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Abstract

We have recently developed a maximum-likelihood (ML) method for estimating integrate-

and-fire-based stimulus encoding models that can be used even when only extracellular spike

train data is available. Here we derive the ML estimator given the full intracellular voltage

trace and apply both the extracellular-only and intracellular method to responses recorded in

vitro, allowing a direct comparison of the model fits within a unified statistical framework.

Both models are able to capture the behavior of these cells under dynamic stimulus conditions

to a high degree of temporal precision, although we observe significant differences in the

stochastic behavior of the two models.
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1. Introduction

A central issue in systems neuroscience is the characterization of the
functional relationship between sensory stimuli and neural spike trains. A
common model for this relationship consists of linear filtering of the stimulus,
followed by a nonlinear, probabilistic spike generation process. The linear filter is
typically interpreted as the neuron’s ‘‘receptive field,’’ while the spiking mechanism
accounts for simple nonlinearities like rectification and response saturation. Given a
set of stimuli and observed spike times, the characterization problem consists of
estimating both the linear filter and the parameters governing the spiking
mechanism.
We have recently developed methods for estimating a model of this type

(given only extracellular spike train data), in which the nonlinear spike generation
step is implemented by a noisy integrate-and-fire mechanism; see e.g. [1,6,4]
for detailed arguments on why models of this type are of interest. On the other
hand, the problem of estimating this class of model given the full intracellular
voltage trace can be solved more easily and has been previously studied [3,10]. Here
we examine the performance of the two techniques on in vitro data [5], allowing a
detailed comparison of the methods. Our results serve both to validate the
extracellular method and, more importantly, to illuminate the statistical differences
in the models.
2. Methods

2.1. Experimental procedures

See [5] for physiological details of the in vitro recordings analyzed here.
Briefly, dual-electrode whole-cell recordings were made from pyramidal cells
from layers III and V in slices from sensorimotor cortex of rats aged
P14–24; Gaussian noise current stimuli were delivered through one electrode,
while voltage responses were recorded through the other electrode. The current
was not ‘‘frozen,’’ that is, a new Gaussian current was drawn independently for
each trial.
2.2. Intracellular model

We use a slightly different estimation method than either [10] or [3], which
is worth describing here. One major difference is that we pose the problem
in an explicitly probabilistic setting, allowing us to systematically examine
the noise properties of the model (i.e., the variability of response to a fixed
stimulus).
We develop the maximum likelihood estimator (MLE) for the following integrate-

and-fire-based model, a generalized form of the ‘‘spike-response’’ model of [1]. In
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discrete time, the voltage V evolves according to

V ð1Þ ¼ V ð0Þ þ dt �
X0

i¼�m

gið�t0ÞV ðiÞ þ
X

l

alf lðV ð0ÞÞ þ ~k � ~xð0Þ þ
X0

j¼�1

hð�tjÞ

 !

þ s
ffiffiffiffiffi
dt

p
N:

The tap weights gi implement an IIR filter whose coefficients can vary as a function
of the time t0 since the last spike (if m ¼ 0; g0 ¼ g is simply the membrane
conductance); the functions f l allow us to model nonlinear subthreshold dynamics;

~k
summarizes the linear filtering properties of the cell given the input ~x (here just the
scalar stimulus current). On short time scales, the current h induces the spike shape;
on longer time scales, h can model burstiness, refractoriness, or adaptation effects,
depending on its form and magnitude [6]. The cell spikes whenever V reaches a
threshold potential V th: Finally, we take the noise term N to be Gaussian and i.i.d.;
this means that the MLE for the model parameters has the usual mean-square
formulation, which we now describe.
We assume the spike times ftjg have been detected (typically via automatic

thresholding, assuming sufficiently well-isolated recordings). Then the model
parameters fgi; al ; ~k; hg act linearly on fV ðiÞ; f lðV ð0ÞÞ; ~xð0Þ;

P
dðtjÞg in the model

equation to produce the voltage differences V ð1Þ � V ð0Þð Þ=dt corrupted by additive
Gaussian noise. The ML estimate for these parameters is therefore given by least-
squares linear regression, and the noise scale s is then simply estimated as the root-
mean square of the residuals.
This determines all model parameters but V th: The likelihood for this parameter is

defined as the probability that the Gaussian noise N will push the voltage V over the
threshold V th at spike times and keep the voltage below threshold at non-spike times.
This loglikelihood can be written

LðV thÞ �
X

j

log

Z 1

V th

Gmj ;s2 dtðV ÞdV

� �
þ
X

j0

log

Z V th

�1

Gmj0 ;s2 dtðV ÞdV

� �
;

where Gm;s2 ðV Þ is the Gaussian density of mean m and variance s2; and mj denotes the
mean of V at the spike times ftjg under the spike-response model,

mj � V ðsÞ þ dt �
X0

i¼�m

giðs � tj�1ÞV ðs þ iÞ þ
X

l

alf lðV ðsÞÞ þ ~k � ~xðsÞ

 

þ
Xj�1

j�¼�1

hðs � tj� Þ

!
;

with s � tj � 1; mj0 is the mean computed at all other times (at which no spike was
observed). One can show that LðV thÞ is concave in V th [7], and hence easy to
maximize using ascent algorithms (note also that the derivatives LðiÞ are easily
computed once one has computed L). Note that this approach requires just a single
‘‘pass’’ through the data (we obtain the spike times, then fit the parameters
fgi; al ; ~k; hg by linear least-squares, then maximize LðV thÞ to fit V th); we do not need
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to generate a new voltage trace for each setting of the model parameters, to
numerically optimize the mean-square difference between the model and true
voltages (this latter optimization problem is non-concave in general and is therefore
more challenging, due to the possible presence of local minima, than the solution of
LðV th)), and thus this likelihood-based approach is faster and somewhat more easily
interpretable than the method described in [3].
We have just described the MLE given both the voltage V ðtÞ and the spike times

ftjg: It is also possible—indeed, somewhat more straightforward—to write down the
MLE given only the voltage V ðtÞ (in which case the solution, including V th; is
completely given by least squares). However, our experiments with the latter
approach (details not shown) indicate that this method is less robust; the MLE given
only V ðtÞ tends to set V th far too high, basically because missing the first part of the
spike (due to improperly high V th) costs less in mean square error than does adding a
few false threshold crossings (as is inevitable with V th near the true optimal value, if
the cell’s threshold is not perfectly sharp).

2.3. Extracellular model

The model for extracellular data introduced in [6] is a simplified version of the
above spike-response model:

V ð1Þ ¼ V ð0Þ þ dt �gV ð0Þ þ IDC þ ~k � ~xð0Þ þ
X0

j¼�1

hð�tjÞ

 !
þ s

ffiffiffiffiffi
dt

p
N:

We lack the space necessary to describe the MLE for this model, given only
the spike train ftjg; see [6] for full details. For a fair comparison, this is the version
of the intracellular model we examine below; that is, we set m ¼ 0; gðtÞ � g;
and f l ¼ 1; so the extracellular and intracellular models have the same parameter
spaces.
Note that despite the fact that the full V ðtÞ provides a much richer data set

than just the spike times ftjg; the extracellular model is in some senses easier to
estimate, because we do not have to worry about matching V precisely, just the
spike times. This means that we only have to deal with voltage up to a scale
and offset that we do not need to estimate (in other words, V is dimensionless
in the extracellular model). More importantly, if the threshold does not depend
linearly on just V, but also, say, @V=@t [1], the intracellular model will do poorly
(because this model has to simultaneously fit the subthreshold voltage trace and the
spike times), whereas the extracellular model will perform well (since this model does
not have to fit V, and @V=@t is a linear functional of the V ðtÞ signal). A possible
improvement for the intracellular model, not pursued here, would be to generalize
the simple voltage threshold condition to allow linear combinations of ~V �

fV ðiÞgmpip0; for example allowing a spike to occur when ~V � ~V th41 for some

vector ~V th: This more powerful model remains easily solvable by the global

concavity of the corresponding loglikelihood Lð~V thÞ (as can be shown, again, by the
results in [8]).
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3. Results

Our findings are illustrated for a single cell in Fig. 1 and summarized in Fig. 2.
Both models predict the responses to dynamic input fairly well. A large proportion
of spikes are predicted with millisecond accuracy; ‘‘mistaken’’ spikes—that is, spikes
which occur in the model but not in the data—typically appear at plausible times
(i.e., near peaks in the true voltage). The intracellular model also captures the
subthreshold responses well (as previously emphasized in [3,10]).
In particular, the extracellular model estimation procedure performs almost as

well as the intracellular procedure, even though the latter is given a much more
complete representation of the subthreshold voltage trace (Fig. 2). The one exception
to this comes when we consider the estimate of the noise value s: somewhat
unexpectedly, we find that the maximum likelihood estimate for the extracellular
model actually adds noise by increasing sextra beyond the value obtained by the
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Fig. 1. Responses to white noise current input. Top: Comparison of sample from fit intracellular model to

true observed voltage. Horizontal line gives estimated threshold voltage. Middle: Comparison of spike

rasters. Asterisks indicate actual cell spike times. Rasters for trials 1–49 are example spike trains from the

intracellular model, with noise level decreasing linearly from the fit value sintra down to zero. Rasters for
trials 51–100 are example spike trains from the extracellular model, with noise level increasing linearly

from zero up to the fit value sextra: Note that noisy and deterministic rasters in the intracellularly fit case
match fairly well, while in the extracellular case, estimated noise has a much greater effect. Bottom:

Deterministic and random sample from extracellular model; note that V is dimensionless here, with

arbitrarily chosen units. Noise induces an increased number of threshold crossings (i.e., higher firing rate);

cf. especially bottom traces in middle panel.
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Fig. 2. Summary of fit results. Twenty three experiments (25–100 s each) in ten different cells examined;

variance of input current varied systematically to explore different firing rate regimes. Only experiments in

which X300 spikes were elicited are examined here; experiments with fewer spikes tended to lead to less

accurate estimates. Left: Example cross-correlation density (standard cross-correlation normalized by

width of time bin used to discretize spike train, 0.125ms here) between real spike train and sample spike

trains from estimated models. Note that the noiseless extracellular and intracellular fits are about equally

accurate, and that the MLE overestimates the noise in the extracellular case, leading to a greatly reduced

accuracy. Middle: Cumulative distribution of observed cross-correlations (computed as integral of cross-

correlation density between þ=�), showing similar results across the population. Right: Scatterplot of
cross-correlations for extracellular and intracellular fits. Identity line plotted for comparison.
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intracellular method. This noise increase is formally identical to a shrinkage of
f~k; IDC ; hg and is a kind of model selection phenomenon [2,9]: roughly stated, for
robust fitting of this model, it is better to be uncertain than certain and wrong. In this
case, model error—the inability of the extracellular model to capture every spike
time—is represented by the ML estimate as increased uncertainty, in the form of the
noise parameter sextra: This has the effect of increasing the extracellular model’s
simulated firing rate and decreasing its selectivity (Fig. 1), even though the noiseless
predictions of the extracellular model are comparable in accuracy to those of the
intracellular model (Fig. 1, center rasters, and Fig. 2). This decreased selectivity, in
turn, reduces the accuracy of the extracellular model’s predictions in the nonzero
noise case (Fig. 2). Of course, to predict the spike train given the stimulus, it makes
sense to restrict our attention to the most likely spike train given the parameters and
stimulus, which (since we assumed N to be Gaussian, with a mode at 0) corresponds
exactly to the (much more accurate) s ¼ 0 case.
We are currently examining the performance of the model in predicting sensory

and motor responses in intact preparations. We close by mentioning one additional
interesting direction for future work: we found that the model fits are stable over
different input variance (i.e., firing rate) regimes (data not shown), but that the
estimated g consistently increases with firing rate (see [7] for another example of
this). To model, e.g., variance (‘‘contrast’’) adaptation [5] accurately, it may be
necessary to capture this effect. One way to do this is to allow g to vary with time, as
mentioned above and discussed in more detail in [3,10]; since gðtÞ is typically found
to be largest just after a spike, increasing the spike rate increases the average g. It
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turns out that the results in [6] on the estimation of the extracellular model may be
extended to this time-varying g case; future work will examine the relevance of this
time-varying conductance more systematically.
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