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We present some new results on the nonparametric estimation of entropy

and mutual information. First, we use an exact local expansion of the

entropy function to prove almost sure consistency and central limit the-

orems for three of the most commonly used discretized information esti-

mators. The setup is related to Grenander’s method of sieves and places

no assumptions on the underlying probability measure generating the

data. Second, we prove a converse to these consistency theorems, demon-

strating that a misapplication of the most common estimation techniques

leads to an arbitrarily poor estimate of the true information, even given

unlimited data. This “inconsistency” theorem leads to an analytical ap-

proximation of the bias, valid in surprisingly small sample regimes and

more accurate than the usual
1
N formula of Miller and Madow over a large

region of parameter space. The two most practical implications of these

results are negative: (1) information estimates in a certain data regime are

likely contaminated by bias, even if “bias-corrected” estimators are used,

and (2) con�dence intervals calculated by standard techniques drastically

underestimate the error of the most common estimation methods.

Finally, we note a very useful connection between the bias of entropy

estimators and a certain polynomial approximation problem. By casting

bias calculation problems in this approximation theory framework, we

obtain the best possible generalization of known asymptotic bias results.

More interesting, this framework leads to an estimator with some nice

properties: the estimator comes equipped with rigorous bounds on the

maximum error over all possible underlying probability distributions,

and this maximum error turns out to be surprisingly small. We demon-

strate the application of this new estimator on both real and simulated

data.

1 Introduction

The mathematical theory of information transmission represents a pinna-
cle of statistical research: the ideas are at once beautiful and applicable
to a remarkably wide variety of questions. While psychologists and neu-
rophysiologists began to apply these concepts almost immediately after
their introduction, the past decade has seen a dramatic increase in the
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popularity of information-theoretic analysis of neural data. It is unsurpris-
ing that these methods have found applications in neuroscience; after all,
the theory shows that certain concepts, such as mutual information, are
unavoidable when one asks the kind of questions neurophysiologists are
interested in. For example, the capacity of an information channel is a fun-
damental quantity when one is interested in how much information can
be carried by a probabilistic transmission system, such as a synapse. Like-
wise, we should calculate the mutual information between a spike train
and an observable signal in the world when we are interested in asking
how much we (or any homunculus) could learn about the signal from the
spike train. In this article, we will be interested not in why we should esti-
mate information-theoretic quantities (see Rieke, Warland, de Ruyter van
Steveninck, & Bialek, 1997; Cover & Thomas, 1991 for extended and elo-
quent discussions of this question) but rather how well we can estimate
these quantities at all, given �nite independently and identically distributed
(i.i.d.) data.

One would think this question would be well understood; after all, ap-
plied statisticians have been studying this problem since the �rst appear-
ance of Shannon’s papers, over 50 years ago (Weaver & Shannon, 1949).
Somewhat surprisingly, though, many basic questions have remained unan-
swered. To understand why, consider the problem of estimating the mutual
information, I.XI Y/, between two signals X and Y. This estimation prob-
lem lies at the heart of the majority of applications of information theory
to data analysis; to make the relevance to neuroscience clear, let X be a
spike train, or an intracellular voltage trace, and Y some behaviorally rele-
vant, physically observable signal, or the activity of a different neuron. In
these examples and in many other interesting cases, the information esti-
mation problem is effectively in�nite-dimensional. By the de�nition of mu-
tual information, we require knowledge of the joint probability distribution
P.X; Y/ on the range spaces of X and Y, and these spaces can be quite large—
and it would seem to be very dif�cult to make progress here in general, given
the limited amount of data one can expect to obtain from any physiological
preparation.

In this article, we analyze a discretization procedure for reducing this
very hard in�nite-dimensional learning problem to a series of more tractable
�nite-dimensional problems. While we are interested particularly in appli-
cations to neuroscience, our results are valid in general for any information
estimation problem. It turns out to be possible to obtain a fairly clear pic-
ture of exactly how well the most commonly used discretized information
estimators perform, why they fail in certain regimes, and how this per-
formance can be improved. Our main practical conclusions are that the
most common estimators can fail badly in common data-analytic situa-
tions and that this failure is more dramatic than has perhaps been appre-
ciated in the literature. The most common procedures for estimating con-
�dence intervals, or error bars, fail even more dramatically in these “bad”
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regimes. We suggest a new approach here and prove some of its advan-
tages.

The article is organized as follows. In section 2, we de�ne the basic regu-
larization procedure (or, rather, formalize an intuitive scheme that has been
widely used for decades). We review the known results in section 3 and then
go on in section 4 to clarify and improve existing bias and variance results,
proving consistency and asymptotic normality results for a few of the most
commonly used information estimators. These results serve mainly to show
when these common estimators can be expected to be accurate and when
they should be expected to break down. Sections 5 and 6 contain the central
results of this article. In section 5, we show, in a fairly intuitive way, why
these common estimators perform so poorly in certain regimes and exactly
how bad this failure is. These results lead us, in section 6, to study a poly-
nomial approximation problem associated with the bias of a certain class of
entropy estimators; this class includes the most common estimators in the
literature, and the solution to this approximation problem provides a new
estimator with much better properties. Section 7 describes some numeri-
cal results that demonstrate the relevance of our analysis for physiological
data regimes. We conclude with a brief discussion of three extensions of
this work: section 8.1 examines a surprising (and possibly useful) degen-
eracy of a Bayesian estimator, section 8.2 gives a consistency result for a
potentially more powerful regularization method than the one examined in
depth here, and section 8.3 attempts to place our results in the context of
estimation of more general functionals of the probability distribution (that
is, not just entropy and mutual information). We attach two appendixes.
In appendix A, we list a few assorted results that are interesting in their
own right but did not �t easily into the �ow of the article. In appendix B,
we give proofs of several of the more dif�cult results, deferred for clarity’s
sake from the main body of the text. Throughout, we assume little previous
knowledge of information theory beyond an understanding of the de�ni-
tion and basic propertiesof entropy (Cover & Thomas, 1991); however, some
knowledge of basic statistics is assumed (see, e.g., Schervish, 1995, for an
introduction).

This article is intended for two audiences: applied scientists (especially
neurophysiologists) interested in using information-theoretic techniques
for data analysis and theorists interested in the more mathematical as-
pects of the information estimation problem. This split audience could
make for a somewhat split presentation: the correct statement of the re-
sults requires some mathematical precision, while the demonstration of
their utility requires some more verbose explanation. Nevertheless, we feel
that the intersection between the applied and theoretical communities is
large enough to justify a uni�ed presentation of our results and our moti-
vations. We hope readers will agree and forgive the length of the resulting
article.
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2 The Setup: Grenander’s Method of Sieves

Much of the inherent dif�culty of our estimation problem stems from the
fact that the mutual information,

I.X; Y/ ´

Z

X £Y
dP.x; y/ log

dP.x; y/

d.P.x/ £ P.y//
;

is a nonlinear functional of an unknown joint probability measure, P.X; Y/,
on two arbitrary measurable spaces X and Y . In many interesting cases, the
“parameter space”—the space of probability measures under considera-
tion—can be very large, even in�nite-dimensional. For example, in the
neuroscienti�c data analysis applications that inspired this work (Strong,
Koberle, de Ruyter van Steveninck, & Bialek, 1998), X could be a space of
time-varying visual stimuli and Y the space of spike trains that might be
evoked by a given stimulus. This Y could be taken to be a (quite large)
space of discrete (counting) measures on the line, while X could be mod-
eled as the (even larger) space of generalized functions on <

3. Given N i.i.d.
samples from P.X; Y/, fxi; yig1·i·N (“stimulus” together with the evoked
“response”), how well can we estimate the information this cell provides
the brain about the visual scene? Clearly, it is dif�cult to answer this ques-
tion as posed; the relationship between stimulus and response could be too
complex to be revealed by the available data, even if N is large by neu-
rophysiological standards. In fact, there are general theorems to this effect
(section 3). Therefore, some kind of regularization is needed.

The most successful approach taken to date in our �eld to circumvent
these problems was introduced by Bialek and colleagues (Bialek, Rieke, de
Ruyter van Steveninck, & Warland, 1991; Strong et al., 1998). The idea is
to admit to the dif�culty of the problem and instead estimate a system of
lower bounds on the mutual information via the data processing inequality
(Cover & Thomas, 1991), which states that

I.XI Y/ ¸ I.S.X/I T.Y//;

for any random variables X and Y and any functions S and T on the range
of X and Y, respectively. The generality of the data processing inequality
implies that we are completely unconstrained in our choice of S and T.
So the strategy, roughly, is to choose a sequence of functions SN and TN
that preserve as much information as possible given that I.SNI TN/ can be
estimated with some �xed accuracy from N data samples. (Note that SN
and TN are chosen independent of the data.) As the size of the available
data set increases, our lower bound grows monotonically toward the true
information. In slightly different language, SN and TN could be viewed as
models, or parameterizations, of the allowed underlying measures P.X; Y/;
we are simply allowing our model to become richer (higher-dimensional)
as more data become available for �tting. Clearly, then, we are not intro-
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ducing anything particularly novel, but merely formalizing what statis-
ticians have been doing naturally since well before Shannon wrote his
papers.

This strategy bears a striking resemblance to regularization methods em-
ployed in abstract statistical inference (Grenander, 1981), generally known
as the method of sieves. Here, one replaces the parameter space of interest
with a closely related space that simpli�es the analysis or provides esti-
mators with more attractive statistical properties. The following example
is canonical and helps to clarify exactly why regularization is necessary.
Say one is sampling from some unknown, smooth probability density func-
tion and is interested in estimating the underlying density. It is clear that
there exists no maximum likelihood estimator of the density in the space of
smooth functions (the object that formally maximizes the likelihood, a sum
of Dirac point masses, does not lie in the allowed smoothness class). The
situation is pathological, then: as the sample size increases to in�nity, our
estimate does not converge to the true density in the sense of any smooth
topology. To avoid this pathology, we regularize our estimator by requiring
that it take its values in a smooth function space. In effect, we restrict our
attention to a subset, a “sieve,” of the possible parameter space. As the avail-
able data increase, we gradually relax our constraints on the smoothness of
the estimator (decrease the “mesh size” of our sieve), until in the limit our
estimate of the underlying density is almost surely arbitrarily close to the
true density. We will borrow this “mesh” and “sieve” terminology for the
remainder of the article.

Here, we have to estimate a joint probability measure, P.X; Y/, on a large
product space, X £ Y , in order to compute I.XI Y/. This is very dif�cult;
therefore, we regularize our problem by instead trying to estimate P.S; T/
(where P.S; T/ is induced by the maps S and T in the natural way, i.e.,
P.S D i; T D j/ D P..x; y/ : S.x/ D i; T.y/ D j/). Thus, our “mesh size” is
determined by the degree of compression inherent in going from .x; y/ to
.S.x/; T.y//. Two variants of this strategy have appeared in the neuroscien-
ti�c literature. The �rst, the so-called reconstruction technique (Bialek et al.,
1991), makes use of some extremal property of the prior signal distribution
to facilitate the reliable estimation of a lower bound on the true information.
TN here is a series of convolution operators, mapping spike trains (elements
of Y ) back into the signal space X . The lower bound on the information
I.X; TN.Y// is estimated by spectral techniques: the prior distribution of
X, P.X/, is chosen to be gaussian, and the well-known maximum-entropy
property and spectral information formula for gaussian distributions pro-
vide the desired bound. The lower bounds obtained by this reconstruction
approach have proven quite useful (Rieke et al., 1997); however, the avail-
able convergence results (of I.X; TN.Y// to I.X; Y/ as N ! 1) rely on strong
assumptions on P.X; Y/, and we will not discuss this technique in depth.
(One �nal note: readers familiar with the reconstruction technique will re-
alize that this example does not quite �t into our general framework, as the
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convolution operators TN, which are chosen by regression techniques, are
in fact dependent on the data. These dependencies complicate the analysis
signi�cantly, and we will say very little on this topic beyond a brief note in
section 8.2.)

The second method, the so-called direct method (Strong et al., 1998;
Buracas, Zador, DeWeese, & Albright, 1998) is at �rst sight less depen-
dent on assumptions on the prior distribtion on X . Here one discretizes
the space of all spike trains on some interval into some �nite number,
m, of words w, and makes use of the information formula for discrete
distributions,

I.XI W/ D H.W/ ¡ H.W j X/;

to obtain a lower bound on the mutual information between the spike train
and the signal of interest. H.:/ above denotes the entropy functional,

H.W/ ´ ¡

X

i
P.Wi/ log P.Wi/;

and H.: j :/ denotes conditional entropy; X is, say, a visual signal on which
we are conditioning.1 In our previous notation, W.y/ D T.y/. The generality
of the data processing inequality, again, means that the discretization can
take arbitrary form; letting T depend on the data size N, TN could, for exam-
ple, encode the total number of spikes emitted by the neuron for small N,
then the occurrence of more detailed patterns of �ring (Strong et al., 1998)
for larger N, until, in the limit, all of the information in the spike train is
retained.

Thus, in this “direct” approach, SN and TN are as simple as possible: these
mapsdiscretize X and Y into a �nite number of points,mS;N and mT;N ,where
mS;N and mT;N grow with N. For each value of N, our problem reduces to
estimating I.SN; TN/, where the joint distribution of the random variables
SN and TN is discrete on mS;NmT;N points, and our parameter space, far
from being in�nite-dimensional, is the tractable mS;NmT;N-simplex, the set
of convex combinations of mS;NmT;N disjoint point masses. We emphasize
again that neither S, T, nor m is allowed to depend on the data; in effect, we
pretend that the discretizing maps and their ranges are chosen in advance,
before we see a single sample.

While this discrete “binning” approach appears quite crude, it will al-
low us to state completely general strong convergence theorems for the
information estimation problem, without any assumptions on, say, the ex-

1 To keep data requirements manageable,H.W j X/—the expected conditional entropy
of W given x, averagedover P.X/—is often replaced with H.W j x/, the conditional entropy
given only a single x. The fact that any rigorous justi�cation of this substitution requires
a strong assumption (namely, that H.W j x/ is effectively independent of x with high
P.x/-probability) has perhaps been overly glossed over in the literature.
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istence or smoothness of a density for P.X; Y/. To our knowledge, results of
this generality are unavailable outside the discrete context (but see Beirlant,
Dudewicz, Gyor�, & van der Meulen, 1997) for a good review of differen-
tial entropy estimation techniques, which provide a powerful alternative
approach when the underlying probability measures are known a priori to
possess a given degree of smoothness; Victor, 2002). In addition, of course,
data that naturally take only a �nite number of values are not uncommon.
Therefore, we will analyze this discrete approachexclusively for the remain-
der of this article.

3 Previous Work

Most of the following results are stated in terms of the entropy H.X/; cor-
responding results for I.X; Y/ follow by Shannon’s formula for discrete in-
formation:

I.X; Y/ D H.X/ C H.Y/ ¡ H.X; Y/:

All of the estimators we will consider are functionals of the “empirical mea-
sures”

pN;i ´

1
N

NX

jD1
±i.TN.yj//

(where ±i denotes the probability measure concentrated at i). The three most
popular estimators for entropy seem to be:

1. The maximum likelihood (ML) estimator given pN (also called the
“plug-in”—by Antos & Kontoyiannis, 2001) or “naive”—by Strong et
al., 1998—estimator),

OHMLE.pN/ ´ ¡

mX

iD1
pN;i log pN;i

(all logs are natural unless stated otherwise).

2. The MLE with the so-called Miller-Madow bias correction (Miller,
1955),

OHMM.pN/ ´

OHMLE.pN/ C

Om ¡ 1
2N

;

where Om is some estimate of the number of bins with nonzero P-
probability (here we take Om to be the number of bins with nonzero
pN-probability; see Panzeri & Treves, 1996, for some other examples).
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3. The jackknifed (Efron & Stein, 1981) version of the MLE,

OHJK ´ NĤMLE ¡

N ¡ 1
N

NX

jD1

OHMLE¡j;

where HMLE¡j is the MLE based on all but the jth sample (unpublished
notes of J. Victor; see also, e.g., Strong et al., 1998, in which a very
similar estimator is used).

3.1 Central Limit Theorem, Asymptotic Bias and Variance. The major-
ity of known results are stated in the following context: �x some discrete
measure p on m bins and let N tend to in�nity. In this case, the multino-
mial central limit theorem (CLT) implies that the empirical measures pN are
asymptotically normal, concentrated on an ellipse of size � N¡1=2 around
the true discrete measure p; since OHMLE is a smooth function of p on the
interior of the m-simplex, OHMLE is asymptotically normal (or chi-squared or
degenerate, according to the usual conditions; Schervish, 1995) as well. It
follows that both the bias and variance of OHMLE decrease approximately as
1
N (Basharin, 1959) at all but a �nite number of points on the m-simplex. We
will discuss this bias and variance rate explicitly for the above estimators in
section 4; here it is suf�cient to note that the asymptotic variance rate varies
smoothly across the space of underlying probability measures p.x; y/, while
the bias rate depends on only the number of nonzero elements of p (and is
therefore constant on the interior of the m-simplex and discontinuous on
the boundary). The asymptotic behavior of this estimation problem (again,
when m is �xed and N ! 1) is thus easily handled by classical techniques.
While it does not seem to have been noted previously, it follows from the
above that OHMLE is asymptotically minimax for �xed m as N ! 1 (by “min-
imax,” we mean best in a worst-case sense; we discuss this concept in more
detail below); see Prakasa Rao (2001) for the standard technique, a clever
“local Bayesian” application of the Cramer-Rao inequality.

Several articles (Miller, 1955; Carlton, 1969; Treves & Panzeri, 1995; Victor,
2000a) provide a series expansion for the bias, in the hope of estimating and
subtracting out the bias directly. Although these authors have all arrived
at basically the same answer, they have done so with varying degrees of
rigor: for example, Miller (1955) uses an expansion of the logarithm that is
not everywhere convergent (we outline this approach below and show how
to avoid these convergence problems). Carlton (1969) rearranged the terms
of a convergent expansion of the logarithm term in H; unfortunately, this
expansion is not absolutely convergent, and therefore this rearrangement
is not necessarily justi�ed. Treves and Panzeri (1995) and Victor (2000a)
both admit that their methods (a divergent expansion of the logarithm in
each case) are not rigorous. Therefore, it would appear that none of the
available results are strong enough to use in the context of this article, where
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m and p can depend arbitrarily strongly on N. We will remedy this situation
below.

3.2 Results of Antos and Kontoyiannis. Antos and Kontoyiannis (2001)
recently contributed two relevant results. The �rst is somewhat negative:

Theorem (Antos & Kontoyiannis, 2001). For any sequence f

OHNg of entropy
estimators, and for any sequence faNg; aN & 0, there is a distribution P on the
integers Z with H ´ H.P/ < 1 and

lim sup
n!1

E.j OHN ¡ Hj/

aN
D 1:

In other words, there is no universal rate at which the error goes to zero,
no matter what estimator we pick, even when our sample space is discrete
(albeit in�nite). Given any such putative rate aN, we can always �nd some
distribution P for which the true rate of convergence is in�nitely slower
than aN . Antos and Kontoyiannis (2001) prove identical theorems for the
mutual information, as well as a few other functionals of P.

The second result is an easy consequence of a more general fact about
functions of multiple random variables; since we will use this general theo-
rem repeatedly below, we reproduce the statement here. McDiarmid (1989)
and Devroye, Gyor�, and Lugosi (1996) provided a proof and extended dis-
cussions. The result basically says that if f is a function of N independent
random variables, such that f depends only weakly on the value of any
single variable, then f is tightly concentrated about its mean (i.e., Var. f / is
small).

Theorem (“McDiarmid’s inequality”; Chernoff, 1952; Azuma, 1967). If
fxjgj: 1;:::;N are independent random variables taking values in some arbitrary mea-
surable space A, and f : AN

7! < is some function satisfying the coordinatewise
boundedness condition,

sup
fx1;:::;xN g;x0

j

j f .x1; : : : ; xN/ ¡ f .x1; : : : ; xj¡1; x0

j; xjC1; : : : ; xN/j < cj;

1 · j · N; (3.1)

then, for any ² > 0,

P.j f .x1; : : : ; xN/ ¡ E. f .x1; : : : ; xN//j > ²/ · 2e
¡2²2=

PN

jD1
c2
j : (3.2)

The condition says that by changing the value of the coordinate xj, we
cannot change the value of the function f by more than some constant cj.
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The usefulness of the theorem is a result of both the ubiquity of functions f
satisfying condition 3.1 (and the ease with which we can usually check the
condition) and the exponential nature of the inequality, which can be quite
powerful if

PN
jD1 c2

j satis�es reasonable growth conditions.
Antos and Kontoyiannis (2001) pointed out that this leads easily to a

useful bound on the variance of the MLE for entropy:

Theorem (Antos & Kontoyiannis, 2001). (a) For all N, the variance of the MLE
for entropy is bounded above:

Var. OHMLE/ ·

�
.log N/2

N

´
: (3.3)

(b) Moreover, by McDiarmid’s inequality, 3.2,

P.j OHMLE ¡ E. OHMLE/j > ²/ · 2e
¡N

2 ²2.log N/¡2
: (3.4)

Note that although this inequality is not particularly tight—while it says
that the variance of OHMLE necessarily dives to zero with increasing N, the
true variance turns out to be even smaller than the bound indicates—the
inequality is completely universal, that is, independent of m or P. For ex-
ample, Antos and Kontoyiannis (2001) use it in the context of m (countably)
in�nite. In addition, it is easy to apply this result to other functionals of pN
(see section 6 for one such important generalization).

3.3 OHMLE Is Negatively Biased Everywhere. Finally, for completeness,
we mention the following well-known fact,

Ep. OHMLE/ · H.p/; (3.5)

where Ep.:/ denotes the conditional expectation given p. We have equality
in the above expression only when H.p/ D 0; in words, the bias of the MLE
for entropy is negative everywhere unless the underlying distribution p
is supported on a single point. This is all a simple consequence of Jensen’s
inequality; a proofwas recently given in Antos and Kontoyiannis (2001), and
we will supply another easy proof below. Note that equation 3.5 does not
imply that the MLE for mutual information is biased upward everywhere,
as has been claimed elsewhere; it is easy to �nd distributions p such that
Ep. OIMLE/ < I.p/. We will discuss the reason for this misunderstanding below.

It will help to keep Figure 1 in mind. This �gure gives a compelling
illustration of perhaps the most basic fact about OHMLE: the variance is small
and the bias is large until N À m. This qualitative statement is not new;
however, the corresponding quantitative statement—especially the fact that
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Figure 1: Evolution of sampling distributions of MLE: �xed m, increasing N.
The true value of H is indicated by the dots at the bottom right corner of each
panel. Note the small variance for all N and the slow decrease of the bias as
N ! 1.

OHMLE in the statement can be replaced with any of the three most commonly
used estimators—appears to be novel. We will develop this argument over
the next four sections and postpone discussion of the implications for data
analysis until the conclusion.

4 The N À m Range: The Local Expansion

The unifying theme of this section is a simple local expansion of the entropy
functional around the true value of the discrete measure p, a variant of what
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is termed the “delta method” in the statistics literature. This expansion is
similar to one used by previous authors; we will be careful to note the
extensions provided by the current work.

The main idea, outlined, for example, in Ser�ing (1980), is that any
smooth function of the empirical measures pN (e.g., any of the three es-
timators for entropy introduced above) will behave like an af�ne function
with probability approaching one as N goes to in�nity. To be more precise,
given some functional f of the empirical measures, we can expand f around
the underlying distribution p as follows:

f .pN/ D f .p/ C df .pI pN ¡ p/ C rN. f; p; pN/;

where df .pI pN ¡ p/ denotes the functional derivative (Frechet derivative)
of f with respect to p in the direction pN ¡ p, and rN. f; p; pN/ the remainder.
If f is suf�ciently smooth (in a suitable sense), the differential df .pI pN ¡ p/
will be a linear functional of pN ¡ p for all p, implying

df .pI pN ¡ p/ ´ df

0

@pI

1
N

NX

jD1
±j ¡ p

1

A
D

1
N

X

j

df .pI ±j ¡ p/;

that is, df .pI pN ¡ p/ is the average of N i.i.d. variables, which implies, un-
der classical conditions on the tail of the distribution of df .pI ±j ¡ p/, that
N1=2df .pI pN ¡ p/ is asymptotically normal. If we can prove that N1=2rN. f; p;
pN/ goes to zero in probability (that is, the behavior of f is asymptotically
the same as the behavior of a linear expansion of f about p), then a CLT for
f follows. This provides us with a more �exible approach than the method
outlined in section 3.1 (recall that that method relied on a CLT for the un-
derlying empirical measures pN , and such a CLT does not necessarily hold
if m and p are not �xed).

Let us apply all this to H:

OHMLE.pN/ D H.pN/

D H.p/ C dH.pI pN ¡ p/ C rN.H; p; pN/

D H.p/ C

mX

iD1
.pi ¡ pN;i/ log pi C rN.H; p; pN/: (4.1)

A little algebra shows that

rN.H; p; pN/ D ¡DKL.pNI p/;

where DKL.pNI p/ denotes the Kullback-Leibler divergence between pN, the
empirical measure, and p, the true distribution. The sum in equation 4.1 has
mean 0; by linearity of expectation, then,

Ep. OHMLE/ ¡ H D ¡Ep.DKL.pNI p//; (4.2)
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and since DKL.pNI p/ ¸ 0, where the inequality is strict with positive proba-
bility whenever p is nondegenerate, we have a simple proof of the nonpos-
itive bias of the MLE. Another (slightly more informative) approach will be
given in section 6.

The second useful consequence of the local expansion follows by the next
two well-known results (Gibbs & Su, 2002):

0 · DKL.pNI p/ · log.1 C Â2.pNI p//; (4.3)

where

Â2
´

mX

iD1

.pN;i ¡ pi/
2

p2
i

denotes Pearson’s chi-square functional, and

Ep.Â 2.pNI p// D

jsupp.p/j ¡ 1
N

8p; (4.4)

where jsupp.p/j denotes the size of the support of p, the number of points
with nonzero p-probability. Expressions 4.2 through 4.4, with Jensen’s in-
equality, give us rigorous upper and lower bounds on B. OHMLE/, the bias of
the MLE:

Proposition 1.

¡ log
�

1 C

m ¡ 1
N

´
· B. OHMLE/ · 0;

with equality iff p is degenerate. The lower bound is tight as N=m ! 0, and the
upper bound is tight as N=m ! 1.

Here we note that Miller (1955) used a similar expansion to obtain the 1
N

bias rate for m �xed, N ! 1. The remaining step is to expand DKL.pNI p/:

DKL.pNI p/ D

1
2

.Â 2.pNI p// C O.N¡2/; (4.5)

if p is �xed. As noted in section 3.1, this expansion of DKL does not converge
for all possible values of pN; however, when m and p are �xed, it is easy
to show, using a simple cutoff argument, that this “bad” set of pN has an
asymptotically negligible effect on Ep.DKL/. The formula for the mean of the
chi-square statistic, equation 4.4, completes Miller’s and Madow’s original
proof (Miller, 1955); we have

B. OHMLE/ D ¡

m ¡ 1
2N

C o.N¡1/; (4.6)
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if m is �xed and N ! 1. From here, it easily follows that OHMM and OHJK

both have o.N¡1/ bias under these conditions (for OHMM, we need only show
that Om ! m suf�ciently rapidly, and this follows by any of a number of
exponential inequalities [Dembo & Zeitouni, 1993; Devroye et al., 1996]; the
statement for OHJK can be proven by direct computation). To extend these
kinds of results to the case when m and p are not �xed, we have to generalize
equation 4.6. This desired generalization of Miller’s result does turn out to
be true, as we prove (using a completely different technique) in section 6.

It is worth emphasizing that Ep.Â 2.pNI p// is not constant in p; it is con-
stant on the interior of the m-simplex but varies discontinuously on the
boundary. This was the source of the confusion about the bias of the MLE
for information,

OIMLE.x; y/ ´

OHMLE.x/ C

OHMLE.y/ ¡

OHMLE.x; y/:

When p.x; y/ has support on the full mxmy points, the 1
N bias rate is indeed

given by mxmy ¡ mx ¡ my ¡ 1, which is positive for mx; my large enough.
However, p.x; y/ can be supported on as few as max.mx; my/ points, which
means that the 1

N bias rate of OIMLE can be negative. It could be argued that
this reduced-support case is nonphysiological; however, a simple continuity
argument shows that even when p.x; y/ has full support but places most of
its mass on a subset of its support, the bias can be negative even for large
N, even though the asymptotic bias rate in this case is positive.

The simple bounds of proposition 1 form about half of the proof of the
following two theorems, the main results of this section. They say that if
mS;N and mT;N grow with N, but not too quickly, the “sieve” regularization
works, in the sense that the sieve estimator is almost surely consistent and
asymptotically normal and ef�cient on a

p

N scale. The power of these
results lies in their complete generality: we place no constraints whatsoever
on either the underlying probability measure, p.x; y/, or the sample spaces X
and Y . Note that the theorems are true for all three of the estimators de�ned
above (i.e., OH above—and in the rest of the article, unless otherwise noted—
can be replaced by OHMLE, OHJK , or OHMM); thus, all three common estimators
have the same 1

N variance rate: ¾ 2, as de�ned below. In the following, ¾X;Y is
the joint ¾ -algebra of X£Y on which the underlying probability distribution
p.X; Y/ isde�ned, ¾SN;TN is the (�nite) ¾ -algebra generated by SN and TN , and
HN denotes the N-discretized entropy, H.SN.X//. The ¾ -algebra condition in
theorem 1 is merely a technical way of saying that SN and TN asymptotically
retain all of the data in the sample .x; y/ in the appropriatemeasure-theoretic
sense; see appendix A for details.

Theorem 1 (Consistency). If mS;NmT;N D o.N/ and ¾SN ;TN generates ¾X;Y,
then OI ! I a.s. as N ! 1.
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Theorem 2 (Central limit). Let

¾ 2
N ´ Var.¡ log pTN / ´

mX

iD1
pTN ;i.¡ log pTN ;i ¡ HN/2:

If mN ´ m D o.N1=2/, and

lim inf
N!1

N1¡®¾ 2
N > 0

for some ® > 0, then
±

N
¾ 2

N

²1=2
. OH ¡ HN/ is asymptotically standard normal.

The following lemma is the key to the proof of theorem 1, and is inter-
esting in its own right:

Lemma 1. If m D o.N/, then OH ! HN a.s.

Note that ¾ 2
N in the statement of the CLT (theorem 2) is exactly the variance

of the sum in expression 4.1, and corresponds to the asymptotic variance
derived originally in Basharin (1959), by a similar local expansion. We also
point out that ¾ 2

N has a speci�c meaning in the theory of data compression
(where ¾ 2

N goes by the name of “minimal coding variance”; see Kontoyian-
nis, 1997, for more details).

We close this section with some useful results on the variance of OH. We
have, under the stated conditions, that the variance of OH is of order ¾ 2

N

asymptotically (by the CLT), and strictly less than Clog.N/2

N for all N, for some
�xed C (by the result of Antos & Kontoyiannis 2001). It turns out that we
can “interpolate,” in a sense, between the (asymptotically loose but good
for all N) p-independent bound and the (asymptotically exact but bad for
small N) p-dependent gaussian approximation. The trick is to bound the
average �uctuations in OH when randomly replacing one sample, instead of
the worst-case �uctuations, as in McDiarmid’s bound. The key inequality
is due to Steele (1986):

Theorem (Steele’s inequality). If S.x1; x2; : : : ; xN/ is any function of N i.i.d.
random variables, then

var.S/ ·

1
2

E
NX

jD1
.S ¡ Si/

2;

where Si D S.x1; x2; : : : ; x0

i; : : : ; xN/ is given by replacing the xi with an i.i.d.
copy.
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For S D

OH, it turns out to be possible to compute the right-hand side
explicitly; the details are given in appendix B. It should be clear even without
any computation that the bound so obtained is at least as good as the Clog.N/2

N
guaranteed by McDiarmid; it is also easy to show, by the linear expansion
technique employed above, that the bound is asymptotically tight under
conditions similar to those of theorem 2.

Thus, ¾ .p/2 plays the key role in determining the variance of OH. We know
¾ 2 can be zero for some p, since Var.¡ log pi/ is zero for any p uniform on
any k points, k · m. On the other hand, how large can ¾ 2 be? The following
proposition provides the answer; the proof is in appendix B.

Proposition 2.

max
p

¾ 2
� .log m/2:

This leads us to de�ne the following bias-variance balance function, valid
in the N À m range:

V=B2
¼

N.log m/2

m2 :

If V=B2 is large, variance dominates the mean-square error (in the “worst-
case” sense), and bias dominates if V=B2 is small. It is not hard to see that if
m is at all large, bias dominates until N is relatively huge (recall Figure 1).
(This is just a rule of thumb, of course, not least because the level of accuracy
desired, and the relative importance of bias and variance, depend on the
application. We give more precise—in particular, valid for all values of N
and m—formulas for the bias and variance in the following.)

To summarize, the sieve method is effective and the asymptotic behav-
ior of OH is well understood for N À m. In this regime, if V=B2 > 1, classi-
cal (Cramer-Rao) effects dominate, and the three most common estimators
( OHMLE, OHMM, and OHJK) are approximately equivalent, since they share the
same asymptotic variance rate. But if V=B2 < 1, bias plays a more impor-
tant role, and estimators that are speci�cally designed to reduce the bias
become competitive; previous work has demonstrated that OHMM and OHJK
are effective in this regime (Panzeri & Treves, 1996; Strong et al., 1998). In
the next section, we turn to a regime that is much more poorly understood,
the (not uncommon) case when N � m. We will see that the local expansion
becomes much less useful in this regime, and a different kind of analysis is
required.

5 The N � m Range: Consequences of Symmetry

The main result of this section is as follows: if N=m is bounded, the bias of
OH remains large while the variance is always small, even if N ! 1. The
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basic idea is that entropy is a symmetric function of pi; 1 · i · m, in that
H is invariant under permutations of the points f1; : : : ; mg. Most common
estimators of H, including OHMLE, OHMM, and OHJK , share this permutation
symmetry (in fact, one can show that there is some statistical justi�cation
for restricting our attention to this class of symmetric estimators; see ap-
pendix A). Thus, the distribution of OHMLE.pN/, say, is the same as that of
OHMLE.p0

N/, where p0

N is the rank-sorted empirical measure (for concreteness,
de�ne “rank-sorted” as “rank-sorted in decreasing order”). This leads us
to study the limiting distribution of these sorted empirical measures (see
Figure 2). It turns out that these sorted histograms converge to the “wrong”
distribution under certain circumstances. We have the following result:

Theorem 3 (Convergence of sorted empirical measures; inconsistency).
Let P be absolutely continuous with respect to Lebesgue measure on the inter-
val [0; 1], and let p D dP=dm be the corresponding density. Let SN be the m-
equipartition of [0; 1], p0 denote the sorted empirical measure, and N=m ! c; 0 <
c < 1. Then:

a. p0

L1 ;a:s:
! p0

c;1, with kp0

c;1 ¡ pk1 > 0. Here p0

c;1 is the monotonically decreas-
ing step density with gaps between steps j and j C 1 given by

Z 1

0
dte¡cp.t/ .cp.t// j

j!
:

b. Assume p is bounded. Then OH ¡ HN ! Bc; OH.p/ a:s:, where Bc; OH.p/ is a
deterministic function, nonconstant in p. For OH D

OHMLE,

Bc; OH.p/ D h.p0/ ¡ h.p/ < 0;

where h.:/ denotes differential entropy.

In other words, when the sieve is too �ne (N � m), the limit sorted
empirical histogram exists (and is surprisingly easy to compute) but is not
equal to the true density, even when the original density is monotonically
decreasing and of step form. As a consequence, OH remains biased even
as N ! 1. This in turn leads to a strictly positive lower bound on the
asymptotic error of OH over a large portion of the parameter space. The basic
phenomenon is illustrated in Figure 2.

We can apply this theorem to obtain simple formulas for the asymptotic
bias B.p; c/ for special cases of p: for example, for the uniform distribution
U ´ U.[0; 1]/,

Bc; OHMLE
.U/ D log.c/ ¡ e¡c

1X

jD1

cj¡1

. j ¡ 1/!
log.j/I
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Figure 2: “Incorrect” convergence of sorted empirical measures. Each left panel
shows an example unsorted m-bin histogram of N samples from the uniform
density, with N=m D 1 and N increasing from top to bottom. Ten sorted sample
histograms are overlaid in each right panel, demonstrating the convergence to
a nonuniform limit. The analytically derived p0

c;1 is drawn in the �nal panel but
is obscured by the sample histograms.

Bc; OHMM
.U/ D Bc; OHMLE

.U/ C

1 ¡ e¡c

2c
I

Bc; OHJK
.U/ D 1 C log.c/ ¡ e¡c

1X

jD1

cj¡1

. j ¡ 1/!
. j ¡ c/ log. j/:

To give some insight into these formulas, note that Bc; OHMLE
.U/ behaves like

log.N/ ¡ log.m/ as c ! 0, as expected given that OHMLE is supported on
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[0; log.N/] (recall the lower bound of proposition 1); meanwhile,

Bc; OHMM
.U/ � Bc; OHMLE

.U/ C

1
2

and

Bc; OHJK
.U/ � Bc; OHMLE

.U/ C 1

in this c ! 0 limit. In other words, in the extremely undersampled limit, the
Miller correctionreduces the bias by only half a nat, while the jackknife gives
us only twice that. It turns out that the proof of the theorem leads to good
upper bounds on the approximation error of these formulas, indicating that
these asymptotic results will be useful even for small N. We examine the
quality of these approximations for �nite N and m in section 7.

This asymptotically deterministic behavior of the sorted histograms is
perhaps surprising, given that there is no such corresponding deterministic
behavior for the unsorted histograms (although, by the Glivenko-Cantelli
theorem, van der Vaart & Wellner, 1996, there is well-known deterministic
behavior for the integrals of the histograms). What is going on here? In crude
terms, the sorting procedure “averages over” the variability in the unsorted
histograms. In the case of the theorem, the “variability” at each bin turns
out to be of a Poisson nature, in the limit as m; N ! 1, and this leads to a
well-de�ned and easy-to-compute limit for the sorted histograms.

To be more precise, note that the value of the sorted histogram at bin k is
greater than t if and only if the number of (unsorted) pN;i with pN;i > t is at
least k (remember that we are sorting in decreasing order). In other words,

p0

N D F¡1
N ;

where FN is the empirical “histogram distribution function,”

FN.t/ ´

1
m

mX

iD1
1.pN;i < t/;

and its inverse is de�ned in the usual way. We can expect these sums of
indicators to converge to the sums of their expectations, which in this case
are given by

E.FN.t// D

1
m

X

i
P.pN;i < t/:

Finally, it is not hard to show that this last sum can be approximated by
an integral of Poisson probabilities (see appendix B for details). Something
similar happens even if m D o.N/; in this case, under similar conditions
on p, we would expect each pN;i to be approximately gaussian instead of
Poisson.
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To compute E. OH/ now, we need only note the following important fact:
each OH is a linear functional of the “histogram order statistics,”

hj ´

mX

iD1
1.ni D j/;

where

ni ´ NpN;i

is the unnormalized empirical measure. For example,

OHMLE D

NX

jD0
a

OHMLE;j;Nhj;

where

a
OHMLE;j;N D ¡

j
N

log
j

N
;

while

a
OHJK ;j;N D Na

OHMLE;j;N ¡

N ¡ 1
N

..N ¡ j/a
OHMLE;j;N¡1 C ja

OHMLE;j¡1;N¡1/:

Linearity of expectation now makes things very easy for us:

E. OH/ D

NX

jD0
a

OH;j;NE.hj/

D

X

j

mX

iD1
aj;NP.ni D j/

D

X

j

aj;N
X

i

Á
N
j

!

pj
i .1 ¡ pi/

N¡j: (5.1)

We emphasize that the above formula is exact for all N, m, and p; again,
the usual Poisson or gaussian approximations to the last sum lead to useful
asymptotic bias formulas. See appendix B for the rigorous computations.

For our �nal result of this section, let p and SN be as in the statement
of theorem 3, with p bounded, and N D O.m1¡®/, ® > 0. Then some easy
computations show that P.9i: ni > j/ ! 0 for all j > ®¡1. In other words,
with high probability, we have to estimate H given only 1 C ®¡1 numbers,
namely fhjg0·j·®¡1 , and it is not hard to see, given equation 5.1 and the
usual Bayesian lower bounds on minimax error rates (see, e.g., Ritov &
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Bickel, 1990), that this is not enough to estimate H.p/. We have, therefore:

Theorem 4. If N � O.m1¡®/, ® > 0, then no consistent estimator for H exists.

By Shannon’s discrete formula, a similar result holds for mutual infor-
mation.

6 Approximation Theory and Bias

The last equality, expression 5.1, is key to the rest of our development.
Letting B. OH/ denote the bias of OH, we have:

B. OH/ D

0

@
NX

jD0
aj;N

mX

iD1

Á
N
j

!

pj
i.1 ¡ pi/

N¡j

1

A
¡

Á
mX

iD1
¡pi log.pi/

!

D

Á
X

i
pi log.pi/

!

C

X

i

X

j
aj;N

Á
N
j

!

pj
i.1 ¡ pi/

N¡j

D

X

i

0

@pi log.pi/ C

X

j

aj;N

Á
N
j

!

pj
i.1 ¡ pi/

N¡j

1

A :

If we de�ne the usual entropy function,

H.x/ D ¡x log x;

and the binomial polynomials,

Bj;N.x/ ´

Á
N
j

!

xj.1 ¡ x/N¡j;

we have

¡B. OH/ D

X

i

0

@H.pi/ ¡

X

j

aj;NBj;N.pi/

1

A :

In other words, the bias is the m-fold sum of the difference between the
function H and a polynomial of degree N; these differences are taken at
the points pi, which all fall on the interval [0; 1]. The bias will be small,
therefore, if the polynomial is close, in some suitable sense, to H. This type of
polynomial approximationproblem has been extensively studied (Devore&
Lorentz, 1993), and certain results from this general theory of approximation
will prove quite useful.
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Given any continuous function f on the interval, the Bernstein approxi-
mating polynomials of f , BN. f /, are de�ned as a linear combination of the
binomial polynomials de�ned above:

BN. f /.x/ ´

NX

jD0
f .j=N/Bj;N.x/:

Note that for the MLE,

aj;N D H.j=N/I

that is, the polynomial appearing in equation 5.1 is, for the MLE, exactly the
Bernstein polynomial for the entropy function H.x/. Everything we know
about the bias of the MLE (and more) can be derived from a few simple gen-
eral facts about Bernstein polynomials. For example, we �nd the following
result in Devore and Lorentz (1993):

Theorem (Devore & Lorentz, 1993, theorem 10.4.2). If f is strictly concave on
the interval, then

BN. f /.x/ < BNC1. f /.x/ < f .x/; 0 < x < 1:

Clearly, H is strictly concave, and BN.H/.x/ and H are continuous, hence the
bias is everywhere nonpositive; moreover, since

BN.H/.0/ D H.0/ D 0 D H.1/ D BN.H/.1/;

the bias is strictly negative unless p is degenerate. Of course, we already
knew this, but the above result makes the following, less well-known propo-
sition easy:

Proposition 3. For �xed m and nondegenerate p, the bias of the MLE is strictly
decreasing in magnitude as a function of N.

(Couple the local expansion, equation 4.1, with Cover & Thomas, 1991,
Chapter 2, Problem 34, for a purely information-theoretic proof.)

The second useful result is given in the same chapter:

Theorem (Devore & Lorentz, 1993, theorem 10.3.1). If f is bounded on the
interval, differentiable in some neighborhood of x, and has second derivative f 00.x/
at x, then

lim
N!1

N.BN. f /.x/ ¡ f .x// D f 00.x/
x.1 ¡ x/

2
:
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This theorem hints at the desired generalization of Miller’s original result
on the asymptotic behavior of the bias of the MLE:

Theorem 5. If m > 1, N mini pi ! 1, then

lim
N

m ¡ 1
B. OHMLE/ D ¡

1
2

:

The proof is an elaboration of the proof of the above theorem 10.3.1
of Devore and Lorentz (1993); we leave it for appendix B. Note that the
convergence stated in the theorem given by Devore and Lorentz (1993) is
not uniform for f D H, because H.x/ is not differentiable at x D 0; thus,
when the condition of the theorem is not met (i.e., mini pi D O. 1

N /), more
intricate asymptotic bias formulas are necessary. As before, we can use the
Poisson approximation for the bins with Npi ! c, 0 < c < 1 and an o.1=N/
approximation for those bins with Npi ! 0.

6.1 “Best Upper Bounds” (BUB) Estimator. Theorem 5 suggests one
simple way to reduce the bias of the MLE: make the substitution

aj;N D ¡

j
N

log
j

N
! aj;N ¡ H00

�
j

N

´ j
N .1 ¡

j
N /

2N

D ¡

j
N

log
j

N
C

.1 ¡

j
N /

2N
: (6.1)

This leads exactly to a version of the Miller-Madow correction and gives
another angle on why this correction fails in the N � m regime: as discussed
above, the singularity of H.x/ at 0 is the impediment.

A moresystematic approach toward reducing the bias would be to choose
aj;N such that the resulting polynomial is the best approximantof H.x/ within
the space of N-degree polynomials. This space corresponds exactly to the
class of estimators that are, like OH, linear in the histogram order statistics.
We write this correspondence explicitly:

faj;Ng0·j·N Ã!

OHa;N;

where we de�ne OHa;N ´

OHa to be the estimator determined by aj;N , accord-
ing to

OHa;n D

NX

jD0
aj;Nhj:

Clearly, only a small subset of estimators has this linearity property; the hj-
linear class comprisesan NC1-dimensional subspace of the mN-dimensional
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space of all possible estimators. (Of course, mN overstates the case quite a
bit, as this number ignores various kinds of symmetries we would want to
build into our estimator—see propositions 10 and 11—but it is still clear that
the linear estimators do not exhaust the class of all reasonable estimators.)
Nevertheless, this class will turn out to be quite useful.

What sense of “best approximation” is right for us? If we are interested in
worst-case results, uniform approximation would seem to be a good choice:
that is, we want to �nd the polynomial that minimizes

M. OHa/ ´ max
x

������
H.x/ ¡

X

j

aj;NBj;N.x/

������
:

(Note the the above: the best approximant in this case turns out to be
unique—Devore & Lorentz, 1993—although we will not need this fact be-
low.) A bound on M. OHa/ obviously leads to a bound on the maximum bias
over all p:

max
p

jB. OHa/j · mM. OHa/:

However, the above inequality is not particularly tight. We know, by Mar-
kov’s inequality, that p cannot have too many components greater than 1=m,
and therefore the behavior of the approximant for x near x D 1 might be less
important than the behavior near x D 0. Therefore, it makes sense to solve
a weighted uniform approximation problem: minimize

M¤. f; OHa/ ´ sup
x

0

@ f .x/

������
H.x/ ¡

X

j
aj;NBj;N.x/

������

1

A ;

where f is some positive function on the interval. The choice f .x/ D m thus
corresponds to a bound of the form

max
p

jB. OHa/j · c¤. f /M¤. f; OHa/;

with the constant c¤. f / equal to one here. Can we generalize this?
According to the discussion above, we would like f to be larger near

zero than near one, since p can have many small components but at most 1=x
components greater than x. One obvious candidate for f , then, is f .x/ D 1=x.
It is easy to prove that

max
p

jB. OHa/j · M¤.1=x; OHa/;

that is, c¤.1=x/ D 1 (see appendix B). However, this f gives too much weight
to small pi; a better choice is

f .x/ D

(
m x < 1=m;

1=x x ¸ 1=m:
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For this f , we have:

Proposition 4.

max
p

jB. OHa/j · c¤. f /M¤. f; OHa//; c¤. f / D 2:

See appendix B for the proof.
It can be shown, using the above bounds combined with a much deeper

result from approximation theory (Devore & Lorentz, 1993; Ditzian & Totik,
1987), that there exists an aj;N such that the maximum (over all p) bias is
O. m

N2 /. This is clearly better than the O. m
N / rate offered by the three most

popular OH. We even have a fairly ef�cient algorithm to compute this esti-
mator (a specialized descent algorithm developed by Remes; Watson, 1980).
Unfortunately, the good approximation properties of this estimator are a
result of a delicate balancing of large, oscillating coef�cients aj;N , and the
variance of the corresponding estimator turns out to be very large. (This
is predictable, in retrospect: we already know that no consistent estimator
exists if m � N1C®; ® > 0.) Thus, to �nd a good estimator, we need to min-
imize bounds on bias and variance simultaneously; we would like to �nd
OHa to minimize

max
p

.Bp. OHa/
2

C Vp. OHa//;

where the notation for bias and variance should be obvious enough. We
have

max
p

.Bp. OHa/
2

C Vp. OHa// · max
p

Bp. OHa/
2

C max
p

Vp. OHa/

· .c¤. f /M¤. f; OHa//
2

C max
p

Vp. OHa/; (6.2)

and at least two candidates for easily computable uniform bounds on the
variance. The �rst comes from McDiarmid:

Proposition 5.

Var. OHa/ < N max
0·j<N

.ajC1 ¡ aj/
2:

This proposition is a trivial generalization of the corresponding result of
Antos and Kontoyiannis (2001) for the MLE; the proofs are identical. We
will make the abbreviation

kDak

2
1

´ max
0·j<N

.ajC1 ¡ aj/
2:
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The second variance bound comes from Steele (1986); see appendix B for
the proof (again, a generalization of the corresponding result for OH):

Proposition 6.

Var. OHa/ < 2c¤. f / sup
x

������
f .x/

0

@
NX

jD2
j.aj¡1 ¡ aj/

2Bj;N.x/

1

A

������
:

Thus, we have our choice of several rigorous upper bounds on the max-
imum expected error, over all possible underlying distributions p, of any
given OHa. If we can �nd a set of faj;Ng that makes any of these bounds small,
we will have found a good estimator, in the worst-case sense; moreover, we
will have uniform conservative con�dence intervals with which to gauge
the accuracy of our estimates. (Note that propositions 4 through 6 can be
used to compute strictly conservative error bars for other hj-linear estima-
tors; all one has to do is plug in the corresponding faj;Ng.)

Now, how do we �nd such a good faj;Ng? For simplicity, we will base our
development here on the McDiarmid bound, proposition5, but very similar
methods can be used to exploit the Steele bound. Our �rst step is to replace
the above L

1
norms with L2 norms; recall that

M¤. f; Ha/
2

D

®®®®®®
. f /

0

@H ¡

X

j

aj;NBj;N

1

A

®®®®®®

2

1

:

So to choose aN;j in a computationally feasible amount of time, we minimize
the following:

c¤. f /2

®®®®®®
. f /

0

@H ¡

X

j
aj;NBj;N

1

A

®®®®®®

2

2

C NkDak

2
2: (6.3)

This is a “regularized least-squares” problem, whose closed-form solution
is well known; the hope is that the (unique) minimizer of expression 6.3 is
a near-minimizer of expression 6.2, as well. The solution for the best aj;N , in
vector notation, is

a D

�
XtX C

N
c¤. f /2 DtD

´
¡1

XtY; (6.4)

where D is the difference operator, de�ned as in proposition 5, and XtX
and XtY denote the usual matrix and vector of self- and cross-products,
hBj;N f; Bk;N f i and hBj;N f; Hf i, respectively.
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As is well known (Press, Teukolsky, Vetterling, & Flannery, 1992), the
computation of the solution 6.4 requires on the order of N3 time steps. We
can improve this to an effectively O.N/-time algorithm with an empirical
observation: for large enough j, the aN;j computed by the above algorithm
look a lot like the aN;j described in expression 6.1 (data not shown). This is
unsurprising, given Devore and Lorentz’s theorem 10.3.1; the trick we took
advantage of in expression 6.1 should work exactly for those j for which
the function to be approximated is smooth at x D

j
N , and H.

j
N / becomes

monotonically smoother as j increases.
Thus, �nally, we arrive at an algorithm: for 0 < k < K ¿ N, set aN;j D

¡

j
N log j

N C

.1¡

j
N /

2N for all j > k, and choose aN;j; j · k to minimize the
least-squares objective function 6.3; this entails a simple modi�cation of
equation 6.4,

aj·k D

�
XtXj·k C

N
c¤. f /2 .DtD C It

kIk/

´
¡1 �

XtYj·k C

NakC1

c¤. f /2 ek

´
;

where Ik is the matrix whose entries are all zero, except for a one at .k; k/; ek
is the vector whose entries are all zero, except for a one in the kth element;
XtXj·k is the upper-left k £ k submatrix of XtX; and

XtYj·k D

*

Bj;N f;

0

@H ¡

NX

jDkC1
aj;NBj;N

1

A f

+

:

Last, choose aN;j to minimize the true objective function, equation 6.2, over
all K estimators so obtained. In practice, the minimal effective K varies quite
slowly with N (for example, for N D m < 105, K ¼ 30); thus, the algorithm
is approximately (but not rigorously) O.N/. (Of course, once a good faj;Ng

is chosen, OHa is no harder to compute than OH.) We will refer to the resulting
estimator as OHBUB, for “best upper bound” (Matlab code implementing this
estimator is available on-line at http:==www.cns.nyu.edu/�liam).

Before we discuss OHBUB further, we note several minor but useful modi-
�cations of the above algorithm. First, for small enough N, the regularized
least-squares solution can be used as the starting point for a hill-climbing
procedure, minimizingexpression 6.2 directly, for slightly improved results.
Second, f , and the corresponding c¤. f /¡2 prefactor on the variance (DtD)
term, can be modi�ed if the experimenter is more interested in reducing bias
than variance, or vice versa. Finally, along the same lines, we can constrain
the size of a given coef�cient ak;N by adding a Lagrange multiplier to the
regularized least-square solution as follows:

�
XtX C

N
c¤. f /2 DtD C ¸kIt

kIk

´
¡1

XtY;

http://www.cns.nyu.edu/%7Eliam
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Figure 3: A comparison of lower bounds on worst-case error for OHJK (upward-
facing triangles) to upper bounds on the same for OHBUB (downward-facing tri-
angles), for several different values of N=m.

where Ik is as de�ned above. This is useful in the following context: at points
p for which H.p/ is small, most of the elements of the typical empirical mea-
sure are zero; hence, the bias near these points is ¼ .N ¡ 1/a0;N C aN;N,
and ¸0 can be set as high as necessary to keep the bias as low as desired
near these low entropy points. Numerical results show that these pertur-
bations have little ill effect on the performance of the estimator; for ex-
ample, the worst-case error is relatively insensitive to the value of ¸0 (see
Figure 7).

The performance of this new estimator is quite promising. Figure 3 indi-
cates that when m is allowed to grow linearly with N, the upper bound on
the RMS error of this estimator (the square root of expression 6.2) drops off
approximately as

max
p

..E. OHBUB ¡ H/2/1=2/ <� N¡®; ® ¼ 1=3:
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(Recall that we have a lower bound on the worst-case error of the three most
common OH:

max
p

..E. OH ¡ H/2/1=2/ >� B
OH.N=m/;

where B
OH.N=m/ is a bias term that remains bounded away from zero if N=m

is bounded.) For emphasis, we codify this observation as a conjecture:

Conjecture. OHBUB is consistent as N ! 1 even if N=m � c; 0 < c < 1.

This conjecture is perhaps not as surprising as it appears at �rst glance;
while, intuitively, the nonparametric estimation of the full distribution p
on m bins should require N À m samples, it is not a priori clear that esti-
mating a single parameter, or functional of the distribution, should be so
dif�cult. Unfortunately, while we have been able to sketch a proof of the
above conjecture, we have not yet obtained any kind of complete asymp-
totic theory for this new estimator along the lines of the consistency results
of section 4; we hope to return to this question in more depth in the future
(see section 8.3).

From a nonasymptotic point of view, the new estimator is clearly superior
to the three most common OH, even for small N, if N=m is small enough:
the upper bounds on the error of the new estimator are smaller than the
lower bounds on the worst-case error of OHJK for N=m D 1, for example, by
N ¼ 1000, while the crossover point occurs at N ¼ 50 for m D 4N. (We
obtain these lower bounds by computing the error on a certain subset of
the parameter space on which exact calculations are possible; see section 7.
For this range of N and m, OHJK always had a smaller maximum error than
OHMLE or OHMM.) For larger values of N=m or smaller values of N, the �gure

is inconclusive, as the upper bounds for the new estimator are greater than
the lower bounds for OHJK . However, the numerical results in the next section
indicate that, in fact, OHBUB performs as well as the three most common OH
even in the N À m regime.

7 Numerical Results and Applications to Data

What is the best way to quantify the performance of this new estimator
(and to compare this performance to that of the three most common OH)?
Ideally, we would like to examine the expected error of a given estimator
simultaneously for all parameter values. Of course, this is possible only
when the parameter space is small enough; here, our parameter space is
the .m ¡ 1/-dimensional space of discrete distributions on m points, so we
can directly display the error function only if m · 3 (see Figure 4). For
larger m, we can either compute upper bounds on the worst-case error, as
in the previous section (this worst-case error is often considered the most
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Figure 4: Exact RMS error surface (in bits) of the MLE on the 3-simplex, N D 20.
Note the six permutation symmetries. One of the “central lines” is drawn in
black.

important measure of an estimator ’s performance if we know nothing about
the a priori likelihood of the underlying parameter values), or we can lookat
the error function on what we hope is a representative slice of the parameter
space.

One such slice through parameter space is given by the “central lines”
of the m-simplex: these are the subsets formed by linearly interpolating be-
tween the trivial (minimal entropy) and �at (maximal entropy) distributions
(there are m of these lines, by symmetry). Figure 4 shows, for example, that
the worst-case error for the MLE is achieved on these lines, and it seems
plausible that these lines might form a rich enough class that it is as dif�-
cult to estimate entropy on this subset of the simplex as it is on the entire
parameter space. While this intuition is not quite correct (it is easy to �nd
reasonable estimators whose maximum error does not fall on these lines),
calculating the error on these central linesdoes at least give us a lower bound
on the worst-case error. By recursively exploiting the permutation symme-
try and the one-dimensional nature of the problem, we constructed a fast
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algorithm to compute these central line error functions exactly—explicitly
enumerating all possible sorted histograms for a given .m; N/ pair via a spe-
cial recursion, computing the multinomial probability and estimating the
OH.p0/ associated with each histogram, and obtaining the desired moments

of the error distribution at each point along the central line. The results are
shown in Figures 5 and 6.

Figure 5 illustrates two important points. First, the new estimator per-
forms quite well; its maximum error on this set of distributions is about half
as large as that of the next best estimator, OHJK , and about a �fth the size of the
worst-case error for the MLE. In addition, even in the small region where the
error of OH is less than that of OHBUB—near the point at which H D

OH D 0—
the error of the new estimator remains acceptably small. Second, these exact
computations con�rm the validity of the bias approximation of theorem 3,
even for small values of N. Compare, for example, the bias predicted by the
�xed m, large N theory (Miller, 1955), which is constant on the interior of this
interval. This �gure thus clearly shows that the classical asymptotics break
down when the N À m condition is not satis�ed and that the N � m asymp-
totics introduced in section 5 can offer a powerful replacement. Of course,
neither approximation is strictly “better” than the other, but one could ar-
gue that the N � m situation is in fact the more relevant for neuroscienti�c
applications, where m is often allowed to vary with N.

In Figure 6, we show these central line error curves for a few additional
.N; m/ combinations. Recall Figure 3: if N is too small and N=m is too large,
the upper bound on the error of OHBUB is in fact greater than the lower
bound on the worst-case error for OHJK ; thus, the analysis presented in the
previous section is inconclusive in this .N; m/ regime. However, as Figure 6
indicates, the new estimator seems to perform well even as N=m becomes
large; the maximum error of OHBUB on the central lines is strictly less than
that of the three most common estimators for all observed combinations
of N and m, even for N D 10m. Remember that all four estimators are
basically equivalent as ni ! 1, where the classical (Cramer-Rao) behavior
takes over and variance dominates the mean-square error of the MLE. In
short, the performance of the new estimator seems to be even better than
the worst-case analysis of section 6.1 indicated.

While the central lines are geometrically appealing, they are certainly
not the only family of distributions we might like to consider. We examine
two more such families in Figure 7 and �nd similar behavior. The �rst panel
shows the bias of the same four estimators along the �at distributions on
m0 bins, 1 · m0

· m, where, as usual, only m and N are known to the
estimator. Note the emergence of the expected log-linear behavior of the
bias of OH as N=m becomes small (recall the discussion following theorem 3).
The second panel shows the bias along the family pi ’ i® , for 0 < ® < 20,
where similar behavior is evident. This �gure also illustrates the effect of
varying the ¸0 parameter: the bias at low entropy points can be reduced
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Figure 5: Example of error curves on the “central lines” for four different esti-
mators (N D 50; m D 200; ¸0 D 0 here and below unless stated otherwise). The
top left panel shows the true entropy, as p1 ranges from 1 (i.e., p is the unit mass
on one point) to 1

m (where p is the �at measure on m points). Recall that on the
central lines, pi D

1¡p1
m¡1 8i 6D 1. The solid black lines overlying the symbols in

the bias panel are the biases predicted by theorem 3. These predictions depend
on N and m only through their ratio, N=m. The black dash-asterisk denotes the
variance predicted by the CLT, ¾ .p/N¡1=2.
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that of the three most common OH for all observed .N; m/ pairs and that the error
curves for the four estimators converge to the CLT curve as N=m ! 1.

to arbitrarily low levels at the cost of relatively small changes in the bias
at the high-entropy points on the m-simplex. As above, the Steele bounds
on the variance of each of these estimators were comparable, with OHBUB
making a modest sacri�ce in variance to achieve the smaller bias shown
here.
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One could object that the set of probability measures examined in Fig-
ures 5, 6, and 7 might not be relevant for neural data; it is possible, for
example, that probability measures corresponding to cellular activity lie in
a completely different part of parameter space. In Figure 8, therefore, we
examined our estimators’ behavior over a range of p generated by the most
commonly used neural model, the integrate-and-�re (IF) cell. The exact cal-
culations presented in the previous �gures are not available in this context,
so we turned to a Monte Carlo approach. We drove an IF cell with i.i.d. sam-
ples of gaussian white noise, discretized the resulting spike trains in binary
fashion (with discretization parameters comparable to those found in the lit-
erature), and applied the four estimators to the resulting binned spike trains.

Figure 8 shows the bias, variance, and root mean square error of our four
estimators over a range of parameter settings, in a spirit similar to that of
Figure 5; the critical parameter here was the mean �ring rate, which was
adjusted by systematically varying the DC value of the current driving the
cell. (Because we are using simulated data, we can obtain the “true” value
of the entropy simply by increasing N until OH is guaranteed to be as close
as desired to the true H, with probability approaching one.) Note that as
the DC current increases, the temporal properties of the spike trains change
as well; at low DC, the cells are essentially noise driven and have a corre-
spondingly randomized spike train (as measured, e.g., by the coef�cient of
variation of the interspike interval distribution), while at high DC, the cells
�re essentially periodically (low interspike interval coef�cient of variation).
The results here are similar to those in the previous two �gures: the bias of
the new estimator is drastically smaller than that of the other three estima-
tors over a large region of parameter space. Again, when H.p/ ! 0 (this
occurs in the limit of high �ring rates—when all bins contain at least one
spike—and low �ring rates, where all bins are empty), the common esti-
mators outperform OHBUB , but even here, the new estimator has acceptably
small error.

Finally, we applied our estimators to two sets of real data (see Figures 9
and 10). The in vitro data set in Figure 9 was recorded in the lab of Alex
Reyes. In a rat cortical slice preparation, we obtained double whole-cell
patches from single cells. We injected a white-noise current stimulus via one
electrode while recording the voltage response through the other electrode.
Recording and data processing followed standard procedures (see Paninski,
Lau, & Reyes, in press, for more detail). The resulting spike trains were
binned according to the parameters given in the �gure legend, which were
chosen, roughly, to match values that have appeared in the literature. Results
shown are from multipleexperiments ona single cell; the standard deviation
of the current noise was varied from experiment to experiment to explore
different input ranges and �ring rates. The in vivo data set in Figure 10
was recorded in the lab of John Donoghue. We recorded simultaneously
from multiple cells in the arm representation of the primary motor cortex
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while a monkey moved its hand according to a stationary, two-dimensional,
�ltered gaussian noise process. We show results for 11 cells, simultaneously
recorded during a single experiment, in Figure 10; note, however, that we
are estimating the entropy of single-cell spike trains, not the full multicell
spike train. (For more details on the experimental procedures, see Paninski,
Fellows, Hatsopoulos, & Donoghue, 1999, 2003.)

With real data, it is, of course, impossible to determine the true value
of H, and so the detailed error calculations performed above are not pos-
sible here. Nevertheless, the behavior of these estimators seems to follow
the trends seen in the simulated data. We see the consistent slow increase
in our estimate as we move from OHMLE to OHMM to OHJK , and then a larger
jump as we move to OHBUB . This is true even though the relevant timescales
(roughly de�ned as the correlation time of the stimulus) in the two exper-
iments differed by about three orders of magnitude. Similar results were
obtained for both the real and simulated data using a variety of other dis-
cretization parameters (data not shown). Thus, as far as can be determined,
our conclusions about the behavior of these four estimators, obtained us-
ing the analytical and numerical techniques described above, seem to be
consistent with results obtained using physiological data.

In all, we have that the new estimator performs quite well in a uniform
sense. This good performance is especially striking in, but not limited to,
the case when N=m is O.1/. We emphasize that even at the points where
H D

OH D 0 (and therefore the three most common estimators perform well,
in a trivial sense), the new estimator performs reasonably; by construction,
OHBUB never exhibits blowups in the expected error like those seen with
OHMLE, OHMM, and OHJK . Given the fact that we can easily tune the bias of the

new estimator at points where H ¼ 0, by adjusting ¸0, OHBUB appears to be
a robust and useful new estimator. We offer Matlab code, available on-line
at http:==www.cns.nyu.edu/�liam, to compute the exact bias and Steele
variance bound for any OHa, at any distribution p, if the reader is interested
in more detailed investigation of the properties of this class of estimator.

8 Directions for Future Work

We have left a few important openproblems. Below, we give three somewhat
freely de�ned directions for future work, along with a few preliminary
results.

8.1 Bayes. All of our results here have been from a minimax, or “worst-
case,” point of view. As discussed above, this approach is natural if we know
very little about the underlying probability measure. However, in many
cases, we do know something about this underlying p. We might know
that the spike count is distributed according to something like a Poisson
distribution or that the responses of a neuron to a given set of stimuli can be

http://www.cns.nyu.edu/%7Eliam
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fairly well approximated by a simple dynamical model, such as an IF cell.
How do we incorporate this kind of information in our estimates? The �elds
of parametric and Bayesian statistics address this issue explicitly. We have
not systematically explored the parametric point of view—this would entail
building a serious parametric model for spike trains and then ef�ciently
estimating the entropy at each point in the parameter space—although this
approach has been shown to be powerful in a few select cases. The Bayesian
approach would involve choosing a suitable a priori distribution on spike
trains and then computing the corresponding MAP or conditional mean
estimator; this approach is obviously dif�cult as well, and we can give only
a preliminary result here.

Wolpert and Wolf (1995) give an explicit formula for the Bayes’ estimate
of H and related statistics in the case of a uniform prior on the simplex. We
note an interesting phenomenon relevant to this estimator: as m increases,
the distribution on H induced by the �at measure on the simplex becomes
concentrated around a single point, and therefore the corresponding Bayes’
problem becomes trivial as m ! 1, quite the opposite of the situation
considered in the current work. (Nemenman, Shafee, & Bialek, 2002, inde-
pendently obtained a few interesting results along these lines.) The result
is interesting in its own right; its proof shares many of the features (con-
centration of measure and symmetry techniques) of our main results in the
preceding sections.

More precisely, we consider a class of priors determined by the following
“sort-difference” procedure: �x some probability measure P on the unit
interval. Choose m ¡ 1 independent samples distributed according to P;
sort the samples in ascending order, and call the sorted samples fxig0<i<m.
De�ne q1 D x1, qm D 1¡xm¡1, and qi D xi ¡xi¡1 for all other i. This procedure
therefore generates random probability measures q on m bins; in different
language, the sort-difference procedure induces a prioron the m-simplex. (If
P is the uniform density on the interval, for example, this prior is uniform on
the m-simplex; this is the main case considered in Wolpert& Wolf, 1995.) The
prior on q induces a prior on H, and this prior on H, in turn, happens to have
a surprisingly small variance, for reasons quite similar to the reasons OH has a
surprisingly small variance: the entropy functional H.p/ is a symmetric and
fairly smooth functional of p. So, let the prior on H, P.H/, be generated by
this sort-difference procedure and assume for technical simplicity that the
interval measure P[0; 1] has a density component, p. We have the following
crude but interesting result:

Theorem 6. If p is bounded away from zero, then H is normally concentrated
with rate m1=3, that is, for �xed a,

p.jH ¡ E.H/j > a/ D O.e¡Cm1=3a2
/;

for any constant a > 0 and some constant C.
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In fact, it is possible to prove much more: the uniform measure on the
simplex (and moregenerally, any prior induced by the sort-difference proce-
dure, under some conditions on the interval measure P) turns out to induce
an asymptotically normal prior on H, with variance decreasing in m. We
can calculate the asymptotic mean of this distribution by using linearity of
expectation and symmetry techniques like those used in section 5. In the
following, assume for simplicity that P is equivalent to Lebesgue measure
(that is, P is absolutely continuous with respect to Lebesgue measure, and
vice versa); this is a technical condition that can be relaxed at the price of
slightly more complicated formulas. We have the following:

Theorem 7. P(H) is asymptotically normal, with

Var.H/ �

1
m

and asymptotic mean calculated as follows.
Let q be the sorted, normalized density corresponding to a measure drawn ac-

cording to the prior described above; de�ne

Fp.v/ ´

Z v

0
du

Z 1

0
dtp.t/2e¡up.t/;

and

q0

1

´ F¡1
p ;

where the inverse is taken in a distributional sense. Then

kq ¡ q0

1

k1 ! 0

in probability and

E.H/ ! h.q0

1

/ C log.m/;

where h.:/ denotes differential entropy.

Fp above is the cumulative distribution function of the p-mixture of ex-
ponentials with rate p.t/¡1 (just as p0

c;1 in theorem 3 was de�ned as the
inverse cumulative distribution function (c.d.f) of a mixture of Poisson dis-
tributions). If P is uniform, for example, we have that kq ¡ q0

1

k1 ! 0 in
probability, where

q0

1

.t/ D ¡ log.t/;
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and

H.q/ ! h.q0

1

/ C log.m/ D log m C

Z 1

0
dt log.t/ log.¡ log.t//

in probability.

8.2 Adaptive Partitioning. As emphasized in section 1, we have re-
stricted our attention here to partitions, “sieves,” S and T, which do not
depend on the data. This is obviously a strong condition. Can we obtain
any results without this assumption?

As a start, we have the following consistency result, stated in terms of
the measure of the richness of a partition introduced by Vapnik and Cher-
vonenkis (1971), 1N.AF / (the shatter coef�cient of the set of allowed parti-
tions, de�ned in the appendix; m is, as in the preceding, the maximal number
of elements per partition, F ; Devroye et al., 1996):

Theorem 8. If log 1N.AF/ D o
±

N
.log m/2

²
and F generates ¾x;y a.s., OI is con-

sistent in probability; OI is consistent a.s. under the slightly stronger condition

X
1N.AF /e

¡N
.log m/2 < 1:

Note the slower allowed rate of growth of m. In addition, the conditions
of this theorem are typically harder to check than those of theorem 1. For
example, it is easy to think of reasonable partitioning schemes that do not
generate ¾x;y a.s.: if the support of P is some measurable proper subset of
X £ Y, this is an unreasonable condition. We can avoid this problem by
rephrasing the condition in terms of ¾x;y restricted to the support of P (this,
in turn, requires placing some kind of topology on X £ Y, which should be
natural enough in most problems).

What are the bene�ts? Intuitively, we should gain in ef�ciency: we are
putting the partitions where they do the most good (Darbellay & Vajda,
1999). We also gain in applicability, since in practice, all partition schemes
are data driven to some degree. The most important application of this re-
sult, however, is to the following question in learning theory: How do we
choose the most informative partition? For example, given a spike train and
some behaviorally relevant signal, what is the most ef�cient way to encode
the information in the spike train about the stimulus? More concretely, all
things being equal, does encoding temporal information, say, preserve more
information about a given visual stimulus than encoding spike rate infor-
mation? Conversely, does encoding the contrast of a scene, for example,
preserve more information about a given neuron’s activity than encoding
color? Given m code words, how much information can we capture about
what this neuron is telling us about the scene? (See, e.g., Victor, 2000b, for
recent work along these lines.)
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The formal analog to these kinds of questions is as follows (see Tishby,
Pereira, & Bialek, 1999, and Gedeon, Parker, & Dimitrov, 2003, for slightly
more general formulations). Let F and G be classes of “allowed” functions
on the spaces X and Y . For example, F and G could be classes of partitioning
operators (corresponding to the discrete setup used here) or spaces of linear
projections (corresponding to the information-maximization approach to
independent component analysis.) Then, given N i.i.d. data pairs in X £ Y,
we are trying to choose fN 2 F and gN 2 G in such a way that

I. fN.x/I gN.y//

is maximized. This is where results like theorem 8 are useful; they allow us
to place distribution-free bounds on

P

Á

sup
f2F ;g2G

I. f .x/I g.y// ¡

OI. fN.x/I gN.y// > ²

!

; (8.1)

that is, the probability that the set of code words that looks optimal given
N samples is actually ²-close to optimal. Other (distribution-dependent)
approaches to the asymptotics of quantities like equation 8.1 come from the
the theory of empirical processes (see, e.g., van der Vaart & Wellner, 1996).
More work in this direction will be necessary to rigorously answer the bias
and variance problems associated with these “optimal coding” questions.

8.3 Smoothness and Other Functionals. We end with a slightly more
abstract question. In the context of the sieve method analyzed here, are
entropy and mutual information any harder to estimate than any other
given functional of the probability distribution? Clearly, there is nothing
special about H (and, by extension, I) in the case when m and p are �xed;
here, classical methods lead to the usual N¡1=2 rates of convergence, with
a prefactor that depends on only m and the differential properties of the
functional H at p; the entire basic theory goes through if H is replaced by
some other arbitrary (smooth) functional.

There are several reasons to suspect, however, that not all functionals
are the same when m is allowed to vary with N. First, and most obvious,
OH is consistent when m D o.N/ but not when m � N; simple examples

show that this is not true for all functionals of p (e.g., many linear func-
tionals on m can be estimated given fewer than N samples, and this can be
extended to weakly nonlinear functionals as well). Second, classical results
from approximation theory indicate that smoothness plays an essential role
inapproximability; it is well known, for example, that the best rate in the bias
polynomial approximation problem described in section 6 is essentially de-
termined by a modulus of continuity of the function under question (Ditzian
& Totik, 1987), and moduli of continuity pop up in apparently very differ-
ent functional estimation contexts as well (Donoho & Liu, 1991; Jongbloed,
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2000). Thus, it is reasonable to expect that the smoothness of H, especially
as measured at the singular point near 0, should have a lot to do with the
dif�culty of the information estimation problem. Finally, basic results in
learning theory (Devroye et al., 1996; van der Vaart & Wellner, 1996; Cucker
& Smale, 2002) emphasize the strong connections between smoothness and
various notions of learnability. For example, an application of theorem II.2.3
of Cucker and Smale (2002) gives the exact rate of decay of our L2 objective
function, equation 6.3, in terms of the spectral properties of the discrete dif-
ferential operator D, expressed in the Bernstein polynomial basis; however,
it is unclear at present whether this result can be extended to our �nal goal
of a useful asymptotic theory for the upper L

1
bound, equation 6.2.

A few of the questions we would like to answer more precisely are as
follows. First, we would like to have the precise minimax rate of the infor-
mation estimation problem; thus far, we have only been able to bound this
rate between m � o.N/ (see theorem 1) and m � N1C® , ® > 0 (see theo-
rem 4). Second, how close does OHBUB come to this minimax rate? Indeed,
does this estimator require fewer than m samples to learn the entropy on m
bins, as Figure 3 seems to indicate? Finally, how can all of this be generalized
for other statistical functionals? Is there something like a single modulus of
continuity that controls the dif�culty of some large class of these functional
estimation problems?

9 Conclusions

Several practical conclusions follow from the results presented here; we
have good news and bad news. First, the bad news.

² Past work in which N=m was of order 1 or smaller was most likely
contaminated by bias, even if the jackknife or Miller correction was
used. This is particularly relevant for studies in which multiple bin-
ning schemes were compared to investigate, for example, the role of
temporal information in the neural code. We emphasize for future
studies that m and N must be provided for readers to have con�dence
in the results of entropy estimation.

² Error bars based on sample variance (or resampling techniques) give
very bad con�dence intervals if m and N are large. That is, con�dence
intervals based on the usual techniques do not contain the true value
of H or I with high probability. Previous work in the literature often
displays error bars that are probably misleadingly small. Con�dence
intervals should be of size

� B. OH; N=m/ C N¡1=2 log.min.m; N//;

where the bias term B can be calculated using techniques described in
section 5.
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Now the good news:

² This work has given us a much better understanding of exactly how
dif�cult the information estimation problem is and what we can hope
to accomplish using nonparametric techniques, given physiologically
plausible sample sizes.

² We have obtained rigorous (and surprisingly general) results on bias,
variance, and convergence of the most commonly employed estima-
tors, including the best possible generalization of Miller’s well-known
1
N bias rate result. Our analysis clari�es the relative importance of
minimizing bias or variability depending on N and m, according
to the bias-variance balance function introduced at the end of
section 4.

² We have introduced a promising new estimator, one that comes
equipped with built-in, rigorous con�dence intervals. The techniques
used to derive this estimator also lead to rigorous con�dence intervals
for a large class of other estimators (including the three most com-
mon OH).

Appendix A: Additional Results

A.1 Support. One would like to build an estimator that takes values
strictly in some nice set around the true H, say, an interval containing H
whose length shrinks as the number of samples, N, increases. This would
give us strong “error bars” on our estimate of H; we would be absolutely
certain that our estimate is close to the true H. The MLE for entropy has
support on [0; log.min.N; m//]. A simple variational argument shows that
any estimator, T, for H on m bins is inadmissible if T takes values outside
[0; log m]. Similarly, any estimator, T, for I on mS £mT bins is inadmissible if
T takes values outside [0; log.min.mS; mT//]. It turns out that this is the best
possible, in a sense: there do not exist any nontrivial estimators for entropy
that are strictly greater or less than the unknown H. In fact, the following is
true:

Proposition 7. There is no estimator T and corresponding a; b, 0 < a <D 1,
1 <D b < 1, such that the support of T is the interval [aH; bH], for all values of
the entropy, H.

Proof. Suppose such an a > 0 exists. If so, T.!/ must be nonzero for all
possible values of the data, ! (the data can be represented as an N-sequence
of integers, 1 · !.i/ · m). But then there must exist some !0, with p.!0/ > 0,
such that T.!0/ > 0. By choosing H such that 0 < H < T.!0/, we force a
contradiction. The proof for b is similar.
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A similar result obviously holds for mutual information.

A.2 Bias. It turns out that no unbiased estimators for H or I exist in the
discrete setting. This fact seems to be known among information theorists,
but we have not seen it stated in the literature. The proof is quite short, so
we provide it here.

Proposition 8. No unbiased estimator for entropy or mutual information exists.

Proof. For any estimator T of the entropy of a multinomial distribution, we
can write down the mean of T:

E.T/ D

X

!2f1;:::;mg

N

P.!/T.!/;

where f1; : : : ; mg

N is the sample space (i.e, each !, as above, corresponds
to an m-ary sequence of length N). Since !j is drawn i.i.d. from the discrete
distribution p, P.!/ is given by

P.!/ D

NY

jD1
p!j ;

and so the mean of T is a polynomial function of the multinomial proba-
bilities pi. The entropy, on the other hand, is obviously a nonpolynomial
function of the pi. Hence, no unbiased estimator exists. The proof for I is
identical.

The next (easy) proposition provides some more detail. The proof is sim-
ilar to that of Proposition 7 and is therefore omitted.

Proposition 9. (a) If T is a nonnegatively biased estimator for the entropy of a
multinomial distribution on m bins, with T.!/ 2 [0; log.m/] 8! 2 f1; : : : ; mg

N,
then

T.!/ D log.m/ 8! 2 f1; : : : ; mg

N :

(b) If T is a nonpositively biased estimator for the mutual information of a
multinomial distribution on mS; mT bins, with T.!/ 2 [0; log.min.mS; mT//],
then

T.!/ D 0 8! 2 Ä:

(c) If T is a nonnegatively biased estimator for the mutual information of a
multinomial distribution on mS; mT bins, with T.!/ 2 [0; log.min.mS; mT//],
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then

T.!/ D log.min.mS; mT// 8! 2 Ä:

A.3 Minimax Properties of ¾ -Symmetric Estimators. Let the error met-
ric D.T; µ/ be nice—convex in T, jointly continuous in T and µ , positive away
from T D µ , and bounded below. (The metrics given by

D.T; µ/ ´ .T ¡ µ /p; 1 · p < 1

are good examples.) The following result partially justi�es our focus
throughout this article on estimators that are permutation symmetric (de-
noted ¾ -symmetric in the following).

Proposition 10. If the error metric D is nice, then a ¾ -symmetric minimax esti-
mator exists.

Proof. Existence of a minimax estimator (see also Schervish, 1995): when-
ever maxµ Eµ .D/ is a continuous function of the estimator T, a minimax
estimator exists, since T can be taken to vary over a compact space (namely,
[0; log m]mN ). But max µ.Eµ .D// is continuous in T whenever E.D/ is jointly
continuous in T and µ . This is because E.D/ is uniformly continuous in µ and
T, since, again, µ and T vary over compact spaces. E.D/ is jointly continuous
in µ and T by the continuity of D and the fact that E.D/ is de�ned by a �nite
sum.

Existence of a symmetric minimax estimator: this is actually a special
case of the Hunt-Stein theorem (Schervish, 1995). Any asymmetric minimax
estimator, T, in the current setup achieves its maximum, maxµ .Eµ .D//, by
the arguments above. However, the corresponding symmetrized estimator,
T¾ .!/ D .1=j¾ j/

P
¾ T.¾ .!//, has expected error, which is less than or equal

to maxµ .Eµ .D//, as can be seen after a rearrangement and an application of
Jensen’s inequality. Therefore, T¾ is minimax (and obviously symmetric).

A.4 Insuf�ciency of Symmetric Estimators. The next result is perhaps
surprising.

Proposition 11. The MLE is not suf�cient. In fact, the empirical histograms are
minimal suf�cient; thus, no ¾ -symmetric estimator is suf�cient.

Proof. A simple example suf�ces to prove the �rst statement. Choose as a
prior on p:

P.p.1/ D ²I p.2/ D 1 ¡ ²/ D :5

P.p.1/ D 0I p.2/ D 1/ D :5;



1238 L. Paninski

for some ² > 0. For this P, H.p/ !

OH ! fnig does not form a Markov
chain; the symmetry of OH discards information about the true underlying H
(namely, observation of a 1 tells us something very different than does ob-
servation of a 2). This property is clearly shared by any symmetric estimator.

The fact that the empirical histograms are minimal suf�cient follows, for
example, from Bahadur ’s theorem (Schervish, 1995), and the fact that the
empirical histograms are complete suf�cient statistics.

In other words, any ¾ -symmetric estimator necessarily discards informa-
tion about H, even though H itself is ¾ -symmetric. This indicates the impor-
tance of priors; the nonparametric minimax approach taken here (focusing
strictly on symmetric estimators for a large part of the work, as justi�ed by
proposition 10) should be considered only a �rst step. To be more concrete,
in many applications, it is natural to guess that the underlying measure p
has some continuity properties; therefore, estimators that take advantage
of some underlying notion of continuity (e.g., by locally smoothing the ob-
served distributions before estimating their entropy) should be expected to
perform better (on average, according to this mostly continuous prior) than
the best ¾ -symmetric estimator, which necessarily discards all topological
structure in the underlying space X . (See, e.g., Victor, 2002, for recent work
along these lines.)

Appendix B: Proofs

We collect some deferred proofs here. To conserve space, we omit some of
the easily veri�ed details. The theorems are restated for convenience.

B.1 Consistency.

Statement (Theorem 1). If mS;NmT;N D o.N/ and ¾SN;TN generates ¾X;Y, then
OI ! I a.s. as N ! 1.

Theorem 1 is a consequence of the following lemma:

Statement (Lemma 1). If m D o.N/, then OH ! HN a.s.

Proof. First, by the exponential bound of Antos and Kontoyiannis, expres-
sion 3.4, and the Borel-Cantelli lemma, OHN ! HN a:s: if the (nonrandom)
function E. OHN/ " HN . This convergence in expectation is a consequence of
the local expansion for the bias of the MLE, expression 4.2, and proposition1
of section 4.

Proof of Theorem 1. First, some terminology: by OI ! I a:s:, we mean that
if I D 1, p.. OIN < c/ i:o:/ D 0 8c < 1, and if I < 1, p..j OIN ¡ Ij > ²/ i:o:/ D 0
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8² > 0. (“I.o.” stands for “in�nitely often.”) In addition, we call the given
¾ -algebra on X £ Y (the family of sets on which the probability measure
P.X; Y/ is de�ned) ¾X;Y, and the sub-¾ -algebra generated by S and T ¾S;T.

Now, the proof: it follows from Shannon’s formula for mutual informa-
tion in the discrete case that

j

OI.SN; TN/ ¡ I.SN; TN/j · j

OH.S/ ¡ H.S/j

C j

OH.T/ ¡ H.T/j C j

OH.S; T/ ¡ H.S; T/j:

Thus, the lemma gives

OIN ! I.SN; TN/ a:s:

whenever mSmT=N ! 0.
It remains only to show that the (nonrandom) function I.SN; TN/ ! I;

this follows from results in standard references, such as Billingsley (1965)
and Kolmogorov (1993), if either

¾S1;T1 µ ¾S2 ;T2 µ ¢ ¢ ¢ µ ¾SN ;TN µ ¢ ¢ ¢

and

¾X;Y D [N¾SN ;TN ;

or

sup
A2¾SN ;TN ;B2¾X;Y

½.A; B/ ! 0;

where

½.A; B/ ´ P.ABc
[ AcB/:

If either of these conditions holds, we say that ¾SN ;TN generates ¾X;Y.

B.2 Central Limit Theorem.

Statement (Theorem 2). Let

¾ 2
N ´ Var.¡ log pTN / ´

mX

iD1
pTN ;i.¡ log pTN ;i ¡ HN/2:

If mN ´ m D o.N1=2/, and

lim inf
N!1

N1¡®¾ 2
N > 0

for some ® > 0, then
±

N
¾ 2

N

²1=2
. OH ¡ HN/ is asymptotically standard normal.
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Proof. The basic tool, again, is the local expansion of HMLE, expression 4.1.
We must �rst show that the remainder term becomes negligible in proba-
bility on a

p

N scale, that is,
p

NDKL.pNI p/ D op.1/:

This follows from the formula for Ep.DKL.pNI p//, then Markov’s inequality
and the nonnegativity of DKL.

So it remains only to show that dH.pI pN ¡ p/ is asymptotically normal.
Here we apply a classical theorem on the asymptotic normality of double
arrays of in�nitesimal random variables:

Lemma. Let fxj;Ng; 1 · N · 1; 1 · j · N be a double array of rowwise i.i.d.
random variables with zero mean and variance ¾ 2

N, with distribution p.x; N/ and
satisfying ¾ 2

N D 1=N for all N. Then
PN

jD1 xj;N is asymptotically normal, with zero
mean and unit variance, iff fxj;Ng satisfy the Lindeberg (vanishing tail) condition:
for all ² > 0,

NX

jD1

Z

jxj>²
x2 dp.x; N/ D o.1/: (B.1)

The conditions of the theorem imply the Lindeberg condition, with fxj;ng

replaced by 1
p

N¾ 2
.dH.pI ±j ¡ p/ ¡ H/. To see this, note that the left-hand side

of equation B.1 becomes, after the proper substitutions,

1
¾ 2

X

pj : .N¾ 2/
¡

1
2

j.log pj/¡Hj>²

pj log2 pj;

or

1
¾ 2

0

BB@
X

pj: pj>e².N¾ 2/
1
2

CH

pj log2 pj C

X

pj : pj<eH¡² .N¾ 2/
1
2

pj log2 pj

1

CCA :

The number of terms in the sum on the left is less than or equal to

e¡².N¾ 2/
1
2 ¡H:

Since the summands are bounded uniformly, this sum is o.1/. On the other
hand, the sum on the right has at most m terms, so under the conditions of
the theorem, this term must go to zero as well, and the proof is complete.

We have proven the above a.s. and
p

N consistency theorems for OHMLE

only; the extensions to OHMM and OHJK are easy and are therefore omitted.



Estimation of Entropy and Mutual Information 1241

B.3 Variance Bounds à la Steele. For the ¾ -symmetric statistic Ha.fxjg//
D

P
j aj;Nhj;N, Steele’s inequality reads:

Var.Ha/ ·

N
2

E..Ha.fxjg/ ¡ Ha.x1; : : : ; xN¡1; x0

N//2/;

where x0

N is a sample drawn independently from the same distribution as
xj. The linear form of Ha allows us to exactly compute the right-hand side
of the above inequality. We condition on a given histogram, fnigiD1;:::;m:

E.Ha.fxjg/ ¡ Ha.x1; : : : ; xN¡1; x0

N//2/

D

X

fnig

p.fnig/E..Ha.fxjg/ ¡ Ha.x1; : : : ; xN¡1; x0

N//2
jfnig/:

Now we rewrite the inner expectation on the right-hand side:

E..Ha.fxjg/ ¡ Ha.x1; : : : ; xN¡1; x0

N//2
j fnig/ D E..D

¡
C D

C
/2

j fnig/;

where

D
¡

´ anxN ¡1;N ¡ anxN ;N

is the change in
P

j aj;Nhj;N that occurs when a random sample is removed
fromthe histogram fnig, according to the probability distribution fnig=N, and
D

C
is the change in

P
j aj;Nhj;N that occurs when a sample is randomly (and

conditionally independently, given fnig) added back to the xN-less histogram
fnig, according to the true underlying measure pi .

The necessary expectations are as follows. For 1 · j · N, de�ne

Dj ´ aj¡1 ¡ aj:

Then

E.D2
¡

j fnig/ D

X

i

ni

N
D2

ni
;

E.D2
C

j fnig/ D

X

i
pi

±ni

N
D2

ni
C

±
1 ¡

ni

N

²
D2

niC1

²
;

and

E.D
C

D
¡

j fnig/ D E.D
C

j fnig/E.D
¡

j fnig/

D ¡

Á
X

i

ni

N
Dni

! Á
X

i
pi

± ni

N
Dni C

±
1 ¡

ni

N

²
DniC1

²!

:
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Taking expectations with respect to the multinomial measure p.fnig/, we
have

E.D2
¡

/ D

X

i;j

j
N

D2
j Bj.pi/;

E.D2
C

/ D

X

i;j

�
j

N
D2

j C

�
1 ¡

j
N

´
D2

jC1

´
piBj.pi/; (B.2)

and

E.D
C

D
¡

/ D ¡

X

i;i0;j;k

j
N

Dj

�
k
N

Dk C

�
1 ¡

k
N

´
DkC1

´
pi0 Bj;k.pi; pi0 /;

where Bj and Bj;k denote the binomial and trinomial polynomials, respec-
tively:

Bj.t/ ´

Á
N
j

!

tj.1 ¡ t/N¡j
I

Bj;k.s; t/ ´

Á
N
j; k

!

sjtk.1 ¡ s ¡ t/N¡j¡k:

The obtained bound,

Var.Ha/ ·

N
2

.E.D2
¡

/ C 2E.D
¡

D
C

/ C E.D2
C

//;

may be computed in O.N2/ time. For a more easily computable (O.N/)
bound, note that E.D2

¡

/ D E.D2
C

/, and apply Cauchy-Schwartz to obtain

Var.Ha/ · 2NE.D2
¡

/:

Under the conditions of theorem 2, this simpler bound is asymptotically
tight to within a factor of two. Proposition 6 is proven with devices iden-
tical to those used in obtaining the bias bounds of proposition 4 (note the
similarity of equations 5.1 and B.2).

B.4 Convergence of Sorted Empirical Measures.

Statement (Theorem 3). Let P be absolutely continuous with respect to Lebesgue
measure on the interval [0; 1], and let p D dP=dm be the corresponding density.
Let SN be the m-equipartition of [0; 1], p0 denote the sorted empirical measure, and
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N=m ! c; 0 < c < 1. Then:

a. p0

L1 ;a:s:
! p0

c;1, with kp0

c;1 ¡ pk1 > 0. Here p0

c;1 is the monotonically decreas-
ing step density with gaps between steps j and j C 1 given by

Z 1

0
dte¡cp.t/ .cp.t// j

j!
:

b. Assume p is bounded. Then OH ¡ HN ! Bc; OH.p/ a:s:, where Bc; OH.p/ is a
deterministic function, nonconstant in p. For OH D

OHMLE,

Bc; OH.p/ D h.p0/ ¡ h.p/ < 0;

where h.:/ denotes differential entropy.

Proof. We will give only an outline. By L1;a:s:
! , we mean that kp¡pNk1 ! 0 a:s:

By McDiarmid’s inequality, for any distribution q,

kq ¡ pNk1 ! E.kq ¡ pNk1/ a:s:

Therefore, convergence to some p0 in probability in L1 implies almost sure
convergence in L1. In addition, McDiarmid’s inequality hints at the limiting
form of the ordered histograms. We have

sort
±ni

N

²
! E

±
sort

±ni

N

²²
; a:s: 81 · i · m:

Of course, this is not quite satisfactory, since both sort.ni
N / and E.sort. ni

N // go
to zero for most i.

Thus, we need only to prove convergence of sort. ni
N / to p0 in L1 in proba-

bility. This follows by an examination of the histogram order statistics hn;j.
Recall that these hn;j completely determine pn. In addition, the hn;j satisfy a
law of large numbers:

1
m

hn;j !

1
m

E.hn;j/ 8 j · k;

for any �nite k. (This can be proven, for example, using McDiarmid’s in-
equality.) Let us rewrite the above term more explicitly:

1
m

E.hn;j/ D

1
m

mX

iD1
E.1.ni D j// D

1
m

mX

iD1

Á
N
j

!

pj
i.1 ¡ pi/

N¡j:

Now we can rewrite this sum as an integral:

1
m

mX

iD1

Á
N
j

!

pj
i.1 ¡ pi/

N¡j
D

Z 1

0
dt

Á
N
j

!

pn.t/ j.1 ¡ pn.t//N¡j; (B.3)
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where

pn.t/ ´ mpmax.iji<t/

is the discretized version of p. As the discretization becomes �ner, the dis-
cretized version of p becomes close to p:

pn ! p[¹];

where [¹] denotes convergence in Lebesgue measure on the interval [0; 1]
(this can be seen using approximation in measure by continuous functions
of the almost surely �nite function p). Since N=m ! c and the integrand
in equation B.3 is bounded uniformly in N, we have by the dominated
convergence theorem that

Z 1

0
dt

Á
N
j

!

pn.t/ j.1 ¡ pn.t//N¡j
!

Z 1

0
dt

cj

j!
p.t/je¡cp.t/: (B.4)

From the convergence of hn;j, it easily follows that pn ! p0 in L1 in proba-
bility, where p0 is determined by E.hn;j/ in the obvious way (since pn ! p0

except perhaps on a set of arbitrarily small p0-measure). Since lim hN;0
m >

R 1
0 dt 1.p D 0/, kp ¡ p0

k1 is obviously bounded away from zero.
Regarding the �nal claimof the theorem, the convergence of the OH to E. OH/

follows by previous considerations. We need prove only that h.p0/ < h.p/.
After some rearrangement, this is a consequence of Jensen’s inequality.

B.5 Sum Inequalities. For f .p/ D 1=p, we have the following chain of
implications:

sup
p

����
g.p/

p

���� D c

) jg.p/j · cp

)

mX

iD1
g.i/ · c

X
p D c:

For the f described in section 6.1,

f .p/ D

(
m p < 1=m;

1=p p ¸ 1=m;

we have

sup
p

j f .p/g.p/j D c )

X

i
g.i/ · 2c;
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since
X

i
g.i/ D

X

i: im¸1
g.i/ C

X

i: im<1
g.i/I

the �rst term is bounded by c, by the above, and the second by cm 1
m D c.

This last inequality gives a proof of Proposition 2.

Statement (Proposition 2).

max
p

¾ 2
� .log m/2:

Proof. We have maxp ¾ 2.p/ D O.log.m/2/: plug in g D p log.p/2 and take the
maximum of fg on the interval. To see that in fact maxp ¾ 2.p/ � .log.m/2/,
simply maximize ¾ 2.p/ on the central lines (see section 7).

B.6 Asymptotic Bias Rate.

Statement (Theorem 5). If m > 1, N mini pi ! 1, then

lim
N

m ¡ 1
B. OHMLE/ D ¡

1
2

:

Proof. As stated above, the proof is an elaboration of the proof of theo-
rem 10.3.1 of Devore and Lorentz (1993). We use a second-order expansion
of the entropy function:

H.t/ D H.x/ C .t ¡ x/H0.x/ C .t ¡ x/2
�

1
2

H00.x/ C hx.t ¡ x/

´
;

where h is a remainder term. Plugging in, we have

¡t log tD¡x log xC.t¡x/.¡1¡log x/C.t¡x/2
�

1
2

¡1
x

Chx.t¡x/

´
:

After some algebra,

.t ¡ x/2hx.t ¡ x/ D t ¡ x C t log
x
t

C

1
2

1
x

.t ¡ x/2:

After some more algebra (mostly recognizing the mean and variance for-
mulae for the binomial distribution), we see that

lim
N

N.BN.H/.x/ ¡ H.x// D H00.x/
x.1 ¡ x/

2
C RN.x/;

where

RN.x/ ´

1 ¡ x
2

¡ N
NX

jD0
Bj;N.x/

j
N

log
j

Nx
:
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The proof of theorem 10.3.1 in Devore and Lorentz (1993) proceeds by
showing that RN.x/ D o.1/ for any �xed x 2 .0; 1/. We need to show that
RN.x/ D o.1/ uniformly for x 2 [xN; 1 ¡ xN], where xN is any sequence such
that

NxN ! 1:

This will prove the theorem, because the bias is the sum of

BN.H/.x/ ¡ H.x/

at m points on this interval. The uniform estimate essentially follows from
the delta method (somewhat like Miller and Madow’s original proof, except
in one dimension instead of m): use the fact that the sum in the de�nition of
RN.x/ converges to the expectation (with appropriatecutoffs) of the function
t log t

x with respect to the gaussian distribution with mean x and variance
1
N x.1 ¡ x/. We spend the rest of the proof justifying the above statement.

The sum in the de�nition of RN.x/ is exactly the expectation of the func-
tion t log t

x with respect to the binomial.N; x/ distribution (in a slight abuse of
the usual notation, we mean a binomial random variable divided by N, that
is, rescaled to have support on [0; 1]). The result follows if a second-order
expansion for t log t

x at x converges at an o.1=N/ rate in BinN;x-expectation,
that is, if

EBinN;xN
µ
t log

t
x

¡ .t ¡ x/ ¡

1
2x

.t ¡ x/2
¶

´ EBinN;x gN;x.t/ D o.1/;

for x 2 [xN; 1¡xN]. Assume, wlog, that xN ! 0; in addition, we will focus on
the hardest case and assume xN D o.N¡1=2/. We break the above expectation
into four parts:

EBinN;x gN;x.t/ D

Z axN

0
gdBinN;x C

Z xN

axN

gdBinN;x

C

Z bN

xN

gdBinN;x C

Z 1

bN

gdBinN;x;

where 0 < a < 1 is a constant and bN is a sequence we will specify below.
We use Taylor’s theorem to bound the integrands near xN (this controls
the middle two integrals) and use exponential inequalities to bound the
binomial measures far from xN (this controls the �rst and the last integrals).
The inequalities are due to Chernoff (Devroye et al., 1996): let B be BinN;x,
and let a, b, and xN be as above. Then

P.B < axN/ < eaNxN ¡NxN ¡NxNa log a (B.5)

P.B > bN/ < eNbN ¡NxN ¡NbN log bN
xN : (B.6)
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Simple calculus shows that

max
t2[0;axN ]

jgN;x.t/j D gN;x.0/ D

Nx
2

:

We have that the �rst integral is o.1/ iff

aNxN ¡ NxN ¡ NxNa log a C log.NxN/ ! ¡1:

We rearrange:

aNxN ¡ NxN ¡ NxNa log a C log.NxN/

D NxN.a.1 ¡ log a/ ¡ 1/ C log.NxN/:

Since

a.1 ¡ log a/ < 1; 8a 2 .0; 1/;

the bound follows. Note that this is the point where the condition of the
theorem enters; if NxN remains bounded, the application of the Chernoff
inequality becomes useless and the theorem fails.

This takes care of the �rst integral. Taylor’s bound suf�ces for the second
integral:

max
t2[axN ;xN]

jgN;x.t/j <

���� max
u2[axN ;xN ]

.t ¡ x/3

¡6u2

���� ;

from which we deduce
����

Z xN

axN

gdBinN;x

���� <
N..1 ¡ a/xN/4

¡6.axN/2 D o.1/;

by the assumption on xN .
The last two integrals follow by similar methods once the sequence bN is

�xed. The third integral dies if bN satis�es the following condition (derived,
again, from Taylor’s theorem):

N.bN ¡ xN/4

¡6x2
N

D o.1/;

or, equivalently,

bN ¡ xN D o

Á
x1=2

N
N1=4

!

I

choose bN as large as possible under this constraint, and use the second
Chernoff inequality, to place an o.1/ bound on the last integral.
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B.7 Bayes Concentration.

Statement (Theorem 6). If p is bounded away from zero, then H is normally
concentrated with rate m1=3, that is, for �xed a,

p.jH ¡ E.H/j > a/ D O.e¡Cm1=3a2
/;

for any constant a > 0 and some constant C.

Proof. We provide only a sketch. The idea is that H almost satisi�es the
bounded difference condition, in the following sense: there do exist points
x 2 [0; 1]m such that

mX

iD1
.1H.xi//

2 > m²2
m;

say, where

1H.xi/ ´ max
xi;x0

i

jH.x1; : : : ; xi; : : : xm/ ¡ H.x1; : : : ; x0

i; : : : xm/j;

but the set of such x—call the set A—is of decreasing probability. If we
modify H so that H0

D H on the complement of A and let H0

D E.H j pi 2 Ac/
on A, that is,

H0.x/ D

(
H.x/ x 2 Ac;

1
P.Ac/

R
Ac P.x/H.x/ q 2 A;

then we have that

P.jH0

¡ E.H0/j > a/ < e¡a2.m²2
m/¡1

and

P.H0

6D H/ D P.A/:

We estimate P.A/ as follows:

P.A/ ·

Z

[0;1]m
1.max

i
1H.xi/ > ²m/ d

mY

iD1
p.xi/

·

Z
1.max

i
.xiC2 ¡ xi/ > ²m/ dpm.xi/

�

Z
dtelog p¡²m pm: (B.7)

The �rst inequality follows by replacing the L2 norm in the bounded differ-
ence condition with an L

1
norm; the second follows fromsome computation
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and the smoothness of H.x/ with respect to changes in single xi. The last
approximation is based on an approximation in measure by nice functions
argument similar to the one in the proof of theorem 3, along with the well-
known asymptotic equivalence (up to constant factors), as N ! 1, between
the empirical process associated with a density p and the inhomogeneous
Poisson process of rate Np.

We estimate jE.H/ ¡ E.H0/j with the following hacksaw:

jE.H/ ¡ E.H0/j D

����

Z

A
p.x/.H.x/ ¡ H0.x// C

Z

Ac
p.x/.H.x/ ¡ H0.x//

����

D

����

Z

A
p.x/.H.x/ ¡ H0.x// C 0

����

· P.A/ log m:

If p > c > 0, the integral in equation B.7 is asymptotically less than
ce¡m²m c; the rate of the theorem is obtained by a crude optimization over ²m.

The proof of the CLT in Theorem 7 follows upon combining previous re-
sults in this article with a few powerful older results. Again, to conserve
space, we give only an outline. The asymptotic normality follows from
McLeish’s martingale CLT (Chow & Teicher, 1997) applied to the martingale
E.H j x1; : : : ; xi/; the computation of the asymptotic mean follows by meth-
ods almost identical to those used in the proof of theorem 3 (sorting and
linearity of expectation, effectively), and the asymptotic variance follows
upon combining the formulas of Darling (1953) and Shao and Hahn (1995)
with an approximation-in-measure argument similar, again, to that used to
prove theorem 3. See also Wolpert and Wolf (1995) and Nemenman et al.
(2002) for applications of Darling’s formula to a similar problem.

B.8 Adaptive Partitioning.

Statement (Theorem 8). If log 1N.AF / D o
±

N
.log m/2

²
and F generates ¾x;y

a.s., OI is consistent in probability; OI is consistent a.s. under the slightly stronger
condition

X
1N.AF /e

¡N
.log m/2 < 1:

The key inequality, unfortunately, requires some notation. We follow the
terminology in Devroye et al. (1996), with a few obvious modi�cations.
We take, as usual, fxjg as i.i.d random variables in some probability space
Ä; G ; P. Let F be a collection of partitions of Ä, with P denoting a given
partition. 2P denotes, as usual, the “power set” of a partition, the set of all
sets that can be built up by unions of sets in P . We introduce the class of
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sets AF , de�ned as the class of all sets obtained by taking unions of sets in
a given partition, P . In other words,

AF ´ fA: A 2 2P ; P 2 F g:

Finally, the Vapnik-Chervonenkis “shatter coef�cient” of the class of sets
AF , 1N.AF /, is de�ned as the number of sets that can be picked out of AF
using N arbitrary points !j in Ä:

1N.AF / ´ max
f!jg2ÄN

jf!jg \ A: A 2 Aj:

The rate of growth in N of 1N.AF / providesa powerful index of the richness
of the family of partitions AF , as the following theorem (a kind of uniform
LLN) shows; p here denotes any probability measure and pN, as usual, the
empirical measure.

Theorem (Lugosi & Nobel, 1996). Following the notation above, for any ² > 0,

P

Á

sup
P2F

X

A2P
jpN.A/ ¡ p.A/j > ²

!

· 81N.AF/e¡N²2=512:

Thus, this theorem is useful if 1N.AF / does not grow too quickly with
N. As it turns out, 1N.AF / grows at most polynomially in N under vari-
ous easy-to-check conditions. Additionally, 1N.AF / can often be computed
using straightforward combinatorial arguments, even when the number of
distinct partitions in F may be uncountable. (See Devroye et al., 1996, for a
collection of instructive examples.)

Proof. Theorem 8 is provenby a Borel-Cantelli argument, couplingthe above
VC inequality of Lugosi and Nobel with the following easy inequality, which
states that the entropy functional H is “almost L1 Lipshitz”:

jH.p/ ¡ H.q/j · H2.2kp ¡ qk1/ C 2kp ¡ qk1 log.m ¡ 1/;

where

H2.x/ ´ ¡x log.x/ ¡ .1 ¡ x/ log.1 ¡ x/

denotes the usual binary entropy function on [0; 1]. We leave the details to
the reader.
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