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Linear-nonlinear (LN) models and their extensions have proven success-
ful in describing transformations from stimuli to spiking responses of
neurons in early stages of sensory hierarchies. Neural responses at later
stages are highly nonlinear and have generally been better characterized
in terms of their decoding performance on prespecified tasks. Here we
develop a biologically plausible decoding model for classification tasks,
that we refer to as neural quadratic discriminant analysis (nQDA). Specif-
ically, we reformulate an optimal quadratic classifier as an LN-LN com-
putation, analogous to “subunit” encoding models that have been used
to describe responses in retina and primary visual cortex. We propose a
physiological mechanism by which the parameters of the nQDA classi-
fier could be optimized, using a supervised variant of a Hebbian learning
rule. As an example of its applicability, we show that nQDA provides a
better account than many comparable alternatives for the transformation
between neural representations in two high-level brain areas recorded as
monkeys performed a visual delayed-match-to-sample task

1 Introduction

Sensory encoding models, which describe how the inputs to a neuron are
converted into its responses, have proven effective in a broad array of
sensory modalities, brain areas, and species (Eggermont, Aertsen, & Johan-
nesma 1983; Jones & Palmer, 1987; DiCarlo, Johnson, & Hsiao, 1998). Within
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vision, classic examples include the center-surround receptive field of a
retinal ganglion cell (Enroth-Cugell & Robson 1966), the energy model of
V1 complex cell (Adelson & Bergen, 1985), and the divisive normaliza-
tion model of gain control (Heeger, 1992), as well as their more contempo-
rary variants (e.g., Keat, Reinagel, Reid, & Meister, 2001; Rust, Schwartz,
Movshon, & Simoncelli, 2005; Sharpee et al., 2006; Pillow et al., 2008; Caran-
dini & Heeger, 2011). Considerable effort has been devoted to developing
and refining techniques for fitting these models to data derived from a single
experiment (reviewed by Ringach & Shapley, 2004; Schwartz, Pillow, Rust,
and Simoncelli, 2006; Wu, David, & Gallant 2006; Sharpee, 2013). Successes
were originally confined to brain areas positioned in early stages of the vi-
sual hierarchy but have since been extended to intermediate stages (David,
Hayden, & Gallant, 2006; Rust, Mante, Simoncelli, & Movshon, 2006; Will-
more, Prenger, & Gallant, 2010; Mineault, Khawaja, Butts, & Pack, 2012;
Sharpee, Kouh, & Reynolds, 2013). Extending this approach to high-level
brain areas has proven much more difficult.

One obstacle is that the techniques that have been developed to fit en-
coding models generally rely on a quantitative description of the inputs to
the cells being fit. For example, encoding models of neurons within area MT
have been fit based on a simulated population of inputs arriving from area
V1 (Rust et al., 2006). Similar methods have been applied in V2 (Willmore
et al., 2010), V4 (David et al., 2006; Sharpee et al., 2013), and MST (Mineault
et al., 2012). But these approaches can extend our understanding only one
stage beyond what is already relatively well understood.

An additional challenge arises from the fact that neural responses at
higher stages become increasingly affected by behavioral task and context,
and models for the “decoding” of task performance have generally been
more successful than those for the “encoding” of sensory stimuli (Hung,
Kreiman, Poggio, & DiCarlo, 2005; DiCarlo & Cox, 2007; Churchland et al.,
2012; Mante, Sussillo, Shenoy, & Newsome, 2013; Pagan, Urban, Wohl, &
Rust, 2013; Rigotti et al., 2013). These decoders have generally been as-
sumed to be linear. And while the relative successes of handful of nonlinear
(as compared to linear) decoders have been evaluated with neural data
(Bialek, de Ruyter van Steveninck, Rieke, & Warland, 1996; Yu et al., 2007;
Graf, Kohn, Jazayeri, & Movshon, 2011; Astrand et al., 2014), the neural
mechanisms underlying nonlinear decoding remain unclear.

Arguably, what is needed to bridge this gap in describing high-level neu-
ral computations are techniques that (1) allow us to fit and evaluate biologi-
cally plausible descriptions of how the inputs to a brain area are transformed
into its output responses in order to perform a specific task; (2) do not de-
pend on a complete, quantitative description of how the inputs are derived
from stimuli; and (3) can capture nonlinear transformations commonly
found in neural responses. Here we develop such an approach. We refor-
mulate a quadratic decoder, optimized for a prespecified classification task,
as a linear-nonlinear-linear-nonlinear (LN-LN) cascade model, analogous
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to models used for describing encoding in early visual areas. We show that
this computation, which we call neural quadratic discriminant analysis
(nQDA), can account for the increase in classification performance between
high-level visual brain areas IT and perirhinal cortex during a target search
task. We also introduce a biologically plausible supervised learning rule for
optimizing the parameters of nQDA.

2 Results

2.1 nQDA, a Nonlinear Decoder Expressed as an LN-LN Model.
Consider the problem of classifying a set of inputs (e.g. “Is observed input
X a member of group A or group B?”) based on a population of neural
responses. The simplest solution is to assume a linear classifier, expressed as

fLIN (r) = mTr + k, (2.1)

where r is the N-dimensional population response vector, mTr is the
weighted sum (inner product) of the responses with N-dimensional vector
of weights m, and k is a scalar constant. The class assignment (A versus
B) is determined by the sign of the output (positive versus negative,
respectively). The decision boundary corresponds to a hyperplane in
the population response space, positioned such that it separates the two
classes (Fisher, 1936; Cortes & Vapnik, 1995; see Figure 1a, top left). Many
algorithms are available for fitting the parameters (m, k) (Duda, Hart, &
Stork, 2000) and the “best” choice depends on the distribution of the data,
noise properties, and the costs of making mistakes. When the population
responses for each class are gaussian distributed, with equal covariance,
the maximum likelihood solution is the Fisher linear discriminant (FLD;
Fisher 1936). FLD parameters may be expressed directly as

m = !−1 ·
(
µ1 − µ2

)
k = 1

2
·
[(

µT
2 · !−1 · µ2

)
−

(
µT

1 · !−1 · µ1
)]

, (2.2)

where µi indicates the mean population response vector for the ith class
and ! is the common response covariance matrix. If the two covariances
differ, this is typically replaced with their average, ! = 1

2 ·
(
!1 + !2

)
,

although this is no longer the maximum likelihood solution.
Linear classifiers are considered biologically plausible—a weighted sum

of inputs from the population in question, followed by a threshold nonlin-
earity. But linear classifiers are limited, relying on differences between the
means of the class response distributions. Arguably, the simplest nonlinear
extension is to include a quadratic term in the classifier:

fQUAD (r) = rTQr + mTr + k, (2.3)
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Figure 1: The nQDA framework. (a) Optimal quadratic discrimination bound-
aries (black lines) for four example pairs of population response distributions.
Hypothetical class distributions are each multivariate gaussian (indicated by
red and gray elliptical regions), with means µ1 and µ2 and covariances !1 and
!2. Top left: A scenario in which the means of the two classes differ and the
covariances are matched. In this special case, the optimal classifier is linear.
Top right: A scenario in which the means of the two classes are similar and a
linear classifier alone is an ineffective decision boundary. Instead, the optimal
classifier uses a pair of parabolic boundaries. Bottom left: An example with dif-
fering mean and covariance, yielding a single parabolic boundary. Bottom right:
An example yielding an elliptical boundary. (b) Depiction of the nQDA model,
which implements the optimal quadratic classifier (equations 2.3 and 2.4) as an
LN-LN model (see equation 2.6). The first LN transformation is achieved with
a bank of linear filters, with all but the first followed by a squaring nonlinearity.
The outputs of these individual LN units are combined via a weighted sum,
followed by a threshold function that determines the class membership.

where Q is an N-by-N symmetric matrix. As with the linear classifier, the
class assignment is determined by the sign of this function. Similar to linear
classifiers, multiple methods exist for fitting the parameters of a quadratic
classifier (Kendall, 1966; Hofmann, Schölkopf, & Smola, 2008). When the
population responses are gaussian distributed the maximum likelihood
solution (known as quadratic discriminant analysis, QDA; Kendall 1966)
corresponds to

Q = 1
2

·
(
!−1

2 − !−1
1

)
; m = !−1

1 µ1 − !−1
2 µ2,

k =−1
2

(
log

∣∣!1

∣∣ − log
∣∣!2

∣∣ + µT
1 !−1

1 µ1 − µT
2 !−1

2 µ2
)
. (2.4)

The incorporation of the quadratic term creates a more pow-
erful classifier, which exploits differences in covariance, generally
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resulting in curved decision boundaries in the population response space
(see Figure 1a).

Despite its potential for decoding information embedded in a popula-
tion, it is not obvious how a brain area would implement QDA. Toward
this end and inspired by the successes of quadratic encoding models, we
have reformulated QDA into a more biologically plausible framework. We
first expand the quadratic term rTQr (see equation 2.3) into a set of linear-
nonlinear operations, using the eigendecomposition of Q. Specifically, we
write

Q = E"ET , where E =
[

e1 e2 · · · eN
]

and " =

⎡

⎢⎢⎢⎣

λ1 0
λ2

. . .
0 λN

⎤

⎥⎥⎥⎦
.

With this expansion, the quadratic term rTQr of equation 2.3 becomes

rTQr = rT (
E"ET)

r =
(
rTE

)
"

(
ETr

)
=

(
ETr

)T
"

(
ETr

)
=

N∑

i=1

λi ·
(
eT

i r
)2

.

(2.5)

That is, the term rTQr can be computed as a linear projection of the response
vector r onto the eigenvectors of Q, followed by a squaring nonlinearity, and
a final linear recombination weighted by the eigenvalues of Q. Substituting
this back into the expression for QDA (see equation 2.3) yields

fQUAD =
N∑

i=1

λi
(
eT

i r
)2 + mTr + k. (2.6)

This equation, combined with the final thresholding (decision) nonlinearity,
specifies an LN-LN computation, as illustrated in Figure 1b, which we refer
to as neural QDA (nQDA).

2.2 Geometrical Intuition of nQDA. In this section, we provide an in-
tuitive geometrical description of how the nQDA computation converts the
nonlinearly separable population representation of two classes into a more
linearly separable format. In general, the information available to separate
two classes can be regarded in terms of discrepancies between the moments
of the two class distributions (i.e., mean, covariance, skew, . . .). Conse-
quently if the two classes are identical in all of their moments, they cannot
be separated. The second term of the nQDA solution (see equation 2.6)
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Figure 2: Geometrical intuition of nQDA. (Left) Response distributions of a
hypothetical population to two classes, for which both the response mean and
variance of each individual neuron are matched, but the class covariances dif-
fer. Dashed lines indicate nQDA axes (see equation 2.5). (Center) Population
responses linearly transformed to nQDA axes, along which the responses ex-
hibit large relative variance differences between the two classes. (Right), The
squaring nonlinearity converts these variance differences into mean differences,
and the resulting class distributions are more readily separated by a linear clas-
sifier (black line).

corresponds to a linear neuron that gathers the mean differences (i.e., the
linearly separable information) present in the input population.

In contrast, the first term of equation 2.6 is a sum over a set of nonlinear
neurons that act to transform nonlinearly separable information available
in the input population into a linearly separable format. In particular, dif-
ferences in variance are converted into differences in mean. To achieve
this, the linear weights of this set of nonlinear neurons serve to rotate the
input space to a coordinate system that captures the largest and smallest
differences in inverse covariances (see Figure 2, left). Equivalently, since
1
σ 2

1
− 1

σ 2
2

= σ 2
2 −σ 2

1
σ 2

1 ·σ 2
2

, this rotation maximizes the normalized variance dif-
ferences between the projected responses for the two classes (see Figure 2,
middle). Squaring these linearly transformed responses acts to convert the
variance differences into mean differences (see Figure 2, right). These mean
differences allow linear separation of the response clouds corresponding to
the two classes in the output population.

2.3 nQDA Replicates the Transformation between IT and PRh. To
determine the degree to which nQDA is useful for modeling neural data,
we used it to characterize the transformation between responses of infer-
otemporal cortex (IT) and perirhinal cortex (PRh). Specifically, we recorded
neural responses from IT and PRh as monkeys performed a delayed-match-
to-sample sequential visual target search task that required them to indicate
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when different target images appeared within sequences of distractors (see
Figure 3a).

On each trial, monkeys sequentially viewed images while maintaining
fixation and indicated when they saw a target image by shifting their gaze
to a response dot on the screen. Our experimental design included four
images presented in all possible combinations as a visual stimulus and as
an intended target, resulting in 16 experimental conditions. We held the
target image fixed for short blocks of trials and presented the same images
as both targets and distractors in different blocks that were repeated several
times. As monkeys performed this task, we recorded neural responses in
IT or PRh using multichannel probes. To quantify the population response
on any given trial, we counted spikes in a window starting 50 ms after
stimulus onset (to allow time for signals to reach these brain areas) and
ending at 220 ms, which always preceded the monkeys’ eye movement
responses. Here we present results based on population data concatenated
across experimental sessions into larger “pseudopopulations” of 164 neu-
rons for each brain area, following on our earlier report that factors specific
to simultaneously recorded populations (i.e. noise correlations) do not af-
fect population performance (Pagan et al., 2013; see Figure S2 in the online
supplement).

This task can be envisioned as two-way classification of the same im-
ages presented as target matches (i.e., looking at and for the same image,
for which the monkey is instructed to make an eye movement) versus dis-
tractors (i.e., looking at and for different images, for which the monkey is
instructed to maintain fixation; see Figure 3b). To avoid the possibility that
population performance could rely on factors other than the target match
signal, we used an equal number of target matches and distractors (at any
one time, we selected a subset of 4 of 12 possible distractors) and explored
all possible subsets of distractors that spanned all visual stimuli and all
targets (see Section 4).

As reported previously (Pagan et al., 2013), we found that total informa-
tion for this classification was approximately matched in IT and PRh but
that it was more linearly separable in PRh. This result is recapitulated in
Figure 3c, where trial-level cross-validated performance of a linear decoder
in PRh (PRh FLD) is seen to be similar to the performance of a nonlinear
maximum likelihood decoder applied to IT (IT ML), suggesting that the
linearly separable, task-relevant information contained within PRh is also
largely present in its inputs arriving from IT. However, the performance of
a linear classifier acting directly on IT responses (IT FLD) is significantly
worse that the ML performance, suggesting that the information is nonlin-
early embedded within IT. These results are consistent with a feedforward
mechanism in which PRh performs computations to increase linear separa-
bility of its IT inputs (Pagan et al., 2013; Pagan & Rust, 2014a).

We wondered how well nQDA could mimic computations performed
by PRh when applied to inputs arriving from IT. We found that a
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Figure 3: Application of nQDA to recorded neural responses. (a) We recorded
neural responses in IT and PRh as monkeys performed a delayed-match-to-
sample task. On each trial, monkeys were presented with a cue indicating the
identity of the target (“target sample”), followed by a random number of dis-
tractors and a target match. Monkeys were required to indicate when the target
match appeared. (b) Response clouds of two hypothetical neurons to target
matches (red) and distractors (gray), where different shapes indicate different
images. As described previously (Pagan et al., 2013), this task can be reformu-
lated as a two-way classification between the set of responses to all the images
presented as target matches versus the set of responses to the same images pre-
sented as distractors. (c) Trial-level cross-validated classification performance
of different decoders applied to IT, along with a linear decoder applied to
PRh. Plotted are the mean performance values, with error bars indicating boot-
strapped estimates of standard error. Classifiers include an FLD decoder applied
to IT and PRh (black); LN-LN decoders that include random, PCA, and ICA
decompositions applied to IT, followed by optimized marginal nonlinearities
and a final, FLD linear decoder (white); the nonlinear nQDA decoder applied
to IT (light gray); and a nonlinear, maximum likelihood decoder applied to IT
(dark gray).
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164-dimensional nQDA-transformed IT population (see Figure 3c, IT
nQDA) performed significantly better than a linear read-out of IT (p =
0.022), nearly as well as the upper bound imposed by the ML read-out
of the same data, and comparable to a linear read-out of PRh. These re-
sults suggest that nQDA is largely successful at capturing the nonlinear
transformation of target match information from IT to PRh.

We also considered whether a number of alternative LN-LN models
could account for PRh computation. The structure of each of these alter-
native LN-LN models mirrored the structure of nQDA (see Figure 1b, and
equation 2.6) insofar as each model began by projecting the same inputs
onto a bank of linear filters, each followed by a scalar nonlinearity, and the
resulting output values were combined using a final linear decoder. From
a geometric perspective, these initial linear transformations can be inter-
preted as projections onto different sets of axes that span the original input
space (see Figure 2), and our goal was to compare alternative methods for
selecting these axes (random, PCA, and ICA) with nQDA. For each model
the first axis of the linear transformation was chosen to be the same as the
first nQDA axis (thus preserving the linearly separable information that
already existed in IT), while the remaining axes were chosen using one of
several methods (described below). Whereas nQDA used a fixed (squaring)
nonlinearity, we allowed each of these alternative models to use a different
nonlinearity for each axis, chosen as the log likelihood ratio between the
projected responses to matches and distractors (see Figure 8).

For the first alternative model, we chose 164 random orthogonal axes
(equal to the number of IT neurons). On average, this transformation did not
exhibit better performance than the FLD applied to IT data (see Figure 3c,
IT random). The performance of a random linear transformation can be
improved by increasing the output dimensionality, but we found that using
up to 1000 random axes led to only a small improvement (see Figure 4).
It is worth noting, however, that a random linear transformation with out-
put dimensionality equal to the number of degrees of freedom in the linear
and quadratic terms in equation 2.3 (N + N(N + 1)/2; in our case, approx-
imately 14,000 axes) can exactly match the performance of nQDA.1

We also investigated whether an LN-LN model based on PCA or inde-
pendent component analysis (ICA) linear transformations could match the
performance of nQDA. We fit both methods to training subsets of IT popula-
tion response to four target match and four distractor conditions (exploring

1Specifically, given a matrix P whose columns pk are N(N + 1)/2 randomly cho-
sen N-vectors, with probability 1 there exists a diagonal matrix W (with diagonal el-
ements wk) such that the quadratic term in equation 2.3 can be expressed as rT Qr =
rT PWPT r =

∑

k
wk(pT

k r)2. This expression has the same LN-L form as the quadratic term

of nQDA (see equation 2.5). The vector of diagonal elements wk can be computed as
((PT P).2)−1diag(PT QP), where (.).2 indicates element-wise squaring and diag(.) extracts a
vector containing the diagonal elements of a matrix.
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Figure 4: Performance of an LN-LN model with random axes improves
marginally with increasing output dimensionality. Classifier performance is
shown as a function of number of random axes. In contrast to the analysis de-
picted in Figure 3c IT random, which used a randomly chosen, orthogonal set
of axes (with dimensionality N = 164, equal to that of the input space), here
each random axis was selected independently. These randomly weighted in-
puts were then passed through a nonlinearity optimized for each axis, and the
responses were combined using a final, linear decoder. For comparison, the FLD
and nQDA decoders applied to IT (i.e., the same values in Figure 3c) are also
indicated (by dashed lines).

all possible distractor subsets that spanned the four visual and four target
dimensions, as described above), and we kept all the resulting dimensions.
We found that a model using PCA as the initial linear transformation could
not replicate the transformation from IT to PRh (see Figure 3c, IT PCA). Sim-
ilarly, we found that despite a modest increase in performance over random
projections and PCA, ICA also failed to replicate the transformation from
IT to PRh (see Figure 3c, IT ICA). In summary, these results show that the
optimal quadratic classifier implemented with nQDA provides an efficient
(in terms of the number of cells) explanation of the transformation between
high-level brain areas IT and PRh, surpassing other LN-LN models with
optimized (nonquadratic) nonlinearities.

As an additional assessment of the degree to which nQDA replicated the
transformation from IT to PRh, we examined the relative amounts of differ-
ent task-relevant signals represented within the two brain areas. Specifically,
we decomposed each neuron’s responses into three component signals: (1)
visual modulation (i.e., response modulation by changes in the identity of
the visual stimulus), (2) target modulation (i.e., response modulation by
changes in the identity of the target), and (3) target match modulation (i.e.,
modulation by changing whether a condition is a target match or a distrac-
tor), using the techniques described by Pagan and Rust (2014a; see section 4).



Neural Quadratic Discriminant Analysis 2301

Figure 5: nQDA replicates magnitudes in PRh. The responses of each neuron
were decomposed into different types of task-relevant signals by quantifying,
for each neuron, the amount of spike count variance (around the grand mean
spike count) that could be attributed to changes in experimental conditions:
Target match (whether a condition was a target match or distractor), Visual (im-
age identity), and Target (target identity) (see Section 4). These signal variances
were then normalized by each neuron’s trial-by-trial variance, averaged across
conditions, to obtain unitless quantities that reflect the ratio of each type of
signal relative to the noise. Shown are the means and standard errors of these
signal measures, computed for each population.

We quantified the strength of each of these signals by estimating the pro-
portion of spike count variance they accounted for, relative to the total
variance across trials. As expected from the population performance re-
sults, the amount of target match signal increased from IT to PRh and the
nQDA model replicated this increase (see Figure 5, Target match). Addi-
tionally, the amount of visual signal (which reflects visual image identity)
decreased from IT to PRh, and this decrease was also replicated by the
nQDA model (see Figure 5, Visual). Although the target match signal is
similar to what was optimized by nQDA, visual signals were not directly
fit by our procedure, and replication of their decrease from IT to PRh is
thus nontrivial. We found no differences in the amount of target signal
(which reflects target identity) between IT, PRh, and the model (see Figure 5,
Target). These results provide additional support that nQDA captures trans-
formations between IT and PRh.

2.4 Biologically Plausible Learning of nQDA Parameters. In the pre-
vious section, the parameters of an nQDA transformation were optimized
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by estimating the mean and covariance of the IT population responses to
each of the classes and inserting these into equations 2.4 and 2.5. We won-
dered how neural populations could learn these parameters without direct
knowledge of the class covariances and without computing the eigende-
composition of the difference of the inverse covariances. While we lack a
full solution to this problem, we have gained insight into the special case in
which the two class distributions have matched eigenvectors but different
eigenvalues (i.e., two input distributions with variance distributed along
the same axes but in different amounts, including possible differences in
rank order). For this case, a supervised extension to a Hebbian learning
algorithm converges to nQDA weights, and we refer to this algorithm as
Hebbian QDA (hQDA).

We first note that when the eigenvectors of two covariance matrices are
matched, the eigendecomposition of difference of the inverse covariances
(necessary for nQDA; see equation 4) can be computed via the eigende-
composition of the difference of the covariances. This emerges from the
well-known fact that the eigenvectors of a matrix are the same as those of
its inverse. Given this, we show that a simple local learning rule converges
to the eigenvectors of the difference between class covariances. The hQDA
learning rule is an extension of previous work by Oja (1982), who revealed
that a Hebbian learning algorithm converges to the first PCA principal com-
ponent. To review that work, we consider a simple scenario where a model
neuron receives only two inputs, x1 and x2 which are weighted by synaptic
weights w1 and w2 (see Figure 6a). The model neuron produces the output
y as the linear combination of the two-dimensional vectors x and w:

y = xTw (2.7)

Under Hebbian learning, weights w1 and w2 are increased when the activity
of inputs and output is correlated: when the input and the output “fire
together,” they “wire together.” This is achieved by modifying the weights
by a quantity %w proportional to the vector of inputs x, scaled by the output
value y, and by a constant coefficient η called the learning rate:

%w = η · x · y. (2.8)

Substituting y from equation 2.7 leads to

%w = η · x · xTw. (2.9)

Finally, by taking the mean value of %w, we obtain the following equation,

⟨%w⟩ =
〈
η · x · xTw

〉
= η ·

〈
x · xT 〉

w = η · ! · w, (2.10)
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where we used angle brackets ⟨ · ⟩ to denote averages and ! to indicate
the covariance of x. The solution of this equation (Oja, 1982) reveals that
Hebbian learning converges to weights corresponding to the leading eigen-
vector of the covariance matrix, that is, to the first principal component (see
Figure 6a).

The hQDA algorithm is inspired by the Hebbian rule (see equation 2.10),
but it contains the modification that the model neuron receives an additional
“top-down” supervision signal that specifies the class k of the current input
(see Figure 6b; e.g., k = 1 for target matches and k = 2 for distractors). This
top-down input acts to switch the sign of the learning rule between the two
classes: it adopts a Hebbian rule for one class and an anti-Hebbian rule for
the other, and as such, we refer to it as a “contrastive” Hebbian rule:

{
%w = η · x · y i f k = 1
%w = −η · x · y i f k = 2 . (2.11)

If we now substitute equation 2.7 into equation 2.11 we obtain

{
%w = η · x · x · w i f k = 1
%w = −η · x · x · w i f k = 2 . (2.12)

Taking the average value of we get:

⟨%w⟩=
〈
η · xk=1 · xk=1 · w

〉
−

〈
η · xk=2 · xk=2 · w

〉
= . . .

. . . = η ·
〈
xk=1 · xk=1

〉
· w − η ·

〈
xk=2 · xk=2

〉
· w = η ·

(
!1 − !2

)
· w, (2.13)

where xk=1 indicates the inputs labeled for class 1, xk=2 indicates those of
class 2, !1 is the covariance for the inputs labeled for class 1, and !2 is
the covariance for those of class 2. Note that this expression is equivalent
to equation 2.10, with the exception that the covariance matrix is now
replaced by the covariance difference !1 − !2. Consequently, the weights
now converge to the leading eigenvector of the difference of the covariance
matrices (i.e., to the axis with maximum variance difference), as determined
by nQDA (see Figure 6b).

Two additional modifications are required to recover the hQDA weights.
First, to avoid an unbounded exponential increase of the synaptic weights,
we implement Oja’s (1982) correction:

{
%w = η · x · y − η · y2 · w i f k = 1
%w = −η · x · y − η · y2 · w i f k = 2 . (2.14)

Second, an elaboration is required to recover the weights of the neurons
beyond the first. This can be achieved using Sanger’s (1989) rule, in which
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each successive neuron forces its weights to be orthogonal to all previously
defined neurons:

⎧
⎨

⎩

%w = η · x · y − η · y2 · w − η · y ·
∑

i
y(i) · w(i) i f k = 1

%w = −η · x · y − η · y2 · w − η · y ·
∑

i
y(i) · w(i) i f k = 2 , (2.15)

where y(i) is the output of the ith model neuron and w(i) are the weights of
the ith model neuron.

hQDA is guaranteed to converge to the same axes as nQDA only when
the eigenvalues of the two covariance matrices are identical, and we thus
wanted to assess how well hQDA performs under realistic conditions.
Because the IT data set described included too few conditions to eval-
uate hQDA, we performed a simulation in which we sampled a large
number of artificial population responses from two multivariate gaussian
distributions matched to the covariances matrices estimated from our data.
To simplify the interpretation of this simulation, we subtracted the mean

Figure 6: Approximate nQDA parameters can be learned with a supervised,
Hebbian rule, hQDA. (a) As described previously by Oja (1982), the Hebbian
algorithm recovers the first PCA axis. Top: The population response distribution
for two hypothetical neurons to two classes of stimuli. The first principal com-
ponent axis (dotted line) captures the axis with maximum variance, summed
across conditions. Bottom: Depiction of a neuron that receives inputs from the
two neurons depicted at the top and whose weights are modified according to a
classic Hebbian rule. Application of the Hebbian rule results in the convergence
of the input weights to the first PCA axis. (b) Top: The population response
distributions for two hypothetical neurons to two classes of stimuli. The first
hQDA axis captures the axis with maximum variance difference (dotted). Bot-
tom: depiction of the same neuron as shown in panel a but with an additional
input that indicates the class label for each condition. The contrastive Hebbian
rule is implemented in this framework by switching the sign of the classic Heb-
bian term according to this label. (c) Cross-validated classification performance
of a number of decoders applied to a neurally inspired data set (see text), plotted
as a function of the training set size. Classifiers are FLD (green), nQDA (blue),
hQDA (black), and nQDA with the use of direct covariances instead of inverse
covariances (black dashed line). hQDA was set to retrieve six axes, equal to the
number of informative dimensions in the input space (see section 4). (d) Average
absolute correlation between the axes obtained by applying hQDA to the same
simulated data and the corresponding closed-form eigenvectors computed via
the difference of covariances. Convergence to closed-form axes is shown as a
function of the size of the training set. (e) Diagram for a model in which the
contrastive Hebbian rule could be used to learn the hQDA parameters, where
the class label is determined for each condition as a combination of the decision
and whether the decision was rewarded.
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of each class-conditioned distribution so that only differences in the co-
variances carried useful information. Figure 6d shows the classification
performance of hQDA and other decoders as a function of the size of the
training set. In this simulation, nQDA (blue) performed near 100%, whereas
FLD (green) performed near chance, as expected due to of the absence of
linearly separable information. To separately evaluate issues related to the
approximation of the difference of the inverse covariances (with the differ-
ence of covariances) and other issues related to hQDA implementation, we
began by determining performance when we applied a version of nQDA in
which the axes were computed as the eigenvectors of the difference of the
two covariance matrices (see section 4). Performance of this classifier con-
verged to nQDA performance (see Figure 6c, black dashed line), suggesting
that this is a reasonable approximation under the conditions imposed in
this data-inspired simulation. Next, we recovered these axes using hQDA
(see section 4) and found that it converged to nQDA performance in ap-
proxmately 1000 training trials (see Figure 6c, black solid line). As another
measure of hQDA convergence, we computed the absolute value of the
correlation between the axes retrieved by hQDA and the eigenvectors of
the difference of the covariance matrices. As shown in Figure 6d, the av-
erage correlation between the hQDA axes and the closed-form solutions is
more than 0.85 after about 500 training trials. Together these results suggest
that hQDA does indeed converge to the axes predicted by equation 2.13,
and it can do so with a reasonable amount of training data.

Unlike Hebbian learning, contrastive Hebbian learning as we have de-
scribed it requires an input that signals the class of the current condition
How might such an input be computed? Figure 6e shows a simple model
demonstrating how this signal might be generated during training via a
reinforcement learning algorithm. On each trial, a subject generates a be-
havioral decision (predicting whether each condition belongs to class 1 or
2) and receives a reward for correct responses. Class identity can uniquely
be determined on each trial based on the combination of the predicted class
and whether a reward was received: the presence of a reward confirms that
the predicted label was correct, whereas the absence of a reward indicates
that the predicted label was incorrect and should thus be switched. Our
model proposes that information is used to compute the class label (i.e.,
k = 1 for target matches or k = 2 for distractors) and is then fed back as an
input for contrastive Hebbian learning. Inputs that combine decision and
reward information to mediate the modification of feedforward weights
have been proposed by others (Law & Gold, 2009) and could be imple-
mented biophysically via dopaminergic inputs, which are potent in PRh
(Akil & Lewis, 1993; Richmond, 2006). Under this scenario, dopaminergic
inputs could act as a gate for turning learning “on” and “off” and would
thus prevent learning when it is inappropriate for it to occur (e.g., as a result
of the cue period responses in our task; Soltani & Wang, 2006; Izhikevich,
2007).
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3 Discussion

Quantitative descriptions of the computations implemented by higher brain
areas have been difficult to develop. The responses of neurons in these
areas are highly nonlinear functions of sensory inputs, requiring complex
parameterization and large amounts of data. Alternatively, fitting simpler
models to the computations performed only by the neurons in a given area
generally relies on a precise description of the inputs to that area. Here
we have used the structure of low-level encoding models as a basis for
constructing decoding models to describe computation in higher stages.
Our solution, neural quadratic discriminant analysis (nQDA), reformulates
an optimal quadratic classifier as a linear-nonlinear, linear-nonlinear (LN-
LN) cascade model, in which input arriving from a population of neurons
is transformed at the first stage by a bank of linear filters, followed by
squaring nonlinearities, and a final read-out with a second LN stage. The
model provides both a means of fitting neural data with an optimal classifier,
as well as a biologically plausible description of neural mechanism.

We arrived at nQDA via our previous attempts to account for the trans-
formation between two high-level brain areas, IT and perirhinal cortex
(Pagan et al., 2013). In that work, we fit a specific LN-LN classifier model
(in which pairs of IT cells combined to form pairs of perirhinal neurons)
with a brute force parameter search. Here we have used the insight gained
from the pairwise model—that increased linear separability can be accom-
plished by converting class variance differences into mean differences by
squaring—to develop a more general solution. Specifically, we have gen-
eralized this procedure to multiple dimensions by deriving it as a form of
QDA (see equations 2.3–2.6); shown that nQDA provides a better account
of a transformation between two high-level brain areas than a number of
comparable alternatives (see Figures 2.3 and 2.4); and developed a biologi-
cally plausible learning rule that can be used to estimate nQDA parameters,
hQDA (see Figure 6).

3.1 Similarities between Computation in PRh and V1. Although
nQDA was designed from a decoding perspective, its structure (see Figure
1b) is qualitatively similar to functional models commonly used to describe
neural computation in V1 (see Figure 7). In their simplest form, the response
of a V1 simple cell, including selectivity for orientation, spatial frequency,
and phase, is captured by an oriented linear filter followed by a threshold
(Heeger, 1992), and the phase invariance of the V1 complex cell is cap-
tured by the two oriented linear filters of differing phase whose responses
are squared and summed (Adelson & Bergen, 1985). In previous work, we
and others have proposed a more elaborate LN-LN “subunit” model to
capture the continuum of cells whose response properties lie between sim-
ple and complex (Rust et al., 2005; Touryan, Felsen, & Dan, 2005; Lochmann,
Blanche, & Butts, 2013). In this model, one subunit consists of a linear filter
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Figure 7: A generalized encoding description of V1 computation. Shown is
the generalized LN-LN subunit model proposed to describe the conversion of
visual images into the firing rate responses of individual V1 neurons. In the first
LN stage, the stimulus is passed through a bank of linear filters followed by
squaring, with the exception of the first subunit (which is half-squared). These
responses are combined with a weighted sum, and the result is passed through
a final nonlinearity. Note the similarity between the structure of this model and
nQDA (see Figure 1b).

that is half-wave rectified and squared, the other subunits consist of linear
filters followed by squaring, and all subunit responses are combined with a
weighted sum, followed by a final response nonlinearity (see Figure 7). This
model can be fit to neural data using spike-triggered covariance (Rust et al.,
2005; Touryan et al., 2005; Lochmann et al., 2013), or more direct maximum
likelihood methods (Vintch, Movshon, & Simoncelli, 2015). The structure
of this generalized V1 model bears a remarkable resemblance to the nQDA
model framework (compare Figure 1b and Figure 7): an LN-LN model in
which one (linear) subunit combines with a bank of nonlinear subunits
whose responses are squared.

Despite their structural similarity, the V1 subunit model and the nQDA
computation aim to describe different phenomena: the V1 model is a single-
neuron description of the transformation of a visual image into a firing rate
response, whereas the nQDA framework is a population-level description
of the conversion of an input population response into the solution for a
predefined classification task. Nevertheless, a notable similarity between
the models is that the parameters recovered by both procedures are not
uniquely constrained. Consequently, care must be taken in interpreting both
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the “subunits” of the V1 model and the parameters of the nQDA “model
neurons” as biological elements. In the case of the V1 model, this can be
observed empirically from the recovery of multilobed, physiologically im-
plausible linear filters that span the same linear subspace as more plausible,
localized, shifted subunits (Rust et al., 2005; Lochmann et al., 2013; Vintch
et al., 2015). In the case of nQDA, the recovered “model neurons” are prob-
ably best regarded as “meta-neurons” that each represent something like a
functional pool of individual neurons within the brain area of interest. In
light of these issues, the advantage of both types of descriptions is that each
provides an intuitive, quantitative account of an input-output transforma-
tion that can then be used to guide future experiments, as well as constrain
more specific accounts of their biological implementation.

3.2 Links between nQDA and Other Proposed Transformations.
While decoding has become a widely used tool for studying the repre-
sentational content of neural populations, it has seldom been used as a
substrate for explicit modeling of neural response. Linear classifiers are
commonly used to describe decision tasks, and their physiological imple-
mentation is straightforward (i.e., a weighted sum followed by a threshold),
but the degree to which the brain implements such decoders is not known,
and even less is known about nonlinear population decoders. The quadratic
nQDA decoder developed here has a complexity that is well matched to the
computational capabilities of one stage of neural processing (e.g., a cortical
area). Our results suggest that this type of decoder is sufficient to capture the
transformation that perirhinal cortex performs on the inputs arriving from
IT (see Figure 3c). The reformulation of QDA into an LN-LN framework
also allowed us to arrive at an intuitive geometric description of the neural
mechanisms used to create linear separability—that is, by finding the input
dimensions with maximal variance differences and converting those into
mean differences with squaring (see Figure 2). Finally, the LN-LN refor-
mulation leads to a physiologically plausible contrastive Hebbian learning
algorithm capable of approximating nQDA parameters (see Figure 6).

Our results demonstrate that nQDA provides a better account of the
transformation between two high-level brain areas, IT and perirhinal cor-
tex, than a number of comparable alternatives. Each transformation con-
sisted of a linear transformation of the inputs, followed by a nonlinearity
constrained to operate separately on each of the resulting responses. We
found that a random linear transformation, using up to 1000 axes, failed
to increase linear separability, suggesting that the randomly connected net-
works that have been proposed for other systems (Sussillo & Abbott, 2009;
Caron, Ruta, Abbott, & Axel, 2013) are not a good description for these par-
ticular brain areas and this particular task. The inability of PCA to replicate
the transformation (see Figure 3c) is largely explained by the fact that the
response modulation in IT is primarily visual (Pagan et al., 2013), and thus
PCA recovers dimensions along which the distributions to target matches
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and distractors are highly overlapping, whereas increasing linear separabil-
ity requires finding the dimensions along which the distributions of the two
classes differ. The fact that ICA performs better than PCA can be understood
in the context of the success of nQDA: directions along which the variance
of two classes differs the most will also tend to have large kurtosis (since the
distribution of inputs is a mixture of two distributions with very different
variance), and thus are also likely to be found by ICA. However, nQDA
did in fact outperform ICA, in part because of the additional information
provided by the (supervised) class labels.

We evaluated the degree to which nQDA could replicate a two-way
discrimination between target matches and distractors by assessing trial-
level, cross-validated classification performance applied to data recorded
from IT. While we found robust cross-validated performance across trials
(see Figure 3c), nQDA applied to this data set does not generalize well
across conditions (not shown). We suspect that this is because the data set
is relatively small (16 total conditions), whereas generalization requires a
considerable amount of data to accurately sample the covariance. While
acquiring large data sets from the brains of awake, behaving animals is
considerably more challenging than other situations in which generaliza-
tion is typically applied (e.g., raw images or neural responses in animals
that are passively viewing rapidly presented images, Cadieu et al., 2014;
Yamins et al., 2014), we see expanding these data sets as an important future
step of this modeling effort. We also note that our results do not guaran-
tee that nQDA will provide an equally good account of other high-level
transformations, such as the multiway classifications required for invari-
ant object recognition (i.e., determining which of N possible objects is in
view).

3.3 How might the Brain Learn the nQDA Transformation? We have
demonstrated that the parameters of nQDA can be learned by neurons via a
local, supervised rule, hQDA (see Figure 6). Our learning rule closely resem-
bles classic Hebbian descriptions of synaptic plasticity (Oja, 1982; Sanger,
1989; Hebb, 2002), with the addition of an extra input that acts to switch the
sign of the learning rule. Such an approach is reminiscent of the contrastive
Hebbian (Hinton & Sejnowski, 1986) and contrastive divergence (Hinton,
2002) approaches that are generally adopted to train Boltzmann machines.
Notably, this learning algorithm is supervised, and the best-performing un-
supervised algorithm that we applied (ICA) did not perform well. However,
unsupervised algorithms have been used successfully in contexts similar to
the ones we describe here (Wiskott & Sejnowski, 2002; Serre, Wolf, & Poggio,
2005; Cadieu & Olshausen, 2008), and it remains unclear whether hQDA
could be reformulated in an unsupervised context. We have also offered
speculative suggestions of how hQDA might be implemented in the brain
(see Figure 6e). One difficulty is the incorporation of Sanger’s rule, which
forces the nQDA axes to be orthogonal (see equation 2.15). In his original
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proposal of the rule, Sanger (1989) speculated that this might be achieved
by lateral or other competitive interactions between neurons.

3.4 The Value of Quantitative Descriptions at Higher Stages. Finally,
the importance of techniques for fitting quantitative models to account for
high-level computation is worth noting. While it is tempting to assume
that the types of complex response properties exhibited by high-level brain
areas result from neural computations that are themselves complex, this
need not be the case. Rather, the responses of neurons in a high-level brain
area reflect the net effect of computations up to that point of processing,
and seemingly complex responses can arise from cascading many stages of
simple computation. Consequently, determining the computations that a
high-level brain area implements requires separating the response proper-
ties that a brain area inherits from its inputs from the ones that are computed
de novo. The results we have presented here suggest that at least for the task
of visual target identification, the computations implemented by perirhinal
cortex bear a striking resemblance to the computations implemented at the
earliest stage of visual cortical processing.

4 Methods

The experimental procedures involved in collecting our data are described
in detail in Pagan et al. (2013) and briefly summarized here. All procedures
were performed in accordance with the guidelines of the University of
Pennsylvania Institutional Animal Care and Use Committee.

We recorded neural responses in IT and PRh as monkeys performed
a delayed-match-to-sample task that required treating the same images
as targets and as distractors on different trials (see Figure 3a). Monkeys
initiated each trial by fixating a small dot. After a brief delay, a sample of
the target image for that trial was presented, followed by a sequence of
0 to 3 distractors, and then by a target match. Monkeys were trained to
maintain fixation during the presentation of the distractors and to make a
saccade to a dot when the target match appeared. The same four images
were used during all the experiments and were presented in all possible
combinations as a visual stimulus and as a target, thus resulting in 16
conditions. Target matches that were presented after the maximal number of
distractors (n = 3) occurred with 100% probability and were discarded from
the analysis; all other conditions were included (e.g., distractors presented
at the first, second, or third positions). For each condition, we collected at
least 20 repeats on correct trials. Spikes were counted in a window 50 to
220 ms following stimulus onset.

4.1 Population Performance. To measure the amount and format of
task-relevant information contained in each neural population, we per-
formed a variety of cross-validated classification analyses of whether each
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condition was a target match or a distractor (Pagan et al., 2013). For all
analyses, we considered population response vectors of N neurons (where
N = 164 in IT and PRh). The cross-validation procedure involved randomly
assigning 18 trials from each condition to compute the representation (train-
ing set), setting aside one trial from each condition to optimize classifier
parameters (parameter set), and finally using the remaining trial from each
condition to test the performance of the classifier (test set). The number of
target matches and distractors was matched on each iteration of the proce-
dure (four from each class). Moreover, distractors were chosen to span all
visual stimuli and all targets to avoid the possibility that classifiers could
rely on visual or target information alone, leading to nine valid sets of four
distractors. While we note that this changes the ratio of target matches and
distractors for the classification analysis (4 target matches/4 distractors)
as compared to the actual experiment (4 target matches/12 distractors),
the monkeys’ high performance on this task (averages of 94% and 92% for
each of two monkeys) suggests that they were not simply relying on these
suboptimal information sources (which would plateau at 66% correct) but
rather computing the actual target match signal. The performance value for
each iteration was computed as the mean of the eight test binary values (0 =
wrong; 1 = correct), averaged across all nine valid choices of the distractor
set. Mean and standard error were computed as the mean and standard
deviation across 2000 iterations of the resampling procedure. To compare
IT FLD and nQDA performance, we report a p-value as an evaluation of
the probability that differences in the mean performance values that we
observed were due to chance. We compute this probability as the fraction
of 2000 iterations on which the difference was flipped in sign relative to the
actual difference between the means of the full data set.

Before applying each classifier, the responses of each neuron were nor-
malized to have zero mean and unit standard deviation across all training
trials to ensure that the classifier parameters were assigned based on a com-
bination of response magnitude and trial-by-trial variability rather than
response magnitude alone. Responses could not be normalized before ap-
plying the maximum likelihood classifier because the classifier assumes
inputs are Poisson distributed and nonnegative. We tested several types of
classifiers (see Figure 3c).

4.1.1 FLD Linear Classifier. The expression for the FLD classifier is pre-
sented in equation 2.2. To minimize the impact of trial variability on our
covariance estimates, we began by averaging the responses to each con-
dition across the set of training trials; we then computed the means and
covariances for the neural population using a regularized estimate equal to
a linear combination of the sample covariance ! and the identity matrix I:

!̂i = γ · !i + (1 − γ ) · I. (4.1)
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On each iteration of the resampling procedure, the regularizing parame-
ter γ was optimized using the training set, and the γ that produced the
best performance was chosen to compute the actual performance using the
separately measured test set. The final FLD performance values were then
computed by averaging the performances on the test set across all iterations.

4.1.2 Maximum Likelihood Classifier. The maximum likelihood classifier
is described in detail in (Pagan et al., 2013). Briefly, we used the set of
training trials to compute the average response ruc of each neuron u to each
condition c, and (consistent with our data) we modeled the likelihood that
a test response k was generated from a particular condition as a Poisson-
distributed variable:

Lu,c
(
k
)

=
(
ruc

)k · e−ruc

k!
. (4.2)

The likelihood that a population response vector was generated in response
to each condition was then computed as the product of the likelihoods of
the individual neurons. Finally, we computed the likelihood that a test
response vector arose from the category target match versus the category
distractor as the mean of the likelihoods for target matches and distractors,
respectively, and we assigned the classification label to the category with
the higher likelihood.

4.1.3 nQDA. nQDA parameters were calculated as described in
equations 2.4 to 2.6 using the regularized covariances described in
equation 4.1.

4.1.4 Alternative Nonlinear Classifiers. We compared nQDA performance
with three alternative nonlinear classifiers that (like nQDA) began by apply-
ing an initial linear transformation of the original IT space. We next describe
the computation of (1) the linear weights (axes) for each type of classifier,
(2) the nonlinearities applied to these linearly transformed responses, and
(3) the final linear weighting used to combine the transformed responses
into the classifier signal (which is then thresholded to obtain the classifica-
tion response).

Linear weights. For all three alternative nonlinear classifiers, we computed
the parameters for one linear model neuron in the same manner as nQDA
to ensure that we preserved the linearly separable information that already
existed in IT. The computation of random axes (see Figure 3c, IT random)
involved selecting a 164-dimensional random rotation matrix (Mezzadri,
2006). When larger numbers of random axes were considered (see Figure 4),
they were generated independently from a multivariate gaussian distribu-
tion with zero mean and unitary standard deviation. The PCA axes (see
Figure 3c, IT PCA) were chosen as the eigenvectors of the covariance matrix
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Figure 8: Computing the optimal nonlinearity for each alternative nonlinear
classifier axis. The distributions of the responses to each condition, projected
along each axis, were modeled as gaussian distributions and the responses to
the set of target matches and set of distractors were each modeled by mix-
tures of these gaussian distributions. To compute an optimized nonlinearity
that maximally separated the means of the target matches and distractors, we
computed the log-likelihood ratio between the mixture of gaussians for matches
and the mixture of gaussians for distractors. This optimized nonlinearity was
computed using the training data and was applied to the test data following
the application of different linear projections to obtain the results in Figure 3c.

computed from the combined responses to both target matches and distrac-
tors. The ICA axes (see Figure 3c, IT ICA) were chosen as those along which
the kurtosis of the projected responses was maximal, and they were com-
puted using the fastICA package (http://research.ics.aalto.fi/ica/fastica).
Finally, the nQDA axes (see Figure 3c, IT nQDA) were computed as de-
scribed in section 2.

Nonlinearities. Following the computation of the linear weights, an opti-
mal nonlinearity was fit independently for each axis (with the exception of
the linear axis) using the distribution of the projected responses for target
matches and for distractors, obtained from the training data (see Figure 8).
This nonlinearity is optimal in the sense that it is designed to maximally
separate the output values for matches from the output values for distrac-
tors in a manner very similar to the ratio of gaussians method (Pillow &
Simoncelli, 2006). To compute the optimal nonlinearity for a particular axis,
we modeled the distribution of responses to each match condition and each
distractor condition as a gaussian distribution, having the mean and the
variance of the responses after the initial linear transformation. We then
computed the log-likelihood ratio between the mixture of gaussians associ-
ated with matches and the mixture of gaussians associated with distractors.
This procedure assigned positive values to responses that are likely to be
matches and negative values to responses that are likely to be distractors.

The final linear read-out. For each alternative classifier, the weights of the
final linear decoder were computed via the regularized FLD described by
equation 4.1 (in contrast to pooling via the eigenvalues as described for
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nQDA, equation 2.6). As described, computation of FLD weights included
optimizing a single regularization parameter γ using the parameter set,
whereas classifier performances were computed using the separately mea-
sured test set. Consequently, computation of both nQDA and each of these
alternative nonlinear classifiers included the cross-validated optimization
of a single regularization parameter.

4.2 Quantifying Neural Signals. To parse neural responses into dif-
ferent types of task-relevant signals, we applied the method described by
Pagan and Rust (2014b). Briefly, because our experimental design included
all possible combinations of each of 4 images presented as a target match
and as a distractor, we can reexpress the 16-element vector reflecting the
mean spike count of each unit to each condition as a weighted sum of 16
task-relevant signals by projecting it onto an orthonormal basis that we
have designed specifically to capture different types of modulation (Pagan
& Rust, 2014b; see Figure 1d) and then combining components that reflect
the same type of modulation (e.g., changes in visual identity). Shown in
Figure 5 are modulation magnitudes, each of which reflects spike count
variance (around the grand mean) that result from changes in visual stimu-
lus identity (“visual”), target identity (“target”), and whether each condition
was a target match or a distractor (“target match”). These variances are nor-
malized by each unit’s trial variance, computed as the variance across the
20 repeated trials for each condition and then averaged across conditions,
to obtain a unitless quantity that reflects the ratio of each type of signal
relative to the noise.

4.3 Data-Inspired Simulation. To evaluate how well the hQDA con-
trastive Hebbian learning algorithm converged to nQDA parameters (see
Figure 7c), we performed a data-inspired simulation that allowed us to gen-
erate the large number of trials necessary to evaluate convergence. Specifi-
cally, we computed the covariance matrices of the 167 IT neurons included
in our data set across the four matches, and the covariance matrix across
four distractors, and we then drew 167-dimensional vectors (up to 1000 for
training and always 1000 for testing) from two multivariate gaussian dis-
tributions whose covariances matched those of the data and whose means
were set to 0. This procedure was repeated 1000 times for each condition.
On each iteration of the simulation, the four distractors were chosen ran-
domly with the constraint of spanning all four visual stimuli and targets. We
then used different numbers of training samples to fit the decoders, and we
evaluated classification performances using the testing data (see Figure 7d).

With the exception of different numbers of training and testing trials,
FLD and nQDA were implemented as previously described. To implement
hQDA, the weights were randomly initialized (from a standard multivariate
normal distribution) and were updated following the presentation of each
training sample according to the learning rule described by equation 2.15.
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The learning rate was decreased as the learning proceeded, with the learning
rate ηi used for the nth training sample set to

ηi =
η0

1 + n
N

, (4.3)

where N is the total number of training samples and the initial learning
rate η0 was set to 0.001. Because our data contained four matches and four
distractors and the mean of each distribution was set to zero, the dimen-
sionality of the training data was equal to six. As a consequence, only six
axes contained meaningful information to aid classification performance,
and we thus restricted hQDA to learn six axes. More specifically, three axes
were learned by adopting a positive Hebbian term for the match class and
a negative Hebbian term for the distractor class (thus retrieving axes where
the match variance was larger than the distractor variance), and three axes
were learned using the opposite association (thus retrieving the axes where
distractor variance was larger than match variance). Because the simulated
data did not contain any differences between the means of the two distri-
butions, hQDA was implemented here without the linear axis (see Figure
1b, yellow), thus focusing only on the squared axes (see Figure 1b, green).
Following squaring of the hQDA responses, they were combined via a final
FLD (trained as described above).

We also implemented a modified version of nQDA in which axes were
computed as the eigenvectors of the difference of the two covariance ma-
trices, as opposed the difference of the inverse covariances (see Figure 6c,
black dashed). As with hQDA, we computed only the six axes associated
with nonzero eigenvalues, we squared the resulting responses, and we
combined the responses via a final FLD.

Acknowledgments

This work was supported by the National Eye Institute of the U.S. National
Institutes of Health (award R01EY020851), the McKnight Endowment for
Neuroscience, and the Howard Hughes Medical Institute. We thank Stefano
Fusi and Josh Gold for helpful discussions.

References

Adelson, E. H., & Bergen, J. R. (1985). Spatiotemporal energy models for the percep-
tion of motion. J. Opt. Soc. Am. A, 2(2), 284–299.

Akil, M., & Lewis, D. A. (1993). The dopaminergic innervation of monkey entorhinal
cortex. Cerebral Cortex, 3(6), 533–550.

Astrand, E., Enel, P., Ibos, G., Dominey, P. F., Baraduc, P., & Ben Hamed, S. (2014).
Comparison of classifiers for decoding sensory and cognitive information from
prefrontal neuronal populations. PLoS One, 9(1), e86314.



Neural Quadratic Discriminant Analysis 2317

Bialek, W., de Ruyter van Steveninck, R., Rieke, F., & Warland, D. (1996). Spikes:
Exploring the neural code. Cambridge, MA: MIT Press.

Cadieu, C. F., Hong, H., Yamins, D. L., Pinto, N., Ardila, D., Solomon, E. A., . . .

DiCarlo, J. J. (2014). Deep neural networks rival the representation of primate
IT cortex for core visual object recognition. PLoS Computational Biology, 10(12),
e1003963.

Cadieu, C., & Olshausen, B. A. (2008). Learning transformational invariants from
natural movies. In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.),
Advances in neural information processing systems, 21 (pp. 209–216). Cambridge,
MA: MIT Press.

Carandini, M., & Heeger, D. J. (2011). Normalization as a canonical neural compu-
tation. Nature Reviews Neuroscience, 13(1), 51–62.

Caron, S. J., Ruta, V., Abbott, L., & Axel, R. (2013). Random convergence of
olfactory inputs in the Drosophila mushroom body. Nature, 497(7447), 113–
117.

Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Foster, J. D., Nuyujukian, P.,
Ryu, S. I., & Shenoy, K. V. (2012). Neural population dynamics during reaching.
Nature, 487, 51–56. doi:10.10.1038/nature1129

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3),
273–297.

David, S. V., Hayden, B. Y., & Gallant, J. L. (2006). Spectral receptive field properties
explain shape selectivity in area V4. J. Neurophysiol., 96(6), 3492–3505.

DiCarlo, J. J., & Cox, D. D. (2007). Untangling invariant object recognition. Trends
Cogn. Sci., 11(8), 333–341.

DiCarlo, J. J., Johnson, K. O., & Hsiao, S. S. (1998). Structure of receptive fields in area
3b of primary somatosensory cortex in the alert monkey. Journal of Neuroscience,
18(7), 2626–2645.

Duda, R. O., Hart, P. E., & Stork, D. G. (2000). Pattern classification (2nd ed.). New
York: Wiley.

Eggermont, J., Aertsen, A., & Johannesma, P. (1983). Quantitative characterisation
procedure for auditory neurons based on the spectrotemporal receptive field.
Hearing Research, 10(2), 167–190.

Enroth-Cugell, C., & Robson, J. G. (1966). The contrast sensitivity of retinal ganglion
cells of the cat. Journal of Physiology, 187(3), 517–552.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems.
Annals of Eugenics, 7(2), 179–188.

Graf, A. B., Kohn, A., Jazayeri, M., & Movshon, J. A. (2011). Decoding the activity
of neuronal populations in macaque primary visual cortex. Nat. Neurosci., 14(2),
239–245.

Hebb, D. O. (2002). The organization of behavior: A neuropsychological theory. Florence,
KY: Psychology Press.

Heeger, D. J. (1992). Normalization of cell responses in cat striate cortex. Visual
Neuroscience, 9(2), 181–197.

Hinton, G. E. (2002). Training products of experts by minimizing contrastive diver-
gence. Neural Computation, 14(8), 1771–1800.

Hinton, G. E., & Sejnowski, T. J. (1986). Learning and relearning in Boltzmann machines.
Cambridge, MA: MIT Press.



2318 M. Pagan, E. Simoncelli, and N. Rust

Hofmann, T., Schölkopf, B., & Smola, A. J. (2008). Kernel methods in machine learn-
ing. Annals of Statistics, 36, 1171–1220.

Hung, C. P., Kreiman, G., Poggio, T., & DiCarlo, J. J. (2005). Fast readout of object
identity from macaque inferior temporal cortex. Science, 310(5749), 863–866.

Izhikevich, E. M. (2007). Solving the distal reward problem through linkage of STDP
and dopamine signaling. Cereb. Cortex, 17(10), 2443–2452.

Jones, J. P., & Palmer, L. A. (1987). The two-dimensional spatial structure of simple
receptive fields in cat striate cortex. Journal of Neurophysiology, 58, 1187.

Keat, J., Reinagel, P., Reid, R. C., & Meister, M. (2001). Predicting every spike: A
model for the responses of visual neurons. Neuron, 30(3), 803–817.

Kendall, M. G. (1966). Discrimination and classification. In Proc. Symp. Mult. Analysis.
New York: Academic Press.

Law, C.-T., & Gold, J. I. (2009). Reinforcement learning can account for associative
and perceptual learning on a visual-decision task. Nature Neuroscience, 12(5), 655–
663.

Lochmann, T., Blanche, T. J., & Butts, D. A. (2013). Construction of direction selectiv-
ity through local energy computations in primary visual cortex. PloS One, 8(3),
e58666.

Mante, V., Sussillo, D., Shenoy, K. V., & Newsome, W. T. (2013). Context dependent
computation by recurrent dynamics in prefrontal cortex. Nature, 503(7474), 78–
84.

Mezzadri, F. (2006). How to generate random matrices from the classical compact groups.
arXiv preprint math-ph/0609050

Mineault, P. J., Khawaja, F. A., Butts, D. A., & Pack, C. C. (2012). Hierarchical pro-
cessing of complex motion along the primate dorsal visual pathway. Proceedings
of the National Academy of Sciences, 109(16), E972–E980.

Oja, E. (1982). Simplified neuron model as a principal component analyzer. Journal
of Mathematical Biology, 15(3), 267–273.

Pagan, M., & Rust, N. C. (2014a). Dynamic target match signals in perirhinal cortex
can be explained by instantaneous computations that act on dynamic input from
inferotemporal cortex. Journal of Neuroscience, 34(33), 11067–11084.

Pagan, M., & Rust, N. C. (2014b). Quantifying the signals contained in heterogeneous
neural responses and determining their relationships with task performance. J.
Neurophysiol., 112(6), 1584–1598.

Pagan, M., Urban, L. S., Wohl, M. P., & Rust, N. C. (2013). Signals in inferotemporal
and perirhinal cortex suggest an untangling of visual target information. Nat.
Neurosci., 16(8), 1132–1139.

Pillow, J. W., Shlens, J., Paninski, L., Sher, A., Litke, A. M., Chichilnisky, E., &
Simoncelli, E. P. (2008). Spatio-temporal correlations and visual signalling in a
complete neuronal population. Nature, 454(7207), 995–999.

Pillow, J. W., & Simoncelli, E. P. (2006). Dimensionality reduction in neural models, an
information-theoretic generalization of spike-triggered average and covariance
analysis. Journal of Vision, 6(4), 9.

Richmond, B. J. (2006). Dopamine-dependent associative learning of workload-
predicting cues in the temporal lobe of the monkey. In R. Pinaud, L. A. Tremere,
& P. De Weed (Eds.), Plasticity in the visual system (pp. 307–320). New York:
Springer.



Neural Quadratic Discriminant Analysis 2319

Rigotti, M., Barak, O., Warden, M. R., Wang, X. J., Daw, N. D. . . . Fusi, S., (2013). The
importance of mixed selectivity in complex cognitive tasks. Nature, 497(7451),
585–590.

Ringach, D. L., & Shapley, R. (2004). Reverse correlation in neurophysiology. Cogni-
tive Science, 28, 147–166.

Rust, N. C., Mante, V., Simoncelli, E. P., & Movshon, J. A. (2006). How MT cells
analyze the motion of visual patterns. Nat. Neurosci., 9(11), 1421–1431.

Rust, N. C., Schwartz, O., Movshon, J. A., & Simoncelli, E. P. (2005). Spatiotemporal
elements of macaque V1 receptive fields. Neuron, 46(6), 945–956.

Sanger, T. D. (1989). Optimal unsupervised learning in a single-layer linear feedfor-
ward neural network. Neural Networks, 2(6), 459–473.

Schwartz, O., Pillow, J. W., Rust, N. C., & Simoncelli, E. P. (2006). Spike-triggered
neural characterization. Journal of Vision, 6(4), 13.

Serre, T., Wolf, L., & Poggio, T. (2005). Object recognition with features inspired by
visual cortex. In Proceedings of the 2005 Computer Vision and Pattern Recognition.
Washington, DC: IEEE Computer Society.

Sharpee, T. O. (2013). Computational identification of receptive fields. Annual Review
of Neuroscience, 36, 103–120.

Sharpee, T. O., Kouh, M., & Reynolds, J. H. (2013). Trade-off between curvature
tuning and position invariance in visual area V4. Proc. Natl. Acad. Sci. U.S.A.,
110(28), 11618–11623.

Sharpee, T. O., Sugihara, H., Kurgansky, A. V., Rebrik, S. P., Stryker, & Miller, K.
D. (2006). Adaptive filtering enhances information transmission in visual cortex.
Nature, 439(7079), 936–942.

Soltani, A., & Wang, X. J. (2006). A biophysically based neural model of matching
law behavior: Melioration by stochastic synapses. J. Neurosci., 26(14), 3731–3744.

Sussillo, D., & Abbott, L. F. (2009). Generating coherent patterns of activity from
chaotic neural networks. Neuron, 63(4), 544–557.

Touryan, J., Felsen, G., & Dan, Y. (2005). Spatial structure of complex cell receptive
fields measured with natural images. Neuron, 45(5), 781–791.

Vintch, B., Movshon, J. A., & Simoncelli, E. P. (2015). A convolutional subunit model
for neuronal responses in macaque V1. J. Neurosci., 35(44), 14829–14841.

Willmore, B. D., Prenger, R. J., & Gallant, J. L. (2010). Neural representation of natural
images in visual area V2. Journal of Neuroscience, 30(6), 2102–2114.

Wiskott, L., & Sejnowski, T. (2002). Slow feature analysis: Unsupervised learning of
invariances. Neural Computation, 14(4), 715–770.

Wu, M. C., David, S. V., & Gallant, J. L. (2006). Complete functional characterization
of sensory neurons by system identification. Annu. Rev. Neurosci., 29, 477–505.

Yamins, D. L., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D., & DiCarlo, J. J.
(2014). Performance-optimized hierarchical models predict neural responses in
higher visual cortex. Proceedings of the National Academy of Sciences, 111, 8619–8624.

Yu, B. M., Kemere, C., Santhanam, G. A., Afshar, S. I. Ryu, T. H. Meng, . . . Shenoy,
K. V., (2007). Mixture of trajectory models for neural decoding of goal-directed
movements. J. Neurophysiol., 97(5), 3763–3780.

Received April 7, 2016; accepted June 29, 2016.


