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We examine a cascade encoding model for neural response in which a linear

filtering stage is followed by a noisy, leaky, integrate-and-fire spike generation

mechanism. This model provides a biophysically more realistic alternative

to models based on Poisson (memoryless) spike generation, and can effec-

tively reproduce a variety of spiking behaviors seen in vivo. We describe the

maximum likelihood estimator for the model parameters, given only extra-

cellular spike train responses (not intracellular voltage data). Specifically,

we prove that the log likelihood function is concave and thus has an es-

sentially unique global maximum that can be found using gradient ascent

techniques. We develop an efficient algorithm for computing the maximum

likelihood solution, demonstrate the effectiveness of the resulting estimator

with numerical simulations, and discuss a method of testing the model’s

validity using time-rescaling and density evolution techniques.
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1 Introduction

A central issue in systems neuroscience is the experimental characterization

of the functional relationship between external variables — e.g., sensory

stimuli, or motor behavior — and neural spike trains. Because neural re-

sponses to identical experimental input conditions are variable, we frame

the problem statistically: we want to estimate the probability of any spik-

ing response conditioned on any input. Of course, there are typically far

too many possible observable signals to measure these probabilities directly.

Thus our real goal is to find a good model, some functional form that allows

us to predict spiking probability even for signals we have never observed

directly. Ideally, such a model will be both accurate in describing neural

response, and easy to estimate from a modest amount of data.

A good deal of recent interest has focused on models of “cascade” type;

these models consist of a linear filtering stage in which the observable sig-

nal is projected onto a low-dimensional subspace, followed by a nonlinear,

probabilistic spike generation stage. The linear filtering stage is typically

interpreted as the neuron’s “receptive field,” efficiently representing the rel-

evant information contained in the possibly high-dimensional input signal,

while the spiking mechanism accounts for simple nonlinearities like rectifi-

cation and response saturation. Given a set of stimuli and (extracellularly)

recorded spike times, the characterization problem consists of estimating

both the linear filter and the parameters governing the spiking mechanism.

Unfortunately, biophysically realistic models of spike generation, such as

the Hodgkin-Huxley model or its variants (Koch, 1999), are generally quite

difficult to fit given only extracellular data.

As such, it has become common to assume a highly simplified model

in which spikes are generated according to an inhomogeneous Poisson pro-

cess, with rate determined by an instantaneous (“memoryless”) nonlinear

function of the linearly filtered input (see (Simoncelli et al., 2004) for re-

view and partial list of references). In addition to its conceptual simplic-

ity, this Linear-Nonlinear-Poisson (LNP) cascade model is computationally

tractable. In particular, reverse correlation analysis provides a simple unbi-

ased estimator for the linear filter (Chichilnisky, 2001), and the properties of

estimators for both the linear filter and static nonlinearity have been thor-

oughly analyzed, even for the case of highly non-symmetric or “naturalistic”
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Figure 1: Illustration of the L-NLIF model.

stimuli (Paninski, 2003). Unfortunately, however, memoryless Poisson pro-

cesses do not readily capture the fine temporal statistics of neural spike trains

(Berry and Meister, 1998; Keat et al., 2001; Reich et al., 1998; Aguera y

Arcas and Fairhall, 2003). In particular, the probability of observing a spike

is not a functional of the recent stimulus alone; it is also strongly affected

by the recent history of spiking. This spike-history dependence can signifi-

cantly bias the estimation of the linear filter of an LNP model (Berry and

Meister, 1998; Pillow and Simoncelli, 2003; Paninski et al., 2003b; Paninski,

2003; Aguera y Arcas and Fairhall, 2003).

In this paper, we consider a model that provides an appealing com-

promise between the oversimplified Poisson model and more biophysically

realistic but intractable models for spike generation. The model consists of

a linear filter (L) followed by a probabilistic, or noisy (N), form of leaky

integrate-and-fire (LIF) spike generation (Koch, 1999). This “L-NLIF”

model is illustrated in Fig. 1, and is essentially the standard LIF model

driven by a noisy, filtered version of the stimulus; the spike history depen-

dence introduced by the integrate-and-fire mechanism allows the model to

emulate many of the spiking behaviors seen in real neurons (Gerstner and

Kistler, 2002). This model thus combines the encoding power of the LNP

cell with the flexible spike history dependence of the LIF model, and allows

us to explicitly model neural firing statistics.

Our main result is that the estimation of the L-NLIF model parameters

is computationally tractable. Specifically, we formulate the problem in terms

of classical estimation theory, which provides a natural “cost function” (like-
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lihood) for model assessment and estimation of the model parameters. We

describe algorithms for computing the likelihood function and prove that

this likelihood function contains no non-global local maxima, implying that

the maximum likelihood estimator (MLE) can be computed efficiently using

standard ascent techniques. Desirable statistical properties of the estimator

(consistency, efficiency, etc.) are all inherited “for free” from classical esti-

mation theory (van der Vaart, 1998). Thus, we have a compact and powerful

model for the neural code, and a well-motivated, efficient way to estimate

the parameters of this model from extracellular data.

2 The Model

We consider a model for which the (dimensionless) subthreshold voltage

variable V evolves according to

dV =

(

− g(V (t) − Vleak) + Istim(t) + Ihist(t)

)

dt + Wt, (1)

and resets instantaneously to Vreset < 1 whenever V = 1, the threshold

potential (Fig. 2). Here, g denotes the membrane leak conductance, Vleak

the leak reversal potential, and the stimulus current Istim is defined as

Istim(t) = ~k · ~x(t),

the projection of the input signal ~x(t) onto the spatiotemporal linear kernel
~k; the spike-history current Ihist is given by

Ihist(t) =
i−1
∑

j=0

h(t − tj),

where h is a post-spike current waveform of fixed amplitude and shape1

whose value depends only on the time since the last spike ti−1 (with the sum

above including terms back to t0, the first observed spike); finally, Wt is an

unobserved (hidden) noise process, taken here to be a standard Gaussian

white noise (although we will consider more general Wt later). As usual,

1The letter h here was chosen to stand for “history,” and should not be

confused with the physiologically-defined Ih current.
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in the absence of input, V decays back to Vleak with time constant 1/g.

Thus, the nonlinear behavior of the model is completely determined by only

a few parameters, namely {g, Vreset, Vleak}, and h(t). In practice, we assume

the continuous aftercurrent h(t) may be written as a superposition of a

small number of fixed temporal basis functions; we will refer to the vector of

coefficients in this basis using the vector ~h. We should note that the inclusion

of the Ihist current in (1) introduces additional parameters (namely, ~h) to

the model that need to be fit; in cases where there is insufficient data to

properly fit these extra parameters, ~h could be set to zero, reducing the

model (1) to the more standard LIF setting.

It is important to emphasize that in the following, V (t) itself will be

considered a hidden variable; we are assuming that the spike train data we

are trying to model has been collected extracellularly, without any access to

the subthreshold voltage V . This implies that the parameters of the usual

LIF model can only be estimated up to an unlearnable mean and scale factor.

Thus, by a standard change of variables, we have not lost any generality by

setting the threshold potential, Vth, and scale of the hidden noise process,

σ, to 1 (corresponding to mapping the physical voltage V → 1 + (V −
Vth)/σ); the relative noise level (the effective scale of Wt) can be changed by

scaling Vleak, Vreset,~k, and h together. Of course other changes of variable

are possible (for example, letting σ change freely and fixing Vreset = 0), but

will not affect the analysis below.

The dynamical properties of this type of “spike response model” have

been extensively studied (Gerstner and Kistler, 2002); for example, it is

known that this class of models can effectively capture much of the behavior

of apparently more biophysically realistic models (e.g. Hodgkin-Huxley).

We illustrate some of these diverse firing properties in Figures 2 - 2; these

figures also serve to illustrate several of the important differences between

the L-NLIF and LNP models. In Fig. 2, note the fine structure of spike

timing in the responses of the L-NLIF model, which is qualitatively similar

to in vivo experimental observations (Berry and Meister, 1998; Reich et al.,

1998; Keat et al., 2001). The LNP model fails to capture this fine temporal

reproducibility. At the same time, the L-NLIF model is much more flexible

and representationally powerful: by varying Vreset or h, for example, we

can match a wide variety of interspike interval distributions and firing rate
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Figure 2: Behavior of the L-NLIF model during a single interspike interval,
for a single (repeated) input current. Top: Observed stimulus x(t) and
response spikes. Third panel: Ten simulated voltage traces V (t), evalu-
ated up to the first threshold crossing, conditional on a spike at time zero
(Vreset = 0). Note the strong correlation between neighboring time points,
and the gradual sparsening of the plot as traces are eliminated by spik-
ing. Fourth: Evolution of P (V, t). Each vertical cross section represents
the conditional distribution of V at the corresponding time t (i.e. for all
traces that have not yet crossed threshold). Note the boundary conditions
P (Vth, t) = 0 and P (V, tspike) = δ(V − Vreset) corresponding to threshold
and reset, respectively; see section 4 for computational details. Bottom:
Probability density of the interspike interval (ISI) corresponding to this par-
ticular input. Note that probability mass is concentrated at the times when
input drives the mean voltage V0(t) close to threshold. Careful examination
reveals, in fact, that peaks in p(ISI) are sharper than peaks in the determin-
istic signal V0(t), due to the elimination of threshold-crossing traces which
would otherwise have contributed mass to p(ISI) at or after such peaks
(Berry and Meister, 1998).
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curves, even given a single fixed stimulus. For example, the model can mimic

the FI curves of “type I” or “II” models, with either smooth or discontinuous

growth of the FI curve away from 0 at threshold, respectively (Gerstner and

Kistler, 2002). More generally, the L-NLIF model can exhibit adaptive

behavior (Rudd and Brown, 1997; Paninski et al., 2003b; Yu and Lee, 2003)

and display rhythmic, tonic, or even bistable dynamical behavior, depending

on the parameter settings (Fig. 2).

3 The Estimation Problem

Our problem now is to estimate the model parameters θ ≡ {~k, g, Vleak, Vreset, h}
from a sufficiently rich, dynamic input sequence ~x(t) and the response spike

times {ti}. We emphasize again that we are not discussing the problem

of estimating the model parameters given intracellularly-recorded voltage

traces (Stevens and Zador, 1998; Jolivet et al., 2003); we assume that these

subthreshold responses, which greatly facilitate the estimation problem, are

unknown — “hidden” — to us. A natural choice is the maximum likelihood

estimator (MLE), which is easily proven to be consistent and statistically

efficient here (van der Vaart, 1998). To compute the MLE, we need to com-

pute the likelihood and develop an algorithm for maximizing the likelihood

as a function of the parameters θ.

The tractability of the likelihood function for this model arises directly

from the linearity of the subthreshold dynamics of voltage V (t) during an

interspike interval. In the noiseless case (Pillow and Simoncelli, 2003), the

voltage trace during an interspike interval t ∈ [ti−1, ti] is given by the so-

lution to equation (1) with the noise Wt turned off, with initial conditions

V0(ti−1) = Vreset:

V0(t) = Vleak+(Vreset−Vleak)e
−g(t−ti−1)+

∫ t

ti−1




~k · ~x(s) +

i−1
∑

j=0

h(s − tj)



 e−g(t−s)ds,

(2)

which is simply a linear convolution of the input current with a filter which

decays exponentially with time constant 1/g. It is easy to see that adding

Gaussian noise to the voltage during each time step induces a Gaussian

density over V (t), since linear dynamics preserve Gaussianity (Karlin and



Paninski et al., November 30, 2004 8

0 50 100

P

(
s

p

i
k

e

)

time (ms)

L

-
N

L

I
F

 
m

o

d

e

l

L

N

P

 
m

o

d

e

l

Figure 3: Simulated responses of L-NLIF and LNP models to 20 repetitions

of a fixed 100-ms stimulus segment of temporal white noise. Top: Raster

of responses of L-NLIF model to a dynamic input stimulus. The top row

shows the fixed (deterministic) response of the model with the noise set to

zero. Middle: Raster of responses of LNP model to the same stimulus, with

parameters fit with standard methods from a long run of the L-NLIF model

responses to non-repeating stimuli. Bottom: Post-stimulus time histogram

(PSTH) of the simulated L-NLIF response (black line), and PSTH of the

LNP model (gray line). Note that the LNP model, due to its Poisson output

structure, fails to preserve the fine temporal structure of the spike trains,

relative to the L-NLIF model.



Paninski et al., November 30, 2004 9

c = .1

c = .5

c = .2

x c

h current

0

0.20

t (sec after spike)

stimulus

response

0

0

0

0.5 1

t (sec)

0

V

A

B

C

0

0.20

t (sec after spike)

h current

0.5 1

t (sec)

0

stimulus

response

V

0.5 1

t (sec)

0

h current

0

0.10

t (sec after spike)

stimulus

response

0

0

Figure 4: Diversity of NLIF model response patterns. A. Firing rate adap-

tation. A positive DC current was injected into three different NLIF cells,

all with slightly different settings for h (top, h = 0; middle, h depolarizing;

bottom, h hyperpolarizing). Note that all three voltage response traces are

identical up until the time of the first spike, but adapt to the constant input

in three different ways. (For clarity, noise level set to zero in all panels.)

B. Rhythmic, bursting responses. DC current (top trace) injected into an

NLIF cell with h shown at left. As amplitude c of current increases (voltage

traces, top to bottom), burst frequency and duration increase. C. Tonic

and bistable (“memory”) responses. The same current (bottom trace) was

injected into two different NLIF cells with different settings for h. The

biphasic h in the bottom panel leads to a self-sustaining response that is

inactivated only by the subsequent negative pulse.
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Taylor, 1981). This density is uniquely characterized by its first two mo-

ments; the mean is given by (2), and its covariance

Cov(t1, t2) = EgE
T
g =

1

2g

(

e−g|t2−t1| − e−g(t1+t2)

)

, (3)

where Eg is the convolution operator corresponding to e−gt. We denote this

Gaussian density G(V (t)|~xi, θ), where index i indicates the ith spike and

the corresponding stimulus segment ~xi (i.e. the stimuli that influence V (t)

during the ith interspike interval). Note that this density is highly correlated

for nearby points in time; intuitively, smaller leak conductance g leads to

stronger correlation in V (t) at nearby time points.

Now, on any interspike interval t ∈ [ti−1, ti], the only information we

have is that V (t) is less than threshold for all times before ti, and exceeds

threshold during the time bin containing ti. This translates to a set of linear

constraints on V (t), expressed in terms of the set

Ci =
⋂

ti−1≤t<ti

{

V (t) < 1

}

∩
{

V (ti) ≥ 1

}

.

Therefore, the likelihood that the neuron first spikes at time ti, given a spike

at time ti−1, is the probability of the event V (t) ∈ Ci, which is given by

L{~xi,ti}(θ) =

∫

V ∈Ci

G(V (t)|~xi, θ),

the integral of the Gaussian density G(V (t)|~xi, θ) over the set Ci of (unob-

served) voltage paths consistent with the observed spike train data.

Spiking resets V to Vreset; since Wt is white noise, this means that the

noise contribution to V in different interspike intervals is independent. This

“renewal” property, in turn, implies that the density over V (t) for an entire

experiment factorizes into a product of conditionally independent terms,

where each of these terms is one of the Gaussian integrals derived above

for a single interspike interval. The likelihood for the entire spike train is

therefore the product of these terms over all observed spikes. Putting all

the pieces together, then, define the full likelihood as

L{~xi,ti}(θ) =
∏

i

∫

V ∈Ci

G(V (t)|~xi, θ),
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where the product, again, is over all observed spike times {ti} and corre-

sponding stimulus segments {~xi}.
Now that we have an expression for the likelihood, we need to be able

to maximize it over the parameters θ. Our main result is that we can use

simple ascent algorithms to compute the MLE without fear of becoming

trapped in local maxima2.

Theorem 1. The likelihood L{~xi,ti}(θ) has no non-global local extrema in

the parameters θ, for any data {~xi, ti}.

The proof of the theorem (in the appendix) is based on the logconcavity

of the likelihood L{~xi,ti}(θ) under a certain relabelling of the parameters (θ).

The classical approach for establishing the nonexistence of local maxima of

a given function is concavity, which corresponds roughly to the function

having everywhere non-positive second derivatives. However, the basic idea

can be extended with the use of any invertible function: if f has no local

extrema, neither will g(f), for any strictly increasing real function g. The

logarithm is a natural choice for g in any probabilistic context in which

independence plays a role, since sums are easier to work with than products.

Moreover, concavity of a function f is strictly stronger than logconcavity, so

logconcavity can be a powerful tool even in situations for which concavity is

useless (the Gaussian density is logconcave but not concave, for example).

Our proof relies on a particular theorem (Bogachev, 1998) establishing the

logconcavity of integrals of logconcave functions, and proceeds by making a

correspondence between this type of integral and the integrals that appear

in the definition of the L-NLIF likelihood above.

2More precisely, we say that a smooth function has no non-global local

extrema if the set of points at which the gradient vanishes is connected

and (if nonempty) contains a global extremum; thus all “local extrema”

are in fact global, if a global maximum exists. (This existence, in turn, is

guaranteed asymptotically by classical MLE theory whenever the model’s

parameters are identifiable, and guaranteed in general if we assume θ takes

values in some bounded set.) Note that the L-NLIF model has parameter

space isomorphic to the convex domain <dim(~k)+dim(~h)+1 × <2
+, with <+

denoting the positive axis (recall that the parameter h takes values in a

finite-dimensional space, g > 0, and Vreset < 1).
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4 Computational methods and numerical results

Theorem 1 tells us that we can ascend the likelihood surface without fear

of getting stuck in local maxima. Now how do we actually compute the

likelihood? This is a nontrivial problem: we need to be able to quickly

compute (or at least approximate, in a rational way) integrals of multivariate

Gaussian densities G over simple but high-dimensional orthants Ci. We

describe two ways to compute these integrals; each has its own advantages.

The first technique can be termed “density evolution” (Knight et al.,

2000; Haskell et al., 2001; Paninski et al., 2003b). The method is based

on the following well-known fact from the theory of stochastic differential

equations (Karlin and Taylor, 1981): given the data (~xi, ti−1), the probabil-

ity density of the voltage process V (t) up to the next spike ti satisfies the

following partial differential (Fokker-Planck) equation:

∂P (V, t)

∂t
=

1

2

∂2P

∂V 2
+ g

∂[(V − Vrest)P ]

∂V
, (4)

under the boundary conditions

P (V, ti−1) = δ(V − Vreset),

P (Vth, t) = 0,

enforcing the constraints that voltage resets at Vreset and is killed (due to

spiking) at Vth, respectively. Vrest(t) is defined, as usual, as the stationary

point of the noiseless subthreshold dynamics (1):

Vrest(t) ≡ Vleak +
1

g




~k · ~x(t) +

i−1
∑

j=0

h(t − tj)



 .

The integral
∫

P (V, t)dV is simply the probability that the neuron has

not yet spiked at time t, given that the last spike was at ti−1; thus, 1 −
∫

P (V, t)dV is the cumulative distribution of the spike time since ti−1.

Therefore

f(t) ≡ − ∂

∂t

∫

P (V, t)dV,

the conditional probability density of a spike at time t (defined at all times

t /∈ {ti}), satisfies
∫ t

ti−1

f(s)ds = 1 −
∫

P (V, t)dV.
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Thus standard techniques (Press et al., 1992) for solving the drift-diffusion

evolution equation (4) lead to a fast method for computing f(t) (as illus-

trated in Fig. 2). Finally, the likelihood L~xi,ti(θ) is simply
∏

i f(ti).

While elegant and efficient, this density evolution technique turns out to

be slightly more powerful than what we need for the MLE: recall that we do

not need to compute the conditional probability of spiking f(t) at all times

t, but rather at just a subset of times {ti}. In fact, while we are ascending

the likelihood surface (in particular, while we are far from the maximum),

we do not need to know the likelihood precisely, and can trade accuracy for

speed. Thus we can turn to more specialized, approximate techniques for

faster performance. Our algorithm can be described in three steps.

The first is a specialized algorithm due to Genz (Genz, 1992), designed

to compute exactly the kinds of integrals considered here, which works well

when the orthants Ci are defined by fewer than ≈ 10 linear constraints. The

number of actual constraints grows linearly in the length of the interspike

interval (ti+1 − ti); thus, to use this algorithm in typical data situations,

we adopt a strategy proposed in our work on the deterministic form of the

model (Pillow and Simoncelli, 2003), in which we discard all but a small

subset of the constraints. The key point is that only a few constraints are

actually needed to approximate the integrals to a high degree of precision,

basically because of the strong correlations between the value of V at nearby

time points.

This idea provides us with an efficient approximation of the likelihood

at a single point in parameter space. To find the maximum of this function

using standard ascent techniques, we obviously have to compute the likeli-

hood at many such points. We can make this ascent process much quicker

by applying a version of the coarse-to-fine idea. Let Lj denote the approx-

imation to the likelihood given by allowing only j constraints in the above

algorithm. Then we know, by a proof identical to that of Theorem 1, that

Lj has no local maxima; in addition, by the above logic, Lj → L as j grows.

It takes little additional effort to prove that

argmaxθ∈Θ Lj(θ) → argmaxθ∈Θ L(θ)

as j → ∞; thus, we can efficiently ascend the true likelihood surface by

ascending the “coarse” approximants Lj , then gradually “refining” our ap-
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proximation by letting j increase. The j = ∞ term is computed via the full

density evolution method.

The last trick is a simple method for choosing a good starting point for

each ascent. To do this, we borrow the jackknife idea from statistics (Efron

and Stein, 1981; Strong et al., 1998): set our initial guess for the maximizer

of LjN
to be

θ0
jN

= θ∞jN−1
+

j−1
N − j−1

N−1

j−1
N−1 − j−1

N−2

(

θ∞jN−1
− θ∞jN−2

)

,

the linear extrapolant on a 1/j scale.

Now that we have an efficient ascent algorithm, we need to provide it with

a sensible initialization of the parameters. We employ the following simple

method, related to our previous work on the deterministic LIF model (Pillow

and Simoncelli, 2003): we set g0 to some physiologically plausible value

(say (50 ms)−1), then ~k0, h0 and V 0
leak to the ML solution of the following

regression problem:

Eg




~k · ~xi + gVleak +

i−1
∑

j=0

h(t − tj)



 = 1 + σiεi,

with εi a standard i.i.d. normal random variable scaled by

σi = Cov(ti − ti−1, ti − ti−1)
1/2 =

1√
2g

e−g(ti−ti−1),

the standard deviation of the Ornstein-Uhlenbeck process V (recall expres-

sion (3)) at time ti − ti−1. Note that the reset potential V 0
reset is initially

fixed at zero, away from the threshold voltage Vth = 1, to prevent the triv-

ial θ = 0 solution. The solution to this regression problem has the usual

least-squares form and can thus be quickly computed analytically (see (Sa-

hani and Linden, 2003) for a related approach), and serves as a kind of

j = 1 solution (with the single voltage constraint placed at ti, the time of

the spike). See also (Brillinger, 1992) for a discrete-time formulation of this

single-constraint approximation.

To summarize, we provide pseudocode for the full algorithm in Fig. 4.

One important note is that, due to its ascent structure, the algorithm can be

gracefully interrupted at any time without catastrophic error. In addition,
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• Initialize (~k, Vl, h) to regression solution

• Normalize by observed scale of εi

• for increasing j

Let θj maximize Lj

Jackknife θj+1

end

• Let θMLE ≡ θ∞ maximize L

Figure 5: Pseudocode for the L-NLIF MLE.

the time complexity of the algorithm is linear in the number of spikes. An

application of this algorithm to simulated data is shown in Fig. 4; further

applications to both simulated and real data will be presented elsewhere.

5 Time Rescaling

Once we have obtained our estimate of the parameters (~k, g, Vleak, Vreset, h),

how do we verify that the resulting model provides a self-consistent descrip-

tion of the data? This important “model validation” question has been the

focus of recent elegant research, under the rubric of “time rescaling” tech-

niques (Brown et al., 2002). While we lack the room here to review these

methods in detail, we can note that they depend essentially on knowledge

of the conditional probability of spiking f(t). Recall that we showed how to

efficiently compute this function in the last section and examined some of

its qualitative properties in the L-NLIF context in Fig. 2.

The basic idea is that the conditional probability of observing a spike

at time t, given the past history of all relevant variables (including the

stimulus and spike history), can be very generally modeled as a standard

(homogeneous) Poisson process, under a suitable transformation of the time

axis. The correct such “time change” is fairly intuitive: we want to speed
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Figure 6: Demonstration of the estimator’s performance on simulated data.

Dashed lines show the true kernel ~k and aftercurrent h; ~k is a 12-sample

function chosen to resemble the biphasic temporal impulse response of a

macaque retinal ganglion cell (Chichilnisky, 2001), while h is a weighted

sum of five gamma functions whose biphasic shape induces a slight degree

of burstiness in the model’s spike responses (c.f. Fig. 2). With only 600

spikes of output (given temporal white noise input), the estimator is able to

retrieve an estimate of ~k which closely matches the true ~k and h. Note that

the spike-triggered average, which is an unbiased estimator for the kernel

of a LNP neuron (Chichilnisky, 2001), differs significantly from the true ~k

(and, of course, provides no estimate for h).
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up the clock exactly at those times for which the conditional probability of

spiking is high (since the probability of observing a Poisson process spike in

any given time bin is directly proportional to the length of time in the bin).

This effectively “flattens” the probability of spiking.

To return to our specific context, if a given spike train was generated

by an L-NLIF cell with parameters θ, then the following variables should

constitute an i.i.d. sequence from a standard uniform density:

qi ≡
∫ ti+1

ti

f(s)ds,

where f(t) = f~xi,ti,θ(t) is the conditional probability (as defined in the pre-

ceding section) of a spike at time t given the data (~xi, ti) and parameters

θ. The statement follows directly from the time-rescaling theorem (Brown

et al., 2002), the inverse cumulative integral transform, and the fact that

the L-NLIF model generates a conditional renewal process. This uniform

representation, in turn, can be tested via standard techniques such as the

Kolmogorov-Smirnov test and tests for serial correlation.

6 Extensions

It is worth noting that the methods discussed above can be extended in var-

ious ways, enhancing the representational power of the model significantly.

6.1 Interneuronal interactions

First, we should emphasize that the input signal ~x(t) is not required to be a

strictly “external” observable; if we have access to internal variables such as

local field potentials or multiple single-unit activity, then the influences of

this network activity can be easily included in the basic model. For example,

say we have observed multiple (single-unit) spike trains simultaneously, via

multielectrode array or tetrode. Then one effective model might be

dV =

(

− g(V (t) − Vleak) + Istim(t) + Ihist(t) + Iinterneuronal(t)

)

dt + Wt,
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with the interneuronal current defined as a linearly filtered version of the

other cells’ activity:

Iinterneuronal(t) =
∑

l

~kn
l · nl(t);

here nl(t) denotes the spike train of the l-th simultaneously recorded cell,

and the additional filters kn
l model the effect of spike train l on the cell of

interest. Similar models have proven useful in a variety of contexts (Tsodyks

et al., 1999; Harris et al., 2003; Paninski et al., 2003a); the main point is

that none of the results mentioned above are at all dependent on the identity

of ~x(t), and therefore can be applied unchanged in this new, more general

setting.

6.2 Nonlinear input

Next, we can use a trick from the machine learning and regression literature

(Duda and Hart, 1972; Cristianini and Shawe-Taylor, 2000; Sahani, 2000)

to relax our requirement that the input be a strictly linear function of ~x(t);

instead, we can write

Istim =
∑

k

akFk[~x(t)]

where k indexes some finite set of functionals Fk[.] and ak are the parame-

ters we are trying to learn. This reduces exactly to our original model when

Fk are defined to be time-translates, that is, Fk[~x(t)] = ~x(t − k). We are

essentially unrestricted in our choice of the nonlinear functionals Fk, since,

as above, all we are doing is redefining the input ~x(t) in our basic model

to be ~x∗(t) ≡ {Fk(~x(t))}; under the obvious linear independence restric-

tions on {Fk(~x(t))}, then, the model remains identifiable (and in particular

the MLE remains consistent and efficient under smoothness assumptions on

{Fk(~x(t))}). Clearly the post-spike and interneuronal currents Ihist(t) and

Iinterneuronal(t), which are each linear functionals of the network spike his-

tory, may also be replaced by nonlinear functionals; for example, Ihist(t)

might include current contributions just from the preceding spike (Gerstner

and Kistler, 2002), not the sum over all previous spikes.

Some obvious candidates for {Fk} are the Volterra operators formed by

taking products of time-shifted copies of the input ~x(t) (Dayan and Abbott,



Paninski et al., November 30, 2004 19

2001; Dodd and Harris, 2002):

F [~x(t)] = ~x(t − τ1) · ~x(t − τ2),

for example, with τi ranging over some compact support. Of course, it

is well-known that the Volterra expansion (essentially a high-dimensional

Taylor series) can converge slowly when applied to neural data; other more

sophisticated choices for Fk might include, e.g., a set of basis functions

(Zhang et al., 1998) that span a reasonable space of possible nonlinearities,

such as the principal components of previously observed nonlinear tuning

functions (see also (Sahani and Linden, 2003) for a similar idea, but in a

purely linear setting).

6.3 Regularization

The extensions discussed in the last two subsections have made our basic

model considerably more powerful, but at the cost of a larger number of

parameters that must be estimated from data. This is problematic, as it

is well-known that the phenomenon of “overfitting” can actually hurt the

predictive power of models based on a large number of parameters (see,

e.g., (Sahani and Linden, 2003; Smyth et al., 2003; Machens et al., 2003)

for examples, again in a linear regression setting). How do we control for

overfitting in the current context?

One simple approach is to use a maximum a posteriori (MAP, instead

of ML) estimate for the model parameters. This entails maximizing an

expression of the penalized form

log L(θ) + Q(θ)

instead of just L(θ), where L(θ) is the likelihood function, as above, and

−Q is some “penalty” function (where in the classical Bayesian setting, eQ

is required to be a probability measure on the parameter space Θ). If Q

is taken to be concave, a glance at the proof of Theorem 1 shows that the

MAP estimator shares the MLE’s global extrema property; as usual, simple

regularity conditions on Q ensure that the MAP estimator converges to

the MLE given enough data, and therefore inherits the MLE’s asymptotic

efficiency.
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Thus we are free to choose Q as we like within the class of smooth con-

cave functions, bounded above. If Q peaks at a point such that all the

weight coefficients (ai or ~k, depending on the version of the model in ques-

tion) are zero, the MAP estimator will basically be a more “conservative”

version of the MLE, with the chosen coefficients shifted nonlinearly towards

zero. This type of “shrinkage” estimator has been extremely well-studied,

from a variety of viewpoints (e.g., (James and Stein, 1960; Donoho et al.,

1995; Tipping, 2001) and references therein), and is known, for example,

to perform strictly better than the MLE in certain contexts. Again, see

(Sahani and Linden, 2003; Smyth et al., 2003; Machens et al., 2003) for

some illustrations of this effect. One particularly simple choice for Q is the

weighted L1 norm

Q(~k) =
∑

l

|b(l)k(l)|,

where the weights b(l) set the relative scale of Q over the likelihood and may

be chosen by symmetry considerations, cross-validation (Machens et al.,

2003; Smyth et al., 2003), and/or evidence optimization (Tipping, 2001;

Sahani and Linden, 2003). This choice for Q has the property that sparse

solutions (i.e., solutions for which as many components of ~k as possible are

set to zero) are favored; the desirability of this feature is discussed, e.g., in

(Girosi, 1998; Donoho and Elad, 2003) and references therein.

6.4 Correlated noise

In some situations (particularly when the cell is poorly driven by the input

signal ~x(t)), the whiteness assumption on the noise Wt will be inaccurate.

Fortunately, it is possible to generalize this part of the model as well, albeit

with a bit more effort. The simplest way to introduce correlations in the

noise (Fourcaud and Brunel, 2002; Moreno et al., 2002) is to replace the

white Wt with an Ornstein-Uhlenbeck process Nt defined by

dN = − N

τN
dt + Wt. (5)

As above, this is simply white noise convolved with a simple exponential

filter of time constant τN (and therefore the conditional Gaussianity of

V (t) is retained); the original white noise model is recovered as τN → 0,
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after suitable rescaling. (Nt here is often interpreted as synaptic noise,

with τN the synaptic time constant, but it is worth emphasizing that Nt is

not voltage-dependent, as would be necessary in a strict conductance-based

model.) Somewhat surprisingly, the essential uniqueness of the global like-

lihood maximum is preserved for this model: for any τN ≥ 0, the likelihood

has no local extrema in (~k, g, Vleak, Vreset, h).

Of course, we do have to make a few changes in the computational

schemes associated with this new model. Most of the issues arise from

the loss of the conditional renewal property of the interspike intervals for

this model: the conditional probability of a spike given the input ~x is not

conditionally independent of the last interspike interval (this is one of the

main reasons we are interested in this correlated noise model). Instead, we

have to write our likelihood L{~xi,ti}(θ, τN ) as

∫

p(Nt, τN )
∏

i

1

(

Vt(~xi, θ, Nt) ∈ Ci

)

dNt,

where the integral is over all noise paths Nt, under the Gaussian measure

p(Nt, τN ) induced on Nt by expression (5); the multiplicands on the right

are 1 or 0 according to whether the voltage trace Vt, given the noise path

Nt, the stimulus ~xi, and the parameters θ, was in the constraint set Ci or

not, respectively.

Despite the loss of the renewal property, Nt is still a Gauss-Markov

diffusion process, and we can write the Fokker-Planck equation (now in two

dimensions, V and N):

∂P (V, N, t)

∂t
=

1

2

∂2P

∂N2
+ g

∂[(V − Vrest − N
g )P ]

∂V
+

1

τN

∂[NP ]

∂N
,

under the boundary conditions

P (Vth, N, t) = 0,

P (V, N, t+i−1) = − 1

Z
δ(V −Vreset)

∂P (V, N, t−i−1)

∂V

∣

∣

∣

∣

V =Vth

R

(

N

g
−Vth+Vrest(t

−
i−1)

)

,

with R the usual linear rectifier

R(u) =







0 u ≤ 0,

u u > 0
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and Z the normalization factor

Z = −
∫

∂P (V, N, t−i−1)

∂V

∣

∣

∣

∣

V =Vth

R

(

N

g
− Vth + Vrest(t

−
i−1)

)

dN ;

the threshold condition here is the same as in equation (4), while the reset

condition reflects the fact that V is reset to Vreset with each spike, but N is

not (the complicated term on the right is obtained from the usual expres-

sion by conditioning on V (t−i−1) = Vth and
∂V (t−i−1

)

∂t > 0). Note that the

relevant discretized differential operators are still extremely sparse, allowing

for efficient density propagation, although the density must now be propa-

gated in two dimensions, which does make the soultion significantly more

computationally costly than in the white noise case. Simple approximative

approaches like those described in section 4 (via the Genz algorithm) are

available as well.

6.5 Subthreshold resonance

Finally, it is worth examining how easily generalizable our methods and

results might be to subthreshold dynamics more interesting than the (lin-

ear) leaky integrator employed here. While the density evolution methods

developed in section 4 can be generalized easily to nonlinear and even time-

varying subthreshold dynamics, the Genz algorithm obviously depends on

the Gaussianity of the underlying distributions (which is unfortunately not

preserved by nonlinear dynamics), and the proof of Theorem 1 appears to

depend fairly strongly on the linearity of the transformation between in-

put current and subthreshold membrane voltage (although linear filtering

by non-exponential windows is allowed).

Perhaps the main generalization worth noting here is the extension from

purely “integrative” to “resonant” dynamics. We can accomplish this by

the simple trick of allowing the membrane conductance g to take complex

values (see, e.g., (Izhikevich, 2001) and references therein for further details

and background on subthreshold resonance). This transforms the low-pass

exponential filtering of equation (2) to a band-pass filtering by a damped

sinusoid: a product of an exponential and a cosine whose frequency is de-

termined, as usual, by the imaginary part of g. All of the equations listed

above remain otherwise unchanged if we ignore the imaginary part of this
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new filter’s output, and Theorem 1 continues to hold for complex g, with

g restricted to the upper-right quadrant (real(g), imag(g) ≥ 0) to eliminate

the conjugate symmetry of the filter corresponding to g. The only neces-

sary change is in the density evolution method, where we need to propagate

the density in an extra dimension to account for the imaginary part of the

resulting dynamics (importantly, however, the Markov nature of model (1)

is retained, preserving the linear diffusion nature of equation (4)).

7 Discussion

We have shown here that the L-NLIF model, which couples a filtering stage

to a biophysically plausible and flexible model of neuronal spiking, can be

efficiently estimated from extracellular physiological data. In particular, we

proved that the likelihood surface for this model has no local peaks, en-

suring the essential uniqueness of the maximum likelihood and maximum a

posteriori estimators in some generality. This result leads directly to reliable

algorithms for computing these estimators, which are known by general like-

lihood theory to be statistically consistent and efficient. Finally, we showed

that the model lends itself directly to analysis via tools from the modern

theory of point processes, such as time-rescaling tests for model validation.

As such, we believe the L-NLIF model could become a fundamental tool in

the analysis of neural data, a kind of canonical “encoding model.”

Our primary goal was an elaboration of the LNP model to include spike-

history (e.g. refractory) effects. As detailed in (Simoncelli et al., 2004),

the basic LNP model provides a powerful framework for analyzing neural

encoding of high-dimensional signals; however, it is well-known that the

Poisson spiking model is inadequate to capture the fine temporal properties

of real spike trains. Previous attempts to address this shortcoming have

fallen into two classes: “multiplicative” models (Snyder and Miller, 1991;

Miller and Mark, 1992; Iyengar and Liao, 1997; Berry and Meister, 1998;

Brown et al., 2002; Paninski, 2003), of the basic form

p(spike(t) | stimulus, spike history) = F (stimulus)H(history)

— in which H encodes purely spike-history dependent terms like refractory
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or burst effects — and “additive” models like

p(spike(t) | stimulus, history) = F (stimulus + H(history)) ,

(Brillinger, 1992; Joeken et al., 1997; Keat et al., 2001; Truccolo et al., 2003),

in which the spike history is basically treated as a kind of additional input

signal; the L-NLIF model is of the latter form, with the post-spike current h

injected directly into expression (1) with the filtered input ~k·~x(t). It is worth

noting that one popular form of the multiplicative history-dependence func-

tional H(·) above, the “inverse-Gaussian” density model (Seshardri, 1993;

Iyengar and Liao, 1997; Brown et al., 2002), arises as the first-passage time

density for the Wiener process, effectively the time of the first spike in the

L-NLIF model given constant input at no leak (g = 0); see (Stevens and

Zador, 1996; Plesser and Gerstner, 2000) for further such multiplicative-type

approximations. It seems that the treatment of history effects as simply an-

other form of “stimulus” might make the additive class slightly easier to

estimate (this was certainly the case here, for example); however, any such

statement remains to be verified via systematic comparison of the accuracy

of these two classes of models, given real data.

We based our model on the LIF cell in an attempt to simultaneously

maximize two competing objectives: flexibility (explanatory power) and

tractability (in particular, ease of estimation, as represented by Theorem

1). We attempted to make the model as general as possible without vio-

lating the conditions necessary to ensure the validity of this theorem: thus,

we included the h current and the various extensions described in section 6

but did not, for example, attempt to model postsynaptic conductances di-

rectly, or permit any nonlinearity in the subthreshold dynamics (Brunel and

Latham, 2003), or allow any rate-dependent modulations of the membrane

conductance g (Stevens and Zador, 1998; Gerstner and Kistler, 2002); it is

unclear at present whether Theorem 1 can be extended to these cases.

Of course, due largely to its simplicity, the LIF cell has become the

de facto canonical model in cellular neuroscience (Koch, 1999). Although

the model’s overriding linearity is often emphasized (due to the approxi-

mately linear relationship between input current and firing rate, and lack of

active conductances), the nonlinear reset has significant functional impor-

tance for the model’s response properties. In previous work, we have shown
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that standard reverse correlation analysis fails when applied to a neuron

with deterministic (noise-free) LIF spike generation; we developed a new

estimator for this model, and demonstrated that a change in leakiness of

such a mechanism might underlie nonlinear effects of contrast adaptation

in macaque retinal ganglion cells (Pillow and Simoncelli, 2003). We and

others have explored other “adaptive” properties of the LIF model (Rudd

and Brown, 1997; Paninski et al., 2003b; Yu and Lee, 2003). We provided

a brief sampling of the flexibility of the L-NLIF model in Figures 2-2; of

course, similar behaviors have been noted elsewhere (Gerstner and Kistler,

2002), although the spiking diversity of this particular model (with no ad-

ditional time-varying conductances, etc.) has not, to our knowledge, been

previously collected in one place, and some aspects of this flexibility (e.g.

Fig. 2C) might come as a surprise in such a simple model.

The probabilistic nature of the L-NLIF model provides several impor-

tant advantages over the deterministic version we have considered previously

(Pillow and Simoncelli, 2003). First, clearly, this probabilistic formulation

is necessary for our entire likelihood-based presentation; moreover, use of

an explicit noise model greatly simplifies the discussion of spiking statistics.

Second, the simple subthreshold noise source employed here could provide

a rigorous basis for a metric distance between spike trains, useful in other

contexts (Victor, 2000). Finally, this type of noise influences the behavior of

the model itself (c.f. Fig. 2), giving rise to phenomena not observed in the

purely deterministic model (Levin and Miller, 1996; Rudd and Brown, 1997;

Burkitt and Clark, 1999; Miller and Troyer, 2002; Paninski et al., 2003b; Yu

and Lee, 2003).

We are currently in the process of applying the model to physiological

data recorded both in vivo and in vitro, in order to assess whether it ac-

curately accounts for the stimulus preferences and spiking statistics of real

neurons. One long-term goal of this research is to elucidate the different

roles of stimulus-driven and stimulus-independent activity on the spiking

patterns of both single cells and multineuronal ensembles (Warland et al.,

1997; Tsodyks et al., 1999; Harris et al., 2003; Paninski et al., 2003a).
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Appendix A: Proof of Theorem 1

Proof. We prove the main result indirectly, by establishing the more general

statement in section 6.4: for any τN ≥ 0, the likelihood function for the

L-NLIF model has no local extrema in θ = (~k, g, Vleak, Vreset, h) (including

possibly complex g); the theorem will be recovered in the special case that

τN → 0 and g is real.

As discussed in the text, we need only establish that the likelihood func-

tion is logconcave in a certain smoothly invertible reparameterization of θ.

The proof is based on the following fact (Bogachev, 1998):

Theorem (Integrating out log-concave functions). Let f(x, y) be jointly

log-concave in x ∈ <j and y ∈ <k, j, k < ∞, and define

f0(x) ≡
∫

f(x, y)dy;

then f0 is log-concave in x.

To apply this theorem, we write the likelihood in the following “path

integral” form:

L{~xi,ti}(θ) =

∫

p(Nt, τN )
∏

i

1

(

Vt(~xi, θ, Nt) ∈ Ci

)

dNt (6)

where we are integrating over each possible path of the noise process Nt,

p(Nt, τN ) is the (Gaussian) probability measure induced on Nt under the

parameter τN , and 1(Vt(~xi, θ, Nt) ∈ Ci) is the indicator function for the

event that Vt(~xi, θ, Nt) — the voltage path driven by the noise sample Nt

under the model settings θ and input data ~xi — is in the set Ci. Recall that

Ci is defined as the convex set satisfying a collection of linear inequalities

that must be satistfied by any V (t) path consistent with the observed spike

train {ti}; however, the precise identity of these inequalities will not play

any role below (in particular, Ci only depends on the real part of V (t) and

is independent of τN and θ).

The logic of the proof is as follows. Since the product of two log-concave

functions is log-concave, L(θ) will be log-concave under some reparameter-

ization if p and 1 are both log-concave under the same reparameterization

of the variables N and θ, for any fixed τN . This follows by 1) approxi-

mating the full path integral by (finite-dimensional) integrals over suitably
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time-discretized versions of path space, 2) applying the above integrating-

out theorem, 3) noting that the pointwise limit of a sequence of (log)concave

functions is (log)concave, and 4) applying the usual separability/continuity

limit argument to lift the result from the arbitrarily-finely-discretized (but

still finite) setting to the full (infinite-dimensional) path space setting.

To discretize time, we simply sample V (t) and N(t) (and bin ti) at

regular intervals ∆t, where ∆t > 0 is an arbitrary small parameter we will

send to zero at the end of the proof. We prove the log-concavity of p and 1

in the reparameterization

(g, Vleak) → (α, IDC) ≡ (e−g∆t, gVleak);

this map is clearly smooth, but due to aliasing effects, the map g → α

is smoothly invertible only if the imaginary part of g satisfies g∆t < 2π;

thus we restrict the parameter space further to (0 ≤ real(g), 0 ≤ imag(g) ≤
π(∆t)−1), an assumption that becomes negligible as ∆t → 0. Finally, im-

portantly, note that this reparameterization preserves the convexity of the

parameter space Θ.

Now to the proof of the log-concavity of the components of the integrand

in (6). Clearly, p is the easy part: p(N, τN ) is independent of all variables

but N and τN ; p is Gaussian in N and is thus the prototypical log-concave

function.

Now for the function 1(Vt(~xi, θ, Nt) ∈ Ci). First, note that this function

is independent of τN given N . Next, an indicator function for a set is log-

concave if and only if the set is convex. Thus it is sufficient to prove that

the set (N, θ) such that Vt(N, θ) ∈ C is convex, for any convex C. To see

this, we write out the dependence of Vt on N and θ in operator form:

Vt = Eg

[

Vresetδ(0) + IDC + ~k · ~x(t) +
∑

j

h(t − tj) + Nt

]

,

where Eg, recall, is the exponential convolution operator corresponding to

g. Now, the key fact is that E−1
g depends linearly on α:

Eg =

















1

α 1

α2 α 1
. . .

. . .

. . . α2 α 1

















,
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while

E−1
g =

















1

−α 1

−α 1
. . .

. . .

−α 1

















,

as can be shown by direct computation. Thus the set (N, θ) such that

Vt(N, θ) ∈ C can be written as the set N ∈ A(θ)C, with A(θ) an invertible

operator, affine in θ, namely

A(θ)z(t) = E−1
g V (t) − Vresetδ(0) − IDC − k · ~x(t) −

∑

j

h(t − tj)

for any z(t) ∈ C; since C, Θ, and the set of all possible N are convex,

the proof is complete, because the union of the graphs of a convex set of

nonsingular affine translates of a convex set is itself convex.

We have Theorem 1 as a corollary upon restricting α (or equivalently,

g) to the real axis and letting τN → 0, rescaling, and again noting that the

pointwise limit of a sequence of (log-)concave functions is (log-)concave.

In a previous version of this manuscript, we gave a different proof, in

which the key log-concavity property was established not by the result on

integrating out, but rather by an appeal to the Prekopa-Rinott theorem

(Bogachev, 1998; Rinott, 1976) on log-concave measures; this earlier proof

relied on a somewhat complex construction of convex translations of sets

and required a more involved reparameterization; the current proof seems

simpler. In addition, the current proof clarifies the generality of the result,

in at least two directions. First, it is clear that the proof is valid for any

fixed log-concave noise measure p(N) (possibly including correlations, non-

Gaussianity, and nonstationarities), not just Gaussian white noise. Second,

integrating over hyperparameters (e.g. in a Bayesian model selection setting

(Sahani and Linden, 2003)) does not induce any local maxima as long as

the log-concavity of the integrands is undisturbed. Finally, it is interesting

to note that a nearly identical proof demonstrates that the likelihood of

the model introduced in (Keat et al., 2001) contains no non-global local

maxima, in all parameters except for the time constant τp of the after-

potential introduced in equation (7) in (Keat et al., 2001); however, this
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proof does not extend in any obvious way to the non-likelihood-based cost

function minimized by Keat et al.

It is also worth noting that this proof can not directly give us log-

concavity in τN for Gaussian densities. In fact, no Gaussian density with

diagonal covariance of the form













f1(τN )

f2(τN )
. . .

fi(τN )













(we have in mind the covariance operator of a stationary process, expressed

in the Fourier basis) can be jointly log-concave in (N, τN ). To see this, set

N = 0; this implies that f−1
i must be of the form eh, for h a concave func-

tion. Since the determinant of the Hessian of the function −N 2/fi(τN ) =

−eh(τN )N2,

2e2hN2

(

h′′ − (h′)2
)

,

is nonpositive in general (since h is concave, i.e., h′′ ≤ 0), −ehN2 cannot

be jointly concave, and this implies that the Gaussian can not be jointly

log-concave, either (to see this, let N → ∞). Nevertheless, it is not difficult

to think of reasonable densities which are jointly log-concave in N and addi-

tional parameters like τN ; this may prove useful in other contexts (Williams

and Barber, 1998; Seeger, 2002).

Appendix B: Computing the likelihood gradient

The ascent of the likelihood surface is greatly accelerated by the computation

of the gradient. This gradient can always be computed by finite differencing

schemes, of course; however, in the case of a large number of parameters

(c.f. sections 6.1 and 6.2), it is much more efficient to compute gradients

with respect to a few auxiliary parameters, then arrive at the gradient with

respect to the full parameter set via the chain rule for derivatives.

We focus on the discretized case for clarity. Thus, we take the deriva-

tives with respect to the mean function V0(t), evaluated at the constraint
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times {tk}1≤k≤j . These derivatives turn out to be Gaussian integrals them-

selves, albeit over a (j − 1)- instead of j-dimensional box, and can be easily

translated into derivatives with respect to the parameters.

In order to derive the gradient, note that the discretized approximation

to the likelihood can be written

Lj =

∫ z1

−∞
· · ·
∫ ∞

zj

p(y1, . . . , yj)dy1· · ·dyj ,

where yk represent the transformed variables yk = V (tk) − V0(tk), zk = 1 −
V0(tk), and p denotes the corresponding Gaussian density, with 0 mean and

covariance we’ll call Λ (recall expression (3)). Now, the partial derivatives

of L with respect to the zk are:

∂

∂zk
L =

∫ z1

−∞
· · ·
∫ zk−1

−∞

∫ zk+1

−∞
· · ·
∫ ∞

zj

p(y1, . . . , yk = zk, . . . , yj)dy1· · ·dyj

=

(

∫

Ci6=k

p(~yi6=k|yk = zk)d~yi6=k

)

p(yk = zk),

with a sign change to account for the upward integral corresponding to the

final, above-threshold constraint.

We can compute the marginal and conditional densities p(yk = zk) and

p(~yi6=k|yk = zk) using standard Gaussian identities:

p(yk = zk) = N (0, Λk,k)(zk),

p(~yi6=k|yk = zk) = N (µ∗, Λ∗)(~1),

where

µ∗ = ~V0(ti6=k) +
zk

Λk,k

~Λi6=k,k

Λ∗ = Λi6=k,h6=k −
~Λi6=k,k

~Λk,i6=k

Λk,k

Thus, the gradient ∇zL requires computing one Gaussian integral for each

constraint zk. From the vector ∇zL, we can use simple linear operations to

obtain the gradient with respect to any of the parameters which enter only

via V0(t), namely h,~k, and Vleak.
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