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We examine a cascade encoding model for neural response in which a lin-
ear filtering stage is followed by a noisy, leaky, integrate-and-fire spike
generation mechanism. This model provides a biophysically more realis-
tic alternative to models based on Poisson (memoryless) spike generation,
and can effectively reproduce a variety of spiking behaviors seen in vivo.
We describe the maximum likelihood estimator for the model parameters,
given only extracellular spike train responses (not intracellular voltage
data). Specifically, we prove that the log-likelihood function is concave
and thus has an essentially unique global maximum that can be found
using gradient ascent techniques. We develop an efficient algorithm for
computing the maximum likelihood solution, demonstrate the effective-
ness of the resulting estimator with numerical simulations, and discuss a
method of testing the model’s validity using time-rescaling and density
evolution techniques.

1 Introduction

A central issue in systems neuroscience is the experimental characterization
of the functional relationship between external variables, such as sensory
stimuli or motor behavior, and neural spike trains. Because neural responses
to identical experimental input conditions are variable, we frame the prob-
lem statistically: we want to estimate the probability of any spiking response
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conditioned on any input. Of course, there are typically far too many possi-
ble observable signals to measure these probabilities directly. Thus, our real
goal is to find a good model—some functional form that allows us to pre-
dict spiking probability even for signals we have never observed directly.
Ideally, such a model will be both accurate in describing neural response
and easy to estimate from a modest amount of data.

A good deal of recent interest has focused on models of cascade type.
These models consist of a linear filtering stage in which the observable sig-
nal is projected onto a low-dimensional subspace, followed by a nonlinear,
probabilistic spike generation stage. The linear filtering stage is typically
interpreted as the neuron’s “receptive field,” efficiently representing the rel-
evant information contained in the possibly high-dimensional input signal,
while the spiking mechanism accounts for simple nonlinearities like rectifi-
cation and response saturation. Given a set of stimuli and (extracellularly)
recorded spike times, the characterization problem consists of estimating
both the linear filter and the parameters governing the spiking mechanism.
Unfortunately, biophysically realistic models of spike generation, such as
the Hodgkin-Huxley model or its variants (Koch, 1999), are generally quite
difficult to fit given only extracellular data.

As such, it has become common to assume a highly simplified model in
which spikes are generated according to an inhomogeneous Poisson pro-
cess, with rate determined by an instantaneous (“memoryless”) nonlinear
function of the linearly filtered input (see Simoncelli, Paninski, Pillow, &
Schwartz, in press, for review and partial list of references). In addition to
its conceptual simplicity, this linear-nonlinear-poisson (LNP) cascade model
is computationally tractable. In particular, reverse correlation analysis pro-
vides a simple unbiased estimator for the linear filter (Chichilnisky, 2001),
and the properties of estimators for both the linear filter and static nonlin-
earity have been thoroughly analyzed, even for the case of highly nonsym-
metric or “naturalistic” stimuli (Paninski, 2003). Unfortunately, however,
memoryless Poisson processes do not readily capture the fine temporal
statistics of neural spike trains (Berry & Meister, 1998; Keat, Reinagel, Reid,
& Meister, 2001; Reich, Victor, & Knight, 1998; Aguera y Arcas & Fairhall,
2003). In particular, the probability of observing a spike is not a functional of
the recent stimulus alone; it is also strongly affected by the recent history of
spiking. This spike history dependence can significantly bias the estimation
of the linear filter of an LNP model (Berry & Meister, 1998; Pillow & Simon-
celli, 2003; Paninski, Lev, & Reyes; 2003; Paninski, 2003; Aguera y Arcas &
Fairhall, 2003).

In this letter, we consider a model that provides an appealing compro-
mise between the oversimplified Poisson model and more biophysically
realistic but intractable models for spike generation. The model consists of
a linear filter (L) followed by a probabilistic, or noisy (N), form of leaky
integrate-and-fire (LIF) spike generation (Koch, 1999). This L-NLIF model
is illustrated in Figure 1, and is essentially the standard LIF model driven
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Figure 1: Illustration of the L-NLIF model.

by a noisy, filtered version of the stimulus; the spike history dependence
introduced by the integrate-and-fire mechanism allows the model to emu-
late many of the spiking behaviors seen in real neurons (Gerstner & Kistler,
2002). This model thus combines the encoding power of the LNP cell with
the flexible spike history dependence of the LIF model and allows us to
explicitly model neural firing statistics.

Our main result is that the estimation of the L-NLIF model parameters is
computationally tractable. Specifically, we formulate the problem in terms
of classical estimation theory, which provides a natural “cost function” (like-
lihood) for model assessment and estimation of the model parameters. We
describe algorithms for computing the likelihood function and prove that
this likelihood function contains no nonglobal local maxima, implying that
the maximum likelihood estimator (MLE) can be computed efficiently using
standard ascent techniques. Desirable statistical properties of the estimator
(such as consistency and efficiency) are all inherited “for free” from classi-
cal estimation theory (van der Vaart, 1998). Thus, we have a compact and
powerful model for the neural code and a well-motivated, efficient way to
estimate the parameters of this model from extracellular data.

2 The Model

We consider a model for which the (dimensionless) subthreshold voltage
variable V evolves according to

dV = (−g(V(t) − Vleak) + Istim(t) + Ihist(t))dt + Wt, (2.1)

and resets instantaneously to Vreset < 1 whenever V = 1, the threshold
potential (see Figure 2). Here, g denotes the membrane leak conductance,
Vleak the leak reversal potential, and the stimulus current Istim is defined as

Istim(t) = �k · �x(t),
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Figure 2: Behavior of the L-NLIF model during a single interspike interval, for
a single (repeated) input current. (Top) Observed stimulus x(t) and response
spikes. (Third panel) Ten simulated voltage traces V(t), evaluated up to the first
threshold crossing, conditional on a spike at time zero (Vreset = 0). Note the
strong correlation between neighboring time points, and the gradual sparsen-
ing of the plot as traces are eliminated by spiking. (Fourth panel) Evolution of
P(V, t). Each vertical cross section represents the conditional distribution of V at
the corresponding time t (i.e., for all traces that have not yet crossed threshold).
Note the boundary conditions P(Vth, t) = 0 and P(V, tspike) = δ(V − Vreset) cor-
responding to threshold and reset, respectively. See section 4 for computational
details. (Bottom panel) Probability density of the interspike interval (ISI) corre-
sponding to this particular input. Note that probability mass is concentrated at
the times when input drives the mean voltage V0(t) close to threshold. Careful
examination reveals, in fact, that peaks in p(ISI) are sharper than peaks in the
deterministic signal V0(t), due to the elimination of threshold-crossing traces
that would otherwise have contributed mass to p(ISI) at or after such peaks
(Berry & Meister, 1998).
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the projection of the input signal �x(t) onto the spatiotemporal linear kernel
�k; the spike-history current Ihist is given by

Ihist(t) =
i−1∑
j=0

h(t − tj),

where h is a postspike current waveform of fixed amplitude and shape1

whose value depends on only the time since the last spike ti−1 (with the
sum above including terms back to t0, the first observed spike); finally,
Wt is an unobserved (hidden) noise process, taken here to be a standard
gaussian white noise (although we will consider more general Wt later). As
usual, in the absence of input, V decays back to Vleak with time constant
1/g. Thus, the nonlinear behavior of the model is completely determined
by only a few parameters, namely, {g, Vreset, Vleak}, and h(t). In practice, we
assume the continuous aftercurrent h(t) may be written as a superposition
of a small number of fixed temporal basis functions; we will refer to the
vector of coefficients in this basis using the vector �h. We should note that the
inclusion of the Ihist current in equation 2.1 introduces additional parameters
(namely, �h) to the model that need to be fit; in cases where there is insufficient
data to properly fit these extra parameters, �h could be set to zero, reducing
the model, equation 2.1, to the more standard LIF setting.

It is important to emphasize that in the following, V(t) itself will be
considered a hidden variable; we are assuming that the spike train data
we are trying to model have been collected extracellularly, without any
access to the subthreshold voltage V. This implies that the parameters of
the usual LIF model can only be estimated up to an unlearnable mean and
scale factor. Thus, by a standard change of variables, we have not lost any
generality by setting the threshold potential, Vth, and scale of the hidden
noise process, σ , to 1 (corresponding to mapping the physical voltage V →
1 + (V − Vth)/σ ); the relative noise level (the effective scale of Wt) can be
changed by scaling Vleak, Vreset, �k, and h together. Of course, other changes
of variable are possible (e.g., letting σ change freely and fixing Vreset = 0),
but will not affect the analysis here.

The dynamical properties of this type of “spike response model” have
been extensively studied (Gerstner & Kistler, 2002); for example, it is known
that this class of models can effectively capture much of the behavior of ap-
parently more biophysically realistic models (e.g., Hodgkin-Huxley). We
illustrate some of these diverse firing properties in Figures 3 and 4. These
figures also serve to illustrate several of the important differences between
the L-NLIF and LNP models. In Figure 3, note the fine structure of spike
timing in the responses of the L-NLIF model, which is qualitatively similar
to in vivo experimental observations (Berry and Meister, 1998; Reich et al.,

1 The letter h here was chosen to stand for “history” and should not be confused with
the physiologically defined Ih current.
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Figure 3: Simulated responses of L-NLIF and LNP models to 20 repetitions of
a fixed 100-ms stimulus segment of temporal white noise. (Top) Raster of re-
sponses of L-NLIF model to a dynamic input stimulus. The top row shows the
fixed (deterministic) response of the model with the noise set to zero. (Mid-
dle) Raster of responses of LNP model to the same stimulus, with parameters
fit with standard methods from a long run of the L-NLIF model responses to
nonrepeating stimuli. (Bottom) Poststimulus time histogram (PSTH) of the sim-
ulated L-NLIF response (black line) and PSTH of the LNP model (gray line).
Note that the LNP model, due to its Poisson output structure, fails to preserve
the fine temporal structure of the spike trains relative to the L-NLIF model.

1998; Keat et al., 2001). The LNP model fails to capture this fine temporal
reproducibility. At the same time, the L-NLIF model is much more flex-
ible and representationally powerful: by varying Vreset or h, for example,
we can match a wide variety of interspike interval distributions and firing-
rate curves, even given a single fixed stimulus. For example, the model can
mimic the FI curves of type I or II models, with either smooth or discontinu-
ous growth of the FI curve away from 0 at threshold, respectively (Gerstner
& Kistler, 2002). More generally, the L-NLIF model can exhibit adaptive be-
havior (Rudd & Brown, 1997; Paninski, Lau, & Reyes, 2003; Yu & Lee, 2003)
and display rhythmic, tonic, or even bistable dynamical behavior, depend-
ing on the parameter settings (see Figure 4).
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Figure 4: Diversity of NLIF model response patterns. (A) Firing-rate adapta-
tion. A positive DC current was injected into three different NLIF cells, all with
slightly different settings for h (top, h = 0; middle, h hyperdepolarizing; bottom,
h depolarizing). Note that all three voltage response traces are identical until the
time of the first spike, but adapt to the constant input in three different ways.
(For clarity, the noise level is set to zero in all panels.) (B) Rhythmic, bursting
responses. DC current (top trace) injected into an NLIF cell with h shown at
left. As amplitude c of current increases (voltage traces, top to bottom), burst
frequency and duration increase. (C) Tonic and bistable (“memory”) responses.
The same current (top trace) was injected into two different NLIF cells with dif-
ferent settings for h. The biphasic h in the bottom panel leads to a self-sustaining
response that is inactivated only by the subsequent negative pulse.
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3 The Estimation Problem

Our problem now is to estimate the model parameters θ ≡ {�k, g, Vleak, Vreset,

h} from a sufficiently rich, dynamic input sequence �x(t) and the response
spike times {ti}. We emphasize again that we are not discussing the problem
of estimating the model parameters given intracellularly recorded voltage
traces (Stevens & Zador, 1998; Jolivet, Lewis, & Gerstner, 2003); we assume
that these subthreshold responses, which greatly facilitate the estimation
problem, are unknown—“hidden”—to us. A natural choice is the maximum
likelihood estimator (MLE), which is easily proven to be consistent and
statistically efficient here (van der Vaart, 1998). To compute the MLE, we
need to compute the likelihood and develop an algorithm for maximizing
the likelihood as a function of the parameters θ .

The tractability of the likelihood function for this model arises directly
from the linearity of the subthreshold dynamics of voltage V(t) during an
interspike interval. In the noiseless case (Pillow & Simoncelli, 2003), the
voltage trace during an interspike interval t ∈ [ti−1, ti] is given by the so-
lution to equation 2.1 with the noise Wt turned off, with initial conditions
V0(ti−1) = Vreset:

V0(t) = Vleak + (Vreset − Vleak)e−g(t−ti−1)

+
∫ t

ti−1


�k · �x(s) +

i−1∑
j=0

h(s − tj)


 e−g(t−s)ds, (3.1)

which is simply a linear convolution of the input current with a filter that
decays exponentially with time constant 1/g. It is easy to see that adding
gaussian noise to the voltage during each time step induces a gaussian den-
sity over V(t), since linear dynamics preserve gaussianity (Karlin & Taylor,
1981). This density is uniquely characterized by its first two moments; the
mean is given by equation 3.1, and its covariance,

Cov(t1, t2) = EgET
g = 1

2g
(e−g|t2−t1| − e−g(t1+t2)), (3.2)

where Eg is the convolution operator corresponding to e−gt. We denote this
gaussian density G(V(t)|�xi, θ), where index i indicates the ith spike and
the corresponding stimulus segment �xi (i.e., the stimuli that influence V(t)
during the ith interspike interval). Note that this density is highly correlated
for nearby points in time; intuitively, smaller leak conductance g leads to
stronger correlation in V(t) at nearby time points.

On any interspike interval t ∈ [ti−1, ti], the only information we have is
that V(t) is less than threshold for all times before ti and exceeds threshold
during the time bin containing ti. This translates to a set of linear constraints



ML Estimation of a Stochastic Integrate-and-Fire Model 2541

on V(t), expressed in terms of the set

Ci =
⋂

ti−1≤t<ti

{V(t) < 1} ∩ {V(ti) ≥ 1}.

Therefore, the likelihood that the neuron first spikes at time ti, given a spike
at time ti−1, is the probability of the event V(t) ∈ Ci, which is given by∫

V∈Ci

G(V(t)|�xi, θ),

the integral of the gaussian density G(V(t)|�xi, θ) over the set Ci of (unob-
served) voltage paths consistent with the observed spike train data.

Spiking resets V to Vreset; since Wt is white noise, this means that the
noise contribution to V in different interspike intervals is independent. This
“renewal” property, in turn, implies that the density over V(t) for an entire
experiment factorizes into a product of conditionally independent terms,
where each of these terms is one of the gaussian integrals derived above
for a single interspike interval. The likelihood for the entire spike train is
therefore the product of these terms over all observed spikes. Putting all the
pieces together, then, defines the full likelihood as

L{�xi,ti}(θ) =
∏

i

∫
V∈Ci

G(V(t)|�xi, θ),

where the product, again, is over all observed spike times {ti} and corre-
sponding stimulus segments {�xi}.

Now that we have an expression for the likelihood, we need to be able
to maximize it over the parameters θ . Our main result is that we can use
simple ascent algorithms to compute the MLE without fear of becoming
trapped in local maxima.2

Theorem 1. The likelihood L{�xi,ti}(θ) has no nonglobal local extrema in the pa-
rameters θ , for any data {�xi, ti}.

The proof of the theorem (in appendix A) is based on the log concavity
of the likelihood L{�xi,ti}(θ) under a certain relabeling of the parameters (θ).
The classical approach for establishing the nonexistence of local maxima

2 More precisely, we say that a smooth function has no nonglobal local extrema if the
set of points at which the gradient vanishes is connected and (if nonempty) contains a
global extremum; thus, all “local extrema” are in fact global, if a global maximum exists.
(This existence, in turn, is guaranteed asymptotically by classical MLE theory whenever
the model’s parameters are identifiable and guaranteed in general if we assume θ takes
values in some compact set.) Note that the L-NLIF model has parameter space isomorphic

to the convex domain �dim(�k)+dim(�h)+1 × �2+, with �+ denoting the positive axis (recall
that the parameter h takes values in a finite-dimensional space, g > 0, and Vreset < 1).
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of a given function is concavity, which corresponds roughly to the function
having everywhere nonpositive second derivatives. However, the basic idea
can be extended with the use of any invertible function: if f has no local
extrema, neither will g( f ), for any strictly increasing real function g. The
logarithm is a natural choice for g in any probabilistic context in which
independence plays a role, since sums are easier to work with than products.
Moreover, concavity of a function f is strictly stronger than log concavity, so
log concavity can be a powerful tool even in situations for which concavity
is useless (the gaussian density is log concave but not concave, for example).
Our proof relies on a particular theorem (Bogachev, 1998) establishing the
log concavity of integrals of log concave functions, and proceeds by making
a correspondence between this type of integral and the integrals that appear
in the definition of the L-NLIF likelihood above.

4 Computational Methods and Numerical Results

Theorem 1 tells us that we can ascend the likelihood surface without fear of
getting stuck in local maxima. Now how do we actually compute the likeli-
hood? This is a nontrivial problem: we need to be able to quickly compute
(or at least approximate, in a rational way) integrals of multivariate gaus-
sian densities G over simple but high-dimensional orthants Ci. We describe
two ways to compute these integrals; each has its own advantages.

The first technique can be termed density evolution (Knight, Omurtag,
& Sirovich, 2000; Haskell, Nykamp, & Tranchina, 2001; Paninski, Lau, &
Reyes, 2003). The method is based on the following well-known fact from
the theory of stochastic differential equations (Karlin & Taylor, 1981): given
the data (�xi, ti−1), the probability density of the voltage process V(t) up to
the next spike ti satisfies the following partial differential (Fokker-Planck)
equation,

∂P(V, t)
∂t

= 1
2

∂2P
∂V2 + g

∂[(V − Vrest)P]
∂V

, (4.1)

under the boundary conditions

P(V, ti−1) = δ(V − Vreset),

P(Vth, t) = 0,

enforcing the constraints that voltage resets at Vreset and is killed (due to
spiking) at Vth, respectively. Vrest(t) is defined, as usual, as the stationary
point of the noiseless subthreshold dynamics 2.1:

Vrest(t) ≡ Vleak + 1
g


�k · �x(t) +

i−1∑
j=0

h(t − tj)


 .
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The integral
∫

P(V, t)dV is simply the probability that the neuron has not
yet spiked at time t, given that the last spike was at ti−1; thus, 1−∫ P(V, t)dV
is the cumulative distribution of the spike time since ti−1. Therefore,

f (t) ≡ − ∂

∂t

∫
P(V, t)dV;

the conditional probability density of a spike at time t (defined at all times
t /∈ {ti} and at all times ti by left-continuity), satisfies

∫ t

ti−1

f (s)ds = 1 −
∫

P(V, t)dV.

Thus, standard techniques (Press, Teukolsky, Vetterling, & Flannery, 1992)
for solving the drift-diffusion evolution equation, 4.1, lead to a fast method
for computing f (t) (as illustrated in Figure 2). Finally, the likelihood L�xi,ti(θ)

is simply
∏

i f (ti).
While elegant and efficient, this density evolution technique turns out to

be slightly more powerful than what we need for the MLE. Recall that we do
not need to compute the conditional probability of spiking f (t) at all times
t, but rather at just a subset of times {ti}. In fact, while we are ascending
the likelihood surface (in particular, while we are far from the maximum),
we do not need to know the likelihood precisely and can trade accuracy for
speed. Thus, we can turn to more specialized, approximate techniques for
faster performance. Our algorithm can be described in three steps.

The first is a specialized algorithm due to Genz (1992), designed to com-
pute exactly the kinds of integrals considered here, which works well when
the orthants Ci are defined by fewer than ≈ 10 linear constraints. The num-
ber of actual constraints grows linearly in the length of the interspike interval
(ti+1 − ti); thus, to use this algorithm in typical data situations, we adopt a
strategy proposed in our work on the deterministic form of the model (Pil-
low & Simoncelli, 2003), in which we discard all but a small subset of the
constraints. The key point is that only a few constraints are actually needed
to approximate the integrals to a high degree of precision, basically because
of the strong correlations between the value of Vt at nearby time points.

This idea provides us with an efficient approximation of the likelihood
at a single point in parameter space. To find the maximum of this function
using standard ascent techniques, we obviously have to compute the like-
lihood at many such points. We can make this ascent process much quicker
by applying a version of the coarse-to-fine idea. Let Lj denote the approxi-
mation to the likelihood given by allowing only j constraints in the above
algorithm. Then we know, by a proof identical to that of theorem 1, that Lj
has no local maxima; in addition, by the above logic, Lj → L as j grows. It
takes little additional effort to prove that

argmaxθ∈� Lj(θ) → argmaxθ∈� L(θ)
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as j → ∞; thus, we can efficiently ascend the true likelihood surface by
ascending the coarse approximants Lj, then gradually refining our approxi-
mation by letting j increase. The j = ∞ term is computed via the full density
evolution method.

The last trick is a simple method for choosing a good starting point for
each ascent. To do this, we borrow the jackknife idea from statistics (Efron
& Stein, 1981; Strong, Koberle, de Ruyter van Steveninck, & Bialek, 1998):
set our initial guess for the maximizer of LjN to be

θ0
jN = θ∞

jN−1
+ j−1

N − j−1
N−1

j−1
N−1 − j−1

N−2

(θ∞
jN−1

− θ∞
jN−2

),

the linear extrapolant on a 1/j scale.
Now that we have an efficient ascent algorithm, we need to provide it

with a sensible initialization of the parameters. We employ the following
simple method, related to our previous work on the deterministic LIF model
(Pillow & Simoncelli, 2003): we set g0 to some physiologically plausible
value (say, 50 ms−1), then �k0, h0 and V0

leak to the ML solution of the following
regression problem:

Eg


�k · �xi + gVleak +

i−1∑
j=0

h(t − tj)


 = 1 + σiεi,

with Eg the exponential convolution matrix and εi a standard independent
and identically distributed (i.i.d.) normal random variable scaled by

σi = Cov(ti − ti−1, ti − ti−1)
1/2 = 1√

2g
e−g(ti−ti−1),

the standard deviation of the Ornstein-Uhlenbeck process V (recall expres-
sion 3.2) at time ti − ti−1. Note that the reset potential V0

reset is initially fixed
at zero, away from the threshold voltage Vth = 1, to prevent the trivial
θ = 0 solution. The solution to this regression problem has the usual least-
squares form and can thus be quickly computed analytically (see Sahani &
Linden, 2003) for a related approach), and serves as a kind of j = 1 solution
(with the single voltage constraint placed at ti, the time of the spike). See
also Brillinger (1992) for a discrete-time formulation of this single-constraint
approximation.

To summarize, we provide pseudocode for the full algorithm in Figure 5.
One important note is that due to its ascent structure, the algorithm can be
gracefully interrupted at any time without catastrophic error. In addition,
the time complexity of the algorithm is linear in the number of spikes. An
application of this algorithm to simulated data is shown in Figure 6. Further
applications to both simulated and real data will be presented elsewhere.



ML Estimation of a Stochastic Integrate-and-Fire Model 2545

• Initialize (�k, Vl, h) to regression solution

• Normalize by observed scale of εi

• for increasing j

Let θj maximize Lj

Jackknife θj+1

end

• Let θMLE ≡ θ∞ maximize L

Figure 5: Pseudocode for the L-NLIF MLE.
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Figure 6: Demonstration of the estimator’s performance on simulated data.
Dashed lines show the true kernel �k and aftercurrent h; �k is a 12-sample function
chosen to resemble the biphasic temporal impulse response of a macaque retinal
ganglion cell (Chichilnisky, 2001), while h is a weighted sum of five gamma
functions whose biphasic shape induces a slight degree of burstiness in the
model’s spike responses (see Figure 4). With only 600 spikes of output (given
temporal white noise input), the estimator is able to retrieve an estimate of �k that
closely matches the true �k and h. Note that the spike-triggered average, which
is an unbiased estimator for the kernel of a LNP neuron (Chichilnisky, 2001),
differs significantly from the true �k (and, of course, provides no estimate for h).
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5 Time Rescaling

Once we have obtained our estimate of the parameters (�k, g, Vleak, Vreset, h),
how do we verify that the resulting model provides a self-consistent de-
scription of the data? This important model validation question has been
the focus of recent elegant research, under the rubric of “time rescaling”
techniques (Brown, Barbieri, Ventura, Kass, & Frank, 2002). While we lack
the room here to review these methods in detail, we can note that they de-
pend essentially on knowledge of the conditional probability of spiking f (t).
Recall that we showed how to efficiently compute this function in section 4
and examined some of its qualitative properties in the L-NLIF context in
Figure 2.

The basic idea is that the conditional probability of observing a spike at
time t, given the past history of all relevant variables (including the stimulus
and spike history), can be very generally modeled as a standard (homoge-
neous) Poisson process, under a suitable transformation of the time axis.
The correct such “time change” is fairly intuitive: we want to speed up the
clock exactly at those times for which the conditional probability of spiking
is high (since the probability of observing a Poisson process spike in any
given time bin is directly proportional to the length of time in the bin). This
effectively “flattens” the probability of spiking.

To return to our specific context, if a given spike train was generated
by an L-NLIF cell with parameters θ , then the following variables should
constitute an i.i.d. sequence from a standard uniform density:

qi ≡
∫ ti+1

ti

f (s)ds,

where f (t) = f�xi,ti,θ (t) is the conditional probability (as defined in the pre-
ceding section) of a spike at time t given the data (�xi, ti) and parameters θ .
The statement follows directly from the time-rescaling theorem (Brown et
al., 2002), the inverse cumulative integral transform, and the fact that the
L-NLIF model generates a conditional renewal process. This uniform rep-
resentation can be tested by standard techniques such as the Kolmogorov-
Smirnov test and tests for serial correlation.

6 Extensions

It is worth noting that the methods discussed above can be extended in var-
ious ways, enhancing the representational power of the model significantly.

6.1 Interneuronal Interactions. First, we should emphasize that the in-
put signal �x(t) is not required to be a strictly “external” observable; if we
have access to internal variables such as local field potentials or multiple
single-unit activity, then the influences of this network activity can be easily
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included in the basic model. For example, say we have observed multiple
(single-unit) spike trains simultaneously, via multielectrode array or tetrode.
Then one effective model might be

dV = (−g(V(t) − Vleak) + Istim(t) + Ihist(t) + Iinterneuronal(t))dt + Wt,

with the interneuronal current defined as a linearly filtered version of the
other cells’ activity:

Iinterneuronal(t) =
∑

l

�kn
l · nl(t).

Here, nl(t) denotes the spike train of the lth simultaneously recorded cell,
and the additional filters kn

l model the effect of spike train l on the cell of
interest. Similar models have proven useful in a variety of contexts (Tsodyks,
Kenet, Grinvald, & Arieli, 1999; Harris, Csicsvari, Hirase, Dragoi, & Buzsaki,
2003; Paninski, Fellows, Shoham, Hatsopoulos, & Donoghue, 2003). The
main point is that none of the results mentioned above are at all dependent
on the identity of �x(t), and therefore can be applied unchanged in this new,
more general setting.

6.2 Nonlinear Input. Next, we can use a trick from the machine learning
and regression literature (Duda & Hart, 1972; Cristianini & Shawe-Taylor,
2000; Sahani, 2000) to relax our requirement that the input be a strictly linear
function of �x(t). Instead, we can write

Istim =
∑

k

akFk[�x(t)],

where k indexes some finite set of functionals Fk[.] and ak are the parameters
we are trying to learn. This reduces exactly to our original model when Fk
are defined to be time-translates, that is, Fk[�x(t)] = �x(t − k). We are essen-
tially unrestricted in our choice of the nonlinear functionals Fk, since, as
above, all we are doing is redefining the input �x(t) in our basic model to
be �x∗(t) ≡ {Fk(�x(t))}. Under the obvious linear independence restrictions on
{Fk(�x(t))}, then, the model remains identifiable (in particular, the MLE re-
mains consistent and efficient under smoothness assumptions on {Fk(�x(t))}).
Clearly the postspike and interneuronal currents Ihist(t) and Iinterneuronal(t),
which are each linear functionals of the network spike history, may also be
replaced by nonlinear functionals; for example, Ihist(t) might include current
contributions just from the preceding spike (Gerstner & Kistler, 2002), not
the sum over all previous spikes.

Some obvious candidates for {Fk} are the Volterra operators formed by
taking products of time-shifted copies of the input �x(t) (Dayan & Abbott,
2001; Dodd & Harris, 2002):

F[�x(t)] = �x(t − τ1) · �x(t − τ2),
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for example, with τi ranging over some compact support. Of course, it is
well-known that the Volterra expansion (essentially a high-dimensional Tay-
lor series) can converge slowly when applied to neural data; other more
sophisticated choices for Fk might include a set of basis functions (Zhang,
Ginzburg, McNaughton, & Sejnowski, 1998) that span a reasonable space
of possible nonlinearities, such as the principal components of previously
observed nonlinear tuning functions (see also Sahani & Linden, 2003, for a
similar idea, but in a purely linear setting).

6.3 Regularization. The extensions discussed in the two previous sec-
tions have made our basic model considerably more powerful, but at the
cost of a larger number of parameters that must be estimated from data.
This is problematic, as it is well known that the phenomenon of overfitting
can actually hurt the predictive power of models based on a large number
of parameters (see, e.g., Sahani & Linden, 2003; Smyth, Willmore, Baker,
Thompson, & Tolhurst, 2003; Machens, Wehr, & Zador, 2003) for examples,
again in a linear regression setting). How do we control for overfitting in
the current context?

One simple approach is to use a maximum a posteriori (MAP, instead of
ML) estimate for the model parameters. This entails maximizing an expres-
sion of the penalized form

log L(θ) + Q(θ)

instead of just L(θ), where L(θ) is the likelihood function, as above, and
−Q is some “penalty” function (where in the classical Bayesian setting, eQ

is required to be a probability measure on the parameter space �). If Q
is taken to be concave, a glance at the proof of theorem 1 shows that the
MAP estimator shares the MLE’s global extrema property. As usual, simple
regularity conditions on Q ensure that the MAP estimator converges to
the MLE given enough data and therefore inherits the MLE’s asymptotic
efficiency.

Thus, we are free to choose Q as we like within the class of smooth, con-
cave functions, bounded above. If Q peaks at a point such that all the weight
coefficients (ai or �k, depending on the version of the model in question) are
zero, the MAP estimator will basically be a more conservative version of the
MLE, with the chosen coefficients shifted nonlinearly toward zero. This type
of “shrinkage” estimator has been extremely well studied from a variety of
viewpoints (e.g., James & Stein, 1960; Donoho, Johnstone, Kerkyacharian, &
Picard, 1995; Tipping, 2001) and is known, for example, to perform strictly
better than the MLE in certain contexts. Again, see Sahani and Linden (2003),
Smyth et al. (2003), and Machens et al. (2003) for some illustrations of this
effect. One particularly simple choice for Q is the weighted L1 norm,

Q(�k) =
∑

l

|b(l)k(l)|,
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where the weights b(l) set the relative scale of Q over the likelihood and
may be chosen by symmetry considerations, cross-validation (Machens et
al., 2003; Smyth et al., 2003), or evidence optimization (Tipping, 2001; Sahani
& Linden, 2003). This choice for Q has the property that sparse solutions (i.e.,
solutions for which as many components of �k as possible are set to zero) are
favored; the desirability of this feature is discussed in, for example, Girosi
(1998) and Donoho and Elad (2003).

6.4 Correlated Noise. In some situations (particularly when the cell is
poorly driven by the input signal �x(t)), the whiteness assumption on the
noise Wt will be inaccurate. Fortunately, it is possible to generalize this part
of the model as well, albeit with a bit more effort. The simplest way to
introduce correlations in the noise (Fourcaud & Brunel, 2002; Moreno, de la
Rocha, Renart, & Parga, 2002) is to replace the white Wt with an Ornstein-
Uhlenbeck process Nt defined by

dN = − N
τN

dt + Wt. (6.1)

As above, this is simply white noise convolved with a simple exponential
filter of time constant τN (and therefore the conditional gaussianity of V(t)
is retained); the original white noise model is recovered as τN → 0, after
suitable rescaling. (Nt here is often interpreted as synaptic noise, with τN the
synaptic time constant, but it is worth emphasizing that Nt is not voltage
dependent, as would be necessary in a strict conductance-based model.)
Somewhat surprisingly, the essential uniqueness of the global likelihood
maximum is preserved for this model: for any τN ≥ 0, the likelihood has no
local extrema in (�k, g, Vleak, Vreset, h).

Of course, we do have to make a few changes in the computational
schemes associated with this new model. Most of the issues arise from the
loss of the conditional renewal property of the interspike intervals for this
model: a spike in no longer conditionally independent of the last interspike
interval (indeed, this is one of the main reasons we are interested in this cor-
related noise model). Instead, we have to write our likelihood L{�xi,ti}(θ, τN)

as ∫
p(Nt, τN)

∏
i

1(Vt(�xi, θ, Nt) ∈ Ci)dNt,

where the integral is over all noise paths Nt, under the gaussian measure
p(Nt, τN) induced on Nt by expression 6.1; the multiplicands on the right
are 1 or 0 according to whether the voltage trace Vt, given the noise path
Nt, the stimulus �xi, and the parameters θ , was in the constraint set Ci or not,
respectively.

Despite the loss of the renewal property, Nt is still a Gauss-Markov dif-
fusion process, and we can write the Fokker-Planck equation (now in two
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dimensions, V and N),

∂P(V, N, t)
∂t

= 1
2

∂2P
∂N2 + g

∂[(V − Vrest − N
g )P]

∂V
+ 1

τN

∂[NP]
∂N

,

under the boundary conditions

P(Vth, N, t) = 0,

P(V, N, t+i−1) = − 1
Z

δ(V − Vreset)
∂P(V, N, t−i−1)

∂V

∣∣∣∣
V=Vth

× R
(

N
g

− Vth + Vrest(t−i−1)

)
,

with R the usual linear rectifier

R(u) =
{

0 u ≤ 0,

u u > 0

and Z the normalization factor

Z = −
∫

∂P(V, N, t−i−1)

∂V

∣∣∣∣
V=Vth

R
(

N
g

− Vth + Vrest(t−i−1)

)
dN.

The threshold condition here is the same as in equation 4.1, while the re-
set condition reflects the fact that V is reset to Vreset with each spike, but
N is not (the complicated term on the right is obtained from the usual ex-

pression by conditioning on V(t−i−1) = Vth and
∂V(t−i−1)

∂t > 0). Note that the
relevant discretized differential operators are still extremely sparse, allow-
ing for efficient density propagation, although the density must now be
propagated in two dimensions, which does make the solution significantly
more computationally costly than in the white noise case. Simple approxi-
mative approaches like those described in section 4 (via the Genz algorithm)
are available as well.

6.5 Subthreshold Resonance. Finally, it is worth examining how easily
generalizable our methods and results might be to subthreshold dynamics
more interesting than the (linear) leaky integrator employed here. While
the density evolution methods developed in section 4 can be generalized
easily to nonlinear and even time-varying subthreshold dynamics, the Genz
algorithm obviously depends on the gaussianity of the underlying distri-
butions (which is unfortunately not preserved by nonlinear dynamics), and
the proof of theorem 1 appears to depend fairly strongly on the linearity
of the transformation between input current and subthreshold membrane
voltage (although linear filtering by nonexponential windows is allowed).

Perhaps the main generalization worth noting here is the extension from
purely “integrative” to “resonant” dynamics. We can accomplish this by
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the simple trick of allowing the membrane conductance g to take complex
values (see, e.g., Izhikevich, 2001, for further details and background on
subthreshold resonance). This transforms the low-pass exponential filter-
ing of equation 3.1 to a bandpass filtering by a damped sinusoid: a product
of an exponential and a cosine whose frequency is determined, as usual, by
the imaginary part of g. All of the equations listed above remain otherwise
unchanged if we ignore the imaginary part of this new filter’s output, and
theorem 1 continues to hold for complex g, with g restricted to the upper-
right quadrant (real(g), imag(g) ≥ 0) to eliminate the conjugate symmetry
of the filter corresponding to g. The only necessary change is in the den-
sity evolution method, where we need to propagate the density in an extra
dimension to account for the imaginary part of the resulting dynamics (im-
portantly, however, the Markov nature of model 2.1 is retained, preserving
the linear diffusion nature of equation 4.1).

7 Discussion

We have shown here that the L-NLIF model, which couples a filtering stage
to a biophysically plausible and flexible model of neuronal spiking, can
be efficiently estimated from extracellular physiological data. In particular,
we proved that the likelihood surface for this model has no local peaks,
ensuring the essential uniqueness of the maximum likelihood and maxi-
mum a posteriori estimators in some generality. This result leads directly
to reliable algorithms for computing these estimators, which are known by
general likelihood theory to be statistically consistent and efficient. Finally,
we showed that the model lends itself directly to analysis using tools from
the modern theory of point processes, such as time-rescaling tests for model
validation. As such, we believe the L-NLIF model could become a funda-
mental tool in the analysis of neural data—a kind of canonical encoding
model.

Our primary goal was an elaboration of the LNP model to include spike
history (e.g., refractory) effects. As detailed in Simoncelli et al. (in press),
the basic LNP model provides a powerful framework for analyzing neural
encoding of high-dimensional signals; however, it is well known that the
Poisson spiking model is inadequate to capture the fine temporal properties
of real spike trains. Previous attempts to address this shortcoming have
fallen into two classes: multiplicative models (Snyder & Miller, 1991; Miller
& Mark, 1992; Iyengar & Liao, 1997; Berry & Meister, 1998; Brown et al.,
2002; Paninski, 2003), of the basic form

p(spike(t) | stimulus, spike history) = F(stimulus)H(history)

—in which H encodes purely spike-history-dependent terms like refractory
or burst effects—and additive models like

p(spike(t) | stimulus, history) = F(stimulus + H(history)),
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(Brillinger, 1992; Joeken, Schwegler, & Richter, 1997; Keat et al., 2001; Truc-
colo, Eden, Fellows, Donoghue, & Brown, 2003), in which the spike history is
basically treated as a kind of additional input signal; the L-NLIF model is of
the latter form, with the postspike current h injected directly into expression
2.1 with the filtered input �k · �x(t). It is worth noting that one popular form of
the multiplicative history-dependence functional H(·) above, the “inverse-
gaussian” density model (Seshardri, 1993; Iyengar & Liao, 1997; Brown et
al., 2002), arises as the first-passage time density for the Wiener process,
effectively the time of the first spike in the L-NLIF model given constant
input at no leak (g = 0) (see Stevens & Zador, 1996, and Plesser & Gerstner,
2000, for further such multiplicative-type approximations). It seems that
the treatment of history effects as simply another form of stimulus might
make the additive class slightly easier to estimate (this was certainly the
case here, for example); however, any such statement remains to be verified
by systematic comparison of the accuracy of these two classes of models,
given real data.

We based our model on the LIF cell in an attempt to simultaneously
maximize two competing objectives: flexibility (explanatory power) and
tractability (in particular, ease of estimation, as represented by theorem
1). We attempted to make the model as general as possible without vi-
olating the conditions necessary to ensure the validity of this theorem.
Thus, we included the h current and the various extensions described in
section 6 but did not, for example, attempt to model postsynaptic con-
ductances directly, or permit any nonlinearity in the subthreshold dynam-
ics (Brunel & Latham, 2003), or allow any rate-dependent modulations of
the membrane conductance g (Stevens & Zador, 1998; Gerstner & Kistler,
2002); it is unclear at present whether theorem 1 can be extended to these
cases.

Of course, due largely to its simplicity, the LIF cell has become the de
facto canonical model in cellular neuroscience (Koch, 1999). Although the
model’s overriding linearity is often emphasized (due to the approximately
linear relationship between input current and firing rate, and lack of active
conductances), the nonlinear reset has significant functional importance
for the model’s response properties. In previous work, we have shown
that standard reverse-correlation analysis fails when applied to a neuron
with deterministic (noise-free) LIF spike generation. We developed a new
estimator for this model and demonstrated that a change in leakiness of
such a mechanism might underlie nonlinear effects of contrast adaptation
in macaque retinal ganglion cells (Pillow & Simoncelli, 2003). We and oth-
ers have explored other “adaptive” properties of the LIF model (Rudd &
Brown, 1997; Paninski, Lau, & Reyes, 2003; Yu & Lee, 2003). We provided
a brief sampling of the flexibility of the L-NLIF model in Figures 3 and 4;
of course, similar behaviors have been noted elsewhere (Gerstner & Kistler,
2002), although the spiking diversity of this particular model (with no addi-
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tional time-varying conductances, for example) has not, to our knowledge,
been previously collected in one place, and some aspects of this flexibility
(e.g., Figure 4C) might come as a surprise in such a simple model.

The probabilistic nature of the L-NLIF model provides several important
advantages over the deterministic version we have considered previously
(Pillow & Simoncelli, 2003). First, clearly, this probabilistic formulation is
necessary for our entire likelihood-based presentation; moreover, use of an
explicit noise model greatly simplifies the discussion of spiking statistics.
Second, the simple subthreshold noise source employed here could provide
a rigorous basis for a metric distance between spike trains, useful in other
contexts (Victor, 2000). Finally, this type of noise influences the behavior of
the model itself (see Figure 2), giving rise to phenomena not observed in
the purely deterministic model (Levin & Miller, 1996; Rudd & Brown, 1997;
Burkitt & Clark, 1999; Miller & Troyer, 2002; Paninski, Lau, & Reyes, 2003;
Yu & Lee, 2003).

We are currently in the process of applying the model to physiological
data recorded both in vivo and in vitro in order to assess whether it accu-
rately accounts for the stimulus preferences and spiking statistics of real
neurons. One long-term goal of this research is to elucidate the different
roles of stimulus-driven and stimulus-independent activity on the spik-
ing patterns of both single cells and multineuronal ensembles (Warland,
Reinagel, & Meister, 1997; Tsodyks et al., 1999; Harris et al., 2003; Paninski,
Fellows et al., 2003).

Appendix A: Proof of Theorem 1

Proof. We prove the main result indirectly, by establishing the more gen-
eral statement in section 6.4: for any τN ≥ 0, the likelihood function for the
L-NLIF model has no local extrema in θ = (�k, g, Vleak, Vreset, h) (including
possibly complex g); the theorem will be recovered in the special case that
τN → 0 and g is real.

As discussed in the text, we need only establish that the likelihood func-
tion is log concave in a certain smoothly invertible reparameterization of θ .
The proof is based on the following fact (Bogachev, 1998):

Theorem (integrating out log-concave functions). Let f (x, y) be jointly log
concave in x ∈ �j and y ∈ �k, j, k < ∞, and define

f0(x) ≡
∫

f (x, y)dy.

Then f0 is log concave in x.
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To apply this theorem, we write the likelihood in the following “path
integral” form,

L{�xi,ti}(θ) =
∫

p(Nt, τN)
∏

i
1(Vt(�xi, θ, Nt) ∈ Ci)dNt, (A.1)

where we are integrating over each possible path of the noise process Nt,
p(Nt, τN) is the (gaussian) probability measure induced on Nt under the
parameter τN, and 1(Vt(�xi, θ, Nt) ∈ Ci) is the indicator function for the event
that Vt(�xi, θ, Nt)—the voltage path driven by the noise sample Nt under
the model settings θ and input data �xi—is in the set Ci. Recall that Ci is
defined as the convex set satisfying a collection of linear inequalities that
must be satistfied by any V(t) path consistent with the observed spike train
{ti}; however, the precise identity of these inequalities will not play any
role below (in particular, Ci depends on only the real part of V(t) and is
independent of τN and θ ).

The logic of the proof is as follows. Since the product of two log-concave
functions is log concave, L(θ) will be log concave under some reparameter-
ization if p and 1 are both log concave under the same reparameterization
of the variables N and θ , for any fixed τN. This follows by (1) approximating
the full path integral by (finite-dimensional) integrals over suitably time-
discretized versions of path space, (2) applying the above integrating-out
theorem, (3) noting that the pointwise limit of a sequence of (log)concave
functions is (log)concave, and (4) applying the usual separability and conti-
nuity limit argument to lift the result from the arbitrarily finely discretized
(but still finite) setting to the full (infinite-dimensional) path space setting.

To discretize time, we simply sample V(t) and N(t) (and bin ti) at regular
intervals �t, where �t > 0 is an arbitrary small parameter we will send to
zero at the end of the proof. We prove the log concavity of p and 1 in the
reparameterization

(g, Vleak) → (α, IDC) ≡ (e−g�t, gVleak).

This map is clearly smooth, but due to aliasing effects, the map g → α

is smoothly invertible only if the imaginary part of g satisfies g�t < 2π .
Thus, we restrict the parameter space further to (0 ≤ real(g), 0 ≤ imag(g) ≤
π(�t)−1), an assumption that becomes negligible as �t → 0. Finally, im-
portantly, note that this reparameterization preserves the convexity of the
parameter space �.

Now we move to the proof of the log concavity of the components of the
integrand in equation A.1. Clearly, p is the easy part: p(N, τN) is independent
of all variables but N and τN; p is gaussian in N and is thus the prototypical
log-concave function.

Now we consider the function 1(Vt(�xi, θ, Nt) ∈ Ci). First, note that this
function is independent of τN given N. Next, an indicator function for a set
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is log concave if and only if the set is convex. Thus, it is sufficient to prove
that the set (N, θ) such that Vt(N, θ) ∈ C is convex, for any convex C. To see
this, we write out the dependence of Vt on N and θ in operator form:

Vt = Eg


Vresetδ(0) + IDC + �k · �x(t) +

∑
j

h(t − tj) + Nt


 ,

where Eg, recall, is the exponential convolution operator corresponding to
g. Now, the key fact is that E−1

g depends linearly on α:

Eg =




1
α 1
α2 α 1

. . .
. . .

· · · α2 α 1


 ,

while

E−1
g =




1
−α 1

−α 1
. . .

. . .

−α 1


 ,

as can be shown by direct computation. Thus, the set (N, θ) such that
Vt(N, θ) ∈ C can be written as the set N ∈ A(θ)C, with A(θ) an invertible
operator, affine in θ , namely,

A(θ)V(t) = E−1
g V(t) − Vresetδ(0) − IDC − k · �x(t) −

∑
j

h(t − tj)

for any V(t) ∈ C. Since C, �, and the set of all possible N are convex, the proof
is complete, because the union of the graphs of a convex set of nonsingular
affine translates of a convex set is itself convex.

We have theorem 1 as a corollary upon restricting α (or equivalently, g)
to the real axis and letting τN → 0, rescaling, and again noting that the
pointwise limit of a sequence of (log-)concave functions is (log-)concave.

In a previous version of this article, we gave a different proof, in which
the key log-concavity property was established not by the result on integrat-
ing out but rather by an appeal to the Prekopa-Rinott theorem (Bogachev,
1998; Rinott, 1976) on log-concave measures. This earlier proof relied on a
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somewhat complex construction of convex translations of sets and required
a more involved reparameterization; the current proof seems simpler. In ad-
dition, the current proof clarifies the generality of the result in at least two
directions. First, it is clear that the proof is valid for any fixed log-concave
noise measure p(N) (possibly including correlations, nongaussianity, and
nonstationarities), not just gaussian white noise. Second, integrating over
hyperparameters (e.g., in a Bayesian model selection setting; Sahani & Lin-
den, 2003) does not induce any local maxima as long as the log concavity of
the integrands is undisturbed. Finally, it is interesting to note that a nearly
identical proof demonstrates that the likelihood of the model introduced
in Keat et al. (2001) contains no nonglobal local maxima, in all parameters
except for the time constant τp of the after-potential introduced in equation
7 in Keat et al. (2001); however, this proof does not extend in any obvious
way to the non-likelihood-based cost function minimized by Keat et al.

It is also worth noting that this proof cannot directly give us log concav-
ity in τN for gaussian densities. In fact, no gaussian density with diagonal
covariance of the form


f1(τN)

f2(τN)

. . .

fi(τN)




(we have in mind the covariance operator of a stationary process, expressed
in the Fourier basis) can be jointly log concave in (N, τN). To see this, set
N = 0. This implies that f −1

i must be of the form eh, for h a concave function.
Since the determinant of the Hessian of the function−N2/fi(τN) = −eh(τN)N2,

2e2hN2(h′′ − (h′)2),

is nonpositive in general (since h is concave, i.e., h′′ ≤ 0), −ehN2 cannot
be jointly concave, and this implies that the gaussian cannot be jointly log
concave either (to see this, let N → ∞). Nevertheless, it is not difficult to
think of reasonable densities that are jointly log concave in N and additional
parameters like τN. This may prove useful in other contexts (Williams &
Barber, 1998; Seeger, 2002).

Appendix B: Computing the Likelihood Gradient

The ascent of the likelihood surface is greatly accelerated by the computation
of the gradient. This gradient can always be computed by finite differencing
schemes, of course; however, in the case of a large number of parameters
(see sections 6.1 and 6.2), it is much more efficient to compute gradients
with respect to a few auxiliary parameters and then arrive at the gradient
with respect to the full parameter set using the chain rule for derivatives.

We focus on the discretized case for clarity. Thus, we take the derivatives
with respect to the mean function V0(t), evaluated at the constraint times
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{tk}1≤k≤j. These derivatives turn out to be gaussian integrals themselves,
albeit over a (j−1)- instead of j-dimensional box, and can be easily translated
into derivatives with respect to the parameters.

In order to derive the gradient, note that the discretized approximation
to the likelihood can be written

Lj =
∫ z1

−∞
· · ·
∫ ∞

zj

p(y1, . . . , yj)dy1, . . . , dyj,

where yk represent the transformed variables yk = V(tk) − V0(tk), zk = 1 −
V0(tk), and p denotes the corresponding gaussian density, with 0 mean and
covariance we will call � (recall expression 3.2). Now, the partial derivatives
of L with respect to the zk are:

∂

∂zk
L =

∫ z1

−∞
· · ·
∫ zk−1

−∞

∫ zk+1

−∞
· · ·
∫ ∞

zj

p(y1, . . . , yk = zk, . . . , yj)dy1· · ·dyj

=
(∫

Ci�=k

p(�yi�=k|yk = zk)d�yi�=k

)
p(yk = zk),

with a sign change to account for the upward integral corresponding to the
final, above-threshold constraint.

We can compute the marginal and conditional densities p(yk = zk) and
p(�yi�=k|yk = zk) using standard gaussian identities:

p(yk = zk) = N (0, �k,k)(zk),

p(�yi�=k|yk = zk) = N (µ∗, �∗)(�1),

where

µ∗ = �V0(ti�=k) + zk

�k,k
��i�=k,k

�∗ = �i�=k,i�=k −
��i�=k,k ��k,i�=k

�k,k
.

Thus, the gradient ∇zL requires computing one gaussian integral for each
constraint zk. From the vector ∇zL, we can use simple linear operations to
obtain the gradient with respect to any of the parameters that enter only via
V0(t), namely, h, �k, and Vleak.
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