong video representations (Dave et al.,

2022; Dorkenwald et al., 2022; Feichtenhofer et al., 2022; 2021; Qian et al., 2021; Recasens et al.,

2021; Sermanet et al., 2018). However, most of these methods employ specialized video architec-

tures and only transfer to video-based tasks such as action recognition and motion segmentation.

Yet natural motion-induced deformations are powerful learning signals that should allow for

learning better image representations as well. Indeed, human infants can form complex under-

standing of objects and shape within months, specifically driven by their observations of how

they move (Spelke, 1990; Spelke and Kinzler, 2007). Given this inspiration, some works have
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demonstrated that self-supervised contrastive learning in videos can lead to aspects of efficient

human learning and robust recognition (Kong and Norcia, 2021; Orhan et al., 2020; Zhuang et al.,

2022). In computer vision, cycle-consistency (Bian et al., 2022; Jabri et al., 2020) and optical flow

(Sharma et al., 2022; Xiong et al., 2021) have been used to learn correspondences between tem-

porally ordered image patches. The most similar works to ours utilize video-based contrastive

learning (Gordon et al., 2020; Wu and Wang, 2021; Xu and Wang, 2021) to improve performance

on temporal understanding tasks, however they do so at the cost of spatial scene understanding.

Robustness to distribution shifts. As standard benchmarks have been progressively satu-

rated (Beyer et al., 2020), the community has turned to measuring robustness to adversarial at-

tacks (Carlini et al., 2019), corruptions (Hendrycks and Dietterich, 2019), and out-of-distribution

datasets (Hendrycks et al., 2021b; Kar et al., 2022; Shankar et al., 2021; Taori et al., 2020). We

focus on a subset of these benchmarks that are as “natural” as possible, to evaluate generalization

with respect to shifts that are most likely to appear in the real world. While there have been

many efforts to specifically encourage regularize models for these kinds of robustness (Geirhos

et al., 2018; Madry et al., 2017; Rusak et al., 2020; Xie et al., 2020), we instead investigate the

complementary question of whether image and video pretraining differ in this respect.

Human-aligned representations. Most recent progress in achieving more behaviorally

-matched representations has been by scaling existing approaches. Indeed, recent examples (De-

hghani et al., 2023; Oquab et al., 2023; Radford et al., 2021) show that as data and model sizes grow

by orders of magnitude, generality and robustness of representations tend to emerge. Moreover

some aspects of human perception such as an increased shape-bias and consistency with human

perceptual behavior (Dehghani et al., 2023; Geirhos et al., 2021) can be captured reasonably well

by certain large models. However this scaling property tends to be brittle, with some large-scale

models displaying significantly worse consistency with human perception (Dehghani et al., 2023;

Kumar et al., 2022). Additionally, more recentwork on alignment has found that scaling and archi-
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tecture are not as important for alignment on specific benchmarks, in comparison to the training

dataset and objective function (Muttenthaler et al., 2022). Therefore, while scaling may continue

to lead to task-performance gains, it is unclear whether only scaling image-based pretraining

will close the gap with general human behavior. We therefore explore the complementary and

potentially synergistic question of whether video pretraining can improve the task-generality,

robustness, and behavioral similarity of learned visual representations.

2.6 Discussion

Summary. We propose VITO, a simple method for distilling videos into visual representa-

tions. The key features of our method include improved dataset curation, adapting augmentation

pipelines to appropriately handle video frames, and using attention-guided contrastive learning.

With these components, VITO surpasses both prior video pretraining in spatial understanding,

and image pretraining on temporal understanding and robustness. In addition to these hallmarks

of human perception, VITO explicitly aligns with aspects of human saliency and image recog-

nition behavior that are not captured by other high-performance representation learning tech-

niques. In sum, despite the many successes in video representation learning, our results suggest

that there is a great untapped potential in video pretraining as a paradigm for learning general,

human-aligned visual representations.

Limitations and Future Work. We believe this work can be a foundation for future video

pretraining efforts, as our approach is powerful, yet simple and extensible. However, we recognize

that this demonstration is mostly limited to a single contrastive learning framework and ResNet-

50 architecture. We leave for future work, the validation and exploration of similar analyses with

larger models and other self-supervised training objectives (such as MAEs and self-distillations

methods like DINO). Additionally, while we have shown the benefits of a surprisingly simple

attention module for learning correspondences in video data, there are more powerful attentional
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architectures we can leverage along with scaling dataset size as in Oquab et al. (2023). We have

started these experiments with our exploration of Swin transformer architectures.

2.7 From behavior to neural alignment?

This work takes steps towards learningmore human-like visual representations by leveraging

a more naturalistic video pretraining paradigm. We provide extensive evaluations demonstrating

that VITO, in comparison to standard image pretrained networks, displays more of the hallmarks

of human visual capabilities (specifically task-generality and robustness to out-of-distribution

shifts), in addition to being more explicitly aligned with aspects of human perception. It is natu-

ral to then hypothesize that the internal representations in our model might also be better aligned

with neural representations along the ventral stream. To assess this, we use the BrainScore bench-

mark (details in (Schrimpf et al., 2018)), to assess how well a linear weighting of model neurons

(fit on a subset of images) predicts responses to biological neurons on held-out images. Surpris-

ingly, we find that both VITO and the baseline ImageNet pretrained ResNet-50 model capture

approximately the same amount of variance in all cortical areas. In particular, across 4 different

IT cortex datasets, both models explain on average approximately 48 % of the neural response

variance.

How can our model provide a significantly different (and better) model of human behavior,

yet not produce better models of cortical responses? We believe there are three potential strong

hypotheses:

1. End-to-end, objective driven learning can constrain behavior or task performance of a deep

network, but does not provide strong enough constraints on intermediate layers to learn

biologically-aligned representations.

2. Current neural benchmarks are not sufficiently able to distinguish differences between

model representations.
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3. The recorded ventral stream responses are not close enough to the ‘behavioral readout’

(requiring many more layers of unknown transformations) and thus the two metrics are

not correlated.

The last hypothesis is hard to evaluate; however, in the following two chapters, we take seri-

ously the first hypothesis and evaluate whether layerwise constrained models do indeed provide

better accounts of neural responses. We also very briefly explore the second hypothesis in pre-

liminary experiments in Chapter 5.
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3 | Self-supervised learning of a

biologically-inspired visual texture

model

3.1 Overview

Versions of the work in this chapter were presented at Computational and Systems Neuro-

science (2020), and published in preprint form (Parthasarathy and Simoncelli, 2020).

As described in Sec. 2.7, the goal of the following two chapters is to explore the following

hypothesis: that layerwise constrained network representations better align with primate neural

representations. This chapter provides a practical, small step in this direction. Specifically, given a

reasonable hand-crafted model for cortical area V1, we ask whether a single layer transformation

can be learned that produces neurons with complex feature selectivity resembling selectivites

found in area V2.

We develop a model for representing visual texture in a low-dimensional feature space, along

with a novel self-supervised learning objective that is used to train it on an unlabeled database of

texture images. Inspired by the architecture of primate visual cortex, the model uses a first stage

of oriented linear filters (corresponding to cortical area V1), consisting of both rectified units

(simple cells) and pooled phase-invariant units (complex cells). These responses are processed by
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a second stage (analogous to cortical area V2) consisting of convolutional filters followed by half-

wave rectification and pooling to generate V2 ‘complex cell’ responses. The second stage filters

are trained on a set of unlabeled homogeneous texture images, using a novel contrastive objec-

tive that maximizes the distance between the distribution of V2 responses to individual images

and the distribution of responses across all images. When evaluated on texture classification, the

trained model achieves substantially greater data-efficiency than a variety of deep hierarchical

model architectures. Moreover, we show that the learned model exhibits stronger texture cate-

gory representational similarity to responses of neural populations recorded in primate V2 than

an end-to-end supervised pre-trained deep CNN.

3.2 Introduction

Most images contain regions of "visual texture" - comprised of repeated elements, subject to

some randomization in their location, size, color, orientation, etc. Humans are adept at recogniz-

ing and differentiating materials and objects based on their texture appearance, as well as using

systematic variation in texture properties to recover surface shape and depth. At the same time,

we are insensitive to the details of any particular texture example - to first approximation, dif-

ferent instances of any given class of texture are perceived as the same, as if they were "cut from

the same cloth". This invariance is usually captured through the use of statistical models. Bela

Julesz initiated the endeavor to build a statistical characterization of texture, hypothesizing that

a texture could be modeled using n-th order joint co-occurrence statistics of image pixels (Julesz,

1962). Subsequent models can be partitioned into three broad categories: 1) orderless pooling of

handcrafted raw-pixel features such as local binary patterns (Liu et al., 2016; Ojala et al., 2002),

2) local statistical models using Markov random fields (Chellappa and Chatterjee, 1985; Cross

and Jain, 1983; Derin and Elliott, 1987; Portilla and Simoncelli, 2000), and 3) statistical character-

ization of fixed convolutional decompositions (i.e. wavelets, Gabor filters, multi-scale pyramids)
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(Bergen and Adelson, 1986; Bovik et al., 1990; Bruna and Mallat, 2013; Heeger and Bergen, 1995;

Portilla and Simoncelli, 2000; Sifre and Mallat, 2013). More recent models are based on statistics

of nonlinear features extracted from pre-trained deep convolutional neural networks (CNN’s)

(Cimpoi et al., 2015; Gatys et al., 2015; Song et al., 2017; Ulyanov et al., 2017; Xue et al., 2017). A

comprehensive review of these is available in Liu et al. (2019).

The fixed-filter methods are generally chosen to capture features considered fundamental for

early visual processing, such as local orientation and scale. Similar filters can be learned using

methods such as sparse coding (Olshausen and Field, 1996) or independent components analysis

(Bell and Sejnowski, 1997). On the other hand, deep learned methods provide great benefits in

terms of extracting relevant complex features that are not so easily specified or even described.

However, recent work in understanding the representation of texture in the primate brain

has shown that texture selectivity arises in Area V2 of visual cortex (Freeman et al., 2013; Ziemba

et al., 2016), which receives primary input from Area V1. Therefore, it seems that the brain can

achieve selectivity for texture in far fewer stages than are commonly used in the deep CNNs.

Motivated by this fact, we construct a simple, hybrid texture model that blends the benefits of

the aforementioned fixed-filter image decompositions with the power of learned representations.

There are two main contributions of our work. First, the model represents textures in a relatively

low-dimensional feature space (in contrast to the extremely high-dimensional representations

found in CNN models).We propose that this low-dimensional representation can be used to per-

form texture family discrimination with small amounts of training data when it is coupled with

an interpretable non-linear decoder. Moreover, we show that a novel self-supervised learning

objective plays an important role in achieving this result. Finally, while pre-trained deep CNNs

can achieve better texture classification accuracy, we show that our learned model exhibits much

stronger representational similarity to texture responses of real neural populations recorded in

primate V2.
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3.3 Methods

3.3.1 V2Net Model Architecture

It is well-known that the primary inputs to V2 are feed-forward outputs from area V1 (Gi-

rard and Bullier, 1989; Schiller and Malpeli, 1977; Sincich and Horton, 2005). Inspired by these

physiological results, we propose a computational texture model as a two-stage network that

functionally mimics the processing in these two early visual areas.

The V1 stage is implemented using a set of fixed convolutional basis filters that serve as a

functional model for V1 receptive fields (Ringach, 2002). The filters are localized in orientation

and scale, specifically utilizing a complex-steerable derivative basis (Jacobsen et al., 2016; Simon-

celli and Freeman, 1995). We choose a specific set of 4 orientations and 5 scales (octave-spaced)

with two phases (even and odd), for a total of 40 filters. The full set of V1 responses are a combi-

nation of both half-wave rectified simple cells and 𝐿2-pooled (square root of the sum of squares)

complex cells, yielding a total of 60 feature maps.

The V1 responses provide input to a V2 stage that consists of a set of 𝐷 learned convolutional

filters. In themacaque, V1 andV2 are known to have similar cortical surface area and output fibers

(Wallisch and Movshon, 2008), so in our experiments we set D = 60 to match the dimensionality

of the V1 and V2 stages of our model. The convolutional layer is then followed by half-wave

rectification, spatial 𝐿2-pooling and downsampling to produce V2 ‘complex cell’ responses (Fig.

3.1). Unlike standard max-pooling, 𝐿2-pooling is used in both stages of our model because it is

more effective at capturing local energy of responseswithout introducing aliasing artifacts (Bruna

and Mallat, 2013; Hénaff and Simoncelli, 2015).
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Figure 3.1: Biologically-inspired texture model architecture. The V1 stage is built using a 5-scale
4-orientation complex steerable pyramid (Portilla and Simoncelli, 2000), followed by two nonlinearities to
generate simple and complex cell responses. The latter uses specialized 𝐿2 pooling. The V2 stage consists
of convolution with 𝐷 filters followed by spatial 𝐿2 pooling.

3.3.2 Learning Objective

Consider the model in Fig. 3.1 as a function 𝑓 (𝑇 ;Θ) that takes as input a texture image 𝑇 ,

and computes responses based on parameter vector Θ = [Θ1, ...,Θ𝐷], which contains the 𝐷

V2 filters1. Given a dataset of 𝑁 texture images (𝑇𝑛) and their corresponding model responses

𝒓𝑛 = 𝑓 (𝑇𝑛;Θ), we seek an objective function, 𝐿(·), for optimizing the V2 filter weights: Θ𝑜𝑝𝑡 =

argminΘ 𝐿({𝑓 (𝑇𝑛;Θ)}). We assume a curated image dataset with two properties that underlie

the formulation of the objective: 1) individual images contain a single texture type (homoge-

neous across their spatial extent) and 2) the 𝑁 images in the dataset represent a diverse set of

texture types.

Our learning objective is motivated by the experimental observations in Ziemba et al. (2016)

suggesting that V2 represents textures such that responses within texture families (i.e. classes)

are largely invariant to variability within the texture families- the responses are less variable

within texture families than across families. To learn such a representation, one could simply

utilize an objective function that reduces variability of responses to each familywhilemaintaining

variability across all families. This can usually be achieved by supervised methods that optimize

responses to predict the class identity for an image. However, we desire an objective that has
1each Θ𝑑 is a 60 x 7 x 7 set of weights, as each V2 filter operates over the full set of 60 V1 channels
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no supervisory knowledge of which images correspond to which texture families. As a result,

we propose a contrastive objective that seeks to 1) Minimize the variability of model responses

(𝒓𝑛 (𝑝)) across locations 𝑝 within each individual texture image and 2) Maximize variability of

these responses across neighborhoods sampled from the entire set of 𝑁 images. Therefore, rather

than using labels to enforce grouping of similar texture families, we utilize the natural spatial

homogeneity of individual texture images as a form of ‘self-supervision’.

To formulate this mathematically, we first model the distribution of V2 responses over posi-

tions 𝑝 within each image (𝒓𝑛 (𝑝) ∈ R𝐷 ) as multivariate Gaussian, parameterized by the sample

mean and covariance: 𝝁𝑛 ∈ R𝐷 and 𝐶𝑛 ∈ R𝐷×𝐷 . The global distribution of responses across

all images is then a Gaussian mixture with mean and covariance: 𝝁𝑔 = 1
𝑁

∑𝑁
𝑛=1 𝝁𝑛 ; 𝐶𝑔 =

1
𝑁

∑𝑁
𝑛=1𝐶𝑛 + (𝝁𝑛 − 𝝁𝑔) (𝝁𝑛 − 𝝁𝑔)⊤. Under this parameterization, the two goals for the objective

can be achieved by maximizing the ‘discriminability’ between the individual and global response

distributions based on their covariances. A suitable measure of discriminability must capture the

differences in both size (total variance) and shape of the distributions.

There has been extensive work on developing measures that approximate the discriminability

between Gaussian distributions based on their mean and/or covariance statistics (Abou-Moustafa

et al., 2010; Bhattacharyya, 1946; Bures, 1969; De la Torre and Kanade, 2005; Dryden et al., 2009;

Huang et al., 2015; Nenadic, 2007). In order to choose a distance for this problemwe define a set of

criteria the distancemust satisfy. First, the distancemust be scale invariant: global rescaling of the

image data should not change the value of the distancemeasure, which ismeant to capture relative

differences in variability. This is especially important for an objective function, as the responses

can be arbitrarily scaled by the learned weights. Second, for maximization it is preferable that a

distance have an upper bound as this can stabilize optimization and avoid degenerate solutions

where the distance can take on extremely large, unbounded values. Third, for any given texture

image, not all of the V2 dimensions may be important (i.e. the covariance is low-rank), so the

distance must be stable in this regime.
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Given these criteria, it is clear that many of the statistical distances and manifold-based log-

Euclidean distances are problematic because the log transformation is unstable when covariances

are low-rank. The work of Faraki et al. (2016) has shown that regularizing the log-Euclidean

approach with standard covariance shrinkage can lead to large errors, and we have observed this

in our experiments aswell. A novel attempt to resolve this issuewas proposed using a Riemannian

optimization method (Faraki et al., 2016), but this method only works for fixed low-rank matrices.

As a result, we construct our distance on the form | |𝐶1/2
1 − 𝐶

1/2
2 | |𝐹 corresponding to the Bures

metric 2 (Bures, 1969; Muzellec and Cuturi, 2018) . We modify this to make it bounded and scale-

invariant, arriving at a novel measure of distance between the global response covariance and

that of image 𝑇𝑛:

𝑑𝑛 =
| | 𝐶1/2

𝑔 −𝐶
1/2
𝑛 | |𝐹

| | 𝐶1/2
𝑔 | |𝐹

, (3.1)

where (·)1/2 indicates matrix square-root and | | · | |𝐹 is the Frobenius norm. This may be seen as

a normalized variant of the log-Euclidean distances (Huang et al., 2015), in which replacement of

log(·) by (·)1/2 retains the primary benefit of the log-Euclidean framework (transforming the co-

variance eigenvalues with a compressive nonlinearity), while remaining stable and well-defined

in low-rank conditions.

After calculating the distance in Eqn. (3.1) for each individual image, we then combine over

all images to obtain a single scalar objective. To force all distances to be as large as possible,

we maximize the minimum of these distances. For stable optimization, we use a soft-minimum

function, which yields our variability-based objective:

Lvar = softmin(𝑑1, 𝑑2, . . . , 𝑑𝑁 ) =
∑

𝑛 𝑑𝑛𝑒
−𝑑𝑛∑

𝑛 𝑒
−𝑑𝑛

. (3.2)

To allow for robust estimation of the covariance, we make a diagonal approximation where
2Equivalent to the covariance term of the 2-Wasserstein distance between multivariate Gaussian distributions in

the special case when the two covariance matrices commute
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𝐶𝑛 and𝐶𝑔 are each taken to be diagonal. Therefore, the matrix square-roots can be implemented

as element-wise square roots of the individual response variances along the diagonal and the

Frobenius norm becomes the standard vector 𝐿2 norm. However, because a diagonal approxima-

tion can be poor if the covariances have strong co-variability, we use an additional orthogonal

regularization term to encourage orthogonalization of the V2 filters (Bansal et al., 2018):

Lorth = | | ΘΘ⊤ − 𝐼 | |𝐹 . (3.3)

Minimizing this loss forces the responses of each channel to be roughly independent and thus

more amenable to the diagonal approximation. The final objective is a weighted combination of

the two terms:

max
Θ

[Lvar − 𝜆Lorth] . (3.4)

3.3.3 Evaluation Methodology

After training the model with the self-supervised objective in Eqn. (3.4), we use a separate

labeled dataset to train and test a texture family classifier. We first compute the spatially global-

average pooled (GAP) responses for each image in the new dataset, such that each image 𝑇𝑛 is

represented by a single 𝐷-dimensional vector, 𝝁𝑛 . We again make a Gaussian assumption on the

distribution of these mean response vectors for each texture family and fit and test a quadratic

discriminant classifier (QDA) to predict the texture class labels. This process is shown in Fig. 3.2

(a). Although the choice of a QDA classifier is not common, state-of-the-art texture classification

methods generally use some form of quadratic feature encoding (Fisher vectors, bilinear layers,

etc.) before applying a trained linear classifier (i.e. SVM) (Cimpoi et al., 2015; Lin et al., 2015; Song

et al., 2017). Rather than compute all pairwise products, which can be prohibitively expensive in

terms of number of parameters, we use mean pooling to produce a low-dimensional represen-

tation, followed by a bilinear readout. In our context, a quadratic discriminant is the optimal
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bilinear method for discrimination under the Gaussian assumption.

Figure 3.2: (a) Evaluationmethod for our self-supervisedmodel. (b) Evaluationmethod for the supervised
networks

One issue with QDA classification is that it requires the estimation of class-covariance matri-

ces. These matrices can only be reasonably estimated when the number of samples per class is

much larger than the dimensionality of the features, so QDA is only amenable to low-dimensional

feature representations. In our experiments, we compare our model to supervised methods that

use popular network architectures as the base feature extractor. However, most of these networks

produce very high-dimensional output feature spaces that are usually evaluated with linear clas-

sifiers. As a result, we devise an evaluation protocol for these methods such that the dimension-

ality of the feature representation and the expressivity of the classifiers is matched to that of our

model (Fig. 3.2(b)). Specifically, we first reduce the dimensionality of the feature representation

to match that of our V2Net model (D = 60) using a trained 1x1 convolutional layer (as is common

in the literature (Howard et al., 2017; Xue et al., 2018)). This is followed by the same classification

procedure as ours: spatial GAP followed by a bilinear classifier. However, because QDA cannot

be implemented for supervised, end-to-end trained networks, we use a parameterizable bilinear

layer of the form: 𝑥𝑇𝐴𝑥+𝐵𝑥+𝑐 . The model parameters, 1x1 conv layer, and bilinear are all trained

end-to-end, in contrast with our model which is first trained separately with the self-supervised

objective.
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One might ask if the dimensionality reduction of the existing network architectures is too

restrictive and if our comparisons will be biased because of this. In fact, a similar methodology

has shown minimal loss in performance for texture retrieval with PCA reduction down to 64

dimensions (Valente et al., 2019). Therefore, it is unlikely that we are biasing our comparisons by

stifling the capacity of the network. Moreover, the 1x1 convolution approach is arguably more

effective than PCA because it allows this dimensionality reduction to be optimized in the context

of the classification task. Nevertheless, we additionally verified that results for all tested networks

were close to those achieved using a linear classifier on the full-dimensional feature space.

The specific models we compare to are chosen to span a diverse set of methods from the

literature:

ScatNet: We implement the front-end two-stage scattering model as described in Bruna and

Mallat (2013); Sifre and Mallat (2013) that has 5 scales and 8 angles. The scattering model is

then fixed and the 1x1 convolution layer and the bilinear classifier are learned. The number of

channnels before dimensionality reduction is 681.

DAWN(16-init): Recent work has performed a similar experiment using a hybrid deep adap-

tive wavelet network that is found to be more data-efficient than previous methods (Rodriguez

et al., 2020). We implemented the same model and regularization, with 16 initial convolutional

layers, followed by themulti-scale representation. The number of channels before dimensionality

reduction is 256.

ResNet-18: Based on recent success as a feature extractor for texture recognition (Xue et al.,

2018) we also included an 18-layer ResNet model. We extract features from the layer4 level of the

network, as these have been deemed as the most powerful features for texture classification in

previous work (Xue et al., 2018; Zhai et al., 2019). The number of channels before dimensionality

reduction is 512.

VGG-16: VGG networks and their variants have been the most common network architec-

tures used for feature extraction in the literature. The work of Cimpoi et al. (2014; 2015) demon-
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strated that a Fisher vector decoder, and even linear classification from pooled features of the last

convolutional layer, can be effective for texture classification. Based on this work, we used fea-

tures from the conv5 layer of a VGG-16 network. The number of channels before dimensionality

reduction layer is 512.

3.4 Related Work

Model Architecture. Many fixed-filter, hierarchical image decompositions have been used

in the construction of texture representations that are similar to our V1 stage (Bruna and Mal-

lat, 2013; Simoncelli and Freeman, 1995). However, we note that our V1 responses include both

rectified simple cells and 𝐿2-pooled complex cells. This formulation is motivated by physiolog-

ical experiments studying the projections of V1 to V2 neurons (El-Shamayleh et al., 2013), and

represents a departure from the classical view of hierarchical visual modeling that assumes only

pooled responses are transmitted to the downstream layers (Bruna and Mallat, 2013; Fukushima,

1980; Riesenhuber and Poggio, 1999).

Recent deep learning approaches to representing texture have been heavily optimized and

hand-crafted for specific tasks such as texture classification (Cimpoi et al., 2015; Xue et al., 2018),

synthesis (Gatys et al., 2015; Ulyanov et al., 2017), and retrieval (Qian et al., 2017; Valente et al.,

2019). However, there are a few common themes in these methods that we highlight for their

relevance to our model and the models we use for comparison. First, all SoA methods, regardless

of task, rely on extraction of features or statistics from deep CNNs trained for object recognition,

primarily the VGG and ResNet architectures (He et al., 2016; Simonyan and Zisserman, 2015).

With the exception of a few studies (Fujieda et al., 2018; Rodriguez et al., 2020), performing texture

classification with networks trained from scratch has been relatively understudied. Second, it has

been consistently shown that "orderless" pooling of the features before classification layers results

in a far better texture representation. Simple global average pooling (GAP) has been shown to
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be quite effective (Dumoulin et al., 2016; Valente et al., 2019; Xue et al., 2018; Zhang et al., 2020b)

as well as methods that pool based on 2nd-order statistics (Cimpoi et al., 2015; Gatys et al., 2015;

Lin et al., 2015).

Objective functions. In the context of texture classification, current human-labeled homo-

geneous texture databases are few and small, so most deep learning methods transfer features

from networks trained with full supervision on an alternative task (typically, object recogni-

tion). Some authors have developed limited unsupervised methods based on vector quantization

(Greenspan et al., 1991; Raghu et al., 1997), and non-negativematrix factorization (Qin et al., 2008).

Nevertheless, in concert with CNNmodels, we believe ours is the first competitive self-supervised

learning objective for this problem.

Conceptually, our objective is inspired by principles of contrastive learning that have recently

seen much success in competing with more traditional supervised methods (Hénaff et al., 2014;

2019b; Oord et al., 2018;Wu et al., 2018; Zhuang et al., 2019). However, the specific construction of

our learning objective differs substantially from these methods as it relies on a diagonal Gaussian

parameterization of sample distributions that provides many computational benefits such as easy

generalization to incremental learning where the sufficient statistics are updated online without

use of large in-memory batches.

3.5 Results

3.5.1 Data-Efficient Texture Classification

We hypothesize that our objective function enables the learning of a more powerful texture

representation from small data. To test this, we use an experimental paradigm similar to Hénaff

et al. (2019b). We train and test all models on varying amounts of data from a texture dataset. We

use amodified version of the challenging KTH-TIPS2-b dataset (Caputo et al., 2005) for both train-
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ing and evaluation. The original dataset includes 11 families of textured materials photographed

with different viewpoints, illumination levels, and scales. The total dataset is relatively small

(4752 images), so we augment it with 3 rotated versions of each image (90, 180, and 270 degrees)

to obtain a total of 19008 samples. As texture representations should be invariant to rotation,

this is a sensible augmentation that increases the difficulty of the task. We use the original 4

splits of the KTH-TIPS2-b data (training on 3 splits and testing on the 4th). For all experiments

we use a fixed validation set of 3256 images and each test set contained 4752 images. We then

conduct three experiments varying the amount of training data (reducing evenly the number of

images per texture family). We report results for the full training data (1000 images per family),

50 percent training (500 images per family), and 25 percent (250 images per family).

25 50 75 100
Percentage of Training Data Used

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Au
gm

en
te

d 
K

TH
-T

IP
S2

b 
Te

st
 A

cc
ur

ac
y

V2Net (self-sup)
V2Net (sup)
V1Net
ResNet-18

VGG-16
ScatNet
DAWN (16-init)

Figure 3.3: Self-supervised V2Net classifies textures most efficiently.. We plot the mean and stan-
dard error across the 4 train/test splits as a function of the percentage of training data used for all models.

All models (ours and those listed in Sec. 3.3.3) are trained from scratch without any pre-

trained information. For the supervised networks we vary learning rates (from 0.0001 to 0.01)

and batch sizes from (50 to 200) and choose the best model for each train/test split. For our model

(V2Net (self-sup)), the objective function relies on calculating the global mean and variances over

the entire dataset. However, because our training is done through stochastic gradient descent,

we approximated these global statistics by the global statistics over batches of 275 images. We
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choose the batch size heuristically so that individual batch statistics do not deviate significantly

from the statistics over the whole dataset. Interestingly, the batch size does not need to be as

large as is necessary in most other contrastive learning approaches (Chen et al., 2020b; Hénaff

et al., 2019b). We use a learning rate of 0.001 and additionally included a BatchNorm layer at the

output of the network to stabilize the global statistics across batches.
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Figure 3.4: V2Net requires both simple and complex cells for optimal performance.. We ablate
the V1 simple cell contribution in both the V1Net and V2Net models. We see that the V2Net optimal
texture recognition performance requires V1 simple cell inputs.

The results for the 3 training experiments are shown in Fig. 3.3. We report the mean and

standard error for the 4 train/test splits within each experiment. First, we can see that just us-

ing the fixed V1 stage (V1Net) followed by QDA provides a reasonable baseline. This model has

marginal performance difference across differing amounts of training data, which can be solely

attributed to the estimation error of the class covariances when training the QDA classifier. Sec-

ond, we find that the two-stage V2 model performs similarly to the VGG-16 network with full

training data, but significantly outperforms all networks when using 50% or 25% of the training

data, indicating much greater data-efficiency. To better understand the impact of our objective

function, we also report results for a network with the same architecture as V2Net, but trained

with a supervised cross-entropy loss (V2Net (sup)) 3. As seen in Fig. 3.3, this network performs
3We use the same bilinear classifier model as was used for the other networks
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comparably to the other supervised networks but still seems to overfit in the small-data regimes.

This suggests that even small networks can overfit with small amounts of training data, implying

that it is the design of our objective function that allows our network to remain data-efficient in

these cases.

To assess the impact of the inclusion of V1 simple cells in our network, we next compare the

V2Net classification accuracy to a model trained with V1 simple cells removed. The results are

shown in Fig. 3.4. The performance of both V1 models is roughly the same, and in both cases the

V2 model improves on the V1 model. However, the gap between the V1 and V2 performance is

noticeably larger when the V1 layer contains both simple and complex cells. This result suggests

that a more effective V2 representation can be learned when the inputs come from both simple

and complex cells.

3.5.2 Transfer Learning

To verify the generalization of our learning objective, we collected an unlabeled dataset of

texture photographs. Original images were manually cropped to be globally homogeneous (by

eye) over their entire spatial extent. The scale, viewpoint etc. were not controlled in any particu-

lar way, althoughmost textures are on approximately front-parallel surfaces. The types of texture

in the dataset span a wide range (including leaves, grass, wood bark, brick, ceramic tile mosaics,

etc) that is far more diverse than the KTH-TIPS2-b dataset. We train our model on 11000 of these

images and re-evaluate the performance on the four KTH train/test splits by retraining the QDA

classifier. Performance of this pre-trained model slightly improves on the performance of the

models trained from scratch (average gain of 1.4 % mean accuracy across the three experiments)

and displays the same level of robustness to the reduction of training data. This demonstrates that

our results are not specific to the training dataset and that our learning objective in fact general-

izes across texture datasets with very different distributions of images. We additionally compared

the performance of our pre-trained (but still self-supervised) network against the ResNet-18 and
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VGG-16 architectures pre-trained on ImageNet classification. The results of this experiment are

given in Sec. B.1. Our network does not achieve the performance of these pre-trained networks,

but the performance gap ( 5-10%) is surprisingly small given that our model is pre-trained without

supervision, using two orders of magnitude fewer images (11k vs. 1M).

3.5.3 Selectivity for Natural Texture vs. Spectrally-shaped Noise

Physiological results in Freeman et al. (2013); Ziemba et al. (2016) suggest that texture selec-

tivity in the brain not only manifests as an ability to separate texture families, but also can also

be used to distinguish natural textures from their phase-scrambled counterparts. We construct a

test along these lines to gain a deeper understanding of our learned model and its selectivities.

We retrain our V2Net model using phase-scrambled versions of the images from our unlabeled

texture dataset from Sec. 3.5.2. By training on phase-scrambled images, the model no longer has

access to the natural statistics that define textures beyond their spectral power. As a result, if our

model is truly capturing higher-order texture statistics, its performance on natural images will

drop significantly when trained on the phase-scrambled images. In fact, we find that the average

test accuracy of the model trained on phase-scrambled images (V2Net (PS)) is 51.5% vs. 67.4% for

the model trained on natural images (V2Net (Natural)). Upon further inspection, there are certain

texture classes that have high accuracy for the V2Net (PS) model, indicating that these families are

readily distinguished using spectral power statistics. We verify that this is also true perceptually:

phase-scrambled versions of these classes are visually similar to the original images. However,

the classes where there is a large deviation between V2Net (Natural) and V2Net (PS) are those

where the phase-scrambled images carry little information about the original texture. For more

details, see Sec. B.2.
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3.5.4 Texture Representational Similarity

Having established that our learned texture model reproduces qualitative texture selectiv-

ities, we next explore the relationship with the physiology by comparing the representational

similarity between our model and recorded responses of V2 neurons to texture images. We use

the dataset described in Freeman et al. (2013); Ziemba et al. (2016), which provides electrophys-

iological recordings of 103 V2 neurons responding to 15 samples of textures from 15 different

texture families. As was done in Ziemba et al. (2016), we first use the standard low-dimensional

embedding technique T-SNE (Van der Maaten and Hinton, 2008) to understand qualitatively how

our model represents the 225 texture images compared with the actual neural representation. We

see in Fig. B.4 that our model seems to capture the relative relationships between texture fam-

ily centroids, but over-compresses within-family variability. To quantitatively understand the
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Figure 3.5: V2Net outperforms pre-trained VGG layers in texture family representational simi-
larity with V2 neurons. Spearman rank correlation is plotted for each major layer of the VGG-16 net-
work, as well as V2Net. We see that V2Net better captures the relative centroid positions of the texture
families (averaged over samples) than any of the VGG layers, even though the VGG network has been
trained with an order of magnitude more data. We show the noise ceiling (estimated from internal splits
of the neural data) in gray.

representational similarity between our model and the neural data at the level of texture fami-

lies (categories), we first compute the averaged response (across samples) of both the model and

neural responses to each of the 15 texture families. Next, for each representation, we construct
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a dissimilarity matrix based on the pairwise correlation distance. There are many distances one

could choose but the correlation distance is one of the most common and performs fairly robustly

in comparison with distances such as euclidean distances (Kriegeskorte et al., 2008; Mehrer et al.,

2020). As has been noted in the literature (Nili et al., 2014), it is not common to assume a linear

relationship between dissimilarity matrices, but it is rather more appropriate to assume themodel

RDM predicts the rank order of the dissimilarities (Nili et al., 2014). Therefore, we compute the

Spearman rank correlation between the dissimilarity matrices of our model and the V2 neural

data. Finally, we perform the same analysis for the main blocks of a pre-trained VGG-16 network

(as this network has been used heavily as a model of texture (Gatys et al., 2015)). For more details

on the physiology data and image presentation see Sec. B.3.

We find that the V2Net representation is more correlated with the V2 population representa-

tion than any of the VGG layers. Additionally, we note that the best VGG layer is the block2pool

layer, which is in fact the output of many more nonlinear layers than our model. As a result,

not only does our model better capture the data, but it also does so with far more limited model

capacity. This suggests that stacking a hierarchical model on top of our learned network may

lead to an improvement in SoA classification performance while maintaining consistency with

biological architectures.

3.6 Discussion

In this work, we demonstrate successful data-efficient self-supervised learning of a simple,

yet powerful computational model for representing texture. Rather than learn a very high-

dimensional representation followed by linear classification, we use a simpler two-stage model

whose responses are then decoded with an interpretable non-linear decoder (QDA). This provides

the benefit that moving forward we can more easily probe the underlying learned feature space

and understand explicitly how those features impact decoding of texture families (through their
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covariance structure). In fact, we are not the first to propose such a scheme in the context of

neural decoding as QDA has been shown to provide a possible basis for a biologically-plausible

non-linear decoding method that can explain quadratic transformations that have been observed

between layers of processing in the visual system (Pagan et al., 2016; Yang et al., 2020b). Within

this framework, we show that a modification of the common view of hierarchical visual process-

ing (reminiscent of skip-connections (He et al., 2016)), that includes both V1 simple and complex

cells as input to a second V2-like processing stage can provide functional benefits in the learning

of the texture representation both in terms of classification accuracy and representation similarity

with recording neurons in primate area V2. More importantly, we demonstrate that smaller net-

works do not necessarily performmuch better with small training data, but that learning robustly

from small numbers of training examples required the development of a novel self-supervised

learning objective.

Our learning objective is inspired by recent unsupervised contrastive objectives (separating

positive examples from a collection of negatives) (Hénaff et al., 2019b; Oord et al., 2018; Wu et al.,

2018; Zhuang et al., 2019). While these methods are general, in they are non-parametric with

respect to the distribution of the data, we believe that our parameterization in terms of mean

and covariance allows our method to 1) constrain learning in small data regimes and 2) provide

opportunities to explore more biologically plausible on-line learning implementations. In par-

ticular, it is implausible that the brain can store all samples of the global distribution, and our

parameterization allows for on-line sequential update of the mean and covariance statistics for

each observed image.

Our method currently assumes a dataset of homogeneous textures as input, as this enables

a simple form of objective that minimizes spatial variability of the responses across each image.

While this is useful, we believe it to ultimately be a limitation of our method, especially when

attempting to learn a model that is aligned with cortical area V2. As seen in the T-SNE visual-

ization (Fig. B.4), our model heavily compresses variability within textures to a point that seems
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both biologically inaccurate (as compared with the V2 responses), and potentially problematic

for learning visual representations that generalize beyond texture. As a result, we hope in future

work to extend our method to allow learning from whole natural scenes, by minimizing variabil-

ity of responses within local spatial neighborhoods, while maximizing global variability. This is

motivated by the local consistency of natural images - nearby spatial regions are more likely to be

similar than distant ones. In fact, there have been some efforts to use spatial coherence as a learn-

ing signal (Becker and Hinton, 1995; Danon et al., 2019; Jean et al., 2019; Ji et al., 2018), splitting

the image into independent patches that are processed as inputs to the model during learning.

Our objective offers an alternate methodology that can process full images while imposing the

locality constraint in the response space. Because of the layer-wise nature of our objective, there

is also the potential to extend themethod to learn filters in multiple stages of a hierarchical model.
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4 | Layerwise complexity-matched

self-supervised learning yields

improved models of cortical area V2

4.1 Overview

This work is in submission for publication in the proceedings of the Transactions on Machine

Learning Research (Parthasarathy et al., 2023b).

In this chapter, we directly extend the work in Chapter 3, in an attempt to overcome many

of the limitations of the learned texture model. We will describe a novel canonical layerwise

learning method that avoids the prior dataset limitations (being only able to train on textures),

and generalizes to learning multiple stages of a visual hierarchy.

Human abilities to recognize complex visual patterns arise through successive transforma-

tions in a sequence of areas in the ventral visual cortex. Deep neural networks trained end-to-end

for object recognition approach human capabilities, and offer the best descriptions to date of neu-

ral responses in the late stages of the hierarchy. But these networks provide a poor account of the

early stages, compared to traditional hand-engineered models, or models optimized for coding ef-

ficiency or prediction. Furthermore, the gradient backpropagation required for end-to-end learn-

ing is widely considered to be a biologically implausible mechanism. Here, we overcome both of

55



these limitations by developing a bottom-up self-supervised training methodology that operates

independently on successive layers. Specifically, we maximize feature similarity between pairs

of locally-deformed natural image patches, while decorrelating features across patches sampled

from other images. Crucially, the deformation amplitudes are adjusted proportionally to receptive

field sizes in each layer, thus matching the task complexity to the capacity at each stage of pro-

cessing. In comparison with architecture-matched versions of previous models, we demonstrate

that our layerwise complexity-matched learning (LCL) formulation produces a two-stage model

(LCL-V2) that is better aligned with selectivity properties and neural activity in primate area V2.

We demonstrate that the complexity-matched learning paradigm is critical for the emergence of

the improved biological alignment. Finally, when the two-stage model is used as a fixed front-

end for a deep network trained to perform object recognition, the resultant model (LCL-V2Net)

is significantly better than standard end-to-end self-supervised, supervised, and adversarially-

trained models in terms of generalization to out-of-distribution tasks and alignment with human

behavior.

4.2 Introduction

Perception and recognition of spatial visual patterns, scenes and objects in primates arises

through transformations performed in a cascade of areas in the ventral visual cortex (Ungerleider

and Haxby, 1994). The early stages of visual processing (in particular, the retina, lateral genicu-

late nucleus, and cortical area V1), have been studied for many decades, and hand-crafted models

based on linear filters, rectifying nonlinearities, and local gain control provide a reasonable ac-

count of their responses properties (Adelson and Bergen, 1985; Carandini et al., 1997; McLean and

Palmer, 1989; Shapley and Victor, 1979) Complementary attempts to use bottom-up normative

principles such as sparsity, coding efficiency, or temporal prediction have provided successful

accounts of various early visual properties (Atick and Redlich, 1990; Bell and Sejnowski, 1997;
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Cadieu and Olshausen, 2012; Hoyer and Hyvärinen, 2002; Karklin and Lewicki, 2009; Karklin and

Simoncelli, 2011; Li, 1996; Olshausen and Field, 1996; Schwartz and Simoncelli, 2001; Van Hateren

and van der Schaaf, 1998; Wiskott and Sejnowski, 2002). But these also have been limited to early

stages up to area V1, and have thus far not succeeded in going beyond.

Deep neural networks (DNNs), whose architecture and functionality were inspired by those

of the primate visual system (Douglas et al., 1989; Fukushima, 1980; Heeger et al., 1996; Riesen-

huber and Poggio, 1999), have offered a new opportunity. When trained with supervised and

self-supervised end-to-end backpropagation, DNNs have provided the first models that begin to

capture response properties of neurons deep in the visual hierarchy (Kubilius et al., 2019; Schrimpf

et al., 2018; Yamins et al., 2014; Zhuang et al., 2021). Early results showed that these DNNs are also

generally predictive of the overall category-level decisions of primates during object recognition

tasks (Ghodrati et al., 2014; Jozwik et al., 2016; Kheradpisheh et al., 2016); however, they have not

been predictive of more detailed behavior, as measured by alignment with individual image con-

fusion matrices (Rajalingham et al., 2018). Nevertheless, as the field has rapidly progressed, more

recent results demonstrate that scaling end-to-end task-optimization (both in training data and

model size) leads to significant improvements in predicting this trial-by-trial human behavior in

matched visual tasks (Geirhos et al., 2021; Sucholutsky et al., 2023).

Ironically, despite their historical roots, these same networks have not provided convincing

models of early visual areas such as V1 and V2, and do not account for other perceptual capabil-

ities (Berardino et al., 2017; Bowers et al., 2022; Feather et al., 2023; Fel et al., 2022; Hénaff et al.,

2019a; Subramanian et al., 2023). Figure 4.1 summarizes these observations for a set of models

with a wide variety of architectures and training paradigms, drawn from the BrainScore platform

(Schrimpf et al., 2018). The left panel shows that improvements in object recognition performance

are strongly correlated (𝑟 = 0.57) with improvements in accounting for human recognition ca-

pabilities. This is encouraging, but perhaps expected, since the recognition databases used for

training represent human-assigned labels. The right panel shows that there is also a positive cor-
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Figure 4.1: DNN object recognition performance predicts human recognition behavior, but not
primate early visual responses. Each plotted point corresponds to a DNN model from the BrainScore
database (Schrimpf et al., 2018)). Horizontal axis of both panels indicates recognition accuracy (top-1)
on the ImageNet dataset (Krizhevsky et al., 2012). Left: Comparison to alignment with human visual
recognition performance (combination of benchmarks taken from (Geirhos et al., 2021) and (Rajalingham
et al., 2018)). Right: Comparison to neural variance explained by regressing the best-fitting DNN layer
to neural responses measured in macaque V1 (green), V2 (blue) (Freeman et al., 2013; Ziemba et al., 2016)
and IT (black) (Majaj et al., 2015; Sanghavi and DiCarlo, 2021; Sanghavi et al., 2021a;b)

relation (albeit weaker) between recognition performance and ability to explain responses of IT

neurons recorded in macaque monkeys. Again, this is perhaps not surprising, given that object-

recognition behavior can be to some extent explained by linear weightings of IT responses (Majaj

et al., 2015). (It is worth noting, though, that for models with very high recognition performance

(>70%), ability to explain IT neurons in fact has been getting worse, an observation that has re-

cently been explored in greater detail in (Linsley et al., 2023)). However, surprisingly, recognition

performance is uncorrelated (or even slightly anti-correlated) with the ability to explain responses

of early visual neurons in cortical areas V1 and V2.

Why do these networks, which offer human-like performance in complex recognition tasks,

andwhich provide a reasonable account of neural responses in deep stages of the visual hierarchy,

fail to capture earlier stages? We interpret this as an indication that intermediate DNN layers are
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insufficiently constrained by end-to-end training on recognition tasks. More specifically, the ex-

tremely high model capacity of these networks allows the training procedure to find “shortcuts”

that satisfy single end-to-end objectives (both supervised and self-supervised) (Geirhos et al.,

2020a; Robinson et al., 2021). As a result, it is common for networks to utilize unreliable feature

representations that do not generalize well (Hermann and Lampinen, 2020). This is further evi-

denced by the fact that standard trained networks can be fooled by ‘adversarial examples’ (small

pixel perturbations that can large shifts in internal classification decision boundaries) (Goodfel-

low et al., 2014; Szegedy et al., 2013; Tramèr et al., 2017). With this in context, it makes sense that

the best models for V1/V2 (just under 40% explained variance) seem to be those that are trained

to increase robustness to adversarial attacks (Madry et al., 2017). However, the specific solution

of adversarial training comes at a significant cost in standard image recognition performance, as

well as being both computationally expensive and biologically-implausible.

In this work, we hypothesize that representations throughout a DNN can be constrained in a

more biologically-plausible manner through the use of layerwise self-supervised learning objec-

tives. We propose a natural method for matching the complexity (or difficulty) of these objective

functions with the computational capacity at each stage of processing. When used to train a

two-stage model, the resulting network achieves state-of-the-art predictions of neural responses

in cortical area V2. Furthermore, when using this learned model as a front-end for supervised

training with deeper networks, we show that (in contrast with adversarial training) the increased

neural alignment does not come at the cost of object recognition performance, and in fact results

in significant improvements in out-of-distribution recognition performance and alignment with

human behavior.
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Figure 4.2: Layerwise complexity-matched learning. Top: The standard end-to-end (E2E) learning
paradigm used with DNNs. The loss function (𝐿𝐸2𝐸) operates on the network output and is typically
chosen to favor object-level invariances, through supervised training on labelled data or self-supervised
training on augmented examples. To solve these E2E objectives, the network 𝑓 (𝜃 ), must have a highmodel
capacity (sufficiently large number of parameters and non-linearities). Bottom: In a layerwise training
system, the loss is a function of all intermediate outputs (𝑧1, 𝑧2,...). Losses at each layer 𝐿𝑙 are used to train
each encoder stage 𝑓𝜃𝑙 independently, with gradients operating only within stages. For effective training,
we hypothesize that the loss at each stage, 𝐿𝑙 , should be matched in complexity to the model capacity
defined by the network up to layer 𝑙 .

4.3 Methods

Our layerwise training approach is illustrated in Fig. 4.3. We first describe the key conceptual

underpinnings of the method, and then provide the experimental training and evaluation details.

4.3.1 Layerwise complexity-matched learning

Layerwise (more generally, blockwise) methods for DNN training have been previously de-

veloped to alleviate the global propagation of gradients required in end-to-end (E2E) training

training (Belilovsky et al., 2019; Bengio et al., 2006; Halvagal and Zenke, 2023; Hinton et al., 2006;

Illing et al., 2021; Siddiqui et al., 2023). Figure 4.2 illustrates the relationship between the two

approaches. Given a set of inputs 𝑥 and corresponding output labels 𝑧, the E2E approach op-
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timizes all network parameters 𝜃 to minimize the loss function 𝐿𝐸2𝐸 via full backpropagation.

Successful training of high-capacity networks has generally been achieved with large amounts

of training data and complex objectives: (1) supervised data that encourages object-level seman-

tic invariances (Krizhevsky et al., 2012), (2) self-supervised data generated using a combination

spatial and photometric augmentations (Chen et al., 2020b; Grill et al., 2020; Zbontar et al., 2021),

or self-supervised masked autoencoding with substantial levels of masking (He et al., 2021). In

general, the quality of learned features and the success in recognition depends on the complexity

(or difficulty) of the learning problem. For example, if we consider a supervised classification

objective, the difficulty of this problem will depend on factors such as the number of classes,

complexity of the image content (simple shapes vs. real-world objects), or the magnitude of the

within-class variability (deformations under which each object is seen). Similarly, these training

set properties control the complexity of the self-supervised problem (Jing et al., 2021; Robinson

et al., 2021). In contrast, in the layerwise approach, the objective is partitioned into sub-objectives

that operate separately on the output of each layer, and the optimization thus relies on gradients

that propagate within (but not between) layers. The model at a given layer 𝑙 is composed of all

stages up to that layer: 𝑓𝜃1...𝑙 . Thus, the computational capacity is low in the early layers (only a

few non-linearities and small receptive fields) and increases gradually with each successive layer.

To achieve successful training in this scheme, we propose to match the complexity of the data

diversity and objective function with the effective model capacity at a given layer.

4.3.2 Self-supervised contrastive objective

We construct a layerwise objective based on the “Barlow Twins” self-supervised loss (Zbontar

et al., 2021), a feature-contrastive loss that is robust to hyperparameter choices and has recently

shown success in blockwise learning (Siddiqui et al., 2023). Briefly, each image 𝑥 in a batch is

transformed into two views, 𝑥𝐴 and 𝑥𝐵 , via randomly selected spatial and photometric defor-

mations. Both views are propagated through an encoder network 𝑓𝜃 and a projection head 𝑔𝜃
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to produce embeddings 𝑧 = 𝑔𝜃 ◦ 𝑓𝜃 (𝑥). We define a cross-correlation matrix over each batch of

images and corresponding view embeddings:

𝑐𝑖 𝑗 =

∑
𝑏 𝑧

𝐴
𝑏,𝑖
𝑧𝐵
𝑏,𝑗√︃∑

𝑏 (𝑧𝐴𝑏,𝑖)2
√︃∑

𝑏 (𝑧𝐵𝑏,𝑗 )2
(4.1)

where 𝑏 indexes the batch and 𝑖 and 𝑗 index the components of the projection head response. The

Barlow Twins objective function is then:

𝐿𝐵𝑇 =
∑︁
𝑖

(1 − 𝑐𝑖𝑖)2 + 𝜆
∑︁
𝑖

∑︁
𝑗≠𝑖

𝑐2𝑖 𝑗 (4.2)

This loss encourages formation of invariant projection-features (or equivariant encoder fea-

tures) across the two views (maximizing the diagonal terms of the correlation) and decorrelated

features across the different images in a batch (minimizing the off-diagonal terms). This objective

can thus be thought of as a “feature-contrastive” method. As noted in (Garrido et al., 2022), there

is a strong duality between this loss and with sample-contrastive losses (such as SimCLR (Chen

et al., 2020b)). Accordingly, we achieve similar results in our framework using sample-contrastive

losses (more in Sec. 4.4.4), but find slight improvements in performance and stability with the

Barlow Twins objective.

4.3.3 Training methodology

We applied our Layerwise Complexity-matched Learning paradigm (LCL) to a two-stage

model, denoted LCL-V2. The training methodology is depicted in Fig. 4.3. The loss function aims

to optimize feature invariance across augmented views of an image, while decorrelating features

across different images. We control the complexity (difficulty) of each of these learning problems

by changing both the size of input images and the strength of augmentation deformation that

are used to compute the per-layer loss functions. Fig. 4.3 (a) depicts this input processing for an
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Figure 4.3: Layerwise complexity-matched objective. Layerwise complexity-matched objective.
Left: For each layer, the objective encourages invariance to feature perturbations by comparing the rep-
resentation of two augmented views of the same image. For layer 𝑙 , the feature complexity of generated
image pair (𝑥𝐴

𝑙
, 𝑥𝐵

𝑙
) is controlled through choice of patch size, and the magnitude of spatial deformations

(translation, dilation). Right: The parameters 𝜃1 of the first layer encoder 𝑓𝜃1 are updated using the Bar-
low Twins feature-contrastive loss (Zbontar et al., 2021) operating on the two views of the smallest patch
size (𝑥𝐴1 , 𝑥

𝐵
1 ). This set of views is only propagated to this layer output. The parameters 𝜃2 of the second

layer encoder 𝑓𝜃2 are updated with the same loss, but using the views that cover a larger spatial region,
and include larger spatial deformations.

example image, considering our two-layer network. Given the full view 𝑥 , a patch is cropped for

layer 1 (𝑥𝐴1 ) and layer 2 (𝑥𝐴2 ). We choose an initial patch size for 𝑥𝐴1 and note that the patch size

for layer 2 is simply scaled by a factor of 2, roughly matched to the scaling of biological receptive

field sizes between areas V1 and V2 (Freeman and Simoncelli, 2011). For the selected patches,

we then generate augmented versions (𝑥𝐴2 , 𝑥
𝐵
2 ) using photometric and spatial deformations. For

simplicity, we maintain the same photometric deformations and scale the problem complexity

by proportionally adjusting the strength of the spatial deformation by a factor of 2 between the

two layers. Visually, we see that this procedure results in paired images for layer 1 that have low

feature complexity and small translation and scale differences while the images for layer 2 have

higher feature complexity and larger deformations.
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Given these inputs, Fig. 4.3(b) shows the procedure for computing the per-layer loss functions.

We generate projection embeddings for layer 1 and layer 2 by propagating the corresponding

input patches to the corresponding model blocks:

𝑧𝐴1 = Pool ◦ 𝑔𝜃1 ◦ 𝑓𝜃1 (𝑥𝐴1 )

𝑧𝐴2 = Pool ◦ 𝑔𝜃2 ◦ 𝑓𝜃2 ◦ 𝑓𝜃2 (𝑥𝐴2 )

𝑓𝜃𝑙 refers to the encoder blocks and 𝑔𝜃𝑙 corresponds to the projection heads for each layer. 𝑧𝐵1 and

𝑧𝐵2 are computed analogously from 𝑥𝐵1 and 𝑥𝐵2 . The loss is then computed as the sum of losses for

each layer: 𝐿𝑜𝑠𝑠 = 𝐿𝐵𝑇 (𝑧𝐴1 , 𝑧𝐵1 ) + 𝐿𝐵𝑇 (𝑧𝐴2 , 𝑧𝐵2 ). As in (Siddiqui et al., 2023), the loss computation

only requires backpropagation within each layer, and gradients from the layer 2 loss do not affect

parameters in 𝑓𝜃1 .

In summary, we implement a complexity-matched layerwise learning formulation where the

difficulty of the learning problem at layer 2 is scaled in comparison with that at layer 1. The

model must learn invariant features across images that have more complex content (larger patch

size) that are also more strongly deformed (in scale and translation). This increase in objective

complexity accompanies a corresponding increase in model capacity in the second layer (due to

growth in receptive field size and number of nonlinearities).

4.3.4 Implementation details

Architecture. As in many previously published results (Caron et al., 2018; Gidaris et al.,

2018), we chose to use the AlexNet architecture (Krizhevsky et al., 2012) with batch normaliza-

tion, (Ioffe and Szegedy, 2015). Whilemany recent resultsmake use ofmore complex architectures

(eg, ResNets (He et al., 2016), Vision Transformers (Dosovitskiy et al., 2020) etc.) our method can

be more effectively evaluated with a very shallow network, as we can severely restrict model ca-

pacity in training these early layers without confounding architectural features such as skip con-
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nections, attention blocks etc. Additionally, as mentioned earlier, much of the biological anatomy

and computational theories suggest that the feed-forward aspect of areas V1 and V2 should be

explainable by networks with few computational stages. As a result, we hypothesize that the

AlexNet architecture can provide a more parsimonious and interpretable model of these areas.

For LCL-V2 we train the first two convolutional stages of the AlexNet architecture and utilize

a standard multi-layer perceptron (MLP) with a single hidden layer for the projector networks at

each layer. The computational capacity is increased between the two stages, with each stage in-

corporating two non-linearities (ReLU activation and MaxPooling). In addition, capacity is scaled

by increasing the number of channels (64 to 192) and receptive field size (via (2x) subsampled

pooling). In Sec. 4.4.5, we additionally evaluate the effectiveness of LCL-V2 as a fixed front-end

model (similar to (Dapello et al., 2020)). We train the remaining AlexNet layers (with batch nor-

malization) on top of the fixed LCL-V2 front-end and refer to this full network as LCL-V2Net.

For more specific architecture details, see appendix Sec C.1.

Data andOptimization. We trained LCL-V2 and its ablations (see Sec. 4.4.4) on the ImageNet-

1k dataset (Krizhevsky et al., 2012). We resized the original images to minimum size 224x224.

For layer 1 we centrally cropped a 56x56 patch and generated spatially augmented views of size

48x48 via the RandomResizedCrop (RRC) operator with scale = (0.6, 0.9). For layer 2, we central

cropped a 112x112 patch and generate views of size 96x96 with RRC crops (scale = (0.3, 0.9)). As

a result, both the final patch size and crop scale range are doubled between layer 1 and layer 2.

For each set of patches, we also applied a fixed set of photometric distortions by weakly varying

contrast, luminance, and adding random Gaussian noise with variable standard deviation (details

in Sec. C.3). Unlike standard E2E self supervised approaches, we do not use the more aggressive

augmentations (large color jitter, flipping etc), which seem less perceptually relevant.

We use the Adam optimizer (Kingma and Ba, 2014) without weight decay and 𝑙𝑟 = 0.001. We

train the model until the summed validation loss (evaluated on a held-out set of images) does not

improve above beyond a fixed threshold. While recent work in self-supervised learning has found
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benefits from using more complex optimizers and learning rate schedules, we find no significant

benefits in our two-layer setting. To train the full LCL-V2Net, we fix the pretrained LCL-V2 as

a front-end and use a standard supervised cross-entropy loss to train the subsequent stages. We

train for 90 epochs using the SGD optimizer (𝑙𝑟 = 0.1) with a step-wise learning rate scheduler

that reduces the learning rate every 30 epochs.

4.3.5 Experimental setup

Model comparisons. Throughout this work we compare to a variety of previous models of

three types (see Sec. C.1 for details):

• E2E (standard): End-to-end AlexNet models trained with standard supervised or self-

supervised objective functions on the ImageNet-1K dataset: Supervised (Krizhevsky et al.,

2012), Barlow Twins (Zbontar et al., 2021), and VOneNet (fixed-V1 stage and supervised

learning for downstream stages) (Dapello et al., 2020).

• E2E (robust): End-to-end AlexNet models trained with state-of-the-art robustification

methods specifically to maintain robustness to adversarial pixel perturbations: standard

adversarial training (L2-AT (𝜖 = 3.0)) (Madry et al., 2017), adversarial noise training with a

parameterized noise distribution (ANT) (Rusak et al., 2020).

• Layerwise training: AlexNet model trained with the Barlow Twins objective using the-

standard image augmentation scheme applied layerwise (Siddiqui et al., 2023), Latent pre-

dictive learning (LPL) (Halvagal and Zenke, 2023).

• Hand-crafted: Steerable pyramid layer (Simoncelli and Freeman, 1995) (with simple and

complex cell nonlinearities), followed by a layer of spatial 𝐿2 (energy) pooling.

Neural alignment evaluations. We compare all models quantitatively in their ability to pre-

dict aspects of V2 neurons from the dataset used in BrainScore (Schrimpf et al., 2018). This dataset,
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described in (Freeman et al., 2013; Ziemba et al., 2016), provides electrophysiological recordings

of 103 V2 neurons responding to texture images synthesized with the Portilla-Simoncelli tex-

ture model (Portilla and Simoncelli, 2000). The data include responses to 15 texture samples, in

addition to 15 samples of spectrally-matched noise images, for 15 different texture families (a

total of 450 images). To measure model predictivity of this neural data, we fit models with the

data splits and implementation of the partial least squares (PLS) regression method proposed in

(Schrimpf et al., 2018), and then compute explained-variance scores for each fitted model. Details

are provided in Sec. C.4.

To better understand the ability of models to capture selectivities of V2 neurons, we provide

additional evaluations (Sec. 4.4.2) that use the texture modulation ratio statistic introduced in

(Freeman et al., 2013). Specifically, we define: 𝑅𝑚𝑜𝑑𝑛,𝑖 =
𝑡𝑒𝑥𝑛,𝑖−𝑛𝑜𝑖𝑠𝑒𝑛,𝑖
𝑡𝑒𝑥𝑛,𝑖+𝑛𝑜𝑖𝑠𝑒𝑛,𝑖 , where 𝑡𝑒𝑥𝑛,𝑖 is the response of

neuron 𝑛 (averaged across 15 image samples) to texture family 𝑖 and 𝑛𝑜𝑖𝑠𝑒𝑛,𝑖 is the corresponding

response to the spectrally-matched noise for family 𝑖 .

LCL-V2Net recognition and human behavior evaluations. We primarily use the out-of-

distribution (OOD) generalization benchmark of (Geirhos et al., 2021) to test the performance of

LCL-V2Net. This dataset consists of 17 OOD classification tasks based on adding various kinds

of noise, distortions, and shape-biasing transformations to ImageNet images. We evaluate both

OOD accuracy and consistency with human behavior. For more information on the benchmark,

specific list of distortions, and evaluation metrics see Sec. C.5.

We additionally report performance on the original ImageNet-1K (Krizhevsky et al., 2012)

validation set as well as more recent large-scale validation sets (ImageNet-R (Hendrycks et al.,

2021a) and ImageNet-vid-robust (Shankar et al., 2021)) for testing generalization.
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4.4 Results

4.4.1 Population fits to neural data
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Figure 4.4: Left: Median explained variance of models fitted with PLS regression to 103 primate V2 neural
responses. For models with more than two layers, all layers are evaluated and the performance of the best
layer is provided. Right: Comparison of median explained variance for “V1-like” and “V2-like” V2 cells.
These categories correspond to the top and bottom quartiles (N=26) of V2 cells sorted by how well they
are fit by a canonical hand-constructed V1 model (V1-SteerPyr+Pool). The minimum explained variance
of the V1 model over the set of “V1-like” neurons is 57 %. The maximum explained variance over the set of
“V2-like” neurons is 14 %. The LCL-V2 and L2-AT models significantly outperform all other models on the
V1-like subset, even surpassing the baseline V1 model. The LCL-V2 model also significantly outperforms
the L2-AT model on the least V1-like subset.

Overall V2 Predictivity. The first panel of Fig. 4.4 shows the overall BrainScore explained

variance of the models outlined in Sec. 4.3.5. For all models, the best layer was chosen by evaluat-

ing predictions on a validation set prior to fitting the final PLS regression on the held-out test set.

We see that LCL-V2 outperforms all architecture-matched models, including the L2-AT trained

network. In fact, although we only show architecture-matched results here, our model provides

the best account of the V2 data across all architectures currently on the BrainScore leaderboard

(Schrimpf et al., 2018; 2020). Interestingly, previous layerwise training methods (Barlow (layer-
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wise) from (Siddiqui et al., 2023) and LPL (Halvagal and Zenke, 2023)) exhibit significantly worse

performance than the standard end-to-end training. This suggests that the benefits of our method

specifically arise from complexity-matching, something we quantify further in Sec. 2.4.3.

Partitioning V2 with a V1-baseline model. The V1-SteerPyr+Pool model provides a base-

line measure of how well V2 neurons can be predicted simply by combining rectified and 𝐿2-

energy pooled oriented filter responses (as are commonly used to account for V1 responses).

Nearly 30 % of the variance across all 103 V2 neurons can be explained given this model, suggest-

ing that there are a number of V2 neurons that are selective for orientation and spatial frequency

selectivity. In fact, this aligns with prior studies that have found subsets of V2 neurons with tun-

ing similar to V1 neurons (but with larger spatial receptive ields) (Foster et al., 1985; Lennie, 1998;

Levitt et al., 1994; Willmore et al., 2010).

Given this baseline model, we partition the V2 neural datasets into neurons that are ‘V1-

like’ (top quartile, in terms of how well they are explained by the V1-SteerPyr+Pool model) and

those that are ‘not-V1-like’ (bottom quartile). In the right panel of Fig. 4.4, we compare the

median performance of each of the models on each subset. We see that all other non-adversarially

trained models (both layerwise and end-to-end) are significantly worse at predicting the ‘V1-

like’ subset than the baseline V1 model. Surprisingly, both LCL-V2 (ours) and L2-AT models

outperform the V1 baseline on this subset, suggesting that although these neurons are most-likely

orientation and spatial frequency tuned, they also have some selectivity that is not captured b y

the simple V1 model. On the ‘not-V1-like’ subset, the performance of all models is significantly

worse; however, there is now an even larger gap (approx 5%) between LCL-V2 and the L2-AT

model. Thus, the adversarial training achieves better predictions of area V2, primarily by better

explaining the neurons that have ‘V1-like’ properties. LCL-V2 maintains this improvement, but

also provides better fits to neurons whose complex feature selectivity is not well described by

the baseline V1 model. In the following section, we examine whether the models exhibit known

feature selectivities found in the V2 data.
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4.4.2 Model comparisons via texture modulation
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Figure 4.5: The LCL-V2 model outperforms other models in capturing texture modulation prop-
erties of V2 neurons. Here, we compare the top 3 (in terms of overall V2 predictivity) fully-learned
models: LCL-V2 (Ours), L2-AT, and Supervised. Top: Quantile-quantile (Q-Q) comparison of the distribu-
tion of texture modulation index values (𝑅𝑚𝑜𝑑 , averaged over texture families) for real and model neurons.
The LCL-V2 model shows significantly better alignment with the physiological distribution (closer to the
identity line (dashed)) than the other two models. Bottom: Comparison of texture modulation indices
for each of 15 texture families (averaged over neurons). The texture modulation indices for both model
and real neurons are ranked (1 = lowest modulation family, 15 = highest modulation family), and scatter-
plotted against each other. Our model provides significantly better alignment with the V2 data, achieving
a Spearman rank correlation of 𝜌 = 0.80.

Cortical area V2 receives most of its input from V1. A fundamental property of V2 neural

responses that is not presentin V1 responses is that of texture modulation (Freeman et al., 2013;

Ziemba et al., 2016), in which responses to homogeneous visual texture images are enhanced

relative to responses to spectrally-matched noise. As described in Sec. 4.3.5, we compute a tex-

ture modulation index 𝑅𝑚𝑜𝑑𝑛,𝑖 for each of the 103 neurons, for each of the 15 texture families.

We computed the same modulation index for each neuron in the selected V2-layer from each
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computational model. In Fig. 4.5 we compare LCL-V2 against the top two other fully learned

models in terms of overall V2 explained variance (L2-AT and standard ImageNet1K-Supervised).

We exclude the VOneNet model here as it uses a fixed front-end with a different architecture.

We first compare the three models in terms of their ability to capture the full distribution of

texture modulation ratios in the V2 dataset (Fig. 4.5(a)). We compute a modulation ratio for each

neuron by averaging over texture families: 𝑅𝑚𝑜𝑑𝑛 = 1
𝑇

∑𝑇
𝑖=1 𝑅𝑚𝑜𝑑𝑛,𝑖 . We use a quantile-quantile

(Q-Q) plot to compare the quantiles of the distribution of these values to those arising from the

modulation ratios of each fitted model neuron. It is visually clear that while none of the models

perfectly match the V2 neural distribution, LCL-V2 is significantly closer than the other two.

Next, we compute texture modulation ratios for each texture family by averaging over neu-

rons 𝑅𝑚𝑜𝑑𝑖 = 1
𝑁

∑𝑁
𝑛=1 𝑅𝑚𝑜𝑑𝑛,𝑖 . Because different texture classes have different types of feature

content, they stimulate V2 neurons differently, relative to their spectrally-matched counterparts.

We compare the rank-ordering of modulations ratios over the texture families for the model and

real neurons and scatter-plot the ranks against each other (Fig. 4.5(b)). The texture family ranks

of the LCL-V2 model are well-aligned with those of the actual V2 neurons, whereas both L2-AT

and Supervised models yield ranks with many more outliers. This is quantified by the Spearman

rank correlation for LCL-V2 (𝜌 = 0.8), which is significantly higher than that of the other two

models (𝜌 = 0.51, 𝜌 = 0.59). It is worth noting that (Laskar et al., 2020) find that this rank corre-

lation can be improved for models by incorporating a subset selection procedure to restrict the

specific model neurons used in the comparison.

In summary, although the L2-AT and Supervised models provide competitive predictivity of

the V2 neural responses (Fig. 4.4), the LCL-V2 model provides a better account of the texture

selectivity properties of these neurons.
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Figure 4.6: LCL-V1 outperforms learned models in V1 predictivity and approaches the perfor-
mance of hand-tailored V1 models. Analogous to the V2 comparisons (Fig. 4.4), we also evaluate the
best model layers for explaining the V1 neural responses from the same dataset. The highest explained
variance is obtained by the hand-designed V1-SteerPyr and VOneNet models. The LCL-V1 model per-
forms similarly to the adversarially robust models, and outperforms all other trained models.

4.4.3 V1 layer analysis

To demonstrate the generality of our LCL approach in learning feature hierarchies, we evalu-

ate the first-stage (LCL-V1) in terms of alignment with V1 responses and selectivities. In Fig. 4.6,

we find that the LCL-V1 model outperforms all non-adversarially trained models in terms of V1

explained variance (approx 2-4 % improvement on average), and is on par with both adversarially-

trained models (ANT and L2-AT). Furthermore, when visualizing and characterizing the learned

receptive fields, we find reasonable qualitative similarity with receptive field properties extracted

from the V1 data in (Ringach, 2002) (for details, see Sec. C.6). Note, however, that the hand-

crafted models (VOneNet and V1-SteerPyr) still provide better accounts for the V1 responses

than all learned models. We suspect this is largely due to the limited receptive field sizes of the

learned models, all of which use a single convolutional layer with 11x11 kernels.
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4.4.4 Ablations

Figure 4.7: Substituting complexity-mismatched or non-contrastive objectives decreases neural
alignment. For complexity ablations (left and middle panels), we vary the patch size or spatial defor-
mation strength for the V1 layer (LCL-V1). We then hold these parameters at the optimal values for the
V1 layer fixed and again vary the parameters used for training the V2 layer. Left: Indicated by the green
circle, we see that there is an optimal patch size (feature complexity) for best V1 prediction at 48px and the
optimal patch size for V2 is then scaled accordingly (factor of 2 larger). Middle: We see that there is also
an optimal spatial deformation strength for each layer that is also scaled by a factor of 2 (in minimum crop
scale) between each layer. Spatial deformation strength 0 refers to no spatial deformation. Deformations
(1-3) refer to the minimum random resized crop scale of (0.6, 0.3, 0.08). ‘Non-overlap crop’ refers to only
using non-overlapping crops. Right: We ablate the loss function used to train each layer. We find that
performance is very similar with SimCLR but gets significantly worse (especially for the V2 stage) when
using a non-contrastive method like SimSiam. Baseline comparisons (dashed lines) indicate performance
of the layerwise Barlow method proposed in (Siddiqui et al., 2023), which uses the end-to-end training
augmentation scheme (details in Sec. C.3) from (Zbontar et al., 2021) for each layer.

We examined the effect of ablations of our architectural and training choices on physiological

alignment.

Complexity-mismatch. Fig. 4.4 shows a significant improvement in V2 predicitivty over

all non-adversarially trained models and in particular improves dramatically over the applica-

tion of the layerwise training approach outlined in (Siddiqui et al., 2023). Since that model was

also trained with the Barlow Twins objective, the primary difference with our model is in the

complexity-matching of our objective. Specifically, while they use at each layer a set of augmen-

tations generally used to train large object recognition networks, we approximately complexity-

match the objective with capacity at each stage of our model. To better understand the quanti-
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tative impact of this, we evaluate the neural predictivity of our learned model when introducing

complexity-mismatch via changes in the patch size (feature complexity) or random crop scale

(spatial deformation strength). Fig. 4.7 shows that the optimal performance (in terms of neural

predictivity) is achieved only when the relative complexity is matched between the two layers.

Specifically, we first see that there is an optimal patch size (48px) and deformation strength (s=1)

which produces the most aligned V1 layer. This is surprising, as we chose these parameters ini-

tially based on the hypothesis that the the layer 1 views should contain simple edge-like content

with small scale deformations. More importantly, once the optimal parameters for the V1 layer

training are fixed, we find that both patch size and spatial deformation strength must be scaled

accordingly to achieve the optimal V2 model (highlighted in green). This again justifies the initial

choice of these scaling parameters based on the natural approximate doubling of receptive field

size between V1 and V2.

Contrastive vs non-contrastive losses. While numerous self-supervised learning objec-

tives have been proposed over the years, they generally can be classiied as contrastive or non-

contrastive. While the Barlow Twins loss is ‘feature-contrastive’, there have been studies demon-

strating a duality with ‘sample-contrastive’ approaches (Balestriero and LeCun, 2022; Garrido

et al., 2022). Non-contrastive losses; however, resort to very different mechanisms for avoiding

collapsed solutions, with most using some form of ‘stop-gradient’ based method with asymmetric

encoder networks (Chen et al., 2020b; Grill et al., 2020). In Fig. 4.7(c) we show that some form

of a contrastive term (either Barlow Twins or SimCLR) is necessary for achieving optimal neural

alignment (especially in the second stage). For example, using SimSiam (Chen et al., 2020b) as a

representive non-contrastive loss greatly hurts the V2 predictivity from the second stage. There-

fore, in this context, it seems that in addition to the problem of learning invariances, it is also

necessary to include feature decorrelation or sample discrimination as part of the final objective.
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Figure 4.8: LCL-V2Net improves OOD generalization and human behavior error consistency.
Left: Supervised training of the later layers of an AlexNet modelon top of LCL-V2 leads to significantly
increased OOD accuracy compared to all other architecture-matchedmodels including those trained with
standard self-supervised and supervised objectives as well as those trained for robustness. Right: Com-
pared with the same set of architecturally-matchedmodels, LCL-V2Net also shows significantly increased
human alignment, as measured by behavioral error consistency on the OOD recognition task. Human-
level accuracy and human to human error consistency are indicated by dashed lines.

4.4.5 OOD object recognition and human-alignment

In the spirit of (Dapello et al., 2020), we hypothesize that a more biologically-aligned model

of early visual areas (specifically area V2) may provide additional benefits for both recognition

performance and alignment with human behavior on visual tasks. We therefore train a cascade

of additional AlexNet stages appended to the fixed LCL-V2 front-end model on supervised ob-

ject recognition. We then evaluate the full network on the benchmark proposed by (Geirhos

et al., 2021) which tests both out-of-distribution (OOD) generalization and prediction of human

behavior on this task. Again, we refer to this trained recognition network as LCL-V2Net.

Object recognition accuracy. We first evaluate the accuracy of our trained network on

the ImageNet-1K (Krizhevsky et al., 2012) validation set as well as OOD image set proposed

in (Geirhos et al., 2021). Fig. 4.8 (Left) shows that LCL-V2Net significantly outperforms all

architecturally-matched (AlexNet-based) models in OOD accuracy by a large margin (4-10 %
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improvement - see Table C.4). This is particularly striking because the other robust models

(VOneNet and L2-AT) do not exhibit a similar improvement, suggesting a potential link between

the improved V2 predictions of the LCL-V2 front-end and the generalization of recognition over

shifts in the data distribution.

Human behavioral consistency. In addition to absolute recognition performance, we also

evaluate the the ability of the same models to capture human behavioral performance on the

same recognition task. The right panel of Fig. 4.8 shows that LCL-V2Net has significantly bet-

ter error consistency with the per-trial human recognition decisions. Compared with standard

supervised training (consistency=0.165), the only models to show significant improvement are

those trained for adversarial robustness (ANT and L2-AT). These models each achieve a consis-

tency of 0.176 (a 6.6 % relative improvement). Without the computational overhead of adversarial

training procedures, LCL-V2Net achieves a consistency of 0.211 (a 28 % relative improvement).

4.5 Discussion

Wehave developed a novel normative theory for learning early visual representationswithout

end-to-end backpropagation or label supervision. We hypothesize that the reason why state-

of-the-art DNNs have failed to predict responses of neurons in early visual areas is because

they are insufficiently constrained. We then proposed a solution that imposes these constraints

through layerwise complexity-matched learning (LCL) that leverages a canonical self-supervised

objective at each layer. When applied in a two-stage architecture (LCL-V2), we showed that

our trained model is more effective in predicting V1 neural responses in the first layer than

other architecturally-matched models, and achieves state-of-the-art quantitative predictions of

V2 neural responses. Furthermore, we demonstrated that the LCL-V2 model can be used as a

fixed front-end to train a supervised object recognition network (LCL-V2Net) that is significantly

more robust to distribution shifts and aligned with human task behavior.
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As described in the introduction, there is a substantial literature on using normative principles

such as sparsity, coding efficiency, or temporal prediction to explain early visual properties. These

have beenmostly limited to early stages (up to and including cortical area V1), and those that have

shown some qualitative success in reproducing V2-like selectivities, have again not scaled well

beyond small image patches (Bányai et al., 2019; Hosoya and Hyvärinen, 2015; Rowekamp and

Sharpee, 2017; Willmore et al., 2010) or have been restricted to texture images (Parthasarathy and

Simoncelli, 2020). These are significant limitations, given recent work showing the importance

of training on diverse natural image datasets for achieving strong biological alignment (Conwell

et al., 2022).

End-to-end trained networks (both supervised and self-supervised) have provided strong

accounts of neural responses in late stages of primate cortex as well as recognition behavior

(Geirhos et al., 2021; Schrimpf et al., 2018; Zhuang et al., 2021). While unconstrained task-opti-

mization of these models has been the standard for many years, recent efforts demonstrate that

constraints on model capacity can lead to better alignment with aspects of biological represen-

tation. For example, (Nayebi et al., 2023a) show that self-supervised (contrastive) E2E training

of shallow-networks account well for neurons in mouse visual cortex (due to the limited capac-

ity nature of mouse visual cortex). In primate visual cortex, (Margalit et al., 2023) have shown

that self-E2E objectives coupled with a layerwise spatial-smoothness regularizer over neural re-

sponses produce topographically-aligned models of both primary visual cortex and IT cortex. In

contrast with these studies, we hypothesize that E2E objectives do not appropriately constrain

intermediate representations, and that such constraints are better imposed locally, via per-layer

objective functions that do not propagate gradients between layers.

In the machine learning literature, there have been multiple studies that use layerwise learn-

ing to train DNNs (Belilovsky et al., 2019; Löwe et al., 2019; Siddiqui et al., 2023; Xiong et al.,

2020). These efforts have been primarily focused on demonstrating that layerwise objectives can

approximate the performance of corresponding end-to-end backpropagation when evaluating
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on downstream visual tasks. A few studies (Halvagal and Zenke, 2023; Illing et al., 2021) em-

phasize the biological plausibility of layerwise learning from a theoretical perspective, but were

not scaled to large-scale training datasets. More importantly, previous studies have not assessed

whether these biologically-plausible layerwise learning objectives result in more biologically-

aligned networks. Here, we’ve shown that previous layerwise learning approaches (layerwise

Barlow (Siddiqui et al., 2023) and LPL (Halvagal and Zenke, 2023)), do not offer the same ben-

efits as our framework. We further demonstrate that a canonical feature-contrastive objective

(same as (Siddiqui et al., 2023)) only leads to improved biological alignment when the objective

is complexity-matched with the corresponding computational capacity of the model stage (See Sec.

2.4.3).

(Dapello et al., 2020) have shown that a biologically-inspired V1 stage greatly improves the

adversarial robustness of trained networks. But, a closer analysis of their results (along with the

evaluations presented here) demonstrate that a V1-like front end does not in fact provide signifi-

cantly better robustness to image distribution shifts or alignment with human object recognition

behavior. On the other hand, there have been a number of published networks that demonstrate

greatly improved behavioral error consistency (Sec. 4.4.5) at the expense of worse alignment with

biological neural responses. These include model scaling (Dehghani et al., 2023), training with

natural video datasets, (Parthasarathy et al., 2023a), and use of alternative training paradigms

(Jaini et al., 2023; Radford et al., 2021; Xie et al., 2021b). Our work provides a step towards resolv-

ing this discrepancy, by providing an improved model of early visual areas (specifically area V2)

that is accompanied by a corresponding improvement in model generalization and behavioral

alignment.

78



4.6 Limitations and Future Work

We briefly describe some of the limitations of this work and opportunities for future work.

First, while we have explored the benefits of layerwise training in a two-stage model, there is

opportunity to explore extensions to learning of stages deeper in the visual hierarchy. In order

to appropriately scale both the feature complexity (image field-of-view) and spatial deformation

strength effectively in more layers, we will need to leverage either larger, scene-level images

(Xie et al., 2021a) or natural video datasets (Gordon et al., 2020; Parthasarathy et al., 2023a). For

many years, improvements in task performance of deep networks was correlated with improved

predictions of neurons in late visual areas, but the most recent task-optimized networks have

shown a degradation of neural predictivity (Linsley et al., 2023). As a result, there is potential for

the extension of our work in deeper layers to address these inconsistencies.

Second, the examples and comparisons in this article focused on a single network architecture

(AlexNet), but we believe the complexity-matching property is of broader applicability. Extending

it, however, will require development of more quantitative measures of 1) image content com-

plexity that can be used in place of the current ‘patch-size’ proxy, and 2) computational capacity

of a neural network stage, depending on the specific computations (e.g., number and size of filter

kernels, choice of nonlinearity, etc). This is especially important for extending to recent alterna-

tive architectures such as residual networks (He et al., 2016) or transformers (Dosovitskiy et al.,

2020). These networks contain additional computational elements such as “skip connections” and

spatially-global computations, making it difficult to appropriately complexity-match an objective

with a given layer in these architectures.

Finally, from a neuroscience perspective, we see a number of opportunities for enhancing

and extending the current framework. On the theoretical side, although our layerwise learning

is arguably more biologically-plausible than standard supervised, self-supervised, or adversarial

training, it still relies on implausible within-layer dependencies. We hope to leverage recently
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developed methods (e.g., (Illing et al., 2021)) to bridge this gap in biological plausibility. Experi-

mentally, the current results are also limited to a few evaluations on a dataset of about 100 neurons

and their responses to naturalistic texture and spectrally matched noise images (Freeman et al.,

2013; Ziemba et al., 2016). While this dataset is informative, it will be important to compare the

LCL-V2 model to V2 responses on a wider selection of stimuli. Perhaps more exciting is the pos-

sibility that studying the structure and response selectivities of the learned LCL-V2 model will

reveal new organizing principles for understanding the mysteries of primate visual area V2 and

beyond.
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5 | On the limitations of current

neural benchmarking

5.1 Overview

Until now, we have focused primarily on normative theories and methods for learning be-

haviorally and neurally-aligned visual representations. In this brief chapter, we shift our focus to

understanding whether current neural datasets and evaluation protocols are limiting our ability

to thoroughly assess neural alignment of computational models.

5.2 Spatially-resolved neural datasets

In Sec. 2.7, we highlighted a potential inconsistency: that our video pretrained model, VITO

improves predictions of human visual perception (or behavior), but does not have internal rep-

resentations that align better with ventral stream responses (even in late stages like IT cortex).

Yet, the current datasets in BrainScore, primarily focus on single neuron responses to centered

object images, similar to the training data of these networks. However, an important feature of

VITO (as compared with standard supervised networks) is the learned gain-modulation (atten-

tion) network, which modulates responses across space. As a result, it is natural to ask whether

the VITO responses are more aligned with ‘spatially-resolved’ neural responses across images.
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In fact, this kind of neural data has been recently collected for IT neurons (Arcaro et al., 2020),

and has been used in recent deep network model benchmarking Linsley et al. (2023). The basic

Figure 5.1: Depiction of the experimental protocol from Arcaro et al. (2020). We focus on a subset of the
data, recording neurons in medial-lateral (ML) IT (in one monkey) in a spatially-resolved manner. The
monkey was presented each image multiple times for 200ms each presentation. Images were positioned
differently each time (in a 17x17 grid) to measure neural responses to every part of the image. Adapted
from Linsley et al. (2023).

experiment is depicted in Fig. 5.1. We use a subset of the full dataset (neural responses from

primate medial-lateral (ML) IT of one monkey). These responses were recorded to flashed im-

ages positioned at different locations (relative to monkey fixation), creating a 17 ×17 grid of IT

responses across a given image. A total of 14 images were shown, for a total of 4046 responses

per neuron. 31 neurons were recorded. As described in Linsley et al. (2023), responses are binned

in 40ms bins between 50-250ms post stimulus presentation. Within each bin, a noise ceiling is

calculated for each neuron (maximum correlation achievable between any two neurons within

that time interval). The responses for comparison are chosen from the time bins with the highest

average noise ceiling.

For these same images, we obtain spatial feature map responses (up-sampled to 17 ×17) for

our VITO model and standard supervised ResNet-50 model. For both models, we choose the

final feature map in the encoder backbone. Given model responses to each of the 4046 spatial

locations (across the 14 images), we follow the evaluation protocol in Linsley et al. (2023), which
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again leverages the standard PLS regression approach from BrainScore to learn a linear mapping

between model and IT responses.

The regression is trained with leave-one-out cross validation, training on 13 images (3757

responses) and testing on the held out image (289 responses). We find that the standard ResNet-50

network has amedian explained variance over the 31 neurons of approximately 42%. Surprisingly,

VITO far outperforms this with 52% explained variance. This suggests, that by only evaluating on

standard IT datasets (recording single neural responses to single object images at a fixed position),

we may be missing components of neural responses that can in fact better discriminate between

existing models.

While this is one particular experiment, we hope that this result provides a reminder for

the community that different DNNs may capture different aspects of cortical responses that are

highly dependent on the stimuli that are used. It is worth noting that in this vain, there have also

been recent studies showing that neural alignment of DNNs become far worse when specifically

measured on out-of-distribution images (Bagus et al., 2022; Ren and Bashivan, 2023).

5.3 A sparse regression approach to measuring neural

alignment

5.3.1 Motivation

We next study another potential confounding factor in standard linear regression-based ap-

proaches formeasuring neural alignment of high-dimensional models. Assumewe are attempting

to predict the activity of a single neuron. This neuron’s response lies in a specific low-dimensional

space, constrained by it’s receptive field selectivity. An ideal model will be one which has a single

model unit with the same feature selectivity and response to stimuli. However, it is not plausible

to expect this of any model and thus we allow for weighting multiple model units (via a learned
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regression) to fit the given neuron. In an unconstrained linear regression (or even PLS regres-

sion); however, we generally assume that all model units can be used to fit any given biological

neuron. Given a low-dimensional model, this would not be an issue. However, with sufficiently

large numbers of random model bases (units), it can still be possible to learn a weighting to per-

fectly predict a given biological neuron. This critically assumes that the random basis spans the

space defined by the low-dimensional neuron feature selectivity. We hypothesize that in prac-

tice this assumption is often valid, especially when we 1) leverage extremely high-dimensional

deep networks (thousands of model units) and 2) predict neural responses in early visual areas

(V1) with simple feature selectivities (closer to being linear functions of the stimulus). While this

theory may be demonstrated mathematically and through simulation, it is more instructive to

analyze a real scenario. Specifically, we evaluate the V1 (dataset from Ziemba et al. (2016)) Brain-

Score explained variance for a randomly initialized ResNet-50 network and a trained, supervised

ResNet-50 network.

V1 BrainScore Explained VarianceModel

0.263ResNet-50 Untrained 1

0.262ResNet-50 Untrained 2

0.275ResNet-50 Untrained 3

0.278ResNet-50 Supervised

Untrained

Trained

Figure 5.2: Right: We show example filters from the first convolutional layer of the randomly initialized
ResNet-50 and trained ResNet-50. Left: Across many random initializations, explained variance is nearly
the same as for the trained ResNet-50.

We find that randomly initialized networks (over multiple initializations) perform nearly the

same as the trained network in V1 response explained variance, despite the trained network

clearly having filters more aligned with the expected selectivity properties of V1 neurons.

Clearly, we would like an evaluation protocol that is able to distinguish between high-dimen-

sional randommodels and thosewith learned feature selectivities that alignwith neuronal tuning.
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One option is to simply measure howwell the single neuron tuning properties match between the

artificial and biological neurons. This approach has been taken by Marques et al. (2021); however,

it is difficult to enumerate all of the desired tuning properties, especially in cortical areas beyond

V1.

5.3.2 Method

We propose an alternative simple modification of the existing regression-based BrainScore

procedures to address the aforementioned issues. Specifically, we suggest using a sparse regres-

sion method to enforce that models use a small number of units to predict the response of a given

neuron. Conceptually, a high performing model will be one that tiles the dimensions of feature-

selectivity such that a given biological neuron (which lies in this space) can be locally interpolated

by a small number of model units.

To be concrete, assume for image 𝑖 , we are given a 𝑑 dimensional model response vector:

𝑥𝑖 ∈ R𝑑×1, and a single scalar output neuron response 𝑦𝑖 , we minimize the following objective:

min
𝛽

𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝑥⊤𝑖 𝛽)2 + 𝜆 ∗ ||𝛽 | |1
| |𝛽 | |2

(5.1)

where 𝑁 is the total number of training images and 𝜆 is a parameter which controls the

strength of the sparsity regularizer. Instead of the standard 𝑙1 lasso penalty, we utilize the ra-

tio of 𝑙1 to 𝑙2 norms to enforce sparsity on the regression weights as in Hoyer (2004). While

this makes the optimization problem non-convex, the benefits of such a regularizer are that it is

scale-invariant and thus does not force all weights to be small (as is common in standard lasso

regression). Instead of selecting a specific 𝜆, we sweep 𝜆 over a range for each neuron, such that

we obtain a model prediction over a range of sparsity constraints. For each 𝜆 value, we count the

“number of model units used” by finding the number of non-zero weights (weights with absolute

magnitude > 1𝑒−6). We repeat this procedure for each output neuron independently.
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To verify our modified sparse regression method, we evaluate three models that we hypoth-

esize should have very different properties in terms of their ability to locally-interpolate V1 se-

lectivities:

1. V1-Steerable Pyramid (V1-SteerPyr): this is the same model used in Chapter 4, (details

in Sec. C.1). On account of using steerable Gaussian derivative basis filters (Simoncelli

and Freeman, 1995), this model tiles the four dimensional (orientation, scale, x (spatial),

y (spatial)) space, and thus is particularly suited to interpolating V1 responses with small

numbers of model units.

2. ResNet50 (random): the ResNet-50 model intialized with random weights.

3. ResNet50 (supervised): the ResNet-50 model trained with object recognition supervision.

As done in the BrainScore method, for both ResNet models, we select the best layer for

predicting V1 responses (testing all layers).

5.3.3 Preliminary results
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Figure 5.3: For each model, at a given 𝜆, we compute the mean explained variance (y-axis), standard
deviation across neurons, and number of model units used for the prediction (x-axis).
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We use the same V1 dataset as before (Ziemba et al., 2016) which consists of 102 V1 neurons.

For each model, at a given 𝜆, we compute the mean explained variance, standard deviation across

neurons, and number of model units used for the prediction. For each model, we then plot the

mean explained variance (with standard deviation bands) vs. number of model units used (Fig.

5.3). These curves describe how efficiently a given model interpolates V1 neural responses. Unlike

the small difference between the untrained and trained ResNet models using the PLS regression

method (Fig. 5.2), we now see a drastic difference between the two models, as the trained model,

captures significantly more variance when using limited numbers of model responses. On the

other hand, the random model improves linearly as individual model units are added and per-

forms poorly even with 1000 units. Strikingly, the V1-SteerPyr model is far more efficient than

either DNN and reaches nearly 40% explained variance with approximately 100 model units. This

result confirms our hypothesis that this model does in fact interpolate well in the the space of

selectivities commonly associated with V1 neurons.

Due to instabilities in the optimization procedure and complexities of choosing 𝜆 for each

neuron and dataset, we have yet to be able to study the impact of the sparse regression on dis-

criminating between models of other cortical areas. However, we hope that future work can build

on this to develop model-brain alignment metrics that better correlates with a model’s ability to

both predict cortical responses and capture their fundamental dimensions of tuning or selectivity.

87



6 | Discussion

6.1 Temporally-informed models of image perception

There has long been evidence that temporal learning has a large impact on human object per-

ception. As described in the introduction, there is a long line of behavioral and psychological ev-

idence for the fact that infant object perception is driven by learning how objects move (Kellman

and Spelke, 1983; Spelke, 1990; Spelke and Kinzler, 2007). More surprisingly, even in adults it has

been shown that learning from specific spatiotemporal experiences can alter position-invariant

recognition (Cox et al., 2005). Given this, it is particularly puzzling that while there have been

many successful examples of learning computer vision models of motion and video understand-

ing (Dave et al., 2022; Dorkenwald et al., 2022; Qian et al., 2021; Recasens et al., 2021; Sermanet

et al., 2018), it has been extremely difficult to learn spatial representations from natural video that

are competitive with standard image-based training.

In the first chapter of this dissertation, we verify that many related prior works, severely

under-perform standard ImageNet pretraining on general spatial understanding benchmarks (See

Table 2.1). We then propose VITO, a simple method for learning general, robust, and human-

aligned spatial visual representations from natural temporally-evolving scenes.

One of the key features of our method is the use of a more diverse curated video dataset

(VideoNet). Concurrently, there have been efforts in the psychology community to collect very

carefully controlled video datasets that capture infant viewing experience (Sullivan et al., 2021),
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with the hope of training models on more naturalistic data. However, while these efforts are po-

tentially useful for many studies, it is hard to obtain the diversity of content in these controlled

settings that we have in our dataset- a feature which seems to have a large impact on generaliza-

tion and human-alignment of models.

The second key feature of our method is the use of a novel learned attention (or spatial-

gain modulation) architecture to discover temporally co-occurring content via a self-supervised

contrastive loss. This discovery is interesting as gain-modulation is a pervasive canonical compu-

tation studied in the visual neuroscience literature (Carandini and Heeger, 1994; Lee et al., 2012;

Ohshiro et al., 2011; Reynolds and Heeger, 2009; Treue and Trujillo, 1999). While our imple-

mentation is not currently tied to any biological predictions, we believe it may be interesting to

revisit this in future work. In a similar direction, while our work clearly demonstrates the impact

of learning from natural temporal deformations on achieving more robust and human-aligned

visual representations, there are still many open questions on how to link our method and ar-

chitecture better to the biology. Our approach leverages end-to-end self-supervised learning, so

there is a natural question of how to achieve similar results with layerwise or local learning (sim-

ilar to our efforts in Chapter 4). While experimental evidence has shown that neurons in the

early ventral stream may be implicitly optimizing for things such as temporal straightness or

predictability (Hénaff et al., 2021a; Wiskott and Sejnowski, 2002), there have yet to be convinc-

ing demonstrations that layerwise or local objectives can learn hierarchical representations from

natural video data.

6.2 Layerwise complexity-matched learning

Chapters 3 and 4 are primarily concerned with the problem of how to learn hierarchical visual

representations that better align with neural representations by leveraging more biologically-

plausible layerwise objectives. Focusing on Chapter 4, we demonstrate that a self-supervised
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feature-contrastive layerwise learning paradigm can indeed lead to learned representations that

are more predictive of neural responses in early visual areas (V1 and V2). Our bottom-up self-

supervised training methodology operates independently on successive layers to maximize fea-

ture similarity between pairs of spatially-restricted locally-deformed natural image patches, while

decorrelating features across patches sampled from other images. The extent of spatial restric-

tion and the amplitude deformation are adjusted proportionally to receptive field sizes in each

layer, thus matching the complexity of content to the computational capacity at each stage of

processing. Conceptually, we see this method as a principled and general hypothesis for how

“selectivity” and “tolerance” for visual features are developed in a hierarchical representation.

While these concepts have mostly been discussed within specific settings such as late-stage ob-

ject representation (Rust and DiCarlo, 2010) and more recently mid-visual texture representation

(Ziemba et al., 2016), the two terms in our objective can be seen as optimizing for selectivity

(decorrelation term) and tolerance (invariance term) over image content and deformations that

progressively become more complex through stages of the visual hierarchy. As a result, we hope

that a generalization of our method may provide a way to probe and perhaps discover selec-

tivities that emerge in intermediate model (and potentially neural) representations. Briefly, it is

worth noting that while there has obviously been extensive work in the machine learning and

neuroscience communities in the space of local and layerwise learning, our results stand in con-

trast with the still popular notion that end-to-end optimization may be sufficient for learning

biologically-aligned network representations (Yamins et al., 2014; Zhuang et al., 2021).

The key innovation of our method lies in the conceptual proposal and implementation of of

“complexity-matching” objective functions with the model capacity at a given stage of compu-

tation. Although we do not provide a method for quantitatively characterizing the complexity

of an objective or the exact computational capacity of a given network architecture, we believe

our results signal that these lines of theoretical research are worth pursuing. This is especially

important as we demonstrate in Sec. 4.4.4, how a mismatch in these parameters can lead to
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drastically less biologically-aligned learned representations. It is additionally possible that fur-

ther work along these lines may provide more general insights into why many of the learning

approaches based on normative theories (Atick and Redlich, 1990; Barlow et al., 1961; Bell and

Sejnowski, 1997; Karklin and Lewicki, 2009; Karklin and Simoncelli, 2011; Olshausen and Field,

1996) have failed to generalize well beyond a single layer (V1-like) network stage.

Finally, another potentially useful interpretation of our layerwise learning approach comes

from the perspective of model overfitting. Given the enormous capacity of most DNNs, their

failure to capture basic aspects of human perception (Berardino et al., 2017; Feather et al., 2023;

Szegedy et al., 2013) suggests that the models overfit on their training task, learning uninter-

pretable or unreliable features. To date, the best methods for reducing this overfitting issue have

been to either use fixed (not-learned) models (Berardino et al., 2017; Dapello et al., 2020) or com-

putationally expensive adversarial training procedures (Madry et al., 2017). Our work suggests

that there may be another more biologically-plausible alternative to reducing this overfitting

problem (imposing layerwise constraints), and that this may enable future development of more

neurally-aligned DNNs.

6.3 Evaluating DNN alignment with neurons and behavior

While this dissertation is primarily focused on normative theories and implementations of

methods for learning visual representations, a core underlying problem we deal with is how to

evaluate the alignment of DNN models with both neural responses and behavior.

We choose to focus primarily on behavioral evaluations that indicate howwell models capture

human object recognition behavior (Geirhos et al., 2021) and human perception of object saliency

(Fel et al., 2022; Linsley et al., 2018). We see these as relevant benchmarks given the fact that these

networks are known to succeed at tasks centered on object discrimination. We find that both of

our approaches to improving DNN alignment (video pretraining and layerwise learning) succeed
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in these benchmarks, but acknowledge that this is still a very limited set of evaluations. In future

work, we hope to evaluate our models on a wider range of behavioral and perceptual metrics

such as eigendistortions (Berardino et al., 2017), metamers (Feather et al., 2023), representational

similarity on different types of visual tasks (Muttenthaler et al., 2022) etc.

Regarding neural evaluations, we acknowledge the relatively limited nature of our evalua-

tions. Although the BrainScore (Schrimpf et al., 2018) regression-based benchmark is a current

standard, it is limited in ways that we probe in Chapter 5. We hope these analyses help in devel-

oping the benchmark further to be more robust and comprehensive.

6.4 Concluding remarks

This dissertation proposes multiple novel self-supervised learning methods to train neural

network models that better align with both human behavior and early visual neurons. In Chap-

ter 2, we propose VITO, a contrastive video-pretraining method, that improves drastically on

prior work to learn general, robust, and more human-aligned representations from natural video

data. We make an observation; however, that end-to-end task optimized models (even those that

better predict human visual task performance), may not adequately constrain internal representa-

tions in intermediate model stages. As a result, in Chapters 3 and 4, we show that we can improve

models learned models of early vision by imposing layerwise constraints through self-supervised

complexity-matched objective functions. We achieve state-of-the-art predictions of cortical re-

sponses in area V2, with the potential for extending these ideas to learning more stages. Finally,

we provide some preliminary analyses probing the limitations of current neural benchmarking

evaluations. In sum, this work lays the foundation for future research in using learned DNNs to

reveal new organizing principles for understanding the mysteries of biological vision.
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A | Self-supervised video pretraining

yields robust and more

human-aligned representations

A.1 Appendix: Implementation details

A.1.1 Self-supervised learning

Data pre-processing. Each frame is randomly augmented by composing the following opera-

tions, each applied with a given probability:

1. random cropping: a random patch of the image is selected, whose area is uniformly sampled

in [𝑠 · A,A], whereA is the area of the original image, and whose aspect ratio is logarith-

mically sampled in [3/4, 4/3]. 𝑠 is a scale hyper-parameter set to 0.08 when learning from

ImageNet, and 0.4 when learning from videos. Regardless, the patch is then resized to 224

×224 pixels using bicubic interpolation;

2. horizontal flipping;

3. color jittering: the brightness, contrast, saturation and hue are shifted by a uniformly dis-

tributed offset;

93



4. color dropping: the RGB image is replaced by its grey-scale values;

5. gaussian blurring with a 23×23 square kernel and a standard deviation uniformly sampled

from [0.1, 2.0];

6. solarization: a point-wise color transformation 𝑥 ↦→ 𝑥 · 1𝑥<0.5 + (1 − 𝑥) · 1𝑥⩾0.5 with pixels

𝑥 in [0, 1].

The augmented frames 𝒗1 and 𝒗2 result from augmentations sampled from distributions A1

and A2 respectively. These distributions apply the primitives described above with different

probabilities, and different magnitudes. The following table specifies these parameters for the

BYOL framework (Grill et al., 2020), which we adopt without modification. When learning from

three views, we use the distribution A1 to generate the third view.

Parameter A1 A2
Random crop probability 1.0
Flip probability 0.5
Color jittering probability 0.8
Color dropping probability 0.2
Brightness adjustment max 0.4
Contrast adjustment max 0.4
Saturation adjustment max 0.2
Hue adjustment max 0.1
Gaussian blurring probability 1.0 0.1
Solarization probability 0.0 0.2

Optimization. We pretrain ResNet-50 using the LARS optimizer (You et al., 2017) with a batch

size of 4096 split across 128 Cloud TPU v3 workers. We adopt the optimization details of BYOL,

scaling the learning rate linearly with the batch size and decaying it according to a cosine sched-

ule. The base learning rate is 0.3 and the weight decay is 10−6.
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A.1.2 Transfer to PASCAL and ADE20K semantic segmentation

Architecture. We evaluate ResNet models by attaching a fully-convolutional network (FCN,

Long et al. (2015)) and fine-tuning end-to-end, following He et al. (2020). When evaluating Swin

transformers we instead use the UperNet segmentation architecture (Xiao et al., 2018).

Data pre-processing. During training, images are randomly flipped and scaled by a factor in

[0.5, 2.0]. Training and testing are performed with 512×512-resolution images. When fine-tuning

on ADE20K, we aditionally use photometric transformations from the mmseg1 codebase.

Optimization. We fine-tune for 45 epochs on the PASCAL train_aug2012 set or 60 epochs on

the ADE20K train set. We use stochastic gradient descent with a batch size of 16 and weight

decay of 0.005. The learning rate is initially set to 0.04 and decayed exponentially with a factor of

0.9𝑛 where n is the iteration number. When fine-tuning external models, we sweep over the base

learning rate and weight decay and report their performance given the optimal configuration. In

all cases we report mIoU on the val set averaged across 5 runs.

A.1.3 Transfer to COCO and LVIS object detection

Architecture. We evaluate both ResNet and Swin transformers using the FCOS★ architecture,

following Hénaff et al. (2022). FCOS★ is the implementation of a single-stage detector based on

FCOS (Tian et al., 2019), and improved with the collection of techniques from Wu et al. (2020),

Zhang et al. (2020a), and Feng et al. (2021), full details can be found in Hénaff et al. (2022).

Data pre-processing. The target resolution is 800×1024. During testing, an image is resized

by a factor 𝑠 while preserving the aspect ratio, such that it is tightly contained inside the target

resolution, and then padded. When fine-tuning, the image is rescaled by a factor of 𝑢 · 𝑠 where 𝑢

is uniformly sampled in [0.8, 1.25], and is then cropped or padded to the target resolution.
1https://github.com/open-mmlab/mmsegmentation
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Optimization The network is fine-tuned for 30 epochs on the COCO train2017 set or the LVIS

v1_train set. We use AdamW (Loshchilov and Hutter, 2019) with weight decay 10−4, base learn-

ing rate of 10−3, and batch size 128 split across 16 workers. The learning rate rises linearly for 1
4

of an epoch, and is dropped twice by a factor of 10, after 2
3 and 8

9 of the total training time. We

report mAP on the COCO val2017 set and the LVIS v1_val set, averaged across 5 runs.

A.1.4 Transfer to DAVIS video segmentation

As a further test of scene understanding, we assess whether learned representations can con-

tinue to recognize parts of an object as they evolve over time. Video object segmentation, specif-

ically in its semi-supervised setting, captures this ability, which we evaluate on the DAVIS’17

benchmark. Having evaluated a learned representation on a video independently across frames,

we segment these features with nearest neighbor matching from frame to frame, given a segmen-

tation of the first frame. In this way, the segmentation is propagated according to the similarity

of the representation across space and time. We reuse the segmentation procedure from Xu and

Wang (2021) without modification, and report region (J ) and boundary quality (F ).

A.1.5 Transfer to UCF-101 action recognition

We evaluate action recognition classification on the UCF101 dataset (Soomro et al., 2012). We

follow the procedure for finetuning used in (Wu and Wang, 2021) which is based on (Morgado

et al., 2021). We utilize clips of 2 seconds in length at 12fps. Each frame is processed by the

ResNet-50 backbone. Clip representations are obtained by one of three methods for temporal

integration:

1. Average pooling is the standard baseline, producing a 2048-d vector output for a clip which

is then fed to and one fully connected (2048×101) layer for predicting the action class.

2. MS avg-pool: we pool the block3 representations (1024-d) over the two subclips of 1s each
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that make up the larger clip. This is done because the features at this scale have smaller

receptive fields and are selective for less complex content. Then we concatenate the two

(1024-d) vectors with the average pooled feature from the block4 output to get a single

4096-d vector for each clip that again is fed through a fully-connected layer to predict the

action class. By concatenating the two subclip representations, the fully-connected layer

can in fact compute complex temporal relationships such as differences etc. along with the

final layer’s invariant representation that is pooled for the full clip.

3. MS temp-attn: We perform the same methodology as above for integrating multiple scales,

but replace the average pooling over time with an attention pooling layer. Given repre-

sentations for an L-frame clip 𝑧 ∈ R𝐵×𝐶×𝐿 at a given scale, we compute temporal attention

weights𝑤𝑡 ∈ R𝐿 where𝑤 = 𝑓 (𝑧). We choose 𝑓 to be tanh(𝑊𝑧) where𝑊 ∈ R𝐶×1 is a linear

weighting of channels. Finally the pooled representation 𝑣 =
∑

𝐿𝑤𝑡 · 𝑧

We show results using method 1 in the main text and demonstrate the improvements from meth-

ods 2 and 3 in Appendix Table A.5. 10 clips are sampled from each video and the predictions of the

clips are averaged for the final results. We fine-tune for 16 epochs using the ADAMoptimizer with

a multi-step LR decay schedule at epochs 6, 10, and 14. The initial learning rate is set to 0.0001.

The implementation is adopted from https://github.com/facebookresearch/AVID-CMA.

A.1.6 Transfer to ImageNet classification

For all models we freeze the ResNet-50 encoder (which outputs 2048-d embeddings). We then

train a linear head to classify the 1000 categories in the ImageNet training set using the standard

split. To train the classifier, we use the SGD optimizer with nesterov momentum and momentum

parameter equal to 0.9. We use weight-decay of 0 and sweep the learning rate for each model

in the range [0.4, 0.3, 0.2, 0.1, 0.05] and pick the best classifier based on ImageNet validation

accuracy.
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A.1.7 Transfer to out-of-distribution evaluations

For all OOD evaluations, we evaluate on datasets that utilize all (or subsets) of the ImageNet

validation set. Therefore, for these evaluationswe use the pre-trained encoder and linear classifier

(trained as in Sec A.1.6). We freeze the encoder and linear classification head and evaluate task

performance on images from either the ImageNet-A, ImageNet-vid-robust, and Imagenet-3DCC

datasets. For ImageNet-A and ImageNet-vid-robust, we use the evaluation code and method from

(Taori et al., 2020).

For ImageNet-3DCC,we do not use the entire corruption set becausewewanted to specifically

test models under the more natural 3-d corruptions. As is described in (Kar et al., 2022), the

dataset can be broken down into two sets of corruptions: 3-d informed corruptions (using a

depth model to generate natural corruptions informed by 3-d information) and standard 2-d noise

and artifacts (like in ImageNet-C). For our experiments, we chose to evaluate specifically on the

3-d corruptions, which were found to induce larger robustness effects for evaluating standard

networks (Kar et al., 2022). Nevertheless, we found similar results when evaluating robustness

to 2-d noise and artifacts. All images from the following classes of corruptions were used for

evaluation: far focus, near focus, fog, flash, xy motion blur, z motion blur, view jitter.

A.1.8 Alignment with human saliency

Human saliency measurements are obtained from the ClickMe dataset. Alignment is mea-

sured as the Spearman rank correlation between model and human saliency averaged over the

dataset, normalized by inter-rater alignment of humans.

A.1.9 Human error consistency evaluation

We evaluate accuracy and human error consistency on shape-bias datasets using the code

from https://github.com/bethgelab/model-vs-human/tree/master. We choose the subset
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of images that remove textural cues in different ways (forcing humans andmodels to utilize global

shape during discrimination): edge drawings, cue-conflict stimuli, graded low-pass filtering, and

uniform gaussian noise. We report three metrics from (Geirhos et al., 2021):

1. Accuracy difference: measure of human vs model classification accuracy on each OOD

dataset and then averaged.

2. Observed consistency: measures the fraction of samples for which humans and a model get

the same sample either both right or both wrong.

3. Error consistency: Score that measures whether there is above-chance consistency. This is

important because e.g. two decision makers with 95% accuracy each will have at least 90%

observed consistency, even if their 5% errors occur on non-overlapping subsets of the test

data (intuitively, they both get most images correct and thus observed overlap is high). Er-

ror consistency indicates whether the observed consistency is larger than what could have

been expected given two independent binomial decision makers with matched accuracy

(Geirhos et al., 2020b).

The mathematical details on each of these metrics are provided in (Geirhos et al., 2020b).

A.2 Appendix: Additional results

A.2.1 Semantic binding with contrastive attention pooling

The ablation study demonstrated that multi-scale attention improves the performance of

VITO in semantic segmentation. To probe why this may be, we visualize and interpret the learned

attention masks (Figure A.1). For simplicity, we only visualize the masks from the coarsest scale

(output feature map), but the interpretation naturally extends to the multi-scale version as these

masks are learned with independent attention modules.
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Figure A.1: Example augmented frames with overlaid (resized) learned attention masks. Attention is
computed from the output of the final block of the VITO trained ResNet-50. Crucially, the attention
masks are computed independently, such that the attention module can only use spatial cues.

Because the attention masks are not computed jointly across each view, for a given video

frame, the attention module must marginalize over the training data to make a statistical predic-

tion: what should be attended to in the first view in order to minimize the contrastive loss across

possible second views? Specifically, the attention must focus on content that is most likely to

be stable across time while still being discriminative (or unique) relative to other frames from

other videos. Different examples appear to trade-off these criteria differently, yet systematically.

For example, in the third column of Figure A.1 even though the animated characters on the right

side of both frames may be discriminative content, the attention module has learned to focus on

the static picture on the left as it is the content that is most likely to be stable across time. For

this pair of frames the prediction is correct—the attention disregards content that is changing

too abruptly—despite not having access to motion cues. On the other hand, the example in the

fourth column demonstrates a scenario where the model has attended to stable, but primarily

discriminative content (the bird) rather than the background, which is also very stable but most

likely less unique relative to other videos.

Even beyond the ability to localize stable, yet discriminative content, it seems that our method

also enables “semantic binding” of visually different, but semantically related features. This can

be seen in the first pair of frames, as the model has learned to associate an arm or elbow (in the
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first frame) with the dumbbell (in the second frame), demonstrating an understanding that these

two semantically related concepts co-occur and thus are predictive of one another given the right

embedding.

Binding co-occuring features appears as an intuitive explanation for why these representa-

tions would perform well on semantic segmentation. It is particularly interesting that training

end-to-end with a standard contrastive loss can produce complex behavior reminiscent of the

DINO approach (Caron et al., 2021) even though we use a single, two-layer MLP attention module

as opposed to large-scale transformer architectures which use attention throughout the network.

A.2.2 Ablating the components of VITO

In Figure A.2 we demonstrate on an example scene understanding task (PASCAL) how VITO

is impacted by crop-scale, clip length, and the type of attention pooling used (or not used). In

Figure A.3we additionally do a deeper analysis of the temporal sampling scheme and demonstrate

that our choice performs best across tasks and is arguably the most natural.
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Figure A.2: Effects of crop scale, natural augmentations, and multi-scale attention on representation
quality. All ablations are performed relative to VITO’s configuration (denoted by a green asterisk) which
uses 2-scale attention pooling, a less aggressive crop scale of 40%, and natural augmentations uniformly
sampled in a window of length T = 2.56s. We also compare to our baseline MoCLRmodel trained on single
frames, either from ImageNet (dotted gray line) or VideoNet (dashed blue line). All models are evaluated
by transferring to PASCAL semantic segmentation.
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Figure A.3: Ablating different temporal sampling schemes. Delta refers to fixed time sampling bete-
ween frames as in Gordon et al. (2020). Uniform refers to chunking time into non-overlapping blocks and
uniformly sampling within each chunk as in Xu and Wang (2021). Marginal sampling (ours) refers to sim-
ple uniform sampling from the full video clip of length 𝑇 = 2.56𝑠 . First two panels show that marginal
sampling is best overall across transfer to PASCAL and ADE20K. Third panel shows the distribution of ab-
solute time-differences between any two pairs of frames under each sampling scheme (assuming 3 views
are sampled per clip). Our marginal sampling scheme is arguably the most natural as the mode of the
distribution is at 0, meaning that it is not biased to over-represent any specific time difference (similarly
to the random-resized crop operation in space).

A.2.3 Dataset and method ablations

In Table A.1 we show that both our learning objective VITO and choice of dataset, VideoNet,

are important for achieving top performance. However, these results also show that we can

outpeform exisitng video pretraining evenwhen using standard datasets like Audioset and YT8M.

In addition, by comparing to MoCLR trained on JFT-300M, we demonstrate the benefits of our

method are not the result of simply having more frames of training data.

A.2.4 Scaling architectures

Here we demonstrate that VITO scales effectively to more powerful Swin transformer archi-

tectures. Results on scene understanding benchmarks improve greatly over ResNet-50 models

and are competitive with specialized fine-grained scene understanding models from recent liter-

ature (Hénaff et al., 2021b). See Table. A.2
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Semantic segmentation Object detection

Pretraining Dataset Epochs PASCAL ADE20K COCO LVIS

MoCLR VideoNet 200 72.8 37.5 42.6 24.6
VITO YT8M 200 71.8 37.8 42.7 24.6
VITO AudioSet 200 73.6 38.5 43.2 25.0
VITO VideoNet 200 75.5 39.2 43.6 25.6
MoCLR JFT-300M 200 74.3 38.7 43.2 25.4

Table A.1: VITO dataset and method ablations. We compare the baseline method MoCLR trained on
VideoNet to demonstrate the impact of our methodology. VITO on VideoNet performs significantly better
due to the methodological improvements (attention pooling, adaptation of spatial and temporal augmen-
tations). We also evaluate VITO on traiditonal video datasets such as YT8M and AudioSet. We note that
these numbers still greatly outperform prior video pretraining (See Table A.3. However the imapct of the
VideoNet dataset is clear as the best model is VITO trained on VideoNet. Finally, we show that VideoNet
does not simply provide benefits due to increased number of total frames vs. ImageNet. In fact, MoCLR
trained on JFT-300M has an order of magnitude more frames and yet still underforms.

Semantic segmentation Object detection

Pretraining Dataset Backbone PASCAL ADE20K COCO LVIS

VITO VideoNet R50 76.3 39.4 44.0 25.7
MoCLR VideoNet Swin-S 78.6 43.7 48.4 32.7
VITO VideoNet Swin-S 81.3 46.1 49.8 33.5
Detcon𝐵 ImageNet Swin-S 81.4 46.1 50.4 33.1

Table A.2: VITO scales to larger model architectures (Swin-S), improving performance compared to the
ResNet-50 baseline and remaining competitive with a strong ImageNet pretrained baseline (Detcon) from
Hénaff et al. (2021b).

A.2.5 Comparisons on additional scene understanding tasks

VITO outperforms all prior video pretraining (of image representations) on scene understand-

ing tasks. In addition to the evaluations in the main text, we add PASCAL segmentation, LVIS

object detection, ImageNet-1K classification. VITO remains highly competitive with the best Im-

ageNet pretraining on these tasks. (See Table A.3).

A.2.6 Comparison to image pretraining on video-based tasks

Here we demonstrate more thoroughly that compared with image pretraining methods (im-

age backbones), we perform significantly better on video-level tasks. On both DAVIS segmenta-
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Semantic segmentation Object detection Classif.

Video Pretraining Dataset PASCAL ADE20K COCO LVIS IN-1K

Random Init 53.0 27.9 39.0 21.1 -

Methods pretraining on video datasets
R3M (Nair et al., 2022) - - - - - 13.3
VFS (Xu and Wang, 2021) K400 63.9 31.4 41.6 23.2 -
VIVI (Tschannen et al., 2020) YT8M 65.8 34.2 41.3 23.2 62.6
VINCE (Gordon et al., 2020) R2V2 69.0 35.7 42.4 24.4 54.4
CycleContrast (Wu and Wang, 2021) R2V2 69.2 35.6 42.8 24.5 55.6
MMV TSM (Alayrac et al., 2020) AS + HT 70.6 32.5 41.3 24.2 51.4
VITO VidNet 76.3 39.4 44.0 25.7 66.2

Methods pretraining on ImageNet

Supervised IN-1K 71.3 33.5 44.2 25.2 76.1
BYOL (Grill et al., 2020) IN-1K 76.1 38.8 43.7 25.5 -
MoCLR (Tian et al., 2021) IN-1K 76.4 39.2 43.9 25.8 71.4
DINO (Caron et al., 2021) IN-1K 76.1 39.0 44.3 26.4 75.3

Table A.3: Image and pretraining evaluated on object-detection, semantic segmentation, and ImageNet-
1K classification.

tion (Table A.4) and UCF-101 action recognition (Table A.5), VITO outperforms strong ImageNet

trained baselines and methods pretrained on video datasets.
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Pretraining Dataset J𝑚 F𝑚

ImageNet pretraining

Supervised ImageNet 63.7 68.4

MoCo (He et al., 2020) ImageNet 63.2 67.6

DetCon𝐵 (Hénaff et al., 2021b) ImageNet 63.1 66.4

MoCLR (Tian et al., 2021) ImageNet 63.1 67.8

BYOL (Grill et al., 2020) ImageNet 63.8 69.4

Video pretraining

VINCE (Gordon et al., 2020) Kinetics 63.4 67.8

TimeCycle (Wang et al., 2019) VLOG 41.9 39.4

UVC (Li et al., 2019) Kinetics 54.5 58.1

CRW (Jabri et al., 2020) K400 64.8 70.2

VFS (Xu and Wang, 2021) K400 65.3 70.2

VITO VideoNet 65.5 70.8

Table A.4: VITO significantly outperforms all image-pretraining baselines on DAVIS 2017 video segmen-
tation. VITO also outperforms many recent successful video pretraining methods.
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Pretraining Dataset Backbone Top-1

Video architectures

Supervised (Wang et al., 2021a) ImageNet I3D 67.1

VideoMoCo (Pan et al., 2021) K400 R(2+1)D 78.7

Temporal-ssl (Jenni et al., 2020) K400 R(2+1)D 81.6

VTHCL (Yang et al., 2020a) K400 3D-R50 82.1

CoCLR (Han et al., 2020) K400 S3D 87.9

CVRL (Qian et al., 2021) K400 3D-R50 92.9

𝜌-BYOL (Feichtenhofer et al., 2021) K400 3D-R50 95.5

Supervised (Carreira and Zisserman, 2017) K400 I3D 95.1

Image architectures

OPN (Lee et al., 2017) UCF101 VGG-M 59.8

TCE (Knights et al., 2021) K400 R50 71.2

CycleContrast (Wu and Wang, 2021) R2V2 R50 82.1

MoCLR (Tian et al., 2021) ImageNet R50 85.5

BYOL (Grill et al., 2020) ImageNet R50 85.6

VITO (avgpool) VideoNet R50 87.4

VITO (MS-avgpool) VideoNet R50 88.5

VITO (MS-attnpool) VideoNet R50 89.4

Table A.5: VITO outperforms all image representations when finetuning for UCF101 action recognition,
using temporally-pooled frame-level representations. VITO’s performance is even competitive with many
video architectures.
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B | Self-supervised learning of a

biologically-inspired visual texture

model

B.1 Transfer Learning with Pre-trained Networks

In addition to comparing networks trained from scratch on our modified KTH dataset, we

also tested the performance of features transferred from pre-trained versions of our V2Net model,

VGG-16, and ResNet-18. We pre-trained our model on a dataset of 11000 unlabeled image patches

using our self-supervised objective. Example images from this dataset are provided in Fig. B.1:

Figure B.1: Example texture images from our hand-curated dataset, comprised of a large collection of
natural textures that are unlabelled, but diverse in content and homogeneous across their spatial extent.

The VGG and ResNet networks are pre-trained on the supervised task of object recognition

using 1 million images from the ImageNet database.

We used these pre-trained networks as feature extractors, and retrained the respective clas-
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sifiers (See Fig. 3.2) for texture classification. Results are shown in Fig. B.2.
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Figure B.2: V2Net vs. DNN texture classification efficiency. Mean and standard error computed
across the 4 train/test splits on our KTH dataset (for each experiment where 25 %, 50 % and 100 % of
training data is used to train the classifier weights). N refers to the number of images used to pre-train
each model.

For all of the models, we find the classifier does not require large amounts of training data -

performance is relatively constant across the different amounts of training data used. For the full

(100%) classifier training set, ourmodel achieves 67% - the performance gap ( 5-10%) relative to the

pre-trained CNNs is surprisingly small given that our model is pre-trained without supervision,

using two orders of magnitude fewer images (11k vs. 1M).

B.2 Selectivity for Natural Texture vs. Spectrally-shaped

Noise

For each of the 11 texture families in the test dataset, we plot the mean accuracy our model

trained on natural images (V2Net (Natural) vs. our model trained on phase-scrambled images

V2Net (PS)). Fig. B.3 shows that the model trained on natural images performs better for most
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texture families, since it is able to capture higher-order natural statistics. If we visualize an ex-

ample of one of these classes (aluminum foil), we see that this is because the scrambling of phase

destroys content that is critical in defining that texture. However, for a few families, the perfor-

mance of the V2Net (PS) model is about the same as the V2Net (Natural) model because certain

texture families (e.g. wood) are primarily defined by their spectral content (and thus not altered

significantly by phase-scrambling).

Figure B.3: V2Net discriminates natural texture from spectrally matched noise. Left: Average
KTH test accuracy (averaged over 4 splits with 100 % training data) for the V2Net (Natural) vs. V2Net
(PS) models. Right: example images (both natural and phase-scrambled) for two texture families. For the
‘aluminum foil’ family, the phase-scrambled image removes the higher-order content that is necessary
for identifying the texture. For the ‘wood’ family, the phase-scrambling does not alter perception of the
texture significantly, because its appearance is primarily determined by spectral content.

B.3 V2 Physiology Comparisons

B.3.1 Data and Methods

Here, we provide more details about the dataset and methods used for the representational

similarity analysis presented in the main text. The neural data taken from Ziemba et al. (2016)
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consists of electrophysiolgical recordings of 103 V2 neurons from anesthetized adult macaque

monkeys. As is done in the original analysis, we averaged spike counts within 100-ms time

windows aligned to the response onset for each single unit. To gaussianize the neural responses,

we applied a variance-stabilizing transformation to the spike counts for each neuron (𝑟𝑔𝑎𝑢𝑠𝑠 =

√
𝑟𝑝𝑜𝑖𝑠𝑠 +

√︁
𝑟𝑝𝑜𝑖𝑠𝑠 + 1).

The visual stimuli used in the experiment are synthetic texture stimuli generated using the

procedure described in Portilla and Simoncelli (2000). A set of 15 grayscale texture photographs

are used as the examples for 15 different texture families. From these seed images, 15 samples are

generated for each family to provide sample variation across the family. The original stimuli have

a size of 320 x 320 pixels and are presented to every V2 unit at a size of 4◦, within a raised cosine

aperture (this window was larger than all of the receptive fields of the neurons at the recorded

eccentricties). For our representational similarity experiments, we thus pre-processed the images

for input to the models such that they are resized to the appropriate pixel dimensions (224 x 224)

and presented within a 4◦ raised cosine aperture.

B.3.2 T-SNE Visualization
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V2 ModelLatent Dim 1

Latent Dim 2

Texture Families

Figure B.4: V2 vs Model T-SNE representation. Left: V2 neural responses projected into a 2-d latent
space using the T-SNE method. Right: Our model responses projected into a 2-d latent space using the
T-SNE method. Individual dots are responses to individual images from a given texture family. Each of
the 15 texture families is given a separate color.
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C | Layerwise complexity-matched

self-supervised learning yields

improved models of cortical area

V2

C.1 Architecture details

We summarize the details of all architectures used in both the biological-alignment evalua-

tions and the human behavior evaluations.

C.1.1 Our architectures

For the LCL-V2 two-stage model, and or for all of the ablation studies in Sec. 4.4.4, we use the

following architecture:

We use this block as the architecture for all of the ablation studies in Sec. 4.4.4.

As shown in Fig. 4.3, we use projector networks 𝑔(𝜃1), 𝑔(𝜃2) during training to encourage

learning ‘equivariant’ representations:

For the full LCL-V2Net architecture (used in Sec. 4.4.5), we fix the LCL-V2 block and train the

112



Layer 1

Conv2d(in_channels=3, out_channels=64, ks=11, stride=4,
padding=5, padding_mode=‘reflect’)

BatchNorm2d(64)
ReLU()

BlurMaxPool2d(ks=3, stride=2, padding=1)

Layer 2

Conv2d(in_channels=64, out_channels=192, ks=5, stride=1,
padding=2, padding_mode=‘reflect’)

BatchNorm2d(192)
ReLU()

BlurMaxPool2d(ks=3, stride=2, padding=1)

Table C.1: LCL-V2 Two-layer Architecture. We use the same channel dimensions and non-linearities
take from the first two layers of the AlexNet architecture (along with BatchNorm layers). In addition,
because we train our model with small image patches, aliasing artifacts impact model responses more
than with large images. As a result, we replace standard MaxPooling with anti-aliasing blurring followed
by max-pooling (as done in (Zhang, 2019))

.

𝑔(𝜃1)

Linear(in_channels=64, out_channels=64)
BatchNorm2d(64)

ReLU()
Linear(in_channels=64, out_channels=2048)

𝑔(𝜃2)

Linear(in_channels=192, out_channels=192)
BatchNorm2d(192)

ReLU()
Linear(in_channels=192, out_channels=2048)

Table C.2: LCL-V2 projector network architectures. Projector networks used during self-supervised
pre-training for each layer are MLP networks with single hidden layers. Following (Siddiqui et al., 2023),
we use output dimensionalities of 2048 for each projector.

following subsequent stages shown in Table. C.3:

For the neural response prediction evaluations, we implement a baseline model using the

Steerable Pyramid (Simoncelli and Freeman, 1995). We use a 5 scale, 4 orientation complex pyra-

mid (based on 3rd-order oriented derivative filters, and their Hilbert Transforms) as implemented

in the Plenoptic package (Duong et al., 2023). We rectify (ReLU) both the real and imaginary chan-

nels to generate a total of 40 ‘simple cells’. We additionally create 20 ‘complex-cell’ channels by

computing the modulus of each complex-valued filter response: 𝑟𝑐𝑜𝑚𝑝𝑙𝑒𝑥 =
√︃
𝑟 2
𝑟𝑒𝑎𝑙

+ 𝑟 2
𝑖𝑚𝑎𝑔

. For the

V1-baseline model, we subsample the output spatial feature map by a factor of 4 to reduce the
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Downstream features

Conv2d(192, 384, ks=3, padding=1)
BatchNorm2d(384)

ReLU()
Conv2d(384, 256, ks=3, padding=1)

BatchNorm2d(256)
ReLU()

Conv2d(256, 256, ks=3, padding=1)
BatchNorm2d(256)

ReLU()
MaxPool2d(ks=3, stride=2)

Classifier

AdaptiveAvgPool2d(1,1)
Dropout(p=0.5)
Linear(D, 4096)

BatchNorm2d(4096)
ReLU()

Dropout(p=0.5)
Linear(4096, 4096)

BatchNorm2d(4096)
ReLU()

Linear(4096, 1000)

Table C.3: LCL-V2Net Downstream Architecture. On top of the LCL-V2 stage, we train the subse-
quent stages indicated here based on the AlexNet architecture. We include BatchNorm layers as we find
this speeds up convergence.)

.

total number of responses. For the V2-baseline model, we use the response of the V1-stage after

applying 𝐿2 spatial energy pooling in a channel-independent way with a 3x3 kernel and addi-

tional subsampling by a factor 2. Given a 200x200 grayscale input image, the V1-layer response

vector therefore has shape (60, 50, 50) while the V2-layer response vector has shape (60, 25, 25).

C.1.1.1 VOneNet (Hand-crafted / E2E

We use the VOneNet-AlexNet network developed in (Dapello et al., 2020). We note that this

network does not use BatchNorm layers; however, due to inability to re-train this model effec-

tively we use the published pre-trained version. Briefly, this network consist of a VOneBlock

front-end model that contains 256 channels (128 simple cell, 128 complex cell) created from a Ga-
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bor filter bank basis set with parameters sampled from distributions of recordedmacaque V1 cells.

This front-end is followed by the full standard AlexNet network architecture from the Pytorch

library (Paszke et al., 2019).

C.1.1.2 BarlowTwins (layerwise)

We use the same architecture as our LCL-V2 block defined above. However, we utilize the

E2E augmentation training parameters defined in (Zbontar et al., 2021) and (Siddiqui et al., 2023)

(see Sec. C.3 for details).

We use this model for comparison in both neural response prediction (Sec. 4.4.1) and as a

baseline for model ablations (Sec. 2.4.3).

C.1.1.3 LPL (layerwise)

We use the training code (https://github.com/fmi-basel/latent-predictive-learnin

g) and methods provided in (Halvagal and Zenke, 2023). While we attempted to re-train the LPL

method on the ImageNet-1k dataset, we found that this network would not converge. As a result,

we use the AlexNet model trained on the STL-10 dataset for 800 epochs (as done in the original

work).

We only use this model for comparison in the neural response prediction experiment (Sec.

4.4.1) to provide an additional layerwise learning baseline.

C.1.1.4 BarlowTwins (E2E)

Due to the fact that there is not an available pre-trained AlexNet-based version of the Barlow

Twins E2E training method from (Zbontar et al., 2021), we pre-train our own version based on

the standard AlexNet architecture (with BatchNorm layers after each convolution/linear layer).

We pool the final ‘feature’ layer such that each image is represented by a single 256-d responses

vector. Aswas done in (Zbontar et al., 2021), before the loss computation, this vector is propagated
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through a standard MLP projector network with 2 hidden layers. We varied different projector

sizes and found the best projector setting to be one with dimensionalities: (1024, 1024, 1024) for

the 2 hidden layers and output layer. We pre-train this network for 100 epochs.

For the comparisons in Sec. 4.4.5, we train a classifier stage (as defined in Table C.3), that

operates on the output of the fixed network.

C.1.1.5 Supervised AlexNet

For the results in this work, we tested two variations of the standard AlexNet architecture

(one with BatchNorm (Ioffe and Szegedy, 2015) and one without). Interestingly, although we

found benefits of BatchNorm in convergence for our LCL training, we find that the standard

AlexNet, without BatchNorm, provides a slightly better account of the neural data (and similar

performance on the OOD behavioral benchmarks), As a result, use the standard network (with-

out BatchNorm) for comparison. Because this network is fully-supervised on the ImageNet-1K

recognition task (provided in the Pytorch library), we do not perform any extra training for the

results in Sec. 4.4.5.

C.1.1.6 L2-AT (𝜖 = 3.0)

We use an existing fully pre-trained version of the AlexNet architecture, trained with L2-AT

adversarial training (Madry et al., 2017). We use the specific pre-trained model from (Chen et al.,

2020a), which uses 𝜖 = 3.0 as the perturbation threshold. Because this network is fully-supervised

on the ImageNet-1K recognition task (provided in the Pytorch library), we do not perform any

extra training for the results in Sec. 4.4.5.

C.1.1.7 ANT

We use the code provided at https://github.com/bethgelab/game-of-noise to train

the standard AlexNet model with the adversarial noise training method provided in (Rusak et al.,
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2020). This method differs from the L2-AT standard adversarial training as it uses a parameterized

noise distribution (Gaussian) rather than arbitrary pixel perturbations within a fixed budget.

C.2 Barlow Twins (E2E) Diagram

For completeness, we briefly depict the original Barlow Twins method in case the pictorial

diagram is helpful for interpreting the objective function (which we adapt here in our layerwise

setting.

Figure C.1: Diagram depicting the Barlow Twins method. Given an original image 𝑋 , distorted versions
𝑌𝐴, 𝑌𝐵 are generated from the original image. These augmented images are passed through the encoder
and projector networks to produce embeddings 𝑍𝐴, 𝑍𝐵 . The objective then attempts to maximize the
cross-correlation on the diagonal (across the two views of the same image) and minimize the off-diagonal
elements of the cross-correlation matrix (feature dot products between different images)

C.3 Augmentation details

Standard E2E training

The standard E2E augmentation scheme that we use to both train the Barlow (E2E) (Zbontar

et al., 2021) and Barlow (layerwise) (Siddiqui et al., 2023) baseline models is defined as follows:
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Each image is randomly augmented by composing the following operations, each applied with a

given probability:

1. random cropping: a random patch of the image is selected, whose area is uniformly sam-

pled in [𝑠 · A,A], where A is the area of the original image, and whose aspect ratio is

logarithmically sampled in [3/4, 4/3]. 𝑠 is a scale hyper-parameter set to 0.08. The patch is

then resized to 224 ×224 pixels using bicubic interpolation;

2. horizontal flipping;

3. color jittering: the brightness, contrast, saturation and hue are shifted by a uniformly dis-

tributed offset;

4. color dropping: the RGB image is replaced by its grey-scale values;

5. gaussian blurring with a 23×23 square kernel and a standard deviation uniformly sampled

from [0.1, 2.0];

6. solarization: a point-wise color transformation 𝑥 ↦→ 𝑥 · 1𝑥<0.5 + (1 − 𝑥) · 1𝑥⩾0.5 with pixels

𝑥 in [0, 1].

The augmented frames 𝑥𝐴 and 𝑥𝐵 result from augmentations sampled from distributions A𝐴

and A𝐵 respectively. These distributions apply the primitives described above with different

probabilities, and different magnitudes. The following table specifies these parameters.

LCL-V2 Augmentations

Given the limited capacity of our two-stage network, we drastically reduce the number and

strength of these augmentations. As described in the main text, we additionally apply a complex-

ity-matched set of augmentations to generate the inputs for training each layer. For our training,

each image is first resized such that the smallest side is resized to 224 pixels. It is then randomly

augmented by composing the following operations, each applied with a given probability.:
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Parameter A𝐴 A𝐵

Random crop probability 1.0
Flip probability 0.5
Color jittering probability 0.8
Color dropping probability 0.2
Brightness adjustment max 0.4
Contrast adjustment max 0.4
Saturation adjustment max 0.2
Hue adjustment max 0.1
Gaussian blurring probability 1.0 0.1
Solarization probability 0.0 0.2

1. center cropping: a center crop of a given size is first selected from the image.

2. random cropping: a random patch of this central crop is selected, whose area is uniformly

sampled in [𝑠 · A, 0.9 · A], where A is the area of the original image, and whose aspect

ratio is logarithmically sampled in [0.9, 1.1]. 𝑠 is a scale hyper-parameter set to a different

value for each layer of the LCL-V2 architecture. The patch is then resized to 𝑝 ×𝑝 where 𝑝

is again dependent on the layer.

3. contrast and luminance jittering: the brightness and contrast are shifted by a uniformly

distributed offset.

4. Gaussian noise: additive Gaussian noise is added independently to each channel of the RGB

image. The noise is generated to be mean 0 with random standard deviation uniformly

sampled from the range (0.04, 0.1).

The parameters to generate the first layer patches 𝑥𝐴1 and 𝑥𝐵1 are defined below:
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Parameter A𝐴 A𝐵

Central crop size 56

Minimum random crop scale 0.6

Random crop resize output size 48

Color jittering probability 0.8

Color dropping probability 0.2

Brightness adjustment max 0.2

Contrast adjustment max 0.2

Gaussian noise probability 1.0 0.0

The parameters to generate the second layer patches 𝑥𝐴2 and 𝑥𝐵2 are defined below:

Parameter A𝐴 A𝐵

Central crop size 112
Minimum random crop scale 0.3
Random crop resize output size 96
Color jittering probability 0.8
Color dropping probability 0.2
Brightness adjustment max 0.2
Contrast adjustment max 0.2
Gaussian noise probability 1.0 0.0

C.4 Neural evaluation details

C.4.1 Stimulus pre-processing

We use the stimuli from (Freeman et al., 2013; Ziemba et al., 2016), which consist of 225 natu-

ralistic texture images from 15 texture families and 225 corresponding spectrally-matched noise

images. We use the pre-processing in the BrainScore benchmark https://github.com/brain

-score/brain-score which applies a circular aperture to the original images and resizes the

image such that it covers the central 4◦, within a raised cosine aperture (112 pixel diameter), to
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Texture

Noise

Figure C.2: Example samples of each of the 15 texture families and their corresponding spectrally-
matched noise images. Taken from (Freeman et al., 2013).

align with the fact that the experimental protocol presented images at a 4◦ field-of-view to the

individual V1/V2 neurons. However, because we assume an 8◦ field-of-view for all models (224

pixels). Each image is then padded with gray pixels beyond the central 4◦.

C.4.2 BrainScore neural prediction

Following the BrainScore pipeline, we preprocess the neural responses binning raw spike-

counts within 10ms windows and averaging these spike-counts over the 50ms to 150ms range

post stimulus presentation. Because each stimulus is presented 20 times, the average spike-count

for each sample is calculated as the average over these 20 trials. To evaluate neural predictivity

we use the API provided in https://github.com/brain-score/brain-score. We show

scores on the private split of the data which consists of approximately 70% of the original images

(official BrainScore split). Briefly, 𝑁 ×𝐷𝑚 model responses are regressed onto the 𝑁 ×𝐷𝑛 neural

responses (V1: 𝐷𝑛 = 102, V2: 𝐷𝑛 = 103). This is done using the PLS regression method with 25

components. The regression is computed using 10-fold cross-validation and pearson correlations

𝑟𝑛 (between model predictions and neural responses across all test images) are obtained for each

neuron and for each split. A measure of internal consistency 𝑟𝑐𝑒𝑖𝑙,𝑛 is also computed by splitting

neural responses in half across repeated presentations of the same image and computing the

Pearson correlation coefficient between the two splits across images for each neuron. For more

details, see (Schrimpf et al., 2018).

For the overall scores presented in Fig. 4.4 (Left), The final explained variance for a given
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model is calculated as 𝑚𝑒𝑑𝑖𝑎𝑛𝑛 (𝑟 2𝑛/𝑟 2𝑐𝑒𝑖𝑙,𝑛). For the subset explained variance scores in Fig. 4.4

(Right), these medians are computed over the specific subset of neurons identified as ‘V1-like’ or

‘not-V1-like’ (based on the V1-SteerPyr model explained variances).

We further estimate the internal consistency between neural responses by splitting neural

responses in half across repeated presentations of the same image and computing Spearman-

Brown-corrected Pearson correlation coefficient between the two splits across images for each

neuroid.

C.4.3 Texture Modulation Analysis

The analyis on texture modulation uses the same stimuli and image pre-processing. For the

neural responses, we follow the same pre-processing outlined above; however, instead of bin-

ning each neural responses over the fixed 50ms to 150ms window post presentation, we use the

method in (Freeman et al., 2013) which still selects a 100ms window (but now aligned to the spe-

cific response-latency of each neuron). This is done for consistency with the measured texture

modulation indices in (Freeman et al., 2013), but we do not find that this significantly changes

our results.

C.5 OOD and Human Behavior Benchmark

Dataset information. We evaluate accuracy and human error consistency using the code

from https://github.com/bethgelab/model-vs-human/tree/master. We report the OOD

accuracy (averaged over samples and distortions) on the full dataset from (Geirhos et al., 2021),

which consists of 17 OOD distortions applied to ImageNet images. We additionally report the

behavior error consistency metric summarized below.

Behavior error consistency metric. This metric, derived in (Geirhos et al., 2020b) mea-

sures whether there is above-chance consistency with human per-sample recognition decisions.
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let 𝑐ℎ,𝑚 (𝑠) be 1 if both a human observer ℎ and𝑚 decide either correctly or incorrectly on a given

sample s, and 0 otherwise. The observed consistency 𝑐ℎ,𝑚 is the average of 𝑐ℎ,𝑚 (𝑠) over all sam-

ples. The error consistency then measures whether this observed consistency is larger than the

expected consistency given two independent binomial decision makers with matched accuracy.

For the details on this exact computation, see (Geirhos et al., 2020b).

C.6 V1 Receptive Field Comparisons

In addition to the overall predictivity of the V1 data, we also use qualitative and quantitative

analyses to probe the selectivities of the learned receptive fields in the first convolutional layer

of our model. We compare these learned filters to those learned via adversarial-training and

standard supervised training.

Filter Visualization. We visualize the 64 filters of each learned model in Fig. C.3. We

visualize the filters in grayscale (even though the filters operate on color channels), to draw com-

parisons specifically between the spatial receptive field properties. By inspection, none of the

models perfectly capture the nature of real V1 receptive fields; however, they all learn a set of

reasonably diverse of multi-scale oriented filters. Our model and the L2-Robust model seem to

better capture the number of cycles within the oriented filters, whereas the supervised network

receptive fields are too high-frequency. Both LCL-V1 and Supervised models, however, seem to

learn more localized blob filters than the adversarially-trained model.

V1 Receptive Field Properties. We briefly explore further a couple of the canonical re-

ceptive field properties highlighted in the data collected from macaque V1 neurons in (Ringach,

2002). For the three models, we fit Gabor receptive fields to the filters shown in Fig. C.3 by

minimizing the mean squared error between a parameterized 2-d gabor function and the model

receptive field. We remove those that were not fit well by the fitting procedure.

We first measure the spatial-phase of each receptive field and compare these to the distribu-
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Figure C.3: Comparing Learned Receptive Fields. We demonstrate that our single-layer (layerwise)
trained model (LCL-V1), learns a diverse set of oriented receptive fields. All 64 filters are shown for our
method, adversarial robust training, and standard supervised training. Qualitatively, both our model and
the adversarially-trained network learn more low-frequency filters than the standard supervised-trained
network. Original filters are RGB, but we show grayscale versions here to focus on the spatial structure
comparisons.

tion of spatial phase of the macacque data (Fig. C.4). None of the models perfectly match the

neural data distribution, but our LCL-V1 model seems to qualitatively best capture the relative

bi-modal structure around even and odd-symmetry (0 and 𝜋/2). We next compare the receptive

field structure via the method in (Ringach, 2002), plotting the number of cycles in each dimension

of 2-d Gabor function (ny, nx), against each other for each filter. These two parameters control

receptive field shape by changing the structure of the Gabor sub-fields. We see in Fig. C.5, that

while there are some outliers, most of our model receptive fields fall within a similar distribution

as the macaque V1 receptive fields. Compared with the other twomodels, our model does a better

job capturing the density of the more ’blob-like’ filters near the origin.
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C.7 Additional Human Behavior Results

Method IN-1K acc. ↑ OOD acc. ↑ obs.
consistency ↑

error
consistency ↑

LCL-V2Net 0.527 0.492 0.643 0.211
Barlow Twins (Zbontar et al., 2021) 0.459 0.451 0.607 0.166
Supervised (Krizhevsky et al., 2012) 0.590 0.443 0.597 0.165
VOneNet (Dapello et al., 2020) 0.491 0.407 0.585 0.168
L2-Robust (Madry et al., 2017) 0.399 0.391 0.573 0.176

Table C.4: OOD accuracy and consistency with human judgments on 17 different OOD recognition tests,
including multiple types of noise, phase-scrambling, and shape-biased stimuli. In both accuracy and
human-alignment, our model trained with the LCL-V2 front-end improves over all end-to-end training
approaches.
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