
Robust and Interpretable Denoising via Deep Learning

by

Sreyas Mohan

A dissertation submitted in partial fulfillment

of the reqirements for the degree of

Doctor of Philosophy

Center For Data Science

New York University

May, 2022

Dr. Carlos Fernandez-Granda

Dr. Eero P Simoncelli

https://cims.nyu.edu/~cfgranda/index.html
https://www.cns.nyu.edu/~eero/

© Sreyas Mohan

All rights reserved, 2022

To my Amma and Achan

iii

Acknowledgements

When I started my Ph.D., I used to imagine what it would be like to go through this journey.

A few years later, now writing this acknowledgement, I can confidently say that (much like re-

search) all my predictions were incorrect - there were surprises everywhere. Most instances of

success I had, and most challenges I faced, were all quite unexpected. In spite of this, the last few

years were one of the most enjoyable times I ever had. This is because of the people who helped,

supported and cheered me all throughout. Thank you!

I am very grateful to Carlos Fernandez-Granda and Eero Simoncelli for advising and support-

ing me throughout my Ph.D. Thank you for teaching me to ask the right questions, nudging me

out of my comfort zone to explore new topics, pushing me to work harder, and finally, for all the

candid conversations that have changed my outlook towards research, and life. This thesis is a

product of our joint work, and it was an absolute pleasure and honor working with Carlos and

Eero.

I would like to thank Joan Bruna, Kyunghyun Cho, Bill Freeman and Yann LecCun for being

on my thesis committee. I’m grateful for the conversations I have had with Joan, and for the

feedback I received from Yann during the early stages of research. I met Bill for the first time

during a conference, and since then he has continued to inspire me with his research, as well

as kindness. I am thankful to Kyunghyun for constantly providing advice on my research and

career throughout my Ph.D., and for introducing me to the world of “authentic” Korean Fried

Chicken. In a post-pandemic world, my defense was the first hybrid presentation I ever did, and

iv

honestly, it was a bit of a struggle. It is remarkable that my committee made my private defense

so productive and enjoyable, and their feedback gave me new ideas to think about, and certainly

improved my thesis.

None of the work presented in the thesis would have been possible if not for my wonderful

collaborators and mentors. I would like to thank Joshua, Peter and Ramon from ASU who cap-

tured the microscopy data used in Chapter 5. The frustration of not being able to do well on

this dataset inspired us to come up with the algorithms developed in Chapters 3 and 4. I am also

grateful to my other collaborators: Zahra for Chapter 2, Dev and Mitesh for Chapter 3 and Binh

and David for Chapter 5. I am fortunate to have worked on a diverse set of projects during the

course of my Ph.D., and grateful to the people who made that possible: Aakash, Adria, Alejan-

dra, Ananya, Boyang, Chaitra ,Gautier, George, Jon, Jose, Kangning, Matan andWeicheng. While

these projects did not make it to my thesis, I enjoyed exploring different topics, learning new

things, and ultimately, they definitely had an impact in shaping my thesis. I would also like to

acknowledge our admin staff: Kathryn and Tim at NYU CDS for making sure that I was always

in compliance with my degree requirements, Matthew and Serena for taking care of me while at

Flatiron, and Shenglong at NYU HPC for helping me with his wizardry linux knowledge!

Outside NYU, I had a fun and productive summer at Google - I am grateful to Aamir and

Yeping for making this happen, and for being wonderful hosts. I would also like to express my

sincere thanks to Mitya and Cengiz for hosting me at Flatiron institute in the final summer of

undergrad, which ultimately convinced me to pursue a Ph.D. and to relocate to NYC.

My time at NYU was made more enjoyable through the company of my fellow graduate stu-

dents and friends. They are too many to name, but I want to make an effort to do so - after all,

if you still find any typos in this thesis, they are to be blamed! I would like to acknowledge all

members of Eero and Carlos’ group, and the greater machine learning community at NYU for

the many interesting interactions I have had along the way: Aahlad, Aishwarya, Ben, Caroline,

Chris, Collin, Hope, Ilia, Irina, Jing, Katrina, Lyndon, Mark, Nan, Nikhil, Pierre, Roberta, Swap-

v

neel, Teddy, Vlad, and Zhouhan. I have also been forunate to have a close group of friends outside

the New York area: Divya, Green, Pranoy, and Prasan. On a personal note, I want to mention

Aakash, Harvineet, and Prasan for our conversations about life over chai and samosa; Brett and

Matan for solving obscure math and programming puzzles with me at random times of the day;

Roshan and Pranav for our annual hiking trips; Phu, Ren and Xintian for fun conversations, pe-

riodic get together, and board games; and Mandy for helping me all throughout during the later

part of my dissertation and introducing me to Maqiu!

And ofcourse, there are my parents and sister to whom I owe everything. Thank you for being

patient all throughout, and continuously pestering me asking when I will graduate. I hope you

have your answer now!

vi

Abstract

In the past decade, convolutional neural networks (CNN) have achieved state-of-the-art re-

sults in denoising. The goal of this work is to advance our understanding of these models and

leverage this understanding to advance the current state-of-the-art. We start by showing that

CNNs systematically overfit the noise levels in the training set, and propose a new architecture

called bias-free CNNs which generalize robustly to noise levels outside the training set. Bias-

free networks are also locally linear, which enables direct analysis with linear-algebraic tools.

We show that the denoising map can be visualized locally as a filter that adapts to both signal

structure and noise level. Denoising CNNs including bias-free CNNs are typically trained using

pairs of noisy and clean data. However, in many domains like microscopy, clean data is generally

not available. We develop a network architecture that performs unsupervised denoising for video

data, i.e, we train only using noisy videos. We then build on top of the unsupervised denoising

methodology and propose a new adaptive denoising paradigm. We develop GainTuning in which

CNN models pre-trained on large datasets are adaptively and selectively adjusted for individual

test images. GainTuning improves state-of-the-art CNNs on standard image-denoising bench-

marks, particularly for test images differing systematically from the training data, either in noise

distribution or image type. Finally, we explore the application of deep learning-based denoising

in scientific discovery through a case study in electron microscopy. To ensure that the denoised

output is accurate, we develop likelihood map which quantifies the agreement between real noisy

data and denoised output (thus flagging denoising artifacts). In addition, we show that popular

vii

metrics for denoising fail to capture scientifically relevant details and propose new metrics to fill

this gap.

viii

Contents

Dedication iii

Acknowledgments iv

Abstract vii

List of Figures xiv

1 Introduction 2

1.1 Motivation . 2

1.2 The Denoising Problem . 3

1.3 Classical Methods . 4

1.4 Convolutional Neural Network Based Denoising 5

1.5 Challenges in Denoising and Thesis Outline . 6

2 Bias-free denoising: Generalization to unseen noise variance 9

2.1 Overview . 10

2.2 Network Bias Impairs Generalization . 11

2.3 Proposed Methodology: Bias-Free Networks . 13

2.4 Bias-Free Networks Generalize Across Noise Levels 14

2.5 Revealing the Denoising Mechanisms Learned by BF-CNNs 16

ix

2.6 Discussion . 17

3 Unsupervised denoising: Learning without ground truth data 20

3.1 Overview . 21

3.2 Background and Related Work . 23

3.3 Unsupervised Deep Video Denoising . 25

3.4 Datasets . 27

3.5 Experiments and Results . 29

3.6 Automatic Motion Compensation . 33

3.7 Conclusion . 37

4 Adaptive denoising: Generalizing pre-trained denoisers to out-of-distribution

data 38

4.1 Overview . 39

4.2 Related Work . 42

4.3 Proposed Methodology: GainTuning . 44

4.4 Cost Functions for GainTuning . 45

4.5 Experiments and Results . 47

4.5.1 GainTuning surpasses state-of-the-art performance for in-distribution data 48

4.5.2 GainTuning generalizes to new noise distributions 49

4.5.3 GainTuning generalizes to out-of-distribution image content 50

4.5.4 Application to Electron microscopy . 52

4.6 Analysis . 53

4.7 Limitations . 57

4.8 Conclusions . 59

5 Application to electron microscopy data 60

x

5.1 Overview . 62

5.2 Related work . 65

5.3 Methodology . 68

5.3.1 Simulation-based denoising . 68

5.3.2 Exploiting non-local signal structure . 69

5.3.3 Likelihood maps . 72

5.4 Dataset . 76

5.4.1 Real Data . 77

5.4.2 Simulation Dataset . 77

5.4.3 Noise model . 78

5.5 Experiments and Results . 79

5.5.1 Generalization to unseen structures and acquisition conditions 81

5.5.2 Comparison of SBD with other methods 82

5.5.3 Beyond PSNR: Towards scientifically-meaningful evaluation metrics . . . 84

5.5.3.1 Evaluation metrics . 86

5.5.3.2 Evaluating atom detection accuracy 87

5.5.4 Performance on real data . 88

5.5.4.1 Comparison to unsupervised deep denoising methods 90

5.5.4.2 A word of caution: Effect of training data on SBD 93

5.6 Discussion and Conclusions . 95

6 Conclusion 96

A Bias-free denoising 99

A.1 Description of denoising architectures . 99

A.1.1 DnCNN . 99

A.1.2 Recurrent CNN . 99

xi

A.1.3 UNet . 100

A.1.4 Simplified DenseNet . 101

A.2 Datasets and training procedure . 101

A.3 Additional results . 102

B Unsupervised denoising 110

B.1 Implementation Details of Unsupervised Deep Video Denoising 110

B.1.1 Restricting field of view . 110

B.1.2 Adding the Noisy Pixel Back . 111

B.1.3 Architecture and Training . 112

B.2 Ablation Study on Number of Input Frames . 114

B.3 Denoising Results on Natural Video Datasets . 116

B.4 UDVD-S: Denoising Using Only a Single Video . 116

B.4.1 Details of test sets. 116

B.4.2 Ablation study . 119

B.5 Denoising Results on Real-world Datasets . 120

B.6 Generalization Across Noise and Frame Rate . 121

B.7 Analysis of CNN-based Video Denoising . 122

B.7.1 Natural Videos . 122

B.7.2 Real-world Data . 123

B.7.3 Motion Estimation . 123

C GainTuning 131

C.1 Datasets . 131

C.2 Details of pre-training and GainTuning . 132

C.3 Approximation for SURE . 134

C.4 GainTuning prevents overfitting . 134

xii

C.5 Performance of GainTuning . 136

C.5.1 In-distribution test image . 136

C.5.2 Out-of-distribution noise . 138

C.5.3 Out-of-distribution image . 143

C.5.4 Out-of-distribution noise and image . 144

C.5.5 Different loss functions . 145

D Application to electron microscopy data 150

D.1 Data simulation . 150

D.1.1 Simulation process . 150

D.1.2 Experimental parameters . 151

D.1.3 Description of nanoparticle structures . 153

D.2 Proposed Architecture: UNet with large field of view 155

D.3 Additional Results . 157

Bibliography 161

xiii

List of Figures

1.1 Visual example of denosing problem. 3

2.1 First-order analysis of the residual of a denoising convolutional neural network

as a function of noise level. 12

2.2 Denoising of an example natural image by a CNN and its bias-free counterpart. . 14

2.3 Comparison of the performance of a CNN and a BF-CNN with the same architec-

ture for the experimental design described in Section 2.4. 16

2.4 Visualization of the linear weighting functions (rows of 𝐴𝑦 in Equation 3.3) of a

BF-CNN. 18

3.1 Unsupervised denoising matches the performance of supervised denoising 22

3.2 Unsupervised Deep Video Denoising (UDVD) Network Architecture. 25

3.3 Denoising real-world data. 32

3.4 Video denoising as spatiotemporal adaptive filtering. 34

3.5 CNNs trained for denoising automatically learn to perform motion estimation. . . 36

4.1 Proposed denoising paradigm . 40

4.2 Denoising results for real-world data. 41

4.3 GainTuning achieves state-of-the-art performance. 48

4.4 GainTuning generalizes to out-of-distribution data. 50

xiv

4.5 What kind of images benefit the most from adaptive denoising? 54

4.6 Analysis of GainTuning . 55

4.7 Adaptation to new image content . 56

4.8 Distribution of PSNR improvement on in-distribution test set 58

5.1 Denoising results for real data. 63

5.2 Simulation-based denoising framework . 67

5.3 Overfitting scaling and orientation . 70

5.4 Gradient analysis of the learned denoising function on real data. 73

5.5 Likelihood map. 74

5.6 Distribution of likelihood ratio. 75

5.7 Analysis of the noise in the real data . 78

5.8 Generalization across different imaging parameters and signal structures 80

5.9 Denoising results for simulated data . 83

5.10 Scientifically-meaningful metrics for atom detection 85

5.11 Performance of SBD in terms of our proposed metrics 86

5.12 Validation on real data . 88

5.13 Denoising results for real data . 89

5.14 Comparison of unsupervised denoising methods with SBD on real data 91

5.15 Training set size and unsupervised denoising . 92

5.16 Effect of training data on SBD . 94

A.1 First-order analysis of the residual of Recurrent-CNN, UNet and DenseNet as a

function of noise level. 103

A.2 Visualization of the decomposition of output of DnCNN into linear part and net

bias. 104

xv

A.3 Visualization of the decomposition of output of Recurrent-CNN, UNet andDenseNet

into linear part and net bias. 105

A.4 Comparison of bias-free architectures and their with bias counterparts. 106

A.5 Comparison of bias-free architectures and their with bias counterparts. 106

A.6 Visualization of the linearweighting functions (rows of𝐴𝑦) of Bias-Free Recurrent-

CNN, UNet and DenseNet. 107

A.7 Visualization of the linear weighting functions (rows of 𝐴𝑦) of a BF-DnCNN. . . . 108

A.8 Visualization of the linearweighting functions (rows of𝐴𝑦) of a Bias-Free Recurrent-

CNN, UNet and DenseNet. 109

B.1 Comparison of blind image and video denoising. 117

B.2 Generalization across noise levels and frame rates. 122

B.3 Quantitative analysis of equivalent filters . 124

B.4 Video denoising as spatiotemporal adaptive filtering; giant-slalom 125

B.5 Video denoising as spatiotemporal adaptive filtering; rafting. 126

B.6 Video denoising using FastDVDnet as spatiotemporal adaptive filtering; bus . . . 127

B.7 Equivalent filters of UDVD when applied to real-world data. 128

B.8 CNNs trained for denoising automatically learn to perform motion estimation. . . 129

B.9 CNNs trained for denoising automatically learn to perform motion estimation;

rafting . 130

C.1 Example images from different dataset . 133

C.2 GainTuning prevents overfitting. 136

C.3 GainTuning prevents overfitting. 137

C.4 GainTuning prevents overfitting. 138

C.5 GainTuning prevents overfitting. 139

C.6 Out-of-distribution noise and signal . 140

xvi

C.7 GainTuning does not require early stopping . 141

C.8 GainTuning prevents overfitting in TEM data . 142

D.1 Demonstration of contrast reversal with changes in defocus. 151

D.2 Image contrast variations due to thickness and defocus. 152

D.3 Summary of parameters considered during the modelling and image simulation

processes. 153

D.4 Variations in the structure/size of the supported Pt nanoparticle. 155

D.5 Variations in the defects of the Pt surface structure. 156

D.6 Denoising results for simulated data . 158

D.7 Example of nanoparticle structures used for surface dataset in Section 5.5.3 159

D.8 Denoising results for real data . 160

xvii

List of Tables

3.1 Denoising results on natural video datasets. 28

3.2 Results for UDVD trained on individual noisy videos. 30

3.3 Raw video denoising. 31

5.1 Field of view of CNN architectures and performance. 71

5.2 Results on simulated test data. 82

B.1 Network architecture used for UDVD. 113

B.2 Performance of UDVD. 115

B.3 Results for UDVD and MF2F trained on individual noisy videos for 𝜎 = 30 118

B.4 Results for UDVD and MF2F trained on individual noisy videos for 𝜎 = 90 119

C.1 GainTuning vs selectively fine-tuning last few layers 143

C.2 Results for BFCNN . 144

C.3 GainTuning for out-of-distribution noise . 144

C.4 CNN trained on Gaussian noise generalizes to Poisson noise 145

C.5 GainTuning for out-of-distribution images . 146

C.6 Different loss functions for GainTuning . 148

C.7 GainTuning using architecturally constrained blind-spot cost function 149

1

1 | Introduction

1.1 Motivation

Our measurement devices are often imperfect. The microphone of our cell phone picks up

background sounds, and the images captured from our camera are corrupted by random voltage

fluctuations in the sensors. As in these examples, degradation with noise is a common form of

corruption that occurs in our measurement devices. Reducing the noise and recovering the sig-

nal of interest from corrupted measurements is called denoising (See Fig 1.1 for a visual example).

Achieving high-quality denoising requires (at least implicitly) quantifying and exploiting the dif-

ferences between signals and noise. In the case of photographic images, the denoising problem

is both an important application, as well as a useful test-bed for our understanding of natural

images.

General methods for image processing are an active area of research. In the past decade,

a technique called convolutional neural networks (CNN) [72] (introduced in section 1.4), has

emerged as the defacto standard to deal with image data. CNN based denoisers implement a

denoising strategy that is completely data driven. The denoiser is shown thousands of pairs of

noisy and clean images which it uses to learn a strategy to denoise a previously unseen noisy

image. This methodology achieves state-of-the-art results in denoising natural images [21, 150].

However, despite their success, we face several challenges while using CNN based denoisers for

image denoising in practise. How can we train these methods on real noisy data when clean

2

Figure 1.1: Visual example of denosing problem. The goal of denoising problem is to estimate the
clean image from observed noisy image. In this example, the observed noisy image (right) is a sum of
a clean image (left) with independent Gaussian noise (middle).

image are not available? Can these methods be used when the imaging conditions change from

training to inference? Can we understand and interpret what strategies these denoisers learn?

These challenges are outlined in Section 1.5. We will explore potential solutions in rest of the

thesis.

1.2 The Denoising Problem

In this section we describe the denoising problem. Consider a signal 𝑥 ∈ R𝑁 (for example, an

image with 𝑁 pixels). The measurement 𝑦 ∈ R𝑁 that we observe is our signal 𝑥 corrupted with

noise. A common model used is additive Gaussian noise, and in this case the observation 𝑦 can

be written as function of noise 𝜂 ∈ R𝑁 as:

𝑦 = 𝑥 + 𝜂, where 𝜂 ∼ N(0,𝜎2𝐼𝑁), (1.1)

where 𝐼𝑁 is an 𝑁 × 𝑁 identity matrix and 𝜎2 > 0 denotes the variance of the each dimension of

the Gaussian random variable (refer to figure 1.1 for an illustration of the corruption model). In

addition to Gaussian noise, we will explore Poisson noise in Chapter 5, and real noise from image

acquisition systems in Chapters 3, 4, and 5.

3

Solving the denoising problem involves finding a function 𝑓 : R𝑁 → R𝑁 such that a noisy

observation 𝑦 can be mapped to a good estimate of 𝑥 , i.e 𝑓 (𝑦) ≈ 𝑥 . We can assume that signal 𝑥

and noisy observation 𝑦 are realizations of a random variable X and Y respectively. A common

choice to obtain denoising function 𝑓 is to minimize the squared error:

𝑓opt := argmin
𝑓

EX×Y | |𝑥 − 𝑓 (𝑦) | |22, (1.2)

where the expectation E is taken over the joint distribution of clean and noisy imagesX×Y. If we

do not make assumptions on the distribution ofX, then we approximate the expectation in Equa-

tion 1.2 by the empirical expectation over a dataset of noisy and clean image pairs {(𝑦𝑖 ,𝑥𝑖)}𝑛𝑖=1
:

𝑓opt := argmin
𝑓

1
𝑛

𝑛∑︁
𝑖=1

| |𝑥𝑖 − 𝑓 (𝑦𝑖) | |22, (1.3)

where 𝑛 is the number of examples in our dataset.

1.3 Classical Methods

Perhaps the simplest solution for the denoising problem is theWiener filter. TheWiener filter

assumes that the signal X is translation invariant and follows a Gaussian distribution [140]. In

this situation, theWiener filter is the optimal estimator in terms ofmean squared error. It operates

by mapping the noisy image to the frequency domain, shrinking the amplitude of all components,

and mapping back to the signal domain. In the case of natural images, the high-frequency com-

ponents are shrunk more aggressively than the lower-frequency components because they tend

to contain less energy. This is equivalent to convolution with a lowpass filter, implying that each

pixel is replaced with a weighted average over a local neighborhood. This local averaging re-

sults in over-smooths resulting leading the elimination of fine scale details and textures. Modern

filtering approaches address this issue by adapting the filters to the local structure of the noisy

4

image (e.g. [92, 131]). In Section 2.5 we show that neural networks implement such strategies

implicitly, learning them directly from the data.

In the 1990’s powerful denoising techniques were developed based on multi-scale ("wavelet")

transforms. These transforms map natural images to a domain where they have sparser rep-

resentations. This makes it possible to perform denoising by applying nonlinear thresholding

operations in order to discard components that are small relative to the noise level [19, 31, 120].

From a linear-algebraic perspective, these algorithms operate by projecting the noisy input onto

a lower-dimensional subspace that contains plausible signal content. The projection eliminates

the orthogonal complement of the subspace, which mostly contains noise. This general method-

ology laid the foundations for the state-of-the-art models in the 2000’s (e.g. [26]), some of which

added a data-driven perspective, learning sparsifying transforms [35], and nonlinear shrinkage

functions [48, 114], directly from natural images. Ref. [96] shows that deep-learning models learn

similar priors in the form of local linear subspaces capturing image features.

1.4 Convolutional Neural Network Based Denoising

For a noisy input image𝑦 ∈ R𝑁 with𝑁 pixels, the denoising function 𝑓 : R𝑁 → R𝑁 computed

by a neural network is

𝑓 (𝑦) =𝑊𝐿𝑅(𝑊𝐿−1…𝑅(𝑊1𝑦 + 𝑏1) +… + 𝑏𝐿−1) + 𝑏𝐿 , (1.4)

where𝑊𝑖 is called theweightmatrix and𝑏𝑖 is bias vectors at layer 𝑖 . The function𝑅(𝑧) = max(0, 𝑧)

represents a rectified linear unit (ReLU) non-linearity [41]. ReLU is applied element wise to any

tensor input. If the neural network is convolutional,𝑊𝑖s are restricted to be convolutional ma-

trices. The process of finding the optimal parameters𝑊𝑖s and 𝑏𝑖s by solving the optimization

problem in equation 1.3 is called training. Neural networks that are trained on large databases of

5

noisy and clean natural images to minimize mean square error achieves current state-of-the-art

denoising performance [52, 116, 150, 151].

When training a neural network, we need real data to approximate the expectation in Equa-

tion 1.2 and arrive at Equation 1.3. Since the expectation in Equation 1.2 is over the joint distri-

bution ofX×Y we needs pairs of noisy and clean images to approximate the expectation. While

we have datasets with clean images [87], we have very limited data on pairs of noisy and clean

images. To overcome this obstacle, a common technique used is to add synthetic additive Gaus-

sian noise (Equation 1.1) to clean images from an available dataset, generating pairs of noise and

clean images for training. However, this form of training introduces certain practical challenges.

For example, in several real-world applications we only have the noisy images without access to

a noise model or corresponding clean images. Can we use a CNN to denoise in this situation? If

we train on a particular dataset, can we expect the CNN to generalize when the image acquisition

conditions change? We outline these challenges in the next section.

1.5 Challenges in Denoising and Thesis Outline

While applying deep learning based denoising in practical situations, we encounter several

challenges. We will explore three of them in this thesis:

• We need robustness to changes in imaging conditions

Current denoising systems achieve state-of-the-art performance when the test data is sim-

ilar to the training data, but their performance degrades significantly when applied to data

that deviates from the training distribution. We explore a specific phenomena related to

changing noise distributions in Chapter 2. We show that state-of-the-art CNNs trained

for Gaussian denoising overfit to the noise levels (or standard deviations) they saw during

training, and fails catastrophically when tested on unseen noise levels. We propose a new

architecture, called Bias-Free CNNs that generalize seamlessly to unseen noise levels.

6

In Chapter 4, we study a more general version of the robustness problem. We introduce

GainTuning, a framework that adapts any pre-trained CNN denoiser to out-of-distribution

test data. GainTuning improves denoising performance significantly for test images dif-

fering systematically from the training data, either in noise level or image type. We also

illustrate the potential of adaptive denoising in a scientific application, in which a CNN

is trained on synthetic data, and tested on real transmission-electron-microscope images

(explained in Chapter 5). In contrast to the existing methodology, GainTuning is able to

faithfully reconstruct the structure of catalytic nanoparticles from these data at extremely

low signal-to-noise ratios.

• We need interpretability to understand how the models work and adapt them.

Despite the success of the CNN based denoising systems, we lack both intuition and a

formal understanding of the mechanisms they implement to achieve this impressive per-

formance. In Chapter 2, we develop a gradient based tool to visualize and understand

the denoising mechanisms learned by the deep CNNs. We show that CNNs trained for

image denoising performs adaptive averaging over nearby pixels. Further, in Chapter 3,

we apply this tool to analyze video denoisers and show that deep CNNs trained for video-

denoising performs adpative spatio-temporal averaging consistent with local motion in the

input videos. This analysis reveals that the network learns to perform implicit motion com-

pensation, even though it is only trained for video denoising.

• We have no ground-truth data to train the network

Deep convolutional neural networks (CNNs) for denoising are typically trained with su-

pervision, assuming the availability of clean data. However, in many applications, such

as microscopy, noiseless data are not available. To address this for video denoising, in

Chapter 3, we propose an Unsupervised Deep Video Denoiser (UDVD). UDVD is a CNN

architecture designed to be trained exclusively on noisy data. The performance of UDVD

7

is comparable to the supervised state-of-the-art, even when trained only on a single short

noisy video. We demonstrate the promise of our approach in real-world imaging applica-

tions by denoising raw video, fluorescence-microscopy and electron-microscopy data.

In addition to photographic images, denoising is also a fundamental challenge in scientific

imaging. While deep CNNs provide the current state of the art in denoising natural images and

produce impressive results, their potential has barely been explored in the context of scientific

imaging. We explore the application of deep learning based denoising in scientific discovery

through a case study in electronmicroscopy. InChapter 5, we apply the methodology devel-

oped in Chapters 2, 3 and 4 to images of catalytic nanopaticles acquired through a transmission

electron microscope. In scientific imaging, it is important to ensure that the denoised output is

factual, and not hallucinated (for example, there could be phantom atoms in the denoised out-

put). In Chapter 5, we develop Likelihood Map to aid with this task. Likelihood map quantifies

the agreement between real data and the denoised output, thus flagging parts of the image that

are denoising artefacts. In addition, we show that popular metrics for denoising do not capture

scientifically relevant details, and develop new metrics to fill this gap. Finally, we summarize and

conclude the thesis in Chapter 6.

8

2 | Bias-free denoising: Generalization

to unseen noise variance

This chapter is adapted from the paper "Robust and Interpretable Denoising Via Bias-Free

Convolutional Neural Networks" published in International Conference of Learning Representa-

tions (ICLR) 2021 [96]. This is a joint work with Zahra Kadkhodaie, Eero P Simoncelli and Carlos

Fernendez-Granda.

abstract

We study the generalization properties of deep convolutional neural networks for image de-

noising in the presence of varying noise levels. We provide extensive empirical evidence that

current state-of-the-art architectures systematically overfit to the noise levels in the training set,

performing very poorly at new noise levels. We show that strong generalization can be achieved

through a simple architectural modification: removing all additive constants. The resulting "bias-

free" networks attain state-of-the-art performance over a broad range of noise levels, even when

trained over a narrow range. They are also locally linear, which enables direct analysis with

gradient-based tools. We show that the denoising map can be visualized locally as a filter that

adapts to both image structure and noise level.

9

2.1 Overview

In the past decade, convolutional neural networks [72] have achieved state-of-the-art results

in image denoising [21, 150]. Despite their success, these solutions are mysterious: we lack both

intuition and formal understanding of the mechanisms they implement. Network architecture

and functional units are often borrowed from the image-recognition literature, and it is unclear

which of these aspects contributes to, or limits, the denoising performance. The goal of this

chapter is advance our understanding of deep-learning models for denoising. The contributions

of this chapter are twofold: First, we study the generalization capabilities of deep-learning mod-

els across different noise levels. Second, we provide novel tools for analyzing the mechanisms

implemented by neural networks to denoise natural images.

An important advantage of deep-learning techniques over traditional methodology is that a

single neural network can be trained to perform denoising at a wide range of noise levels. Cur-

rently, this is achieved by simulating the whole range of noise levels during training [150]. Here,

we show that this is not necessary. Neural networks can be made to generalize automatically

across noise levels through a simple modification in the architecture: removing all additive con-

stants. We find this holds for a variety of network architectures proposed in previous literature.

We provide extensive empirical evidence that the main state-of-the-art denoising architectures

systematically overfit to the noise levels in the training set, and that this is due to the presence

of a net bias. Suppressing this bias makes it possible to attain state-of-the-art performance while

training over a very limited range of noise levels.

The data-driven mechanisms implemented by deep neural networks to perform denoising are

almost completely unknown. It is unclear what priors are being learned by the models, and how

they are affected by the choice of architecture and training strategies. Here, we provide novel

tools to visualize and interpret these strategies through a local analysis of the Jacobian of the

denoising map. The analysis reveals locally adaptive properties of the learned models, akin to

10

existing nonlinear filtering algorithms.

2.2 Network Bias Impairs Generalization

Similar to the setup described in Section ??, we assume ameasurement model in which images

are corrupted by additive noise: 𝑦 = 𝑥 + 𝑛, where 𝑥 ∈ R𝑁 is the original image, containing 𝑁

pixels, 𝑛 is an image of i.i.d. samples of Gaussian noise with variance 𝜎2, and 𝑦 is the noisy

observation. The denoising problem consists of finding a function 𝑓 : R𝑁 → R𝑁 , that provides

a good estimate of the original image, 𝑥 . Commonly, one minimizes the mean squared error :

𝑓 = argmin𝑔 𝐸 | |𝑥 −𝑔(𝑦) | |2, where the expectation is taken over some distribution over images, 𝑥 ,

as well as over the distribution of noise realizations. In deep learning, the denoising function 𝑔 is

parameterized by the weights of the network, so the optimization is over these parameters. If the

noise standard deviation, 𝜎 , is unknown, the expectation must also be taken over a distribution

of 𝜎 . This problem is often called blind denoising in the literature. In this chapter, we study the

generalization performance of CNNs across noise levels 𝜎 , i.e. when they are tested on noise

levels not included in the training set.

Feedforward neural networks with rectified linear units (ReLUs) are piecewise affine: for a

given activation pattern of the ReLUs, the effect of the network on the input is a cascade of

linear transformations (convolutional or fully connected layers,𝑊𝑘), additive constants (𝑏𝑘), and

pointwise multiplications by a binary mask corresponding to the fixed activation pattern (𝑅).

Since each of these is affine, the entire cascade implements a single affine transformation. For

a fixed noisy input image 𝑦 ∈ R𝑁 with 𝑁 pixels, the function 𝑓 : R𝑁 → R𝑁 computed by a

denoising neural network may be written

𝑓 (𝑦) =𝑊𝐿𝑅(𝑊𝐿−1…𝑅(𝑊1𝑦 + 𝑏1) +…𝑏𝐿−1) + 𝑏𝐿 = 𝐴𝑦𝑦 + 𝑏𝑦 , (2.1)

11

5 15 25 35 45 55 65 75 85 95
noise level (sd)

5

15

25

35

45

55

65

75

85

95
no

rm
s

bias, by

residual, y x
noise, z

(a)

5 15 25 35 45 55 65 75 85 95
noise level (sd)

5

15

25

35

45

55

65

75

85

95

no
rm

s

(b)

5 15 25 35 45 55 65 75 85 95
noise level (sd)

5

15

25

35

45

55

65

75

85

95

no
rm

s

(c)

Figure 2.1: First-order analysis of the residual of a denoising convolutional neural network as a function
of noise level. The plots show the norms of the residual and the net bias averaged over 100 20 × 20
natural-image patches for networks trained over different training ranges. The range of noises used
for training is highlighted in blue. (a) When the network is trained over the full range of noise levels
(𝜎 ∈ [0, 100]) the net bias is small, growing slightly as the noise increases. (b-c) When the network is
trained over the a smaller range (𝜎 ∈ [0, 55] and 𝜎 ∈ [0, 30]), the net bias grows explosively for noise
levels beyond the training range. This coincides with a dramatic drop in performance, reflected in the
difference between the magnitudes of the residual and the true noise. The CNN used for this example
is DnCNN [150]; using alternative architectures yields similar results as shown in Figure A.1.

where 𝐴𝑦 ∈ R𝑁×𝑁 is the Jacobian of 𝑓 (·) evaluated at input 𝑦, and 𝑏𝑦 ∈ R𝑁 represents the net

bias. The subscripts on 𝐴𝑦 and 𝑏𝑦 serve as a reminder that both depend on the ReLU activation

patterns, which in turn depend on the input vector 𝑦.

Based on Equation 2.1 we can perform a first-order decomposition of the error or residual of

the neural network for a specific input: 𝑦− 𝑓 (𝑦) = (𝐼 −𝐴𝑦)𝑦−𝑏𝑦 . Figure 2.1 shows the magnitude

of the residual and the constant, which is equal to the net bias 𝑏𝑦 , for a range of noise levels.

Over the training range, the net bias is small, implying that the linear term is responsible for

most of the denoising (see Figures A.2 and A.3 for a visualization of both components). However,

when the network is evaluated at noise levels outside of the training range, the norm of the bias

increases dramatically, and the residual is significantly smaller than the noise, suggesting a form

of overfitting. Indeed, network performance generalizes very poorly to noise levels outside the

training range. This is illustrated for an example image in Figure 2.2, and demonstrated through

extensive experiments in Section 2.4.

12

2.3 Proposed Methodology: Bias-Free Networks

Section 2.2 shows that CNNs overfit to the noise levels present in the training set, and that

this is associated with wild fluctuations of the net bias 𝑏𝑦 . This suggests that the overfitting might

be ameliorated by removing additive (bias) terms from every stage of the network, resulting in

a bias-free CNN (BF-CNN). Note that bias terms are also removed from the batch-normalization

used during training. This simple change in the architecture has an interesting consequence.

If the CNN has ReLU activations the denoising map is locally homogeneous, and consequently

invariant to scaling: rescaling the input by a constant value simply rescales the output by the

same amount, just as it would for a linear system.

Lemma 2.1. Let 𝑓BF : R𝑁 → R𝑁 be a feedforward neural network with ReLU activation functions

and no additive constant terms in any layer. For any input 𝑦 ∈ R and any nonnegative constant 𝛼 ,

𝑓BF(𝛼𝑦) = 𝛼 𝑓BF(𝑦). (2.2)

Proof. We can write the action of a bias-free neural network with 𝐿 layers in terms of the weight

matrix𝑊𝑖 , 1 ≤ 𝑖 ≤ 𝐿, of each layer and a rectifying operator R, which sets to zero any negative

entries in its input. Multiplying by a nonnegative constant does not change the sign of the entries

of a vector, so for any 𝑧 with the right dimension and any 𝛼 > 0 R(𝛼𝑧) = 𝛼R(𝑧), which implies

𝑓BF(𝛼𝑦) =𝑊𝐿R(𝑊𝐿−1 · · · R(𝑊1𝛼𝑦)) = 𝛼𝑊𝐿R(𝑊𝐿−1 · · · R(𝑊1𝑦)) = 𝛼 𝑓BF(𝑦). (2.3)

□

Note that networks with nonzero net bias are not scaling invariant because scaling the input

may change the activation pattern of the ReLUs. Scaling invariance is intuitively desireable for

13

Noisy training image,
𝜎 = 10 (max level)

Noisy test image,
𝜎 = 90

Test image, denoised
by CNN

Test image, denoised
by BF-CNN

Figure 2.2: Denoising of an example natural image by a CNN and its bias-free counterpart (BF-CNN),
both trained over noise levels in the range 𝜎 ∈ [0, 10] (image intensities are in the range [0, 255]). The
CNN performs poorly at high noise levels (𝜎 = 90, far beyond the training range), whereas BF-CNN
performs at state-of-the-art levels. The CNN used for this example is DnCNN [150]; using alternative
architectures yields similar results (see Section 2.4).

a denoising method operating on natural images; a rescaled image is still an image. Note that

Lemma 2.1 holds for networks with skip connections where the feature maps are concatenated

or added, because both of these operations are linear.

In the following sections we demonstrate that removing all additive terms in CNN architec-

tures has two important consequences: (1) the networks gain the ability to generalize to noise

levels not encountered during training (as illustrated by Figure 2.2 the improvement is striking),

and (2) the denoising mechanism can be analyzed locally via gradient-based tools that reveal

intriguing ties to more traditional denoising methodology such as nonlinear filtering.

2.4 Bias-Free Networks Generalize Across Noise Levels

In order to evaluate the effect of removing the net bias in denoising CNNs, we compare sev-

eral state-of-the-art architectures to their bias-free counterparts, which are exactly the same ex-

cept for the absence of any additive constants within the networks (note that this includes the

batch-normalization additive parameter). These architectures include popular features of existing

neural-network techniques in image processing: recurrence, multiscale filters, and skip connec-

14

tions. More specifically, we examine the following models (see Section A.1 for additional details):

• DnCNN [150]: A feedforward CNN with 20 convolutional layers, each consisting of 3 × 3

filters, 64 channels, batch normalization [54], a ReLU nonlinearity, and a skip connection

from the initial layer to the final layer.

• Recurrent CNN: A recurrent architecture inspired by [151] where the basic module is a

CNN with 5 layers, 3× 3 filters and 64 channels in the intermediate layers. The order of the

recurrence is 4.

• UNet [116]: A multiscale architecture with 9 convolutional layers and skip connections

between the different scales.

• SimplifiedDenseNet: CNNwith skip connections inspired by theDenseNet architecture [52,

153].

We train each network to denoise images corrupted by i.i.d. Gaussian noise over a range

of standard deviations (the training range of the network). We then evaluate the network for

noise levels that are both within and beyond the training range. Our experiments are carried out

on 180 × 180 natural images from the Berkeley Segmentation Dataset [87] to be consistent with

previous results [21, 117, 150]. Additional details about the dataset and training procedure are

provided in Section A.2.

Figures 2.3, A.4 and A.5 show our results. For a wide range of different training ranges, and

for all architectures, we observe the same phenomenon: the performance of CNNs is good over

the training range, but degrades dramatically at new noise levels; in stark contrast, the corre-

sponding BF-CNNs provide strong denoising performance over noise levels outside the training

range. This holds for both PSNR and the more perceptually-meaningful Structural Similarity In-

dex [wang2004ssim] (see Figure A.5). Figure 2.2 shows an example image, demonstrating visu-

ally the striking difference in generalization performance between a CNN and its corresponding

15

282219161413111098

Input PSNR

28

22

19

16

14
13
11
10

9
8

O
ut

pu
t P

SN
R

DnCNN
BF-CNN
identity

282219161413111098

28

22

19

16

14
13
11
10

9
8

282219161413111098

28

22

19

16

14
13
11
10

9
8

282219161413111098

28

22

19

16

14
13
11
10

9
8

Figure 2.3: Comparison of the performance of a CNN and a BF-CNN with the same architecture for
the experimental design described in Section 2.4. The performance is quantified by the PSNR of the
denoised image as a function of the input PSNR. Both networks are trained over a fixed ranges of noise
levels indicated by a blue background. In all cases, the performance of BF-CNN generalizes robustly
beyond the training range, while that of the CNN degrades significantly. The CNN used for this example
is DnCNN [150]; using alternative architectures yields similar results (see Figures A.4 and A.5).

BF-CNN. Our results provide strong evidence that removing net bias in CNN architectures results

in effective generalization to noise levels out of the training range.

2.5 Revealing the Denoising Mechanisms Learned by

BF-CNNs

In this section we perform a local analysis of BF-CNN networks, which reveals the underlying

denoising mechanisms learned from the data. A bias-free network is strictly linear, and its net

action can be expressed as

𝑓BF(𝑦) =𝑊𝐿𝑅(𝑊𝐿−1…𝑅(𝑊1𝑦)) = 𝐴𝑦𝑦, (2.4)

where 𝐴𝑦 is the Jacobian of 𝑓BF(·) evaluated at 𝑦. The Jacobian at a fixed input provides a local

characterization of the denoising map. In order to study the map we perform an analysis of the

Jacobian. Our approach is similar in spirit to visualization approaches– proposed in the context

of image classification– that differentiate neural-network functions with respect to their input

16

(e.g. [97, 121]).

The linear representation of the denoising map given byEquation 3.3 implies that the 𝑖th pixel

of the output image is computed as an inner product between the 𝑖th row of 𝐴𝑦 , denoted 𝑎𝑦 (𝑖),

and the input image:

𝑓BF(𝑦) (𝑖) =
𝑁∑︁
𝑗=1

𝐴𝑦 (𝑖 , 𝑗)𝑦 (𝑗) = 𝑎𝑦 (𝑖)𝑇𝑦. (2.5)

The vectors 𝑎𝑦 (𝑖) can be interpreted as adaptive filters that produce an estimate of the denoised

pixel via a weighted average of noisy pixels. Examination of these filters reveals their diversity,

and their relationship to the underlying image content: they are adapted to the local features

of the noisy image, averaging over homogeneous regions of the image without blurring across

edges. This is shown for two separate examples and a range of noise levels in Figures 2.4, A.6,

A.7 and A.8 for the architectures described in Section 2.4. We observe that the equivalent filters

of all architectures adapt to image structure.

Classical Wiener filtering [140] denoises images by computing a local average dependent on

the noise level. As the noise level increases, the averaging is carried out over a larger region. As

illustrated by Figures 2.4, A.6, A.7 and A.8, the equivalent filters of BF-CNNs also display this

behavior. The crucial difference is that the filters are adaptive. The BF-CNNs learn such filters

implicitly from the data, in the spirit of modern nonlinear spatially-varying filtering techniques

designed to preserve fine-scale details such as edges (e.g. [131], see also [92] for a comprehensive

review, and [22] for a recent learning-based approach).

2.6 Discussion

In this chapter, we show that removing constant terms fromCNN architectures ensures strong

generalization across noise levels, and also provides interpretability of the denoising method via

17

𝜎 Noisy Denoised Pixel 1 Pixel 2 Pixel 3

10

Pixel 1

Pixel 2

Pixel 3

30

100

Figure 2.4: Visualization of the linear weighting functions (rows of 𝐴𝑦 in Equation 3.3) of a BF-CNN
for three example pixels of an input image, and three levels of noise. The images in the three rightmost
columns show the weighting functions used to compute each of the indicated pixels (red squares). All
weighting functions sum to one, and thus compute a local average (note that some weights are negative,
indicated in red). Their shapes vary substantially, and are adapted to the underlying image content. As
the noise level 𝜎 increases, the spatial extent of the weight functions increases in order to average out the
noise, while respecting boundaries between different regions in the image, which results in dramatically
different functions for each pixel. The CNN used for this example is DnCNN [150]; using alternative
architectures yields similar results (see Figure A.6).

linear-algebra techniques. We provide insights into the relationship between bias and generaliza-

tion through a set of observations. Theoretically, we argue that if the denoising network operates

by projecting the noisy observation onto a linear space of “clean” images, then that space should

include all rescalings of those images, and thus, the origin. This property can be guaranteed by

eliminating bias from the network. Empirically, in networks that allow bias, the net bias of the

trained network is quite small within the training range. However, outside the training range the

net bias grows dramatically resulting in poor performance, which suggests that the bias may be

the cause of the failure to generalize. In addition, when we remove bias from the architecture, we

preserve performance within the training range, but achieve near-perfect generalization, even to

18

noise levels more than 10x those in the training range. These observations do not fully elucidate

how our network achieves its remarkable generalization- only that bias prevents that generaliza-

tion, and its removal allows it.

Finally, our analysis uncovers interesting aspects of the denoising map, but these interpre-

tations are very local: small changes in the input image change the activation patterns of the

network, resulting in a change in the corresponding linear mapping. Extending the analysis to

reveal global characteristics of the neural-network functionality is a challenging direction for

future research.

The training scheme we used in chapter was supervised - it required access to ground-truth

data to enable learning. However, in many practical situations like microscopy and astronomy,

ground-truth clean data is often difficult or impossible to obtain. In the next chapter, we will

explore techniques to train deep CNNs for denoising without ground-truth clean data.

19

3 | Unsupervised denoising: Learning

without ground truth data

This chapter is adapted from the paper "Unsupervised Deep Video Denoising" published in

International Conference of Computer Vision (ICCV) 2021 [119]. This is a joint work with Dev

Sheth, Joshua Vincent, Ramon Manzorro, Peter A Crozier, Mitesh Khapra, Eero P Simoncelli and

Carlos Fernandez-Granda. In Chapters 1 and 2, we discussed state-of-the-art deep CNNs for

image denoising, and introduced bias-free networks which generalize seamlessly to noise levels

not seen during training. These networks were, however, trained using clean images as target. In

this chapter, we will explore unsuperivised denoising or training CNNs for denoising only with

noisy data. We will review unsupervised denoising methods for static images, and develop a new

method for sequence of images or videos.

abstract

Deep convolutional neural networks (CNNs) for video denoising are typically trained with

supervision, assuming the availability of clean videos. However, in many applications, such as

microscopy, noiseless videos are not available. To address this, we propose an Unsupervised Deep

Video Denoiser (UDVD), a CNN architecture designed to be trained exclusively with noisy data.

The performance of UDVD is comparable to the supervised state-of-the-art, even when trained

20

only on a single short noisy video. We demonstrate the promise of our approach in real-world

imaging applications by denoising raw video, fluorescence-microscopy and electron-microscopy

data. In contrast to many current approaches to video denoising, UDVD does not require explicit

motion compensation. This is advantageous because motion compensation is computationally

expensive, and can be unreliable when the input data are noisy. A gradient-based analysis reveals

that UDVD automatically adapts to local motion in the input noisy videos. Thus, the network

learns to perform implicit motion compensation, even though it is only trained for denoising.

3.1 Overview

Video denoising is a fundamental problem in image processing, as well as an important pre-

processing step for computer vision tasks. Convolutional neural networks (CNNs) [72] provide

current state-of-the-art solutions for this problem [23, 27, 29, 34, 129, 130, 143, 147]. These net-

works are typically trained using a database of clean videos, which are corrupted with simulated

noise. However, in applications such as microscopy, noiseless ground truth videos are often not

available. To address this issue, we propose a method to train a video denoising CNN without

access to supervised data, which we call Unsupervised Deep Video Denoising (UDVD). UDVD is

inspired by the “blind-spot” technique, recently introduced for unsupervised still image denois-

ing [8, 66, 68, 74], in which a CNN is trained to estimate each noisy pixel from the surrounding

spatial neighborhoodwithout including the pixel itself. Here, we propose a blind-spot architecture

that processes the surrounding spatio-temporal neighborhood to denoise videos.

We show that UDVD is competitive with the current supervised state-of-the-art on standard

benchmarks, despite not having access to ground-truth clean videos during training (see Fig-

ure 3.1). Moreover, when combined with aggressive data augmentation and early stopping, it

can produce high-quality denoising even when trained exclusively on a single brief noisy video

sequence (as few as 30 frames), outperforming unsupervised video denoising techniques (e.g.

21

(a) Clean frame, PSNR / SSIM (b) Noisy Input, 19.06 / 0.279 (c) Supervised (FastDVDnet), 31.73
/ 0.873

(d) Unsupervised (MF2F) , 30.35 /
0.825 (e) UDVD, 31.62 / 0.869 (f) UDVD-S, 31.39 / 0.865

Figure 3.1: Unsupervised denoising matches the performance of supervised denoising. Frame
from a video in the Set8 dataset denoised using different approaches. (a) Clean frame. (b) Frame
corrupted with Gaussian noise of standard deviation 30 (relative to intensity range [0-255]). (c) Fast-
DVDnet [130], a supervised method trained on the DAVIS dataset. (d) MF2F [29], an unsupervised
method which fine-tunes a pre-trained FastDVDnet on the noisy video (e) Our proposed unsupervised
method (UDVD), which uses five frames to denoise each frame, trained on the DAVIS dataset. (f)
UDVD trained only on the noisy video itself. Performance is quantified using PSNR / SSIM [138],
respectively. The corresponding videos, as well as additional examples, are included in Section C of the
supplementary material.

F2F[34] and MF2F [29]) which are pre-trained with supervision. Finally, methods based on pre-

training are not suitable for imaging applications where clean data is unavailable. In contrast, we

demonstrate that UDVD can effectively denoise three different real-world datasets: raw videos

from surveillance cameras, fluorescence-microscopy videos of cells, and electron-microscopy

videos of catalytic nanoparticles.

The state-of-the-art performance of UDVD is unexpected. Nearly all existing approaches to

video denoising [2, 14, 80, 84], including those based on deep CNNs [34, 44, 129, 143, 145], use

estimates of optical flow to adaptively compensate for the motion of objects in the video. Con-

ventional wisdom suggest that ignoring such motion should lead to denoising results in which

moving content is blurred. Contrary to this intuition, UDVD and some recent state-of-the-art su-

22

pervised methods for video denoising [23, 27, 130] yield excellent empirical performance without

explicit estimation of optical flow. How can is this achieved? We use a gradient-based analysis to

show that both UDVD and supervised CNNs perform spatio-temporal adaptive filtering, which

is aligned with underlying motion. Thus, these CNNs are automatically performing implicit mo-

tion compensation. To quantify this, we demonstrate that it is possible to estimate optical flow

accurately from the network gradients, even though the network architectures are not designed

to account for optical flow, and the models receive no optical-flow information during training.

3.2 Background and Related Work

Traditional and CNN-based video denoising. Traditional techniques for single image de-

noising include nonlinear filtering [92, 131], sparse prior methods [19, 25, 31, 36, 107, 120], and

nonlocal means [71]; many of which have been extended to videos [2, 14, 80, 84]. In order to

exploit the spatio-temporal structure of the video, these methods typically employ motion com-

pensation based on estimates of optical flow.

In the last five years, data-driven methods based on deep CNNs [72] have outperformed all

other techniques in image [21, 46, 150] and video denoising [129, 130, 143, 147]. The CNNs

are trained to minimize the mean squared error between the network output and ground truth

using large databases of natural figures/ch3/videos. Many deep-learning techniques also perform

explicit motion compensation. DVDnet [129] applies an image-denoising CNN to each input

frame, estimates the optical flow from the denoised frames using DeepFlow [139] (a CNN pre-

trained for this purpose), warps the frames using the flow estimate to align their content, and

finally processes the registered frameswith a CNN. Ref. [143] applies a similar pipeline, but jointly

trains an optical-flow module with the denoising CNN.

Video denoising without motion compensation. Three recent methods perform video de-

noising without explicit motion estimation. VNLnet [27] uses a non-local search algorithm to

23

find self-similar patches in the input video, and then uses a CNN to process the patches. Vi-

DeNN [23] consists of a first stage that denoises each frame using a CNN, and a second stage that

exploits temporal structure by using the frames, (𝑡 − 1), 𝑡 and 𝑡 + 1 to produce the denoised 𝑡 th

frame. FastDVDnet [130] uses UNet [116] blocks, trained end to end, to denoise each frame using

five contiguous frames. These methods achieve state-of-the-art performance without any explicit

motion compensation, similar to our proposed UDVD. In this chapter we show that such CNNs

actually performs implicit motion estimation, which can be revealed through a gradient-based

analysis.

Unsupervised denoising. Noise2Noise (N2N) is an unsupervised image-denoising technique

where a CNN is trained on pairs of noisy images corresponding to the same clean image [74].

Frame2Frame (F2F) [34] exploits this approach to fine-tune a pretrained image-denoising CNN

with noisy data. The idea is to register contiguous frames using the optical flow (obtained from

TV-L1 [148]), and treat them as noisy realizations of the same clean image. This scheme is ex-

tended to have a trainable flow estimation module in [145], additional optical-flow consistency

in [44] and to use multiple noisy frames as input in Multi-Frame2Frame (MF2F) [29].

Using the N2N framework to perform unsupervised video denoising requires warping ad-

joining frames, which in turn requires explicit motion compensation, and accurate occlusion

estimation. In addition, the assumption that contiguous frames can be registered may not hold,

particularly if the motion speeds in the video are large relative to the frame rate or local intensity

changes are not due to translation. In order to bypass these issues, we develop a blind-spot net-

work that trains denoising CNNs by fitting the noisy data directly. The CNN is trained to estimate

each noisy pixel value using the surrounding spatio-temporal neighborhood, but without taking

into account the noisy pixel itself in order to avoid the trivial identity solution. This “blind spot”

can be enforced through architecture design [68], or by masking [8, 66]. For still images, several

variations of this approach have been shown to provide effective denoising for natural images

and noisy images from fluorescence microscopy [60, 67, 108].

24

Figure 3.2: Unsupervised Deep Video Denoising (UDVD) Network Architecture. The network
takes 5 consecutive noisy frames as input and produces a denoised central frame as output. We rotate
the input frames by multiples of 90◦ and process them in four separate branches with shared parameters,
each containing asymmetric convolutional filters that are vertically causal. As a result, the branches
produce outputs that only depend on the pixels above (0◦ rotation, blue region), to the left (90◦, pink
region), below (180◦, yellow region) or to the right (270◦, green region) of the output pixel. Each
branch consists of a cascade of 2 Unet-style blocks (D1 and D2) to combine information over frames.
These outputs are then derotated and linearly combined (using a 1×1 convolutions) followed by a ReLU
nonlinearity to produce the final output. The resulting “field of view” is depicted at the bottom with
each color representing the contribution of the corresponding branch.

3.3 Unsupervised Deep Video Denoising

In this section we describe our proposed architecture (see Figure 3.2 for a detailed diagram).

Multi-frame blind-spot architecture. Our CNN maps five contiguous noisy frames to a de-

noised estimate of the middle frame. Building on the “blind spot” idea proposed in [68] for single-

image denoising, we design the architecture so that each output pixel is estimated from a spatio-

temporal neighbourhood that does not include the pixel itself. We rotate the input frames by

multiples of 90◦ and process them through four separate branches containing asymmetric con-

25

volutional filters that are vertically causal. As a result, the branches produce outputs that only

depend on the pixels above (0◦ rotation), to the left (90◦), below (180◦) or to the right (270◦) of

the output pixel. These partial outputs are then derotated and combined using a three-layered

cascade of 1 × 1 convolutions and nonlinearities to produce the final output. The resulting field

of view does not include the pixel being denoised, as depicted at the bottom of Figure 3.2.

UDVD processes the video in two stages as shown in Figure 3.2, similar to previously pro-

posed networks for supervised video denoising [23, 129, 130]. A first stage, consisting of three

UNets [116] (D1 in the diagram) with shared parameters, maps each group of three contiguous

frames (i.e. (𝑡 − 2, 𝑡 − 1, 𝑡), (𝑡 − 1, 𝑡 , 𝑡 + 1) and (𝑡 , 𝑡 + 1, 𝑡 + 2)) to a separate feature map. These

features are then mapped to a single output using another UNet (D2). See Section B.1.3 for a

detailed description of the architecture.

Bias-free architecture. Inspired by Section 2.4, we remove all additive terms from the convolu-

tional layers in UDVD. This provides automatic generalization to varying noise levels not encoun-

tered during training, and facilitates our proposed analysis to interpret the denoisingmechanisms

learned by the network (see Section 3.5 and 3.6).

Using the missing pixel. The denoised value generated by the proposed architecture at each

pixel is computed without using the noisy observation at that location. This avoids overfitting

– i.e. learning the trivial identity map that minimizes the mean-squared error cost function –

but ignores important information provided by the noisy pixel. In the special case of Gaussian

additive noise, we can use this information via a precision-weighted average between the network

output and the noisy pixel value. Following [67, 68], the weights in the average are derived by

assuming a Gaussian distribution for the error in the blind-spot estimates of the color pixel values.

Specifically, we model the distribution of the three color channels of a pixel 𝑥 ∈ R3 given the

noisy neighbourhood Ω𝑦 as 𝑝 (𝑥 |Ω𝑦) = N(𝜇𝑥 , Σ𝑥), where 𝜇𝑥 ∈ R3 and Σ𝑥 ∈ R3 represent the

mean vector and covariance matrix. Let 𝑦 = 𝑥 + 𝜂, 𝜂 ∼ N(0,𝜎2𝐼3) be the observed noisy pixel.

We integrate the information in the noisy pixel with the UDVD output by computing the mean

26

of the posterior 𝑝 (𝑥 |𝑦,Ω𝑦), given by

𝐸 [𝑥 |𝑦] = (Σ−1
𝑥 + 𝜎−2𝐼)−1(Σ−1

𝑥 𝜇𝑥 + 𝜎−2𝑦). (3.1)

See Suppl. A for more details. The CNN architecture is trained to estimate the mean and co-

variance of this distribution at each pixel by maximizing the log likelihood of the noisy data:

L(𝜇𝑥 , Σ𝑥) = 1
2 [(𝑦 − 𝜇𝑥)𝑇 (Σ𝑥 + 𝜎2𝐼)−1(𝑦 − 𝜇𝑥)] + 1

2 log |Σ𝑥 + 𝜎2𝐼 |. When the noise process is un-

known, we simply minimize the MSE between the denoised output and noisy video, and ignore

the center pixel (see Section B.1.2 for more details).

Data augmentation and early stopping. In supervised denoising with simulated noise, train-

ing can rely on the generation of a virtually unlimited set of fresh noise realizations, which pre-

vents overfitting. In the unsupervised setting, this is not possible, which makes it more challeng-

ing to train models that can denoise short video sequences. To address this, we (a) leverage data

augmentation strategies: spatial flipping and time reversal, and (b) perform early stopping by

monitoring the mean squared error between the network output and noisy frames on a held-out

set of frames. These strategies make it possible to train UDVD with short video sequences (as

few as 30 frames), while achieving denoising performance that is on par with or superior to both

unsupervised and supervised networks trained on much larger datasets (see Figure 3.1, Table 3.2

and Section B.4.2).

3.4 Datasets

We demonstrate the broad applicability of our approach by validating it on domains with

different signal and noise structure: natural videos, raw videos, fluorescence microscopy, and

electron microscopy.

Natural videos. We perform controlled experiments on natural videos by adding iid Gaussian

27

Traditional Supervised CNN Unsupervised CNN (UDVD)

test set 𝜎 VNLB VBM4D VNLnet DVDnet FastDVDnet 1 frame 3 frames 5 frames

DAVIS
30 33.73 31.65 - 34.08 34.06 32.80 33.48 33.92
40 32.32 30.05 32.32 32.86 32.80 31.48 32.20 32.68
50 31.13 28.80 31.43 31.85 31.83 30.47 31.20 31.70

Set8
30 31.74 30.00 - 31.79 31.60 30.91 31.62 32.01
40 30.39 28.48 30.55 30.55 30.37 29.63 30.42 30.82
50 29.24 27.33 29.47 29.56 29.42 28.65 29.47 29.89

Table 3.1: Denoising results on natural video datasets. All networks are trained on the DAVIS train
set. Performance values are PSNR of each trained network averaged over held-out test data. UDVD,
operating on 5 frames, outperforms the supervised methods on Set8 and is competitive on the DAVIS
test set. Unsupervised denoisers with more temporal frames show a consistent improvement in denoising
performance. DVDnet and FastDVDnet are trained using varying noise levels (𝜎 ∈ [0, 55]) and VNLnet
is trained and evaluated on each specified noise level. All UDVD networks are trained only at 𝜎 = 30,
showing that they generalize well on unseen noise levels. See Sections C and F in the supplementary
material for additional results. The PSNR values for all methods except UDVD are taken from [130].

noise to theDAVIS dataset [106]. The training/validation/test split is 60/30/30 videos, respectively.

We use three additional datasets for testing - Set8 [130] composed of 4 videos from the Derfs Test

Media collection and 4 videos captured with a GoPro camera, Derfs [29] with 7 videos, and the

first 10 videos from Vid3oC [62] dataset (See Section B.4.1 for details).

Raw videos. We evaluate UDVD on a dataset of raw videos i.e with frame color channels in-

terleaved according to the sensor mosaic containing real noise introduced in [147]. The dataset

contains 11 unique videos, each containing 7 frames, captured at five different ISO levels using a

surveillance camera. Each video has 10 different noise realizations per frame, which are averaged

to obtain an estimated clean version of the video.

Fluorescence microscopy. We apply our approach to fluorescence-microscopy recordings of

live cells in [132]. We use two videos: Fluo-C2DL-MSC (CTC-MSC) depicting mesenchymal stem

cells, and Fluo-N2DH-GOWT1 (CTC-N2DH) depicting GOWT1 cells. This dataset illustrates the

challenges of applying supervised approaches to real data: there is no ground-truth clean data.

Electron microscopy. We also apply our methodology to a transmission electron microscopy

dataset from [95]. The data consist of a 40-frame video depicting a platinum nanoparticle sup-

28

ported on a cerium oxide base. The average image intensity is 0.45 electrons/pixel, which results

in an extremely low signal-to-noise ratio. As with the fluorescence-microscopy data, no ground-

truth clean images are available. See Chapter 5 for more details.

3.5 Experiments and Results

Comparison with other approaches on natural videos. We train UDVD on the DAVIS train-

ing set (see Suppl. A for the training procedure). Following [8, 66, 68, 96, 129, 130, 150], we add

iid Gaussian noise with standard deviation 𝜎 = 30 on the clean videos during training. UDVD is

evaluated on the DAVIS test set and on Set8 by comparing to the clean ground-truth videos via

PSNR.We compare UDVDwith several popular methods: Bayesian processing of spatio-temporal

patches (VNLB [71]), an extension of the popular image-denoising algorithmBM3D (VBM4D [84])

and supervised CNNs (VNLnet [27], DVDnet [129], FastDVDnet [130]). As shown in Table 3.1,

UDVD achieves comparable performance to the supervised state-of-the-art on the DAVIS test

set and slightly outperforms these methods on an independent test set (Set8) at multiple noise

levels. It also outperforms traditional unsupervised techniques such as VNLB and VBM4D (see

Figure 3.1 and Section B.3 for visual examples).

Unsupervised denoising from limited data. In order to validate our approach on a more chal-

lenging setting that is closer to the practical applications of unsupervised denoising, we trained

and tested UDVD on individual videos from our test sets. As shown in Table 3 and 4 in Suppl.

D, when combined with data augmentation and early stopping (using the last 5 frames of each

video as a held-out validation set), this version of UDVD (called UDVD-S) achieves comparable

results, or often outperforms supervised FastDVDnet and unsupervised UDVD trained on a large

dataset (DAVIS) (see Table 3.2 for results on 4 different datasets).

To the best of our knowledge, all the existing unsupervised video denoising techniques are

based on the F2F [34] framework, where a backbone CNN pre-trained with supervision is fine-

29

𝜎 = 30 𝜎 = 90

DAVIS Set8 Derfs Vid3oC DAVIS Set8 Derfs Vid3oC

UDVD-S 33.68 / 78.16 32.90 / 81.85 33.95 / 81.91 34.65 / 84.60 29.05 / 53.53 28.07 / 55.35 29.42 / 59.25 29.94 / 63.79

UDVD∗ 33.78 / 79.88 31.90 / 82.53 32.58 / 81.44 34.24 / 83.96 28.87 / 51.22 27.25 / 51.84 28.26 / 52.44 29.23 / 60.08
FastDVDnet∗ 33.91 / 76.99 31.81 / 80.21 32.45 / 81.64 35.05 / 84.44 28.01 / 47.53 26.54 / 50.16 27.36 / 52.87 28.42 / 55.99

MF2F 33.91 / 80.01 31.84 / 80.55 32.87 / 82.22 35.18 / 85.71 28.81 / 51.24 27.25 / 52.78 28.29 / 55.06 29.67 / 61.28

Table 3.2: Results for UDVD trained on individual noisy videos. The top row shows
PSNR/VMAF[76] values (averaged over the entire dataset) for UDVD trained on each individual
video sequence with early stopping (labelled UDVD-S) using the last 5 frames of a video as a held-out
set. We augmented the dataset with spatial flipping and time reversal (see Suppl. D for an ablation
study). With the augmentations and early stopping, UDVD-S is comparable to (and often outperforms)
UDVD or FastDVDnet trained on the full DAVIS dataset (indicated by ∗) and MF2F, which fine-tunes
a pre-trained CNN on each individual video. See Suppl. D for results on individual video sequences.

tuned on the video to be denoised. We compared UDVD-S against the most recent such method

– MF2F [29] which fine-tunes a FastDVDnet [130] trained with supervision on natural videos

using an objective involving optical flow computed on consecutive noisy frames (see Section 3.2).

Without any pre-training, UDVD-S outperforms MF2F in almost all videos in Tables B.3 and B.4,

and datasets in Table 3.2. Note that (a) we trained MF2F using all the 5 training schemes provided

in the paper and reported the best results in Table 3.2, and (b) the metric we used to measure

performance in Table 3.2 is the average PSNR of all denoised frames, unlike in Ref. [29] where

the first 10 frames of each video were excluded.

Use of temporal information. UDVD estimates each frame from 𝑘 surrounding contiguous

frames. To validate the effect of using more temporal information, we tested 𝑘 ∈ {1, 3, 5}. As

shown in Table 3.1, performance improves substantially andmonotonicallywith𝑘 (see Section B.2

for more noise levels). This is in agreement with the literature on supervised learning [130]. The

performance gains arising from a longer temporal context are more substantial at higher noise

levels (see Table 3.1). This is consistent with our analysis in Section 3.6 which shows that, at low

noise levels, UDVD(𝑘 = 5) tends to ignore the distant frames, but relies on them more at higher

noise levels (see Figure 3.4 and Section B.7).

Generalization across noise levels. UDVD generalizes strongly across noise levels not en-

30

CNNISO 1600 3200 6400 12800 25600 mean

UDVD 48.04 46.24 44.70 42.19 42.11 44.69
RViDeNet [147] 47.74 45.91 43.85 41.20 41.17 43.97

Table 3.3: Raw video denoising. PSNR values evaluated on the test set of the raw video dataset
(Section 3.4) when denoised with (a) UDVD trained only the noisy test videos and (b) RViDeNet trained
with supervision on a large dataset. The columns correspond to different ISO levels, with larger levels
resulting in noisier data.

countered during training. The results in Table 3.1 are obtained with a network trained only at

a fixed noise level of 𝜎 = 30. This generalization ability is consistent with bias-free networks for

image denoising (Chapter 2). See Section B.6 for more discussion and results.

Raw videos with real noise. We train UDVD on the first 9 realizations of the 5 videos from the

test set of the raw video dataset (see Section 3.4), holding out the last realization for early stopping.

We compare our performance with RViDeNet [147] which is pre-trained on a simulated dataset

and then fine-tuned with supervision on 6 training videos from the raw video dataset. UDVD

outperforms RViDeNet at all noise levels (see Table 3.3 and Fig 3.3). Note that UDVDwas directly

trained on the mosaiced raw videos. Existing unsupervised video denoising methods, like MF2F,

cannot be applied directly on this dataset as their pre-trained backbone expects an input in the

RGB domain.

Real-world microscopy data. We train UDVD on the fluorescence-microscopy data described

in Section 3.4 following the same procedure as for the natural videos, including data augmenta-

tion. For the electron-microscopy data, we trained on the first 35 frames of the video, and used the

remaining 5 as a validation set to perform early stopping based on mean-squared error. UDVD

is able to effectively denoise the fluorescence-microscopy and the electron-microscopy datasets

described in Section 3.4. This can be appreciated qualitatively in Figure 3.3 and Section B.5.

31

Noisy Denoised Noisy Denoised

(a) Raw video (scene 11) (b) Fluor. micro. (Mes. stem cells)

(c) Fluor. micro. (GOWT1 cells) (d) Electron micro. (nanoparticle)

Figure 3.3: Denoising real-world data. Results from applying UDVD to the raw video, fluorescence-
microscopy and electron-microscopy datasets described in Section 3.4. Qualitatively, UDVD succeeds
in removing noise while preserving the underlying signal structure, even for the highly noisy electron-
microscopy data. Raw videos are converted to RGB for visualization.

32

3.6 Automatic Motion Compensation

Most previous approaches for video denoising rely on explicit motion compensation [2, 14, 80,

84]. This requires estimating the optical flow, which is the local translational motion of features

in the image arising from the motion of objects and surfaces in a visual scene relative to the

camera. Several CNN-based denoisers build motion estimation into the architecture [129, 143].

In particular, motion compensation is critical to the F2F and MF2F frameworks for unsupervised

denoising, which use motion compensation to register contiguous images [29, 34, 44]. In contrast,

recent supervised video denoising networks like FastDVDnet [130] and ViDeNN [23], as well as

our unsupervised UDVD, do not perform any explicit motion compensation. Despite this, they

achieve state-of-the-art results. The empirical performance of these approaches suggests that the

networks must somehow be exploiting temporal information successfully. Here, we study this

phenomenon through an analysis of the denoising mapping, which reveals that these networks

perform an implicit form of motion compensation.

Gradient-based analysis. We use the approach developed in Section 2.5 to analyze CNNs

trained for image denoising. Let𝑦 ∈ R𝑛𝑇 be a flattened video sequence containing𝑇 noisy frames

with 𝑛 pixels each, processed by a CNN. We define the denoising function 𝑓𝑖 : R𝑛𝑇 → R as the

map between the noisy video and the denoised value 𝑑𝑖 := 𝑓𝑖 (𝑦) of the CNN output at the 𝑖th

pixel. A first-order Taylor decomposition of the denoising function may be written as:

𝑑𝑖 := 𝑓𝑖 (𝑦) = ⟨∇𝑓𝑖 (𝑦),𝑦⟩ + 𝑏, (3.2)

where ∇𝑓𝑖 (𝑦) ∈ R𝑛𝑇 denotes the gradient of 𝑓𝑖 at 𝑦. The constant 𝑏 := 𝑓𝑖 (𝑦) − ⟨∇𝑓𝑖 (𝑦),𝑦⟩ is the

net bias of the network, a combined function of all additive constants in the convolutional and

batch-normalization layers of the CNN.

Our proposed architecture is bias-free (i.e., all additive constants are removed from the archi-

33

𝑑𝑡 (𝑖)
=

2∑
𝑘=−2

〈
𝑦𝑡−𝑘

,
𝑎(𝑡−𝑘 ,𝑖)

〉

1.5

1.0

0.5

0.0

0.5

1.0

1.5

0.75

0.50

0.25

0.00

0.25

0.50

0.75

𝑦𝑡 𝑑𝑡 𝑎(𝑡 − 1, 𝑖) 𝑎(𝑡 , 𝑖) 𝑎(𝑡 + 1, 𝑖)

Figure 3.4: Video denoising as spatiotemporal adaptive filtering. Visualization of the equivalent
linear weights (𝑎(𝑘 , 𝑖), Eq. 3.3) used to compute two example denoised pixels using UDVD. The left two
columns show noisy frames 𝑦𝑡 at two noise levels, and the corresponding denoised frames, 𝑑𝑡 . Three
successive clean frames {𝑥𝑡−1,𝑥𝑡 ,𝑥𝑡+1} are shown in top row, for reference. Corresponding weights 𝑎(𝑘 , 𝑖)
for pixel 𝑖 (intersection of the dashed white lines) in these three frames, are shown in the last three
columns. The weights are seen to adapt to underlying video content, with their mode shifting to track
the motion of the skier. As the noise level 𝜎 increases (bottom row), their spatial extent grows, averaging
out more of the noise while respecting object boundaries. For each denoised pixel, the sum of weights
(over all pixel locations and frames) is approximately one, and thus can be interpreted as computing a
local average (but note that some weights are negative, depicted in blue).

34

tecture, as proposed in Chapter 2, and thus 𝑏 = 0. As a result, the denoised value at the 𝑖th pixel

may be written as:

𝑑 (𝑖) = ⟨∇𝑓𝑖 (𝑦),𝑦⟩ =
𝑇∑︁
𝑘=1

⟨𝑎(𝑘 , 𝑖),𝑦𝑘⟩, (3.3)

where 𝑦𝑘 denotes each of the 𝑇 flattened frames that compose the noisy video, and the weights

𝑎(𝑘 , 𝑖) correspond to the gradient of 𝑓𝑖 with respect to 𝑦. Each vector 𝑎(𝑘 , 𝑖) can be interpreted

as an equivalent filter that produces an estimate of the denoised video at pixel 𝑖 via a weighted

average of the noisy observations over space and time.

Interpreting equivalent filters. Visualizing these equivalent filters reveals that UDVD learns to

denoise by performing averaging over an adaptive spatiotemporal neighborhood of each pixel. As

illustrated in Figures 3.4, B.4, B.5 and B.6 , when the noise level increases, the averaging is carried

out over larger regions. This intuitive behavior is also seen in classical linear Wiener filters [140],

where the filters are larger for higher levels of noise. The crucial difference is that in the case of

CNNs, the equivalent filters are adapted to the local video content: they respect object boundaries

in space and time, taking into account their motion. This is apparent in Figure 3.4: equivalent

filters in adjoining frames are automatically shifted spatially to compensate for the movement of

the skier (additional examples in Section B.7). We find that this implicit motion compensation

is not unique to UDVD: CNNs trained in a supervised fashion have the same property (see also

Section B.7).

Optical-flow estimation. In order to validate our observation that CNNs exclusively trained for

denoising implicitly detect and exploit video motion, we use the equivalent filters of the networks

to estimate the optical flow. To estimate the optical flow from the 𝑡 𝑡ℎ frame to the (𝑡 + 1)𝑡ℎ frame

at the 𝑖th pixel, we compute the difference between the position of the centroid of the equivalent

filter corresponding to the pixel at times 𝑡 , 𝑎(𝑡 , 𝑖), and time 𝑡+1, 𝑎(𝑡+1, 𝑖). To increase the stability

of the estimated flow, we compute the filter centroid through a robust weighted average that only

35

(a) Noisy frame (𝜎 = 30) (b) Motion estimate from clean
video

(c) Motion estimate from UDVD
gradients

Figure 3.5: CNNs trained for denoising automatically learn to perform motion estimation. (a)
Noisy frame from a video in the DAVIS dataset. (b) Optical flow direction at multiple locations of the
image obtained using a state-of-the-art algorithm applied to the clean video. (c) Optical flow direction
estimated from the shift of the adaptive filter obtained by differentiating the network, which is trained
exclusively with noisy videos and no optical flow information. Optical flow estimates are well-matched
to those in (b), but deviate according to the aperture problem at oriented features (see black vertical
edge of bus door), and in homogeneous regions (see bus roof, top right).

includes entries with relatively large values (within 20% of maximum value in the filter).

The optical-flow estimates obtained from the gradients of the trained UDVD network are sur-

prisingly precise, even at very high noise levels. Figure 3.5, and additional figures in Section B.7,

show that the results are similar to those obtained by applying an algorithm for optical-flow esti-

mation (DeepFlow [139]) on the corresponding clean video. This demonstrates that the CNNs are

able to implicitly estimate motion from data, despite the fact that they were not trained on that

problem, and even in the presence of substantial noise corruption, a setting that is quite challenging

for optical-flow estimation techniques. We also observe that the optical-flow estimates obtained

from UDVD gradients tend to be less accurate for pixels near strongly oriented features where

local motion is only partially constrained (known as the aperture problem) or in homogeneous

regions, where the local motion is unconstrained (the blank wall problem).

36

3.7 Conclusion

In this chapter we propose a method for unsupervised deep video denoising that achieves

comparable performance to state-of-the-art supervised approaches. Combinedwith data-augmentation

techniques and early stopping, the method achieves effective denoising even when trained ex-

clusively on short individual noisy sequences, which enables its application to real-world noisy

data. In addition, we perform a gradient-based analysis of denoising CNNs, which reveals that

they learn to perform implicit adaptive motion compensation. This suggests several interesting

research directions. For example, denoising may be a useful pretraining task for optical-flow es-

timation or other computer-vision tasks requiring motion estimation. In the next chapter, we

will build on the framework of unsupervised denoising to develop a semi-supervised denoising

paradigm.

37

4 | Adaptive denoising: Generalizing

pre-trained denoisers to

out-of-distribution data

This chapter is adapted from the paper "Adaptive Denoising via GainTuning" published in

Neural Information Processing Systems (NeurIPS) 2021 [94]. This is a joint work with Joshua

Vincent, Ramon Manzorro, Peter A Crozier, Carlos Fernandez-Granda, and Eero P Simoncelli.

In this chapter, we will explore a more general version of the robustness problem we studied in

Chapter 2. The frameworkwill rely on unsupervised denoising techniques discussed in Chapter 3.

abstract

Deep convolutional neural networks (CNNs) for image denoising are typically trained on

large datasets. These models achieve the current state-of-the-art, but they do not generalize well

to data that deviate from the training distribution. Recent work has shown that it is possible to

train denoisers on a single noisy image. These models adapt to the features of the test image, but

their performance is limited by the small amount of information used to train them. Here we pro-

pose “GainTuning”, a methodology by which CNN models pre-trained on large datasets can be

adaptively and selectively adjusted for individual test images. To avoid overfitting, GainTuning

38

optimizes a single multiplicative scaling parameter (the “Gain”) of each channel in the convolu-

tional layers of the CNN. We show that GainTuning improves state-of-the-art CNNs on standard

image-denoising benchmarks, boosting their denoising performance on nearly every image in a

held-out test set. These adaptive improvements are even more substantial for test images differ-

ing systematically from the training data, either in noise level or image type. We illustrate the

potential of adaptive GainTuning in a scientific application to transmission-electron-microscope

images, using a CNN that is pre-trained on synthetic data. In contrast to the existing method-

ology, GainTuning is able to faithfully reconstruct the structure of catalytic nanoparticles from

these data at extremely low signal-to-noise ratios.

4.1 Overview

Like many problems in image processing, the recovery of signals from noisy measurements

has been revolutionized by the development of convolutional neural networks (CNNs) [21, 149,

150]. These models are typically trained on large databases of images, either in a supervised (like

in Chapters 1 and 2) [21, 96, 149–151] or an unsupervised (like in Chapter 3) fashion [8, 66, 68,

141]. Once trained, these solutions are evaluated on noisy test images. This approach achieves

state-of-the-art performance when the test images and the training data belong to the same distri-

bution. However, when this is not the case, the performance of these models is often substantially

degraded [96, 133, 151]. This is an important limitation for many practical applications, in which

it is challenging (or even impossible) to gather a training dataset that is comparable in noise

and signal content to the images encountered at test time. Overcoming this limitation requires

adaptation to the test data.

A recent unsupervised method (Self2Self) has shown that CNNs can be trained exclusively

on individual test images, producing impressive results [110]. Despite this, the performance of

Self2Self is limited by the small amount of available training information, and is generally inferior

39

(a) Pre-training on a database (b) Adaptive training on test image (c) Combined pre-training and test-adaptive training

…

CNN

Training data

Test image

Denoised image

! …

CNN

Test image

Denoised
image

! …

CNN

Training data

Test image

Denoised image

! ∆

Figure 4.1: Proposed denoising paradigm. (a) Typically, CNNs are trained on a large dataset and
evaluated directly on a test image. (b) Recent unsupervised methods perform training on a single
test image. (c) We propose GainTuning, a framework which bridges the gap between both of these
paradigms: a CNN pre-trained on a large training database is adapted to the test image.

to CNN models trained on large databases.

In this chapter, we propose GainTuning, a framework to bridge the gap between models pre-

trained on large datasets, and models trained exclusively on test images. In the spirit of two

recent methods [123, 133], GainTuning adapts pre-trained CNN models to individual test im-

ages by minimizing an unsupervised denoising cost function, thus fusing the generic capabilities

obtained from the training data with specific refinements matched to the structure of the test

data. Rather than adapt the full parameter set (filter weights and additive constants) to the test

image, GainTuning instead optimizes a single multiplicative scaling parameter (the “Gain”) for

each channel within each layer of the CNN. The dimensionality of this reduced parameter set

is a small fraction (≈ 0.1% in our examples) of that of the full parameter set. We demonstrate

through extensive examples that this prevents overfitting to the test data. The GainTuning pro-

cedure is general, and can be applied to any CNN denoising model, regardless of the architecture

or pre-training process.

GainTuning provides a novel method for adapting CNN denoisers trained on large datasets

to a single test image. GainTuning improves state-of-the-art CNNs on standard image-denoising

40

(a) Noisy image
(b) Unsupervised training

only on (a) [110]
(c) Supervised training
on simulated data [95]

(d) GainTuning on CNN
trained on sim. data (c)

(e) Estimated reference
image

Figure 4.2: Denoising results for real-world data. (a) An experimentally-acquired atomic-resolution
transmission electron microscope image of a CeO2-supported Pt nanoparticle. The image has a very low
signal to noise ratio (PSNR of ≈ 3𝑑𝐵). (b) Denoised image obtained using Self2Self [110], which fails to
reconstruct three atoms (blue arrow, second row). (c) Denoised image obtained via a CNN trained on a
simulated dataset, where the pattern of the supporting atoms is not recovered faithfully (third row). (d)
Denoised image obtained by adapting the CNN in (c) to the noisy test image in (a) using GainTuning.
Both the nanoparticle and the support are recovered without artefacts. (e) Reference image, estimated
by averaging 40 different noisy images of the same nanoparticle.

benchmarks, boosting their denoising performance on nearly every image in held-out test sets.

Performance improvements are even more substantial when the test images differ systemati-

cally from the training data. We showcase this ability through controlled experiments in which

we vary the distribution of the noise and image structure of the test data. Finally, we evalu-

ate GainTuning in a real scientific-imaging application where adaptivity is crucial: denoising

transmission-electron-microscope data at extremely low signal-to-noise ratios. As shown in Fig-

ure 4.2, both CNNs pre-trained on simulated images and CNNs trained only on the test data

produce denoised images with substantial artefacts. In contrast, GainTuning achieves effective

denoising, accurately revealing the atomic structure in the real data.

41

4.2 Related Work

Denoising via deep learning. As discussed in Chapter 1, CNN-based methods have clearly

outperformed previous state-of-the-art denoising methods [19, 25, 31, 35, 48, 107, 120]. Denois-

ing CNNs are typically trained in a supervised fashion, minimizing mean squared error (MSE)

over a large database of example ground-truth clean images and their noisy counterparts [21,

96, 150]. Unsupervised methods have also been developed, which do not rely on ground-truth

images. There are two main strategies to achieve this: use of an empirical Bayes objective, such

as Stein’s unbiased risk estimator (SURE) [31, 81, 91, 114, 123, 124], and architectural “blind-spot”

methods [8, 66, 68, 141] (see Section 4.4 for a more detailed description).

Generalization to out-of-distribution noise. Previous studies, including Chapter 2, have

shown that CNN denoisers fail to generalize when the noise encountered at test time differs

from that of the training data [96, 151]. Chapter 2 proposes the use of a modified CNN architec-

ture without additive bias terms, which is able to generalize to noise with variance well beyond

that encountered in the training set. Here, we show that augmenting a generic architecture with

GainTuning yields comparable performance to removing bias.

Generalization to out-of-distribution images. In order to adapt CNNs to operate on test

data with characteristics differing from the training set, recent publications propose fine-tuning

the networks using an additional training dataset that is more aligned with the test data [42,

133]. This is a form of transfer learning, a popular technique in classification problems [30, 144].

However, it is often challenging to obtain relevant additional training data. Here, we show that

GainTuning can adapt CNN denoisers to novel test images.

Feature normalization. Normalization techniques such as batch normalization (BN) [55] are a

standard component of deep CNNs. BN consists of two stages: (1) centering and normalizing the

features corresponding to each channel, (2) scaling and shifting the normalized features using two

learned parameters per channel (a scaling factor and a shift). The scaling parameter is analogous

42

to the gain parameter introduced in GainTuning. However, in BN this parameter is adjusted

during training and fixed during test time, whereas GainTuning adjusts it adaptively, for each

test image.

Gain normalization. Motivated by gain control properties observed in biological sensory neu-

rons [18], adaptive local normalization of response gains has been previously applied in object

recognition [56], density estimation [4], and compression [5]. In contrast to these approaches,

which adjust gains based on local responses, GainTuning adjusts a global gain for each channel

by optimizing an unsupervised objective function.

Adapting CNN denoisers to test data. Two recent publications have developed methods of

adapting CNN denoisers to test data [124, 133]. Ref. [124] include the noisy test images in the

training set. In a recent extension, the authors fine-tune a pre-trained CNN on a single test image

using the SURE cost function [123]. Ref. [133] does the same using a novel cost function based on

noise resampling (see Section 4.4 for a detailed description). As shown in Section C.4 fine-tuning

the full set of CNN parameters using only a single test image can lead to overfitting. Ref. [123]

avoids this using early stopping, selecting the number of fine-tuning steps beforehand. Ref. [133]

uses a specialized architecture with a reduced number of parameters. Here, we show that several

unsupervised cost functions can be used to perform adaptation without overfitting, as long as we

only optimize a subset of the model parameters (specifically, the gain of each channel). .

Adjustment of channel parameters to improve generalization in other tasks. Adjustment

of channel parameters, such as gains and biases, has been shown to improve generalization in

multiple machine-learning tasks, such as the vision-language problems [28, 103], image gener-

ation [20], style transfer [39], and image restoration [47]. In these methods, the adjustment is

carried out while training the model by minimizing a supervised cost function. In image clas-

sification, recent studies have proposed performing adaptive normalization [58, 100, 118] and

optimization [136] of channel parameters during test time, in the same spirit as GainTuning.

43

4.3 Proposed Methodology: GainTuning

In this section we describe the GainTuning framework. Let 𝑓𝜃 be a CNN denoiser parameter-

ized by weight and bias parameters, 𝜃 . We assume that we have available a training database and

a test image ytest that we aim to denoise. First, the networks parameters are optimized on the

training database

𝜃pre-trained = argmin
𝜃

∑︁
𝑦∈training database

Lpre-training(𝑦, 𝑓𝜃 (𝑦)). (4.1)

The cost function Lpre-training used for pre-training can be supervised, if the database contains

clean and noisy examples, or unsupervised, if it only contains noisy data.

A direct method of adapting the pre-trained CNN to the test data is to finetune all the param-

eters, as is done in all prior work on test-time adaptation [42, 123, 133]. Unfortunately this can

lead to overfitting the test data (see Section C.4). Due to the large number of degrees of freedom,

the model is able to minimize the unsupervised cost function without denoising the noisy test

data effectively. This can be avoided to some extent by employing CNN architectures with a small

number of parameters [133], or by only optimizing for a short time (“early stopping”) [123]. Un-

fortunately, using a CNN with reduced parameters can limit performance (see Section 4.5), and

it is unclear how to choose a single criterion for early stopping that can operate correctly for all

test images. Here, we propose a different strategy: tuning a single parameter (the gain) in each

channel of the CNN. GainTuning can be applied to any pre-trained CNN.

We denote the gain parameter of the 𝑐 th channel of the the 𝑙 th layer as 𝛾 [l, c], and the conven-

tional parameters of that channel by 𝜃pre-trained [l, c] (a vector containing the filter weights). The

adapted GainTuning parameters are the product of these:

𝜃GainTuning(𝛾) [l, c] = 𝛾 [l, c] 𝜃pre-trained [l, c]. (4.2)

44

We estimate the gains by minimizing an unsupervised loss that only depends on the noisy image:

𝛾 = argmin
𝛾

LGainTuning(ytest,𝜃GainTuning(𝛾)) (4.3)

The final denoised image is 𝑓𝜃GainTuning (𝛾) (ytest). Section 4.4 describes several possible choices for

the cost function LGainTuning. Since we use only one scalar parameter per channel, the adjust-

ment performed by GainTuning is very low-dimensional (≈ 0.1% of the dimensionality of 𝜃).

This makes optimization quite efficient, and prevents overfitting (see Section C.4). Further, in

Section C.4 we show that performing GainTuning provides better performance when compared

to fine-tuning only the last few layers of the pre-trained network.

4.4 Cost Functions for GainTuning

A critical element of GainTuning is the use of an unsupervised cost function, which is min-

imized in order to adapt the pre-trained CNN to the test data. Here, we describe three different

choices, each of which are effective for the GainTuning framework, but which have different

benefits and limitations.

Blind-spot loss. This loss measures the ability of the denoiser to reproduce the noisy observa-

tion, while excluding the identity solution. To achieve this, the CNN must estimate the 𝑗th pixel

𝑦 𝑗 of the noisy image 𝑦 as a function of the other pixels 𝑦{ 𝑗}𝑐 , excluding the pixel itself. As long

as the noise degrades pixels independently, the network to learn a nontrivial denoising function

that exploits the relationships between pixels arising from the underlying clean image(s). The

resulting loss can be written as

Lblind-spot(y,𝜃) = E
[
(𝑓𝜃 (y{ 𝑗}𝑐) 𝑗 − y 𝑗)2

]
. (4.4)

Here the expectation is over the data distribution and the selected pixel. This “blind spot” can

45

be enforced through architecture design [68], or by masking [8, 66] (see also [110] and [141]

for related approaches). The blind-spot loss has a key property that makes it very powerful in

practical applications: it makes no assumption about the noise distribution beyond pixel-wise

independence. When combined with GainTuning it achieves effective denoising of real electron-

microscope data at very low SNRs (see Figure 4.2 and Section 4.5.4).

Stein’s Unbiased Risk Estimator (SURE). Let x be an 𝑁 -dimensional ground-truth random

vector x and let y := x + n be a corresponding noisy observation, where n ∼ N(0,𝜎2
𝑛I). SURE

provides an expression for the MSE between x and a denoised estimate 𝑓𝜃 (y), which only depends

on the noisy observation y:

E

[
1
𝑁

∥x − 𝑓𝜃 (y)∥2
]
= E

[
1
𝑁

∥y − 𝑓𝜃 (y)∥2 − 𝜎2 + 2𝜎2

𝑁

𝑁∑︁
𝑘=1

𝜕(𝑓𝜃 (y)𝑘)
𝜕y𝑘

]
:= LSURE(y,𝜃). (4.5)

The last term in Equation 4.5 is the divergence of 𝑓𝜃 , which can be approximated using Monte

Carlo techniques [112] (Section C.3). The divergence is the sum of the partial derivatives of each

denoised pixel with respect to the corresponding input pixel. Intuitively, penalizing it forces the

denoiser to not rely as heavily on the 𝑗th noisy pixel to estimate the 𝑗th clean pixel. This is similar

to the blind-spot strategy, with the added benefit that the 𝑗th noisy pixel is not ignored completely.

To further illustrate this connection, consider a linear convolutional denoising function 𝑓𝜃 (y) =

𝜃 ⊛ y, where the center-indexed parameter vector is 𝜃 = [𝜃−𝑘 ,𝜃−𝑘+1, . . . ,𝜃0, . . . ,𝜃𝑘−1,𝜃𝑘]. The

SURE cost function (Equation 4.5) reduces to

En

[
1
𝑁

∥y − 𝜃 ⊛ y∥2
]
− 𝜎2 + 2𝜎2𝜃0 (4.6)

The SURE loss equals the MSE between the denoised output and the noisy image, with a penalty

on the “self” pixel. As this penalty is increased, the self pixel will be ignored, so the loss tends

towards the blind-spot cost function. When integrated into the GainTuning framework, the SURE

46

loss is limited to additive Gaussian noise, for which it outperforms the blind-spot loss. Extensions

of SURE to many other stochastic observation models have been developed [113], and may offer

alternative objectives for GainTuning.

Noise Resampling. Ref. [133] introduced a novel procedure for adaptation which we call noise

resampling. Given a pre-trained denoiser 𝑓𝜃 and a test image y, first one obtains an initial denoised

image by applying 𝑓𝜃 to y, x̂ := 𝑓𝜃pre-trained (y). This denoised image is then artificially corrupted x̂

by simulating noise from the same distribution as the data of interest to create synthetic noisy

examples. Finally, the denoiser is fine-tuned by minimizing the MSE between x̂ and the synthetic

examples. If we assume additive noise, the resulting loss is of the form

Lnoise resampling(y,𝜃) = E𝑛
[
∥(𝑓𝜃 (x̂ + n) − x̂∥2

]
. (4.7)

Noise resampling is reminiscent of Refs. [99, 142], which add noise to an already noisy image.

When integrated in the GainTuning framework, we find the noise-resampling loss results in ef-

fective denoising in the case of additive Gaussian noise, although it generally underperforms the

SURE loss.

4.5 Experiments and Results

We performed three different types of experiment to evaluate the performance of GainTuning

In-distribution (test examples held out from the training set); out-of-distribution noise (noise

level or distribution of test examples differs from training set); and out-of-distribution signal

(test images differ in features or context from the training set). We also apply GainTuning to real

data from a transmission electron microscope.

Our experiments make use of four datasets: The BSD400 natural image database [87] with

test sets Set12 and Set68 [150], the Urban100 images of urban environments [53], the IUPR dataset

47

Model Set12 BSD68

𝜎 = 30 40 50 30 40 50
G
ai
nT

un
in
g

DnCNN Pre-trained 29.52 28.21 27.19 28.39 27.16 26.27
GainTuning 29.62 28.30 27.29 28.47 27.23 26.33

UNet Pre-trained 29.34 28.05 27.05 28.27 27.05 26.15
GainTuning 29.46 28.15 27.13 28.34 27.12 26.22

Ba
se
lin

e

LIDIA Pre-trained 29.46 27.95 26.58 28.24 26.91 25.74
Adapted 29.50 28.10 26.95 28.23 26.97 26.02

Self2Self 29.21 27.80 26.58 27.83 26.67 25.73

0.00 0.05 0.10 0.15 0.20 0.25
Improvement in PSNR

0
1
2
3
4

0.0 0.1 0.2 0.3
Improvement in PSNR

0
4
8

12
16

Figure 4.3: GainTuning achieves state-of-the-art performance. (Left) The average PSNR on two
test set of generic natural images improves after GainTuning using SURE loss function for different archi-
tectures across multiple noise levels. The CNNs are trained on generic natural images (MartinFTM01).
(Right) Histograms of improvement in PSNR achieved by DnCNN over test images from Set12 (top)
and BSD68 (bottom) at 𝜎 = 30.

of scanned documents [17], and a set of synthetic piecewise constant images [73] (see Section C.1).

We demonstrate the broad applicability of GainTuning by using it in conjunction with multiple

architectures for image denoising: DnCNN [150], BFCNN [96], UNet [116] and Blind-spot

net [68] (see Section A.1 and Section B.1.3). Finally, we compare our results to several bench-

marks: (1) models trained on the training database, (2) CNN models adapted by fine-tuning all

parameters (as opposed to just the gains), (3) a model trained only on the test data, (4) LIDIA, a

specialized architecture and adaptation strategy proposed in [133]. We provide details on training

and optimization in Section C.2.

4.5.1 GainTuning surpasses state-of-the-art performance for

in-distribution data

Experimental set-up. We use [87], a standard natural-image benchmark, corrupted with Gaus-

sian white noise with standard deviation 𝜎 sampled uniformly from [0, 55] (relative to pixel in-

tensity range [0, 255]). Following [150], we evaluate performance on two independent test sets:

Set12 and BSD68, corrupted with Gaussian noise with 𝜎 ∈ {30, 40, 50}.

Comparison to pre-trained CNNs. GainTuning consistently improves the performance of pre-

48

trained CNNmodels. Figure 4.3 shows this for two differentmodels, DnCNN [150] and UNet [116]

(see also Section C.5.1). The SURE loss outperforms the blind-spot loss, and is slightly better than

noise resampling (Table C.6). The same holds for other architectures, as reported in Section C.5.1.

On average the improvement is modest, but for some images it is quite substantial (up to 0.3 dB

in PSNR for 𝜎 = 30, see histogram in Figure 4.3).

Comparison to other baselines. GainTuning outperforms fine-tuning based on optimizing all

the parameters for different architectures and loss functions (see Section C.4). GainTuning clearly

outperforms a Self2Self model, which is trained exclusively on the test data (Figure 4.3). It also

outperforms the specialized architecture and adaptation process introduced in [133], with a larger

gap in performance for higher noise levels.

4.5.2 GainTuning generalizes to new noise distributions

Experimental set-up. The same set-up as Section 4.5.1 is used, except that the test sets are

corrupted with Gaussian noise with 𝜎 ∈ {70, 80} (both beyond the training range of 𝜎 ∈ [0, 55]).

Comparison to pre-trained CNNs. Pre-trained CNN denoisers fail to generalize in this setting.

GainTuning consistently improves their performance (see Figure 4.4).

The SURE loss again outperforms the blind-spot loss, and is slightly better than noise resam-

pling (see Section C.5.2). The same holds for other architectures, as reported in Section C.5.2. The

improvement in performance for all images is substantial (up to 12 dB in PSNR for 𝜎 = 80, see

histogram in Figure 4.4).

Comparison to other baselines. GainTuning achieves comparable performance to a gold-

standard CNN trained with supervision at all noise levels (Figure 4.4). GainTuning matches the

performance of a bias-free CNN [96] specifically designed to generalize to out-of-distribution

noise (Figure 4.4). GainTuning outperforms fine-tuning based on optimizing all the parameters

for different architectures and loss functions (see Section C.4). GainTuning clearly outperforms

a Self2Self model trained exclusively on the test data (Section C.5.2), and the LIDIA adaptation

49

Out-of-distribution test noise

Test set 𝜎
Trained on 𝜎 ∈ [0, 55] Bias Free

Model [96]
Trained on
𝜎 ∈ [0, 100]Pre-trained Gaintuning

Set12 70 22.45 25.54 25.59 25.50
80 18.48 24.57 24.94 24.88

BSD68 70 22.15 24.89 24.87 24.88
80 18.72 24.14 24.38 24.36

0.0 2.0 4.0 6.0 8.0 10.0 12.0
Improvement in PSNR

0%

10%

20%

Fr
ac

tio
n

of
 D

at
a BSD = 70

BSD = 80

Out-of-distribution test image

Training data Test data Pre-trained Gaintuning

(a) Piecewise constant Natural images 27.31 28.60

(b) Natural images Urban images 28.35 28.79

(c) Natural images Scanned documents 30.02 30.73 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Improvement in PSNR

0%
10%
20%
30%
40%

Fr
ac

tio
n

of
 D

at
a (a)

(b)
(c)

Figure 4.4: GainTuning generalizes to out-of-distribution data. Average performance of a CNN
trained to denoise at noise levels 𝜎 ∈ [0, 55] improves significantly on test image with noise outside the
training range, 𝜎 = 70, 80 (top) and on images with different characteristics than training data (bottom)
after GainTuning. Capability of GainTuning to generalize to out-of-distribution noise is comparable to
that of Bias-Free CNN [96], which is an architecture explicitly designed to generalize to noise levels
outside the training range, and to that of a denoiser trained with supervision at all noise levels. (Right)
Histogram showing improvement in performance for each image in the test set. The improvement is
substantial across most images, reaching nearly 12dB improvement in one example. For these examples,
the denoiser was DnCNN (with additive bias terms) and the GainTuning loss function was SURE. See
Section C.5.2 for experiments with other CNN architectures and loss functions.

method [133].

Gaussian to Poisson generalization: Section C.5.2 and Figure C.4 show that GainTuning can

effectively adapt a CNN pre-trained for Gaussian noise removal to restore images corrupted with

Poisson noise as well.

4.5.3 GainTuning generalizes to out-of-distribution image content

Experimental set-up. We evaluate the performance of GainTuning on test images that have

different characteristics from the training images. We perform the following controlled experi-

ments:

(a) Simulated piecewise constant images→Natural images. We pre-train CNN denoisers

50

on simulated piecewise constant images. These images consists of constant regions (of differ-

ent intensities values) with the boundaries having varied shapes such as circle and lines with

different orientations (see Section C.1 for some examples). Piecewise constant images provide

a crude model for natural images [73, 88, 105]. We use GainTuning to adapt a CNN trained

on this dataset to generic natural images (Set12). This experiment demonstrates the ability

of GainTuning to adapt from a simple simulated dataset to a significantly more complex real

dataset.

(b) Generic natural images → Images with high self-similarity. We apply GainTuning

to adapt a CNN trained on generic natural images to images in Urban100 dataset. Urban100

consists of images of buildings and other structures typically found in an urban setting, which

contain substantially more repeating/periodic structure (see Section C.1) than generic natural

images.

(c) Generic natural images → Images of scanned documents. We apply GainTuning to

adapt a CNN trained on generic natural images to images of scanned documents in IUPR dataset

(see Section C.1).

All CNNs were trained for denoising Gaussian white noise with standard deviation 𝜎 ∈ [0, 55]

and evaluated at 𝜎 = 30.

Comparison to pre-trained CNNs. GainTuning consistently improves the performance of pre-

trained CNNs in all the three experiments. Figure 4.4 shows this for DnCNN when GainTuning

is based on SURE loss. We obtain similar results with other architectures (see Section C.5.3).

In experiment (a), all test images show substantial improvements over the pre-trained results

(average increase of roughly 1.3dB, and best case more than 3 dB, at 𝜎 = 30). We observe similar

trends for experiments (b) and (c) as well, with improvements being better on an average for

experiment (c). Note that we obtain similar performance increases when both image and noise

are out-of-distribution as discussed in Section C.5.4.

51

Comparison to other baselines. In experiment (a), GainTuning outperforms methods that

optimize all parameters over different architectures and loss functions (Section C.4). However,

Self2Self trained only on test data outperforms GainTuningin this case, because the test im-

ages contain content that differs substantially from the training images. Self2Self provides the

strongest form of adaptation, since it is trained exclusively on the test image, whereas the denois-

ing properties of GainTuning are partially due to the pretraining (see Sections 4.7, C.5.3). We did

not evaluate LIDIA [133] for this experiment. For experiments (b) and (c), training all parameters

clearly outperforms GainTuning for case (b), but has similar performance for (c). GainTuning out-

performs LIDIA on experiments (b) and (c). Self2Self trained exclusively on test data outperforms

GainTuning (and LIDIA) on (b) and (c) (see Sections 4.7, C.5.3).

4.5.4 Application to Electron microscopy

Scientificmotivation. Transmission electronmicroscopy (TEM) is a popular imaging technique

in materials science [122, 128]. Recent advancements in TEM enable to image at high frame

rates [37, 38]. These images can for example capture the dynamic, atomic-level rearrangements

of catalytic systems [24, 45, 69, 75, 125], which is critical to advance our understanding of func-

tional materials. Acquiring image series at such high temporal resolution produces data severely

degraded by shot noise. Consequently, there is an acute need for denoising in this domain.

The need for adaptive denoising. Ground-truth images are not available in TEM, because

measuring at high SNR is often impossible. Prior work has addressed this by using simulated

training data (see Chapter 5) [95, 135], whereas others have trained CNNs directly on noisy real

data (Chapter 3) [119].

Dataset. We use the training set of 5583 simulated images and the test set of 40 real TEM images

from [95, 135]. The data correspond to a catalytic platinum nanoparticle on a CeO2 support (Sec-

tion 5.4)).

Comparison to pre-trained CNN. A CNN [68] pre-trained on the simulated data fails to re-

52

construct the pattern of atoms faithfully (green box in Figure 4.2 (c), (e)). GainTuning applied to

this CNN using the blind-spot loss correctly recovers this pattern (green box in Figure 4.2 (d), (e))

reconstructing the small oxygen atoms in the CeO2 support. GainTuning with noise resampling

failed to reproduce the support pattern (probably because it is absent from the initial denoised

estimate) (see Ref. [94]).

Comparison to other baselines. GainTuning clearly outperforms Self2Self, which is trained

exclusively on the real data. The denoised image from Self2Self shows missing atoms and sub-

stantial artefacts (see Figure 4.2). We also compare GainTuning dataset to blind-spot methods

using the 40 test frames [68, 119]. GainTuning clearly outperforms these methods. Finally, Gain-

Tuning outperforms fine-tuning based on optimizing all the parameters, which overfits heavily

(see Section C.4).

4.6 Analysis

In this section, we perform a qualitative analysis of the properties of GainTuning.

Which images benefit most from GainTuning adaptation? Figure 4.5 shows the images in

the different test datasets for which GainTuning achieves the most and the least improvement in

PSNR. The result is quite consistent over multiple architectures: the improvement in performance

achieved by GainTuning is larger if the test image contains highly repetitive patterns. This makes

intuitive sense; the repetitions effectively provide multiple examples from which to learn these

patterns during the unsupervised refinement.

Generalization via GainTuning. We investigate the generalization capability of GainTuning.

We observe that a CNN adapted to a particular image via GainTuning generalizes effectively to

other similar images. Figure 4.6 shows that GainTuning can achieve generalization to images

that are similar to the test image used for adaptation on two examples: (1) adapting a network

to an image of a scanned document generalizes to other scanned documents, and (2) adapting

53

DnCNN UNet

In
-d
is
tr
ib
ut
io
n Top

6

Bottom
6

O
ut
-o
f-d

is
tr
ib
ut
io
n
im

ag
e Top

6

Bottom
6

Figure 4.5: What kind of images benefit the most from adaptive denoising? We visualize the
images which achieve the top 6 and bottom 6 (left top to the right bottom of each grid) improvement
in performance (in PSNR) after performing GainTuningİmages with the largest improvement in perfor-
mance often have highly repetitive patterns or large regions with constant intensity. Images with least
improvement in performance tend to have more heterogeneous structure. Note that, in general, the dis-
tribution of improvements in performance is often skewed towards the images with lowest improvement
in performance (See Figures 4.3, 4.4, and 4.8).

54

(a) Dataset of
scanned documents

(b) Natural images with
out-of-distribution noise

(c) Equivalent bias before
and after gaintuning

0 1 2 3 4
Gaintuned on

0

1

2

3

4

Te
st

ed
 o

n
1.16 0.83 0.84 0.89 0.96

0.95 1.10 0.50 0.98 0.80

0.72 0.27 1.08 0.36 0.73

0.99 1.02 0.55 1.07 0.87

1.01 0.68 0.88 0.79 1.05

0 1 2 3 4
Gaintuned on

0

1

2

3

4

Te
st

ed
 o

n

8.37 8.49 8.41 8.33 8.34

7.70 7.96 7.91 7.74 7.81

6.42 6.61 6.63 6.50 6.57

6.31 6.45 6.50 6.45 6.49

6.02 6.12 6.17 6.09 6.17

0 20 40 60 80 100
noise level

0
25
50
75

100
125
150
175
200

no
rm

 o
f b

ia
s

pre-trained
after gaintuning
pre-trained noise

Figure 4.6: Analysis of GainTuning. GainTuning can achieve generalization to images that are
similar to the test image used for adaptation. We show this through two examples: (a) adapting a
network to an image of a scanned document generalizes to other scanned documents, and (b) adapting
a a network to an image with out-of-distribution noise generalizes to other images with similar noise
statistics. The (𝑖 , 𝑗)th entry of the matrix in (a) and (b) represents the improvement in performance
(measured in PNSR) when a CNN GainTuned on image 𝑗 is used to denoise image 𝑖. We use 5 images
with the largest improvement in performance across the dataset for (a) and (b). Finally, (c) shows that
generalization to noise levels outside the training range is enabled by reducing the equivalent bias of the
pre-trained CNN (see equation (2.1)).

a a network to an image with out-of-distribution noise generalizes to other images with similar

noise statistics.

HowdoesGainTuning adapt to out-of-distributionnoise? Generalization to out-of-distribution

noise provides a unique opportunity to understand howGainTuningmodifies the denoising func-

tion. Section 2.5 shows that the first-order Taylor approximation of denoising CNNs trained on

multiple noise levels tend to have a negligible constant term, and that the growth of this term is

the primary culprit for the failure of these models when tested on new noise levels. GainTuning

reduces the amplitude of this constant term, facilitating generalization.

Let𝑦 ∈ R𝑁 be a noisy image processed by a CNN. Using the first-order Taylor approximation,

the function 𝑓 : R𝑁 → R𝑁 computed by a denoising CNNmay be expressed as an affine function

𝑓 (𝑧) = 𝑓 (𝑦) +𝐴𝑦 (𝑧 − 𝑦) = 𝐴𝑦𝑧 + 𝑏𝑦 , (4.8)

where 𝐴𝑦 ∈ R𝑁×𝑁 is the Jacobian of 𝑓 (·) evaluated at input 𝑦, and 𝑏𝑦 ∈ R𝑁 represents the net

55

(a) Noisy image (b) Trained on piecewise constant (c) After GainTuning on (b) (d) Difference b/w (b) and (c)

Noisy Before GT Filter bef. After GT Filter af. Noisy Before GT Filter bef After GT Filter af.

Figure 4.7: Adaptation to new image content. (Top) A Bias-free CNN [96] pre-trained on piecewise
constant images applied to a natural test image (a) oversmooths the image and blurs the details (b),
but is able to recover more detail after applying GainTuning using SURE loss function (c). (Bottom)
The CNN estimates a denoised pixel (colored pixel at the center of each image) as a linear combination
of the noisy input pixels. The weighting functions (filters) of pre-trained CNN are dispersed, consistent
with the training set. However, after GainTuning, the weighting functions are more precisely targeted
to the local features, resulting in better recovery of details in the denoised image (c).

bias. In [96], it was shown that the bias tends to be small for CNNs trained to denoise natural

images corrupted by additive Gaussian noise, but is a primary cause of failures to generalize to

noise levels not encountered during training. Figure 4.6 shows that GainTuning reduces the net

bias of CNN, facilitating the generalization to new noise levels.

How does GainTuning adapt to out-of-distribution images? In order to understand how

GainTuning adapt to out-of-distribution images, we examine the adaptation of a CNN pre-trained

on piecewise constant to natural images. Piecewise constant images have large areas with con-

stant intensities, therefore, CNNs trained on these images tends to average over large areas. This

is true even when the test image contains detailed structures. We verify this by forming the

affine approximation of the network (eq. 4.8) and visualizing the equivalent linear filter [96], as

56

explained below:

Let 𝑦 ∈ R𝑁 be a noisy image processed by a CNN. We process the test image using a Bias-

Free CNN [96] so that the net bias 𝑏𝑦 is zero in its first-order Taylor decomposition (4.8). When

𝑏𝑦 = 0, (4.8) implies that the 𝑖th pixel of the output image is computed as an inner product between

the 𝑖th row of 𝐴𝑦 , denoted 𝑎𝑦 (𝑖), and the input image:

𝑓 (𝑦) (𝑖) =
𝑁∑︁
𝑗=1

𝐴𝑦 (𝑖 , 𝑗)𝑦 (𝑗) = 𝑎𝑦 (𝑖)𝑇𝑦. (4.9)

The vectors 𝑎𝑦 (𝑖) can be interpreted as adaptive filters that produce an estimate of the denoised

pixel via a weighted average of noisy pixels. As shown in Figure 4.7 the denoised output of CNN

pre-trained on piece wise constant images is over-smoothed and the filters average over larger

areas. After GainTuning the model learns to preserve the fine features much better, which is

reflected in the equivalent filters.

4.7 Limitations

As shown in Section 4.5, GainTuning improves the state of the art on benchmark datasets,

adapts well to out-of-distribution noise and image content, and outperforms all existing methods

on an application to real world electron-microscope data. A crucial component in the success of

GainTuning is restricting the parameters that are optimized at test time. However, this constraint

also limits the potential improvement in performance one can achieve, as seen when fine-tuning

for test images from the Urban100 and IUPR datasets, each of which contain many images with

highly repetitive structure. In these cases, we observe that fine-tuning all parameters, and even

training only on the test data using Self2Self can outperformGainTuning. This raises the question

of how to effectively leverage training datasets for such images.

In addition, when the pre-trained denoiser is highly optimized, and the test image is within

57

𝜎 DnCNN UNet

30

0.0 0.1 0.2 0.3
Improvement in PSNR

0

8

16

0.0 0.1 0.2 0.3
Improvement in PSNR

0

8

Max Min Num. of ΔPSNR < 0
0.364 0.004 0

Max Min Num. of ΔPSNR < 0
0.346 0.020 0

40

0.0 0.1 0.2 0.3
Improvement in PSNR

0

8

0.0 0.1 0.2 0.3
Improvement in PSNR

0

8

16

Max Min Num. of ΔPSNR < 0
0.360 -0.004 1

Max Min Num. of ΔPSNR < 0
0.332 0.002 0

50

0.0 0.1 0.2 0.3
Improvement in PSNR

0

8

0.0 0.1 0.2 0.3
Improvement in PSNR

0

8

Max Min Num. of ΔPSNR < 0
0.294 -0.022 1

Max Min Num. of ΔPSNR < 0
0.309 -0.011 1

Figure 4.8: Distribution of PSNR improvement on in-distribution test set. Distribution of im-
provement on BSD68 dataset at noise levels 𝜎 = {30, 40, 50} (in-distribution). When the network is well
optimized, and the test image is in-distribution, GainTuning can sometimes degrade the performance
of the network. This degradation is atypical (in this figure, there are only 3 occurrences of degradation
out of 408 experiments), and very small (in this figure, the maximum degradation is 0.022)

58

distribution, GainTuning occasionally causes a slight degradation of performance. This is atypical

(3 occurrences in 412 GainTuning experiments using DnCNN and SURE), and the decreases are

quite small (maximum PSNR degradation of about 0.02dB, compared to maximum improvement

of nearly 12dB; see Figure 4.8).

4.8 Conclusions

We’ve introduced GainTuning an adaptive denoising methodology for adaptively fine-tuning

a pre-trained CNN denoiser on individual test images. Themethod, which is general enough to be

used with any denoising CNN, improves the performance of state-of-the-art CNNs on standard

denoising benchmarks, and provides even more substantial improvements when the test data

differ systematically from the training data, either in noise level, noise type, or image type. We

demonstrate the potential of adaptive denoising in scientific imaging through an application to

electron microscopy. Here, GainTuning is able to jointly exploit synthetic data and test-time

adaptation to reconstruct meaningful structure (the atomic configuration of a nanoparticle and

its support), which cannot be recovered through alternative approaches. A concrete challenge

for future research is to combine the unsupervised denoising strategy of Self2Self, which relies

heavily on dropout and ensembling, with pre-trained models. More generally, it is of interest to

explore whether GainTuning can provide benefits for other image-processing tasks.

59

5 | Application to electron microscopy

data

This chapter is adapted from the papers "Deep Denoising for Scientific Discovery: A Case

Study in Electron Microscopy" published in Transactions of Computational Imaging [95], and

"Developing and Evaluating Deep Neural Network-based Denoising for Nanoparticle TEM Im-

ageswith Ultra-low Signal-to-Noise" published inMicroscopy andMicroanalysis, 2021 [135]. This

is a joint work with Ramon Manzorro, Joshua L. Vincent, Binh Tang, Dev Yashpal Sheth, Eero P.

Simoncelli, David S. Matteson, Peter A. Crozier, and Carlos Fernandez-Granda.

In Chapters 2 to 4, we developed learning based denoising strategies primarily focusing on

natural images. In this chapter, we will apply these techniques to a dataset containing images of

catalytic nanoparticles acquired through an electron microscope. In Chapter 3, we directly ap-

plied the unsupervised denoising technique to this dataset. We take a different approach in this

chapter - we first establish a baseline by creating a simulated dataset containing ground truth

labels to train networks with supervision. We show that such simulation based approach can

outperform unsupervised methods in extreme low data regime. The network used for GainTun-

ing experiments on the electron microscopy data in Chapter 4 is also developed in this chapter.

Further, we use the analysis tools developed in Chapter 2 to understand why certain network

architectures that achieve state-of-the-art performance on natural images fail to perform well on

this dataset. Guided by this analysis, we propose a modified network architecture which achieves

60

state-of-the-art performance.

abstract

Denoising is a fundamental challenge in scientific imaging. Deep convolutional neural net-

works (CNNs) provide the current state of the art in denoising natural images, where they pro-

duce impressive results. However, their potential has been inadequately explored in the context

of scientific imaging. Denoising CNNs are typically trained on real natural images artificially cor-

rupted with simulated noise. In contrast, in scientific applications, noiseless ground-truth images

are usually not available. To address this issue, we propose a simulation-based denoising (SBD)

framework, in which CNNs are trained on simulated images. We test the framework on data

obtained from transmission electron microscopy (TEM), an imaging technique with widespread

applications in material science, biology, and medicine. SBD outperforms existing techniques by

a wide margin on a simulated benchmark dataset, as well as on real data. We analyze the gener-

alization capability of SBD, demonstrating that the trained networks are robust to variations in

imaging parameters and of the underlying signal structure. Our results reveal that state-of-the-art

architectures for denoising photographic images may not be well adapted to scientific-imaging

data. For instance, substantially increasing their field-of-view dramatically improves their perfor-

mance on TEM images acquired at low signal-to-noise ratios. We also demonstrate that standard

performance metrics for photographs (such as PSNR and SSIM) may fail to produce scientifically

meaningful evaluation. We propose several metrics to remedy this issue for the case of atomic

resolution electron microscope images. In addition, we propose a technique, based on likelihood

computations, to visualize the agreement between the structure of the denoised images and the

observed data. Finally, we release a publicly available benchmark dataset of TEM images, con-

taining 18, 000 examples.

61

5.1 Overview

Imaging technology is an essential tool in many scientific domains. Electron microscopy en-

ables the visualization of atomic structures [156], fluorescence microscopy makes it possible to

study cellular processes [77], and telescopes reveal galaxies and other astronomical objects that

are light years away [89]. In all these modalities, images are corrupted by noise associated with

stochastic processes occurring during signal generation and detection, degrading the information

content of the image data. The general goal of denoising is to estimate and restore the informa-

tion missing from these noisy observations, thus facilitating the extraction of useful scientific

information.

In the past decade, convolutional neural networks (CNNs) [72] have achieved state-of-the-art

performance in image denoising [21, 150]. However, the potential of this methodology has barely

been explored in the context of scientific imaging. In the vast majority of the existing work, noisy

data are generated by adding Gaussian noise to clean photographs. The CNNs are then trained

to approximate the ground-truth images from these measurements, usually by minimizing mean

squared error [150]. Unfortunately, this paradigm is not adequate for most scientific domains,

where large, labeled datasets of ground-truth clean data are typically not available. To address

this issue, we propose a simulation-based denoising (SBD) framework, in which CNNs are trained

on simulated images. We validate our methodology through a case study in transmission electron

microscopy.

Transmission electron microscopy (TEM) is a powerful and versatile characterization tech-

nique used to probe the atomic-level structure and composition of a wide range of materials,

such as catalysts or semiconductors [122, 128]. The technique has had a huge impact in structural

biology, as recognized with the award of the 2017 Nobel Prize in Chemistry [3]. Recent advance-

ments in direct electron detection systems enable experimentalists to image dynamic events at

frame rates in the kilohertz range [37, 38]. Imaging at these time scales is critical to advance our

62

(a) Data (b) Spot Filter (c) PURE-LET (d) SBD (e) Likelihood Map

0.03

0.02

0.01

0.00

0.01

0.02

0.03

Figure 5.1: Denoising results for real data. (a) An experimentally-acquired atomic-resolution trans-
mission electron microscope image of a CeO2-supported Pt nanoparticle. A description of the exper-
imental data acquisition is given in Section 5.4. The average image intensity is 0.45 electrons/pixel
(i.e., a large fraction of pixels register zero electrons), which results in an extremely low signal-to-noise
ratio. (b) Denoised image obtained via Fourier-based filtering by a domain expert. (c) Denoised image
obtained via the wavelet-based PURE-LET method [82]. (d) Denoised image obtained by the proposed
simulation-based denoising (SBD) framework. (e) Likelihood map quantifying to what extent the atomic
structure identified from the SBD denoised image is consistent with the data (see Section 5.3). Regions
in red are more likely to correspond to atomic columns in the nanoparticle. Regions in blue are more
likely to belong to the vacuum.

63

understanding of functional materials. In catalytic systems, for example, the chemical transfor-

mation process is accompanied by dynamic, atomic-level structural rearrangements which may

occur over a time scale spanning tens of milliseconds [24, 45, 69, 75, 125]. Acquiring image series

at such high temporal resolution necessarily produces datasets that are severely degraded by shot

noise, rendering traditional imaging processing approaches ineffective. It is typically not feasi-

ble to reduce the noise content by increasing the intensity of the incident electron beam, since

the high-energy beam can also damage the material when exposed to high doses. Consequently,

there is an acute need for novel denoising technology in this domain.

In order to apply the proposed SBD framework to TEM data, we generate a large simulated

dataset of TEM images, containing 18,000 examples, and use it to train CNNs for noise removal.

This approach outperforms existing techniques by a wide margin on held-out simulated data, as

well as on real TEM measurements (see Figures 5.1, 5.9 and 5.13 and Sections 5.5.2 and 5.5.4). We

perform a thorough analysis of the generalization capability of our models, demonstrating that

the CNNs are robust to variations of imaging parameters and of underlying signal structure. Our

results indicate that architectures optimized for natural photographic images may have funda-

mental shortcomings when applied to domain-specific data. For instance, we show that substan-

tially increasing the field-of-view of denoising CNNs has almost no effect on photographs, but

produces a significant boost in performance for TEM images. We also demonstrate that standard

performance metrics for photographs, such as peak signal-to-noise ratio (PSNR) and structural

similarity index (SSIM) [138], often fail to produce a scientifically-meaningful evaluation of the

denoising results. For example, the presence or absence of a single atomic column often results in

a negligible change in these metrics. This is highly problematic, because detecting these columns

is one of the main motivations for our case study. To remedy this issue, we propose several

scientifically-motivated metrics to evaluate our results (see Section 5.5.3). In addition, we pro-

pose a likelihood-based visualization of the agreement between the observed measurements and

structures of interest (such as atomic columns) in the denoised image. This visualization can be

64

used to flag denoising artefacts, which may be mistaken for scientifically-relevant structure (see

Figure 5.5). Finally, to encourage further development of deep-learning methodologies for scien-

tific imaging, we have made our benchmark dataset of TEM images publicly available online1.

More details on applying the proposed methodology to TEM data, and domain-specific insights

derived from the denoised images are described in Ref. [135].

5.2 Related work

Denoising in scientific imaging

A wide variety of denoising methods have been applied across different scientific imaging

modalities, including traditional linear filters [101], nonlinear filters [57, 92, 131], wavelet-based

methods [19, 90, 107, 155], and sparsity-based approaches [9, 90]. Deep convolutional networks

have been shown to outperform all of these approaches in photographic images [21, 150]. The

rapidly growing literature on this methodology focuses almost exclusively on photographic im-

ages. We are aware of only a few very recent exceptions. In the medical domain, CNN-based

denoising has been applied to low-dose computer tomography [61], positron-emission tomogra-

phy [43] and scintillation-camera data [93]. Refs. [40, 134] apply CNNs to denoise simulated elec-

tron microscopy data, without validating on real data. Ref.[32] train CNN to denoise by adding

synthetic noise on high-quality electron micrograph data. Ref. [86] trains CNNs to denoise Ra-

man scattering microscopy data, using measurements gathered at a higher signal-to-noise ratio

(SNR) as ground-truth images. These results showcase the potential of deep denoising for scien-

tific imaging, but also the challenge of gathering adequate datasets to train the deep networks. In

this work, we propose to address this challenge by training denoising CNNs on carefully-designed

simulated datasets, and validate our approach on experimental measurements.
1https://sreyas-mohan.github.io/electron-microscopy-denoising/

65

https://sreyas-mohan.github.io/electron-microscopy-denoising/

Unsupervised denoising

Unsupervised denoising is a promising approach for applications where ground-truth images are

not available. Unsupervised methods based on wavelets have achieved performance comparable

to their supervised counterparts on photographic images [49, 81, 115].

Noise2Noise [74], a deep-learning approach that requires access to pairs of noisy images corre-

sponding to the same underlying signal, has been applied to cryo-electron microscopy [15]. More

recent methods can be trained directly on noisy images [8, 66, 68]. Several recent works apply

this approach to fluorescence microscopy data [59, 67, 108, 152]. In the case of our TEM data,

standard unsupervised methods do not perform as well as the proposed supervised approach (see

Section 5.5.4.1). This is possibly due to the limited number of training data (see Figure 5.15) and

to the low input SNR. The SNR of our TEM data (around 3 dB) is orders of magnitude lower than

that reported in typical unsupervised denoising works (e.g. around 27 dB for [152]).

Deep Learning for TEM

Deep CNNs have been applied to other image-processing tasks in TEM beyond denoising,

see Ref. [33] for a comprehensive review. Ref. [126] proposes a CNN-based method for TEM im-

age super-resolution, wherein CNNs are trained on pairs of low-resolution and high-resolution

images acquired experimentally. Ref. [51] applies CNNs to perform segmentation and system-

atically studies the influence of the design of the training dataset and network architecture on

the generalization capabilities of these models. In this work, we provide a similar analysis for

denoising. Refs. [83] and [111] propose a CNN-based method to identify structures of interest in

TEM images. They train on carefully designed simulated data and show that the model general-

izes to real data. Our work provides further evidence that CNNs trained on simulated data can

generalize effectively to real measurements.

66

Simulated data

Simulate noise

Denoised data

Inference

Noisy data

Pt

CeO2

Simulating Simulated images
2D projection from the

3D atomic model

Training

Real noisy data Trained Network Denoised real data

…

Convolutional neural network

…

Likelihood map

Figure 5.2: Simulation-based denoising framework. (Top) A training dataset is generated by
simulating TEM images of different structures at varying imaging conditions. Here we focus on structures
of Pt nanoparticles supported on CeO2. (Middle) A CNN is trained using the simulated images, paired
with noisy counterparts obtained by simulating the relevant noise process. (Bottom) The trained CNN
is applied to real data to yield a denoised image. After analyzing the image to extract structures of
interest, a likelihood map is generated to quantify the agreement between this structure and the noisy
data.

67

5.3 Methodology

5.3.1 Simulation-based denoising

Current state-of-the-art deep-learning techniques for denoising photographic images require

a training set of ground-truth images [150]. Typically these clean images are corrupted with

additive Gaussian noise, and the CNNs are trained to minimize the mean squared error between

the network output and the original images. The main obstacle to leveraging this approach in

scientific imaging is the lack of ground-truth data; in many applications there is no such thing as

a clean image. We address this by using a dataset of simulated images to train the CNNs. We call

this framework simulation-based denoising (SBD).

Simulation-based denoising (SBD) consists of three stages: simulation of the training set,

training of the CNNs using the simulated data, and inference on the real data (see Figure 5.2

for an overview of the methodology). In order to generate the training set, we simulate clean

images 𝑥1, . . . , 𝑥𝑁 ∈ R𝑀 (where 𝑀 is the number of pixels) according to a predefined physical

model. These clean images are then corrupted using a noise model, which can follow a predefined

model or be learned from the data, to generate the simulated noisy data. We provide a detailed

account of howwe generate the simulated dataset for our case study in Sections 5.4 and D.1.1, and

of the noise model in Section 5.4.3. Let 𝑌 (𝑥𝑖) denote the random vector representing the noisy

image corresponding to the clean simulated image 𝑥𝑖 and let𝑦 (𝑥𝑖) represent a realization of𝑌 (𝑥𝑖).

We parameterize the denoising function as a CNN 𝑓𝜃 : R𝑀 → R𝑀 where the parameters 𝜃 are

the weights of the network. To find a good denoising function 𝑓𝜃 , we minimize a loss function

L : R𝑀 × R𝑀 → R which quantifies how close the estimate from the CNN 𝑓𝜃 (𝑦 (𝑥𝑖)) is to the

clean image 𝑥𝑖 . In our case study, we use mean squared error, which is a standard choice in CNN-

based denoising [150]. More concretely, during the training stage, we compute the parameters

68

by solving

𝜃 = argmin
𝜃
E

[
𝑁∑︁
𝑖=1

L(𝑓𝜃 (𝑌 (𝑥𝑖)),𝑥𝑖)
]
= argmin

𝜃
E

[
𝑁∑︁
𝑖=1

∥ 𝑓𝜃 (𝑌 (𝑥𝑖)) − 𝑥𝑖 ∥22

]
(5.1)

We perform minimization iteratively using a variant of stochastic gradient descent. We approxi-

mate the expectation in Equation 5.1 by sampling new realizations of the noisy image𝑌 (𝑥𝑖) every

timewe compute the gradient. Once the network is trained, it can be directly applied to new noisy

images to perform denoising.

A crucial difference between SBD and previous methodology for deep denoising is that the

training set needs to be explicitly designed. In order to ensure effective generalization to real data,

we must include sufficient variation of imaging parameters and image structure in the training

dataset. In addition, particular care is needed to enforce invariance to small changes in the geom-

etry of the image. Figure 5.3 shows that a denoising CNN can easily overfit the specific alignment

and scale of the training data. This issue can be addressed by augmenting the training set with

rotated and scaled versions of the simulated images. Determining how to optimally sample the

space of possible simulation parameters when generating data to train CNNs for denoising is an

important methodological question for future research.

5.3.2 Exploiting non-local signal structure

Images in scientific applications often have pixel-intensity distributions that differ signifi-

cantly from those of natural images. Our case study shows that it is crucial to take this into

account in order to achieve successful denoising. Current state-of-the-art networks for denoising

photographic images have very small fields of view. For example, the field of view ofDnCNN [150]

and DURR [151] are 41 × 41 pixels, and 45 × 45 pixels respectively. Unlike photographic images,

the TEM images in our case study exhibit very prominent global regularities, due to periodic-

ity in the atomic structure of the imaged materials. In addition, electron-microscopy images are

69

6 8 10 12 14 16 18 20
Real Pixel Size (in picometers/pixel)

20

25

30

35

40

45
PS

NR

100 75 50 25 0 25 50 75 100
Orientation of Nanoparticle (degree)

25

30

35

40

45

PS
NR

Figure 5.3: Overfitting scaling and orientation. The plots show the performance of the proposed
network in PSNR for simulated images that have different scalings (on the left, measured in terms of
the corresponding pixel size in picometers) and orientations (on the right). The CNN was trained on
data augmented with rescaled and rotated images corresponding to the regions shaded in purple. When
tested out of those regions, the denoising performance deteriorates significantly. This shows that careful
data augmentation is required to ensure invariance to scaling and orientation.

often measured at very low SNRs (in our case, the SNR for the real TEM data is about 3 dB,

but most works for photographic images focus on an SNR above 22 dB, see e.g. [150]). As the

SNR decreases, denoising CNNs tend to average over larger regions of the surrounding pixels, as

demonstrated in Ref. [96] (qualitatively, this is the same behavior observed in a classical linear

Wiener filter [140]). These considerations motivate using networks with large field of view to

denoise TEM data.

Here we propose to denoise TEM data using deep networks with very large fields of view:

221 × 221 pixels and 893 × 893 pixels, a 25-fold and 400-fold increase with respect to generic

denoising architectures respectively. In order to obtain a large field of view efficiently (i.e. without

dramatically increasing the number of parameters in the network), we propose using a UNet

network architecture [116]. We use 4 downsampling operations to achieve the 221 × 221 field

of view and 6 downsampling operations to achieve the 893 × 893 field of view (see Section ??

for a detailed description of the architecture). Table 5.1 compares the influence of the field of

view in denoising photographic and TEM images. For photographic images the performance

of the network remains almost constant as we increase the field of view. In contrast, for TEM

70

(a) TEM Images
Model Parameters FoV PSNR SSIM

SBD + DnCNN [150] 668K 41 × 41 30.47 ± 0.64 0.93 ± 0.01
SBD + Small UNet [151] 233K 45 × 45 30.87 ± 0.56 0.93 ± 0.01
SBD + UNet (32 base channels) 352K 221 × 221 36.39 ± 0.77 0.98 ± 0.01
SBD + UNet (64 base channels) 1.41M 221 × 221 37.24 ± 0.76 0.99 ± 0.01
SBD + UNet (128 base channels) 5.61M 221 × 221 38.05 ± 0.81 0.99 ± 0.01
SBD + UNet (128 base channels) 70.15M 893 × 893 42.87 ± 1.45 0.99 ± 0.01

(b) Photographic Images
Model Parameters FoV PSNR SSIM

𝜎 = 30 𝜎 = 70 𝜎 = 30 𝜎 = 70

UNet 102K 49 × 49 29.67 ± 2.84 26.16 ± 2.79 0.83 ± 0.06 0.70 ± 0.09
UNet 352K 221 × 221 29.65 ± 2.76 26.08 ± 2.68 0.83 ± 0.05 0.70 ± 0.08
UNet 4.4M 893 × 893 29.54 ± 2.82 26.07 ± 2.80 0.83 ± 0.06 0.70 ± 0.09

Table 5.1: Field of view of CNN architectures and performance. Mean PSNR and SSIM (±
standard deviation) of different CNN architectures on the (a) held-out simulated test set of TEM data
described in Section 5.5.2 and (b) validation set of the DIV2K photographic image dataset [1]. For TEM
images, increasing the field of view (FoV) of the UNet from 45×45 pixels to 221×221 produces a dramatic
increase of around 6 dB in PSNR, even if the number of parameters remains similar. Increasing the
number of parameters while keeping the field of view constant produces a modest gain in performance.
In contrast, changing the field of view has almost no effect on denoising photographic images. The
networks used for photographic images were trained on 512×512 patches extracted from training images
of DIV2K [1] corrupted with additive Gaussian noise with standard deviation 𝜎 ∈ [0, 100].

71

images increasing the field of view produces a dramatic improvement in performance (6 dB and

10 dB, when the field of view is 221 × 221 and 893 × 893 respectively). Increasing the number of

parameters, while keeping the field of view constant, has a very modest effect, which suggests

that the increase in field of view is the primary reason for the improvement.

In order to gain some insight into the denoising mechanisms learned by our models, we apply

the gradient-based analysis proposed by Ref. [96]. We visualize the linear term in the first-order

Taylor decomposition of the denoising map with respect to its input for specific pixels. In more

detail, we compute the gradient of a pixel in the denoised image 𝑓 (𝑦)𝑖 with respect to the input

noisy image 𝑦. This vector (or image) ∇𝑦 (𝑓 (𝑦)𝑖), makes it possible to visualize the influence

of different regions of the noisy image on the denoised pixel 𝑓 (𝑦)𝑖 . This approach is similar

to visualization methods proposed in the context of image classification (e.g. [97, 121]). Our

analysis reveals that the network learns to simultaneously exploit local structure as well as non-

local periodicities in the data (see Figure 5.4). This demonstrates the remarkable flexibility of

data-driven denoising based on deep learning.

5.3.3 Likelihood maps

In most applied domains, the goal of denoising is to uncover image structure of scientific

interest. In our case study, this corresponds to the location and intensity of projected columns

of atoms in a catalytic nanoparticle that is surrounded by a vacuum. Quantifying to what extent

such structure is consistent with the observed measurements is therefore of great interest. We

propose to achieve this by computing the likelihood of the datawith respect to meaningful features

identified in the denoised image. The general procedure, and its implementation in the case of our

case study, are as follows:

1. Identify a region of interest R. In our case study, this would correspond to an atomic column,

located for example via blob detection [79], or to the vacuum.

72

(a) Noisy (b) Denoised (c) Denoised (zoomed) (d) Gradient

0.0004

0.0002

0.0000

0.0002

0.0004

0.0004

0.0002

0.0000

0.0002

0.0004

0.0004

0.0002

0.0000

0.0002

0.0004

0.0004

0.0002

0.0000

0.0002

0.0004

Figure 5.4: Gradient analysis of the learned denoising function on real data. (a) To compute
the red pixel in the denoised image (b), the proposed CNN can use noisy pixels in a neighbourhood of
up-to 893 × 893, of which a 300 × 300 area (red box) (c) is highlighted. The gradient of the denoised
pixel with respect to its input indicates what regions in the noisy image have a greater influence on
the estimate (according to a first-order Taylor approximation to the denoising map). The gradient (d)
weights nearby pixels more heavily, but also has significant magnitude at pixels located on different
atoms. This suggests that the CNN combines local and non-local information to estimate the pixel.
The colorbar is shared across all the images.

73

(a) Data (b) Denoised image (c) Likelihood map (d) Zoomed

0.04

0.02

0.00

0.02

0.04

Figure 5.5: Likelihood map. When the simulated noisy image in (a) is denoised using the proposed
framework (b), a spurious atom appears at the left edge of the nanoparticle (see zoomed image (d)).
The value of the likelihood map (c) at that location is very low, indicating that the presence of an atom
is less consistent with the observed data than its absence.

2. Fit a low-dimensional model to the denoised image within the region of interest. The low-

dimensional model provides an estimate of the image value 𝑥𝑖 at each pixel location 𝑖 ∈ R. In

our case, we assume that the intensity of each atomic column and the vacuum are constant,

so the estimate is obtained by averaging over all denoised pixels in R.

3. Compute the likelihood of the noisy data in R with respect to the estimated pixel values. In

our case, the noise is approximately independent and individually distributed (iid) Poisson (see

Section 5.4.3), so the likelihood is given by

L(R) :=
∏
𝑖∈R

𝑝𝑥𝑖 (𝑦𝑖), (5.2)

where𝑦𝑖 denotes the noisy value in the 𝑖th pixel, and 𝑝𝑥𝑖 is a Poisson probability mass function

(pmf) with rate parameter 𝑥𝑖 . Note that in the low-dimensional model, which assumes constant

intensities, 𝑥𝑖 is constant for all pixels in R.

This technique makes it possible to consider different hypotheses about the underlying image

structure and compare their agreement with the observed data. In our case study, we evaluate the

hypotheses that a detected atomic column is (1) truly there, or (2) an artefact introduced by the

denoising procedure. The likelihood under hypothesis (1) is computed as above. The likelihood

74

(a) False positives (b) True positives (c) False negatives
−1.5

−1

−0.5

0

0.5

1

1.5

2
·10−2

Lo
g

Li
ke

lih
oo

d
R
at

io

Figure 5.6: Distribution of likelihood ratio. The figure shows the distribution of log-likelihood ratio
of over 25, 000 regions of interest computed from the surface of 1550 denoised images using the dataset
described in Section 5.5.3.2. The empirical distribution is visualized as a box plot indicating the median,
25𝑡ℎ quartile, 75𝑡ℎ quartile, minimum and maximum value of the distribution. The regions containing
spurious atoms (false positives, (a)) have a much lower log-likelihood ratio than the regions containing
accurately recovered atoms (true positives, (b)). Regions where existing atoms were not detected (false
negatives, (c)) have a higher log-likelihood ratio, comparable to that of the regions with accurately
recovered atoms. The occurrence of missing and spurious atoms in denoised images is relatively low:
out of the 25, 732 regions of interest, only 2, 457 and 2, 368 were false positives and false negatives
respectively.

under hypothesis (2) is computed by setting the estimate 𝑥𝑖 equal to the average intensity of the

noisy pixels identified as belonging to the vacuum region. To visualize the consistency of the two

hypotheses with the measured data, we plot the difference in their log likelihood for each region

of interest. This is equivalent to performing a log-likelihood ratio test. We call this visualization

a likelihood map.

Figures 5.1 and 5.5 show likelihood maps for the real data and for a simulated example. In the

simulated example (Figure 5.5), a spurious atom is detected at the left end of the zoomed region.

However, the likelihood map at that location is very low, which indicates that the presence of an

atom is not consistent with the observed data at that location. Figure 5.6 shows the distribution

of log-likelihood ratio of over 25, 000 regions of interest extracted from the surface of over 1, 550

denoised images obtained from the dataset described in Section 5.5.3.2. As shown in Figure 5.6,

the log-likelihood ratio values of spurious atoms (false postives, (a)) are much lower than those

of correctly-identified atoms (true positives, (c)). When the network fails to detects atoms (false

75

negatives, (b)), we observe that the log-likelihood ratio in such regions tends to be high. It is worth

noting that the occurrence of spurious and missing atoms in the denoised images is relatively

low: out of the 25, 732 regions identified, only 2, 457 and 2, 368 regions correspond to spurious

and missing atoms respectively.

Visualizing the likelihood is useful to quantify the agreement between the output of deep-

learning models and the observed data, but it is important to note that the approach suffers from

sampling bias. We focus on regions of the input that have been selected because they resemble

structures of scientific interest. The data in those regions are therefore more likely to be in agree-

ment with the presence of such structures, just by the sheer fact that they have been selected.

This is a manifestation of the notorious multiple-comparisons problem [10, 11]. Overcoming this

issue is an important challenge for future research.

5.4 Dataset

The TEM image data used in this work correspond to images from a widely utilized catalytic

system, which consist of platinum (Pt) nanoparticles supported on a larger cerium (IV) oxide

(CeO2) nanoparticle. This bi-functional catalytic system is ubiquitously used in clean energy

conversion and environmental remediation applications, in addition to a broad range of other

chemical reactions [98, 102, 146]. From a general point of view, this system can be considered as

a model for supported nanoparticle catalysts, since a large number of heterogeneous catalysts are

based on metallic nanoparticles supported over different oxides. Thus, results and conclusions

extracted from the current work are relevant to a great number of similar samples in the field of

catalysis (e.g., oxide crystals supporting metal nanoparticles).

76

5.4.1 Real Data

The real data used to test the proposed SBD framework consist of a series of images of the

Pt/CeO2 catalyst. The imageswere acquired in a N2 gas atmosphere using an aberration-corrected

FEI Titan transmission electron microscope (TEM), operated at 300 kV and coupled with a Gatan

K2 IS direct electron detector. The detector was operated in electron counting mode with a time

resolution of 0.025 sec/frame and an incident electron dose rate of 5,000 e−/Å2/s. The electro-

magnetic lens system of the microscope was tuned to achieve a highly coherent parallel beam

configuration with minimal low-order aberrations (e.g., astigmatism, coma), and a third-order

spherical aberration coefficient of approximately -13 𝜇m.

5.4.2 Simulation Dataset

The simulated TEM image dataset was generated using the multi-slice TEM image simulation

method, as implemented in the Dr. Probe software package [7] (see Section D.1.1 for more details

on the simulation process). Images were simulated with 1024 x 1024 pixels and then binned to

match the approximate pixel size of the experimentally acquired image series. To equate the

intensity range of the simulated images with those acquired experimentally, the intensities of

the simulated images were scaled by a factor which equalized the vacuum intensity in a single

simulation to the average intensity measured over a large area of the vacuum in a single 0.025

second experimental frame (i.e., 0.45 counts per pixel in the vacuum region).

In the type of phase-contrast TEM imaging performed in this work, multiple electron-optical

and specimen parameters can give rise to complex, non-linear modulations of the image contrast.

These parameters include the objective lens defocus, the specimen thickness, the orientation of

the specimen, and its crystallographic shape/structure. Various combinations of these parameters

may cause the contrast of atomic columns in the image to appear as black, white, or an interme-

diate mixture of the two (see, e.g., Figure D.1). When designing the simulated dataset for the

77

(a) Mean Image (b) Histogram of Intensities (c) Variance & Mean

Figure 5.7: Analysis of the noise in the real data. The analysis shows that the noise is approximately
iid Poisson. (a) Pixel-wise mean over 40 frames of the real data described in Section 5.4. (b) Histogram
of noisy pixel intensities from highlighted regions in the image compared to a simulated Poisson distribu-
tion. (c) The plot of empirical mean and standard deviation of pixels approximately follows a line with
unit slope, as expected from iid Poisson samples (the spread is due to averaging over only 40 frames).

SBD framework, it is necessary to include images simulated under widely varied conditions, in

order to cover the breadth of possibilities which may arise during a typical experiment. A skilled

microscopist attempts to acquire images under conditions in which the image contrast can be

interpreted, which limits the overall size of the parameter space under consideration. However,

various instances of defocus, tilt, thickness, and shape/structure inevitably arise. To generate

our dataset we systematically varied these parameters to produce a large number of potential

combinations (approximately 18,000), as described in Sections D.1.2 and D.1.3.

5.4.3 Noise model

The TEM images were acquired on a direct electron detector operating in electron count-

ing mode. In such conditions, the electron dose rate per pixel is sufficiently low enough that

individual electron arrivals can be detected and registered. It is well known that the statistical

fluctuations of such counting processes for discrete events are governed by shot noise, which can

be modeled with a Poisson distribution [6]. We expect that other sources of noise, including fixed

pattern noise, dark noise, and thermal noise are minimal after applying a gain correction and a

78

dark reference to the raw image, and by cooling the detector to -20 ◦C, respectively.

We empirically verified that the noise follows Poisson statistics through the analysis shown

in Figure 5.7. Our real dataset, described in Section 5.4.1 consists of 40 noisy frames acquired

sequentially across time in 0.025 sec intervals. Figure 5.7(a) shows the mean image over all 40

frames. The region of the image containing no material (red box) corresponds to the vacuum,

where the electron beam intensity is uniformly illuminating the detector. Fluctuations of the

intensity in this region therefore purely arise from the noise. We validate that the histogram of

these pixels aggregated over the identified spatial region closely follows a Poisson distribution

(Figure 5.7(b)). Pixels aggregated over spatial domains corresponding to the Pt atomic columns

(orange boxes) show similar behavior. Further, if the distribution is indeed Poisson, the mean and

variance of the noisy pixels should be approximately the same. The empirical mean and variance,

computed by averaging over the 40 time frames at every spatial location, follows a linear trend,

thus further confirming that the noise distribution has Poisson properties (Figure 5.7(c)). The

spread in the scatter plot is due to the limited number of time frames over which we average.

5.5 Experiments and Results

In this section, we evaluate the performance of our proposed methodology and show that we

outperform other methods by a large margin (more than 12 dB in PSNR on held-out simulated

data). We also perform a thorough analysis of the generalization capability of our models, demon-

strating that the CNNs are robust to variations in imaging parameters and in underlying signal

structure. Furthermore, we demonstrate that standard performance metrics for photographs,

such as peak signal-to-noise ratio (PSNR) and SSIM [138], may fail to produce a scientifically-

meaningful evaluation of the denoising results, and we propose a few alternative metrics to rem-

edy this. Finally, we show that our approach achieves effective denoising of real experimental

data.

79

black intermediate white
tested on

bl
ac

k
in

te
rm

ed
ia

te
wh

ite
tra

in
ed

 o
n

39.11 29.32 27.93

37.18 35.34 35.31

36.95 34.43 36.26

PtNp1 PtNp2 PtNp3 PtNp4
tested on

Pt
Np

1
Pt

Np
2

Pt
Np

3
Pt

Np
4

tra
in

ed
 o

n

38.33 37.83 38.40 37.72

37.27 37.19 37.04 37.01

34.42 33.95 37.84 33.30

37.49 37.02 37.77 37.24

D0 D1 D2 Dh Ds
tested on

D0
D1

D2
Dh

Ds
tra

in
ed

 o
n

35.59 35.00 34.77 34.68 35.23

34.37 34.46 34.50 34.45 34.48

36.80 36.71 36.79 36.40 36.40

35.42 35.28 35.31 35.21 35.10

35.42 35.28 35.31 35.21 35.10

26

28

30

32

34

36

38

(a) Contrasts (b) Structures (c) Defects

Figure 5.8: Generalization across different imaging parameters and signal structures. In order
to study the generalization ability of the proposed method we divided the simulated dataset described
in Section 5.4 into subsets, based on the atomic column contrast, the structure/size of the supported
Pt nanoparticle, and the defects of the Pt surface structure. The tables show the test PSNR for
networks trained and tested on different combinations of the subsets. (a) Networks trained on white
and intermediate contrast generalize well to all other contrasts. The network trained on black contrast
does not generalize as well. (b) Networks trained on a type of nanoparticle structure generalize well to
all other types. (c) Networks trained on one type of defect or no defects generalize well to different
types. Figures D.1, D.5, D.4 and D.2 show the effect of these parameters on the images.

Weuse CNNswith the proposed UNet architecturewith 128 base channels and 6 scales in all of

our experiments (see Sections 5.3.2 and ?? for more details). The networks were trained on 400×

400 patches extracted from the training images and augmented with horizontal flipping, vertical

flipping, random rotations between −45◦ and +45◦, and random resizing by a factor of 0.75-0.82.

The models were trained using the Adam optimizer [63], with a default starting learning rate of

10−3, which was reduced by a factor of 2 every time the validation PSNR plateaued. Training was

terminated via early stopping based on validation PSNR. The details of training, validation and

test data for each experiment are provided in the corresponding section. Since the models are

trained on 400 × 400 patches, when applying them to larger images we divide the images into

overlapping 400 × 400 patches, denoise them, and then combine them via averaging.

80

5.5.1 Generalization to unseen structures and acqisition conditions

In order to study the generalization ability of the proposed approach across different imag-

ing parameters and signal structures we divided the simulated dataset described in Section 5.4

into different subsets. These subsets were classified based on (1) the character of the atomic col-

umn contrast, (2) the structure/size of the supported Pt nanoparticle, and (3) the defects of the Pt

surface structure. The contrast was classified into three divisions, black, intermediate, or white

contrast, by a domain expert (see Figure D.1 in the supplementary material). The nanoparticle

structure was classified into four categories, “PtNp1” through “PtNp4”. PtNp1 and PtNp2 corre-

spond to supported Pt nanoparticles of size 2 nm, which differ in the presence or absence of an

atomic column located at the interface between the Pt and the CeO2 support. PtNp3 corresponds

to a Pt nanoparticle 1 nm in size. PtNp4 corresponds to a Pt nanoparticle 3 nm in size. Finally, the

defects were divided into five categories: “D0”, “D1”, “D2”, “Dh”, and “Ds” in accordance with the

atomic-scale structural models presented in D.1.1 and in particular in Figure D.5. D0 is the initial

structure, D1/D2 a structure in which 1/2 atomic columns have been removed respectively, Dh a

structure in which a column has been reduced to half its original occupancy, and Ds a structure

in which a column has been reduced to a single atom. The generalization ability of the proposed

CNN was evaluated by systematically training on each of the subsets and testing on the rest. The

number of images in each subset was fixed to be equal in order to ensure a fair comparison.

The performance of SBD is robust to variations in imaging parameters and in the underlying

signal structure, as shown in Figure 5.8. We only observe a significant decrease in performance

when the network is trained on black-contrast images and tested on other contrasts (interestingly

the network generalizes well from white and intermediate contrasts to black contrasts).

81

Methods PSNR SSIM

Raw 3.56 ± 0.03 0.00 ± 0.00
Low Pass Filter [101] 21.59 ± 0.07 0.44 ± 0.03
Adaptive Wiener Filter [78] 22.42 ± 1.08 0.63 ± 0.02
VST + NLM [13] 26.55 ± 0.16 0.73 ± 0.01
VST + BM3D [85] 25.27 ± 0.15 0.80 ± 0.01
PURE-LET [82] 28.36 ± 0.88 0.93 ± 0.01
SBD + DnCNN [150] 30.47 ± 0.64 0.93 ± 0.01
SBD + Small UNet [151] 30.87 ± 0.56 0.93 ± 0.01
SBD + Proposed Architecture 42.87 ± 1.45 0.99 ± 0.01

Table 5.2: Results on simulated test data. Mean PSNR and SSIM (± standard deviation) of different
denoising methods on the held-out simulated test set described in Section 5.5.2. SBD approaches achieve
the best results. SBD combined with the proposed architecture outperforms all other techniques by about
12 dB. The performance of SBD applied to additional architectures is reported in Table 5.1.

5.5.2 Comparison of SBD with other methods

The imaging parameters of the real data, described in Section 5.4, are well described by the

white contrast category defined in Section D.1.2. We therefore used the subset of simulated

dataset corresponding to this contrast (5583 images) to compare our proposed methodology to

other models. 90% of the data were used for training. The remaining 559 images were evenly split

into validation and test sets. We compare our proposed UNet architecture (see Section D.2) with

two state-of-the-art architectures for photographic-image denoising [150, 151] (see Sections A.1.1

and A.1.3), and with several classical denoising methods:

• Low-pass Filter (LPF): We apply a standard low-pass filter [101] designed by a domain

expert. The cut-off frequency was determined based on inspection of the data in the Fourier

domain.

• Adaptive Wiener Filter: We apply an adaptive low-pass Wiener filter [78] to account for

variations in local image statistics. The mean and variance around each pixel are estimated

from a local neighborhood. We selected a neighborhood with radius 13 pixels based on

expert evaluation of the denoised images in the validation set.

82

Noisy WF LPF VST+NLM VST+BM3D

PURE-LET SBD+DnCNN SBD+Small UNet Ours Ground Truth

Figure 5.9: Denoising results for simulated data. Comparison of SBD and the baseline methods
described in Sections 5.5.2 and ??. The second row zooms in on the region in red box. Our proposed
approach produces images of much higher quality than the other approaches, and is able to accurately
recover the atomic structure of the nanoparticle. For example, the vacuum region in images denoised
by several of the baselines contain visible artefacts, including missing atoms. See Figure D.6 in the
supplementary material for an additional example.

• VST + BM3D and VST + Non-Local Means (NLM): BM3D [85] and NLM [13] are pop-

ular denoising techniques for natural images with additive Gaussian noise, which can be

adapted to Poisson noise by applying a nonlinear variance-stabilizing transformation (VST) [152].

More specifically, we use the Anscombe transformation proposed in Ref. [85].

• PURE-LET: PURE-LET [82] is a transform-domain thresholding algorithm adapted tomixed

Poisson–Gaussian noise. The method requires the input image to have dimensions of the

83

form (2𝑘 , 2𝑘). To apply this method on our TEM images, we extracted 128×128 overlapping

patches, denoised them and combined them via averaging.

For all methods, hyperparameters were chosen based on the validation data. Performance

was measured in terms of SSIM [138] and peak signal-to-noise ratio (PSNR).

The results demonstrate that SBD is an effective denoising methodology for TEM data. Our

proposed CNN outperforms all other methods by a margin of 12 dB in PSNR on the simulated

test data, as shown in Table 5.2, and Figures 5.9 and D.6. SBD recovers the overall shape of the

nanoparticle, the interface between the nanoparticle and the support, and the different periodic

patterns of the CeO2 support and Pt nanoparticle. Contrast features, such as subtle patterns of

bright, intermediate and dark features associated with the atomic structure of the CeO2 crystal,

are well reproduced in the images denoised via SBD, but are mostly absent from the results of the

baseline approaches.

5.5.3 Beyond PSNR: Towards scientifically-meaningful evaluation

metrics

Domain scientists denoise images in order to extract scientifically relevant information. In

our case, the atoms on the surface of nanoparticles are of particular interest, because the atomic

configuration at the surface regulates the nanoparticle’s ability to catalyze chemical reactions. It

is therefore of critical importance to understand how different denoising methods recover these

atoms. We can verify visually that SBD achieves a largely successful recovery in held-out sim-

ulated data, whereas the baseline methods described in Section 5.5.2 do not (see Figure 5.9 for

example). However, visual inspection is a limited and non-quantitative evaluation tool. Unfortu-

nately, standard metrics like PSNR and SSIM are insensitive to changes in the atomic structure of

the nanoparticle surface, because these changes have a small effect on the overall intensity of the

images. We demonstrate the lack of sensitivity through a synthetic example in Figure 5.10: when

84

(a) Reference (b) All atoms
preserved (c) One extra atom (d) One missing

atom

Images

Surface

PSNR - 41.89 41.90 41.85
SSIM - 0.946 0.948 0.949

Precision - 1.00 0.933 0.933
Recall - 1.00 0.933 0.933
F1 - 1.00 0.933 0.933

Jaccard
Index - 1.00 0.875 0.875

Figure 5.10: Scientifically-meaningful metrics for atom detection. In order to compare metrics in
terms of their sensitivity to changes in atomic structure we perturb and compare the reference image
in (a) to several modified images. In (b) the atomic structure is the same. In (c) a spurious atom is
added to the image in the top left. In (d) an atom is removed from the top left. The images in (b), (c),
and (d) are further corrupted by adding iid Gaussian noise with a small deviation of around 2/255. The
PSNR and SSIM [137] of (b), (c) and (d) with respect to (a) are essentially constant, indicating that
these metrics are not sensitive to changes in atomic configuration. In contrast, our proposed metrics
reflect these changes more accurately: (b) is assigned a score of 1 in all metrics, whereas (c) and (d)
are consistently assigned lower values.

we add or remove an atom in the surface the PSNR and SSIM remain roughly constant. Moti-

vated by the need for scientifically-relevant performance evaluation, we propose several metrics

explicitly designed to account for changes in surface atomic configuration in Section 5.5.3.1. We

report an evaluation of SBD using these metrics on a challenging test dataset in Section 5.5.3.2.

85

Precision Recall F1 Score Jaccard Index
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Surface Bulk

Figure 5.11: Performance of SBD in terms of our proposed metrics. We compute all our proposed
metrics (see Section 5.5.3.1) on over 7, 000 denoised images corresponding to 25 unique noisy images
sampled from the 308 clean images described in Section 5.5.3.2. The empirical distribution on the
surface (red) and bulk (green) is visualized as box plots indicating the median, 25𝑡ℎ quartile, 75𝑡ℎ

quartile, minimum and maximum value of the distribution. SBD has a near perfect performance in the
bulk with all metric values hovering around 1. On the surface, SBD achieves a median score of 1 for
precision and recall, and about 0.95 for F1 score and Jaccard index.

5.5.3.1 Evaluation metrics

To define metrics that evaluate detection of surface atoms, we assume that there is a prede-

fined approach to perform detection based on the denoised images. In our case of interest, we

apply a blob detection algorithm (Laplacian of Gaussian [79]) to locate the centers, and compute

the 𝛼-shape of all the atom centers using Delaunay triangulation [109]. Let 𝐴 and 𝐵 be the set of

surface atoms of interest in the denoised image and the ground-truth clean image respectively.

We propose the following four metrics to measure the fidelity of the recovered structure:

• Precision is the fraction of atoms in the denoised image that are also present in the clean

image.

𝑃 (𝐴,𝐵) = |𝐴 ∩ 𝐵 |
|𝐵 | . (5.3)

• Recall is the fraction of atoms in the clean image that are correctly recovered in the de-

noised image.

𝑅(𝐴,𝐵) = |𝐴 ∩ 𝐵 |
|𝐴| . (5.4)

86

• F1 score combines precision and recall by giving them equal importance.

𝐹 (𝐴,𝐵) = 2
𝑃 (𝐴,𝐵)𝑅(𝐴,𝐵)

𝑃 (𝐴,𝐵) + 𝑅(𝐴,𝐵) . (5.5)

• Jaccard index is an alternative measure consisting of the ratio between the size of the

intersection between the recovered atoms and the ground truth divided by the size of their

union.

𝐽 (𝐴,𝐵) = |𝐴 ∩ 𝐵 |
|𝐴 ∪ 𝐵 | . (5.6)

When performing intersection and union operations, we consider two atoms to be the same if

the distance between their centers is less than a threshold of 10 pixels. For comparison, the phys-

ical distance between neighboring atoms is about 0.16nm, and 10 pixels correspond to a distance

of 0.061nm. All our metrics take values between 0 and 1 (1 is best). Figure 5.10 shows a syn-

thetic example comparing three images with different atomic configurations: all the images have

similar PSNR and SSIM values, but the precision, recall, F1 and Jaccard index show substantial

differences.

5.5.3.2 Evaluating atom detection accuracy

To evaluate the performance of the proposed approach to recover atoms at the surface, we

designed a new dataset with 308 images, where the imaging parameters are set based on the real

dataset described in Section 5.4.1. This new dataset is similar to the one used for the generalization

experiments in Section 5.5.1, but here we add more diverse surface defects. We created a series

of 44 Pt/CeO2 structural models with atomic-level surface defects such as the removal of an atom

from a column, removal of two atoms, removal of all but one atom and addition of an atom at

a new site (see Figure D.7 for a visual overview). We hypothesize that these defects emulate

dynamic atomic-level reconfigurations that could potentially be observed in real experiments.

87

350 400 450 500 550 600
Pixel Coordinate

0.3

0.4

0.5

0.6

0.7

0.8

In
te

ns
ity

Noisy Data (40-Frames Average)
Denoised Data (40-Frames Average)

Figure 5.12: Validation on real data. The real data consist of 40 frames which are approximately
stationary and aligned. Their temporal average (left) therefore provides a reasonable estimate for the
true intensity profile. In the image on the right, we compare the average intensity profile on the surface
atomic columns of the platinum nanoparticle for the denoised data (middle) and the temporal average
(left). The profiles are very similar (except for some spurious fluctuations in the temporal average),
which suggests that the proposed approach achieves effective denoising on the real data.

To match the image contrast of our real data, we simulated images under defocus values ranging

from 6 nm to 10 nm, all with a tilt of 3◦ in x and -1◦ in y and a support thickness of 40 Å. SBD

recovers all the atoms in the bulk almost perfectly, as reflected in the different metrics. On the

surface, SBD achieves a median score of 1 for precision and recall, and more than 0.95 on F1 and

Jaccard index (see Figure 5.11).

5.5.4 Performance on real data

In the experiments reported in Sections 5.5.2 and 5.5.3 we used a network trained on all sim-

ulated images from the white contrast category defined in Section 5.5.1. However, the real data

described in Section 5.4 more closely corresponds to a subset of white contrast images satisfying

the following conditions: structure limited to PtNP2, thickness between 40 Å - 60 Å and, defocus

between 5 nm and 10 nm. We used 236 images from this subset for training, and another such 15

images for validation. We also trained two state-of-the-art architectures for photographic image

denoising - DnCNN [150] and DURR [151] on these data.

Results on real experimental data obtained using SBD trained on this relevant subset of white

88

Noisy WF Spot Filter VST+NLM VST+BM3D

PURE-LET SBD+DnCNN SBD+Small UNet Ours Likelihood Map

0.02

0.01

0.00

0.01

0.02

Figure 5.13: Denoising results for real data. Comparison SBD and the baseline methods described
in Sections 5.5.2 and ?? when applied on the real data described in Section 5.4.1. The second row
zooms in on the region in red box. In contrast to the other methods, SBD combined with the proposed
architecture is able to precisely recover the structure of the nanoparticle and has very few artefacts,
particularly in the vacuum region. The likelihood map quantifies the agreement between recovered
structures in the denoised images, such as atomic columns and the vacuum, and the observed data (see
Section 5.3.3 for more details). See Figure D.8 for an additional example

contrast are shown in Figures 5.1, 5.13, and D.8. SBD produces denoised images that are of much

higher quality than those of the baseline methods described in Section 5.5.2, which contain ob-

vious artefacts. Further, we validate the denoising results of SBD by comparing to an estimated

reference image obtained by temporal averaging. Our real dataset consists of 40 frames that are

approximately stationary and aligned. Therefore, their temporal average provides a good esti-

mate for the ground-truth images. As shown in Figure 5.12, the denoised intensity values of the

atomic column approximately match those of the estimated reference image.

89

In the rest of this section, we compare the performance of SBD and unsupervised denoising

techniques on the real experimental data, and analyze the effect of the design of the training

dataset on the denoised output produced by SBD.

5.5.4.1 Comparison to unsupervised deep denoising methods

Unsupervised denoising techniques can be used to train a denoising CNN using only noisy

images (see Section 5.2 for a discussion on this methodology). We apply the following unsuper-

vised methods to the real data described in Section 5.4.1:

• Noise2Noise [lehtinen2018noise2noise] is a strategy used to train CNN by using pairs

of noisy images which correspond to the same clean image. We applied this method to our

data by treating images captured in consecutive time steps as different noisy realizations of

an underlying clean image. The results (shown in Figure 5.14(b)) contain visible artefacts

and missing atoms.

• Blind-spot net [68] is a CNN which is constrained to predict the intensity of a pixel as

a function of the noisy pixels in its neighbourhood, without using the pixel itself. This

method is competitive with the current supervised state-of-the-art CNN on photographic

images. However, when applied to our real dataset it produces denoised images with visible

artefacts (see Figure 5.14(c)). A possible explanation is the limited amount of data (40 noisy

images) we train on. To validate this hypothesis, we trained a blind-spot net on simulated

training sets of different sizes. The performance on held-out data is indeed poor when the

training set is small, but it improves to the level of supervised approaches as we use more

training data (see Figure 5.15).

• Blind-spot net with early stopping. In Ref. [119] it is shown that early stopping based

on noisy held-out data can boost the performance of blind-spot nets. Here we used 35

images for training the blind-spot net and the remaining 5 images as a held-out validation

90

(a) Data (b) Noise2Noise [74] (c) Blind-spot [68] (d) Blind-spot∗

(e) UDVD∗† [119] (f) Self2Self [110] (g) SBD (h) Estimated ref.

Figure 5.14: Comparison of unsupervised denoising methods with SBD on real data. The
real data described in Section 5.4.1 denoised using SBD and unsupervised methods described in Sec-
tion 5.5.4.1. The second and third rows zoom in on the region in red and green boxes respectively.
Our proposed method denoises the real data more effectively than the unsupervised approaches. SBD is
able to precisely recover the structure of the nanoparticle and has very few artefacts (compare visually
to the estimated reference image obtained via time averaging; there are three missing atoms for most
unsupervised methods in the third row). A ∗ indicates that the method used early stopping and †
indicates that the method uses 5 noisy frames as input.

91

40 50 100 200 500 1000 2000 3000 4000 5024
20

25

30

35

40

45

50

Number of training data points

P
er

fo
rm

an
ce

in
P
SN

R Unsupervised Supervised

Figure 5.15: Training set size and unsupervised denoising. Performance of blind-spot net [68] on
a held-out set of images, measured in PSNR, when trained on simulated training sets of different sizes.
The held-out set and the training data comprise white contrast images. The performance is poor when
the training set is small, but improves to the level of supervised approaches (denoted by dashed line)
when trained using more training data. Our real dataset described in Section 5.4.1 contains only 40
images, so it is likely that the limited amount of data explains the poor performance of the blind-spot
net in Figure 5.14.

set. We chose the model parameters that minimized the mean squared error between the

noisy validation images and the corresponding denoised estimates. The results (shown

in Figure 5.14(d)) are significantly better than those of the standard blind-spot network.

However, there are still noticeable artefacts, which include missing atoms.

• Unsupervised Deep Video Denoising (UDVD) [119] is an unsupervised method for de-

noising video data based on the blind-spot approach. It estimates a denoised frame using

5 consecutive noisy frames around it. Our real data consists of 40 frames acquired sequen-

tially. UDVD produces better results than blind-spot net, but still contains visible artefacts,

including missing atoms (see Figure 5.14(e)). Note that, UDVD uses 5 noisy images as input,

and thus has more context to perform denoising than the other methods (including SBD).

• Self2Self [110] is an unsupervised method specifically designed for denoising based on

a single noisy image. This approach achieves near state-of-the-art performance in noisy

photographic images corrupted with moderate amounts of noise [110]. However, when

applied to our data, Self2Self produces images with clear artefacts; some of the atoms are

92

missing and the shape of atoms are distorted (see Figure 5.14(f)).

It is important to note that the backbone architectures of all these methods are UNets with

large fields of view, like the one used for SBD. In our experiments, we trained the blind-spot nets

and UDVD on 600×600 patches extracted from the real data. We used Adam optimizer [63] with a

starting learning rate of 1×10−4 which was reduced in half for every 2000 epochs. We trained for

a total of 5000 epochs. When performing early stopping, we picked the checkpoint with the best

mean squared error on the validation set. Following Ref. [110], Self2Self was trained for 150, 000

steps with the Adam optimizer and a starting learning rate of 10−4.

As shown in Figure 5.14, the unsupervised denoising methods produce higher-quality recon-

structions than those of the baseline methods discussed in Section 5.5.2 (see Figure 5.13). How-

ever, they still suffer from visible artefacts, particularly on the surface of the nanoparticle, limiting

their practical utility. UDVD is the method that achieves best performance, but it requires multi-

ple noisy frames as input. In contrast, SBD can denoise the image effectively from a single noisy

input frame (see Figure 5.14(g)), as long as the simulated training data correspond closely to the

real noisy image. Using a single frame is important in some applications, such as our case of

interest, where the ultimate goal is to identify dynamic changes in the atomic structure of the

nanoparticle.

5.5.4.2 A word of caution: Effect of training data on SBD

Figures 5.13, D.8 and 5.14 show that SBD achieves impressive results on real data, but it is

important to point out that this requires a careful design of the training dataset. Our real data

broadly corresponds to images in the white contrast category, defined in Section 5.5.1. However,

when a network trained on white contrast images (Section 5.5.2) is evaluated on the real data,

it produces unnatural streak patterns in the bulk (see third row in Figure 5.16). When visually

comparing this to the pattern in the bulk of the reference image computed by time averaging,

it is evident that this is an artefact of denoising. This can be remedied by training the network

93

(a) Estimated ref. SBD Unsupervised

(b) white contrast (c) adapted data (d) Blind-spot (e) Self2Self

Figure 5.16: Effect of training data on SBD. The real data consists of 40 frames which are ap-
proximately stationary and hence their temporal mean (a) can be used as an estimate for the reference
image. The second and third row zooms into the red and yellow region respectively. When the network
is trained on white contrast (i.e, the training data does not align well with real data), the denoised
image of the real data (b) shows an unnatural streak pattern in the bulk (compare row 3 in (b) and
(a)). Interestingly, when the training data is more reflective of the real data, the patterns in the bulk are
recovered better (row 3 in (c) and (a)). Further, note that unsupervised methods denoise the contrast
patterns in the bulk well (row 3 in (d), (e) and (a)) but they suffer from significant artefacts on the
nanoparticles (row 2 in (d), (e) and (a)).

on the more restricted subset of images described in Section 5.5.4 (see third row in Figure 5.16),

whose imaging parameters are more suited to the real acquisition conditions. Since unsuper-

vised denoising methods directly train on the real data, they do not suffer from this problem of

mismatch between training and test data. The patterns recovered by unsupervised methods in

the bulk are close to the estimated reference image (see Figure 5.16). However, as discussed in

Section 5.5.4.1, they show significant artefacts on the surface of nanoparticle. As shown in Sec-

tion 4.5.4, performing GainTuning on the network trained on white contrast can also remedy this

problem.

94

5.6 Discussion and Conclusions

Our case study is a proof of concept that CNNs trained on simulated data can be remarkably ef-

fectivewhen applied to real imaging data. It provides several insights and suggests future research

directions that are relevant, beyond electron microscopy, to other domains where the images of

interest can be simulated, such as medical imaging [61, 93], other types of microscopy [40, 134],

or astronomy [104]. We show that the design of the training dataset is critical, so an important

question is how to design simulated training datasets in a principled systematic way. Answer-

ing it will require a deeper understanding of the generalization ability of CNNs with respect to

variations in the statistics of the input images. We also demonstrate that architectures tailored

to photographic imaging can perform poorly when applied to other data. Designing CNNs for

other domains requires an understanding of the image features that are exploited for denoising.

Gradient visualization is shown to be useful here, but more advanced visualization techniques

are needed. In addition, we demonstrate that standard metrics used to quantify performance in

photographs may not be sensitive to scientifically relevant features, and propose several new

metrics to address this problem. Although SBD outperforms other methods by a large margin,

some artefacts such as phantom atoms still appear. Our proposed likelihood maps help to flag

such events, but may still fail to do so in regions of unusually low SNR. Developing more so-

phisticated methods for uncertainty quantification is therefore a key research direction. It would

also be of great interest to develop unsupervised or self-supervised denoising approaches that

are effective with small amounts of data at low SNRs. Finally, to encourage further development

of deep-learning methodologies for scientific imaging, we release a denoising benchmark dataset

of TEM images, containing 18,000 examples.

95

6 | Conclusion

In this thesis, we explored the topic of deep learning based denoising. The contribution of the

thesis is broadly in two aspects: (1) novel network architectures and algorithms advancing the

current state-of-the-art in denoising, and (2) new tools for analyzing neural networks advanc-

ing our understanding of deep learning models for denoising. While this thesis concentrated on

denoising, many of our contributions have relevance beyond denoising. We finish by summariz-

ing some of our specific contributions, commenting on their applications outside denoising, and

listing our future research directions and a few related open problems:

• Bias-free CNNs. In Chapter 2 we introduced bias-free CNNs which generalize to noise

levels outside the training range. We showed that this generalization capability is facili-

tated by the local linearity of the network architecture (Section 2.4). Since our introduction

of bias-free networks in denoising, it has been applied in photometric stereo [50], reflection

removal [154], and tone mapping [70]. Our observations in Chapter 2 do not fully eluci-

date how our network achieves its remarkable generalization- only that bias prevents that

generalization, and its removal allows it. Understanding how bias-free networks achieve

this generalization is a direction for future research.

• Unsupervised Deep Video Denoising (UDVD). In Chapter 3, we extended the idea of

blind-spot denoising for static images [8, 66] to develop an unsupervised denoiser which

can be trained only with noisy videos. UDVD achieved performance comparable to super-

vised state-of-the-art, even when trained on only a single short noisy video sequence. This

96

enabled the application of deep learning models to domains like microscopy where clean

data is generally not available. However, evaluation of denoising models in the absence of

ground-truth data is an unsolved problem. Current metrics used for evaluation (eg. PSNR

and SSIM [138]) measures the closeness of the denoised image with ground truth data.

Likelihood maps introduced in Section 5.3.3 takes a step in this direction by measuring the

fidelity of the denoised image with noisy data under strict assumptions about the signal

structure and noise likelihood. A more general solution towards unsupervised evaluation

of denoising models remains an interesting open challenge.

• GainTuning. In Chapter 4 we introduced GainTuning, a framework to adapt any pre-

trained denoiser to an out-of-distribution data point. GainTuning achieved state-of-the-art

performance on test data points which systematically differ in signal or noise distribution

from the training data. The core idea behind GainTuning is simple: optimize only a small

subset of parameters (the “Gains“) during inference to adapt the model to the test data.

A mechanism similar to GainTuning achieved out-of-distribution generalization in classi-

fication [136], and we have preliminary results indicating that such a mechanism might

be effective in audio compression. This suggests that GainTuning may have applications

in other areas of signal processing and machine learning like compression and segmenta-

tion. Despite the success in denoising, and potential applications in other areas of machine

learning, GainTuning in its current form requires multiple backward passes to compute the

gain parameters. Making this routine more efficient, or completely replacing optimization

during test time is a direction for future research.

• Analysis of models. In Chapter 2 we proposed a gradient-based analysis to visualize

the equivalent action of a denoising network. We extended this analysis to video denois-

ers in Chapter 3. Our analysis on image and video denoisers revealed that these models

average over noisy pixels in the relevant spatio-temporal neighbourhood to compute the

97

denoised pixel value. This indicates that CNN denoisers encode the underlying structure

of the signals. We believe that this property makes denoising a good candidate as an aux-

iliary task for other problems that exploits underlying signal structure. This hypothesis

is supported by recent results in segmentation [16] and compression [127]. Our observa-

tions and insights in Chapter 2 and 3 uncovers interesting aspects of the denoising map,

but these interpretations are very local: small changes in the input image change the acti-

vation patterns of the network, resulting in a change in the corresponding linear mapping.

Extending the analysis to reveal global characteristics of the neural-network functionality

is a challenging direction for future research.

98

A | Bias-free denoising

A.1 Description of denoising architectures

In this section we describe the denoising architectures used for our computational experi-

ments in more detail.

A.1.1 DnCNN

We implement BF-DnCNN based on the architecture of the Denoising CNN (DnCNN) [150].

DnCNN consists of 20 convolutional layers, each consisting of 3× 3 filters and 64 channels, batch

normalization [54], and a ReLU nonlinearity. It has a skip connection from the initial layer to

the final layer, which has no nonlinear units. To construct a bias-free DnCNN (BF-DnCNN) we

remove all sources of additive bias, including the mean parameter of the batch-normalization in

every layer (note however that the scaling parameter is preserved).

A.1.2 Recurrent CNN

Inspired by [151], we consider a recurrent framework that produces a denoised image estimate

of the form 𝑥𝑡 = 𝑓 (𝑥𝑡−1,𝑦noisy), at time 𝑡 where 𝑓 is a neural network. We use a 5-layer fully

convolutional network with 3 × 3 filters in all layers and 64 channels in each intermediate layer

to implement 𝑓 . We initialize the denoised estimate as the noisy image, i.e 𝑥0 := 𝑦noisy. For the

99

version of the network with net bias, we add trainable additive constants to every filter in all

but the last layer. During training, we run the recurrence for a maximum of 𝑇 times, sampling 𝑇

uniformly at random from {1, 2, 3, 4} for each mini-batch. At test time we fix 𝑇 = 4.

A.1.3 UNet

Our UNet model [116] has the following layers:

1. conv1 - Takes in input image and maps to 32 channels with 5 × 5 convolutional kernels.

2. conv2 - Input: 32 channels. Output: 32 channels. 3 × 3 convolutional kernels.

3. conv3 - Input: 32 channels. Output: 64 channels. 3 × 3 convolutional kernels with stride 2.

4. conv4- Input: 64 channels. Output: 64 channels. 3 × 3 convolutional kernels.

5. conv5- Input: 64 channels. Output: 64 channels. 3 × 3 convolutional kernels with dilation

factor of 2.

6. conv6- Input: 64 channels. Output: 64 channels. 3 × 3 convolutional kernels with dilation

factor of 4.

7. conv7- Transpose Convolution layer. Input: 64 channels. Output: 64 channels. 4 × 4 filters

with stride 2.

8. conv8- Input: 96 channels. Output: 64 channels. 3 × 3 convolutional kernels. The input to

this layer is the concatenation of the outputs of layer conv7 and conv2.

9. conv9- Input: 32 channels. Output: 1 channels. 5 × 5 convolutional kernels.

The structure is the same as in [151], but without recurrence. For the version with bias, we

add trainable additive constants to all the layers other than conv9. This configuration of UNet

assumes even width and height, so we remove one row or column from images in with odd

height or width.

100

A.1.4 Simplified DenseNet

Our simplified version of the DenseNet architecture [52] has 4 blocks in total. Each block is

a fully convolutional 5-layer CNN with 3 × 3 filters and 64 channels in the intermediate layers

with ReLU nonlinearity. The first three blocks have an output layer with 64 channels while the

last block has an output layer with only one channel. The output of the 𝑖𝑡ℎ block is concatenated

with the input noisy image and then fed to the (𝑖 + 1)𝑡ℎ block, so the last three blocks have 65

input channels. In the version of the network with bias, we add trainable additive parameters to

all the layers except for the last layer in the final block.

A.2 Datasets and training procedure

Our experiments are carried out on 180×180 natural images from the Berkeley Segmentation

Dataset [87]. We use a training set of 400 images. The training set is augmented via downsam-

pling, random flips, and random rotations of patches in these images [150]. A test set containing

68 images is used for evaluation. We train the DnCNN and it’s bias free model on patches of size

50 × 50, which yields a total of 541,600 clean training patches. For the remaining architectures,

we use patches of size 128 × 128 for a total of 22,400 training patches.

We train DnCNN and its bias-free counterpart using the Adam Optimizer [63] over 70 epochs

with an initial learning rate of 10−3 and a decay factor of 0.5 at the 50𝑡ℎ and 60𝑡ℎ epochs, with no

early stopping. We train the other models using the Adam optimizer with an initial learning rate

of 10−3 and train for 50 epochs with a learning rate schedule which decreases by a factor of 0.25

if the validation PSNR decreases from one epoch to the next. We use early stopping and select

the model with the best validation PSNR.

101

A.3 Additional results

In this section we report additional results of our computational experiments:

• Figure A.1 shows the first-order analysis of the residual of the different architectures de-

scribed in Section A.1, except for DnCNN which is shown in Figure 2.1.

• Figures A.2 and A.3 visualize the linear and net bias terms in the first-order decomposition

of an example image at different noise levels.

• Figure A.4 shows the PSNR results for the experiments described in Section 2.4.

• Figure A.5 shows the SSIM results for the experiments described in Section 2.4.

• Figures A.6, A.7 and A.8 show the equivalent filters at several pixels of two example images

for different architectures (see Section 2.5).

102

R-CNN

5 15 25 35 45 55 65 75 85 95
noise level(sd)

20

40

60

80

100

120

140

no
rm

s

bias, by

residual, y x
noise, z

5 15 25 35 45 55 65 75 85 95
noise level(sd)

0

20

40

60

80

100

120

140

no
rm

s

5 15 25 35 45 55 65 75 85 95
noise level(sd)

20

40

60

80

100

120

140

no
rm

s

UNet

5 15 25 35 45 55 65 75 85 95
noise level(sd)

0

20

40

60

80

100

120

140

no
rm

s

bias, by

residual, y x
noise, z

5 15 25 35 45 55 65 75 85 95
noise level(sd)

0

20

40

60

80

100

120

140
no

rm
s

5 15 25 35 45 55 65 75 85 95
noise level(sd)

0

20

40

60

80

100

120

140

no
rm

s
DenseNet

5 15 25 35 45 55 65 75 85 95
noise level(sd)

0

20

40

60

80

100

120

140

no
rm

s

bias, by

residual, y x
noise, z

5 15 25 35 45 55 65 75 85 95
noise level(sd)

0

25

50

75

100

125

150

no
rm

s

5 15 25 35 45 55 65 75 85 95
noise level(sd)

0

20

40

60

80

100

120

140

no
rm

s

Figure A.1: First-order analysis of the residual of Recurrent-CNN (Section A.1.2), UNet (Section A.1.3)
and DenseNet (Section A.1.4) as a function of noise level. The plots show the magnitudes of the residual
and the net bias averaged over 68 images in Set68 test set of Berkeley Segmentation Dataset [87] for
networks trained over different training ranges. The range of noises used for training is highlighted in
gray. (left) When the network is trained over the full range of noise levels (𝜎 ∈ [0, 100]) the net bias
is small, growing slightly as the noise increases. (middle and right) When the network is trained over
the a smaller range (𝜎 ∈ [0, 55] and 𝜎 ∈ [0, 30]), the net bias grows explosively for noise levels outside
the training range. This coincides with the dramatic drop in performance due to overfitting, reflected
in the difference between the residual and the true noise.

103

Noisy Input (𝑦) Denoised (𝑓 (𝑦)) Linear Part (𝐴𝑦𝑦) Net Bias (𝑏𝑦)

𝜎 = 10

0.2

0.4

0.6

0.8

1.0

0.1

0.0

0.1

0.2

𝜎 = 30

0.2

0.4

0.6

0.8

1.0

0.2

0.0

0.2

0.4

0.6

0.8

𝜎 = 50

0.0

0.2

0.4

0.6

0.8

1.0

0.4

0.2

0.0

0.2

0.4

0.6

𝜎 = 70∗

4

3

2

1

0

1

2

3

4

4

3

2

1

0

1

2

3

4

Figure A.2: Visualization of the decomposition of output of DnCNN trained for noise range [0, 55]
into linear part and net bias. The noise level 𝜎 = 70 (highlighted by ∗) is outside the training range.
Over the training range, the net bias is small, and the linear part is responsible for most of the denoising
effort. However, when the network is evaluated out of the training range, the contribution of the bias
increases dramatically, which coincides with a significant drop in denoising performance.

104

Noisy Input (𝑦) Denoised (𝑓 (𝑦)) Linear Part (𝐴𝑦𝑦) Net Bias (𝑏𝑦)

R-CNN
𝜎 = 10

0.2

0.4

0.6

0.8

0.10

0.05

0.00

0.05

0.10

R-CNN
𝜎 = 90∗

0.0

0.5

1.0

1.5

0.75

0.50

0.25

0.00

0.25

0.50

0.75

UNet
𝜎 = 10

0.2

0.4

0.6

0.8

0.10

0.05

0.00

0.05

0.10

UNet
𝜎 = 90∗

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.2

0.1

0.0

0.1

0.2

DenseNet
𝜎 = 10

0.2

0.4

0.6

0.8

1.0

1.2

0.2

0.0

0.2

0.4

DenseNet
𝜎 = 90∗

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Figure A.3: Visualization of the decomposition of output of Recurrent-CNN (Section A.1.2, UNet
(Section A.1.3) and DenseNet (Section A.1.4) trained for noise range [0, 55] into linear part and net
bias. The noise level 𝜎 = 90 (highlighted by ∗) is outside the training range. Over the training range,
the net bias is small, and the linear part is responsible for most of the denoising effort. However, when
the network is evaluated out of the training range, the contribution of the bias increases dramatically,
which coincides with a significant drop in denoising performance.

105

282219161413111098

28

22

19

16
14
13
11
10
98

(a)

282219161413111098

28

22

19

16

14
13
11
10
9
8

(b)

282219161413111098

28

22

19

16

14
13
11
10
9
8

(c)

282219161413111098

28

22

19

16

14
13
11
10
9
8

(d)

Figure A.4: Comparisons of architectures with (red curves) and without (blue curves) a net bias for the
experimental design described in Section 2.4. The performance is quantified by the PSNR of the denoised
image as a function of the input PSNR of the noisy image. All the architectures with bias perform poorly
out of their training range, whereas the bias-free versions all achieve excellent generalization across noise
levels. (a) Deep Convolutional Neural Network, DnCNN [150]. (b) Recurrent architecture inspired by
DURR [151]. (c) Multiscale architecture inspired by the UNet [116]. (d) Architecture with multiple skip
connections inspired by the DenseNet [52].

0.
71

0.
48

0.
35

0.
260.

2
0.

16
0.

13
0.

11
0.

08

0.0

0.2

0.4

0.6

0.8

1.0

(a)

0.
71

0.
48

0.
35

0.
260.
2

0.
16

0.
13

0.
11

0.
08

0.0

0.2

0.4

0.6

0.8

1.0

(b)

0.
72

0.
48

0.
35

0.
260.
2

0.
16

0.
13

0.
11

0.
08

0.0

0.2

0.4

0.6

0.8

1.0

(c)
0.

71

0.
48

0.
35

0.
260.
2

0.
16

0.
13

0.
11

0.
08

0.0

0.2

0.4

0.6

0.8

1.0

(d)

Figure A.5: Comparisons of architectures with (red curves) and without (blue curves) a net bias for the
experimental design described in Section 2.4. The performance is quantified by the SSIM of the denoised
image as a function of the input SSIM of the noisy image. All the architectures with bias perform poorly
out of their training range, whereas the bias-free versions all achieve excellent generalization across noise
levels. (a) Deep Convolutional Neural Network, DnCNN [150]. (b) Recurrent architecture inspired by
DURR [151]. (c) Multiscale architecture inspired by the UNet [116]. (d) Architecture with multiple skip
connections inspired by the DenseNet [52].

106

𝜎 Noisy Input(𝑦) Denoised
(𝑓 (𝑦) = 𝐴𝑦𝑦) Pixel 1 Pixel 2 Pixel 3

5

1

2

3

1

2

3

55

1

2

3

1

2

3

5

1

2

3

1

2

3

55

1

2

3

1

2

3

5

1

2

3

1

2

3

55

1

2

3

1

2

3

Figure A.6: Visualization of the linear weighting functions (rows of 𝐴𝑦) of Bias-Free Recurrent-CNN
(top 2 rows) (Section A.1.2), Bias-Free UNet (next 2 rows) (Section A.1.3) and Bias-Free DenseNet
(bottom 2 rows) (Section A.1.4) for three example pixels of a noisy input image (left). The next image
is the denoised output. The three images on the right show the linear weighting functions corresponding
to each of the indicated pixels (red squares). All weighting functions sum to one, and thus compute a
local average (although some weights are negative, indicated in red). Their shapes vary substantially,
and are adapted to the underlying image content. Each row corresponds to a noisy input with increasing
𝜎 and the filters adapt by averaging over a larger region.

107

𝜎 Noisy Input(𝑦) Denoised
(𝑓 (𝑦) = 𝐴𝑦𝑦) Pixel 1 Pixel 2 Pixel 3

5 1

2

3

1

2

3

15 1

2

3

1

2

3

35 1

2

3

1

2

3

55 1

2

3

1

2

3

Figure A.7: Visualization of the linear weighting functions (rows of 𝐴𝑦) of a BF-DnCNN for three
example pixels of a noisy input image (left). The next image is the denoised output. The three images
on the right show the linear weighting functions corresponding to each of the indicated pixels (red
squares). All weighting functions sum to one, and thus compute a local average (although some weights
are negative, indicated in red). Their shapes vary substantially, and are adapted to the underlying image
content. Each row corresponds to a noisy input with increasing 𝜎 and the filters adapt by averaging
over a larger region.

108

𝜎 Noisy Input(𝑦) Denoised
(𝑓 (𝑦) = 𝐴𝑦𝑦) Pixel 1 Pixel 2 Pixel 3

5 1

2

3

1

2

3

55 1

2

3

1

2

3

5 1

2

3

1

2

3

55 1

2

3

1

2

3

5 1

2

3

1

2

3

55 1

2

3

1

2

3

Figure A.8: Visualization of the linear weighting functions (rows of 𝐴𝑦) of Bias-Free Recurrent-CNN
(top 2 rows) (Section A.1.2), Bias-Free UNet (next 2 rows) (Section A.1.3) and Bias-Free DenseNet
(bottom 2 rows) (Section A.1.4) for three example pixels of a noisy input image (left). The next image
is the denoised output. The three images on the right show the linear weighting functions corresponding
to each of the indicated pixels (red squares). All weighting functions sum to one, and thus compute a
local average (although some weights are negative, indicated in red). Their shapes vary substantially,
and are adapted to the underlying image content. Each row corresponds to a noisy input with increasing
𝜎 and the filters adapt by averaging over a larger region.

109

B | Unsupervised denoising

B.1 Implementation Details of Unsupervised Deep Video

Denoising

B.1.1 Restricting field of view

In UDVD, we rotate the input frames by multiples of 90◦ and process them through four

separate branches (with shared parameters) containing asymmetric convolutional filters that are

vertically causal. As a result, the branches produce outputs that only depend on the pixels above

(0◦ rotation), to the left (90◦), below (180◦) or to the right (270◦) of the output pixel. We use a UNet

[116] style architecture for each branch of UDVD. The field of view of the UNet is constrained by

restricting the field of view of the convolutional, downsampling and upsampling layers that are

used to build the UNet.

Convolutional Layers: We restrict the receptive field of each convolutional layer to extend only

upwards following the strategy proposed in [68]. Let the filter size be ℎ ×𝑤 . We zero-pad the top

region of the input tensor with 𝑘 = ∗ℎ/2 zero rows before convolution and remove the bottom

𝑘 rows after convolution. This is equivalent to convolving with a filter, where all weights below

the center row are zero, so that the field of view only extends upwards.

110

Downsampling and Upsampling Layers: Following [68] we restrict the receptive field of the

downsampling layer by creating an offset of one pixel (zero-pad with a row of zeros on the top

and remove a row of pixels from below) before performing max-pooling using a 2×2 kernel. This

operation restricts the field of view of the downsampling and upsampling operation pair.

Note that we do not use BatchNorm [55] layers in UDVD as computing the spatial mean and

variance would modify the field of view to include the center pixel.

B.1.2 Adding the Noisy Pixel Back

The denoised generated by the proposed architecture at each pixel is computed without using

the noisy observation at that location. This avoids overfitting – i.e. learning the trivial identity

map that minimizes the mean-squared error cost function – but ignores important information

provided by the noisy pixel. In the case of Gaussian additive noise, we can use this information

via a precision-weighted average between the network output and the noisy pixel value. Follow-

ing [68], the weights in the average are derived by assuming a Gaussian distribution for the error

in the blind-spot estimates of the (color) pixel values. The CNN architecture is trained to estimate

the mean and covariance of this distribution at each pixel by maximizing the log likelihood of the

noisy data. We explain this in detail in the following paragraphs.

UDVD estimates the value of a pixel based on the noisy pixels in its neighbourhood. Wemodel

the distribution of the three color channels of a pixel 𝑥 ∈ R3 given the noisy neighbourhood Ω𝑦

as 𝑝 (𝑥 |Ω𝑦) = N(𝜇𝑥 , Σ𝑥), where 𝜇𝑥 ∈ R3 and Σ𝑥 ∈ R3 represent the mean vector and covariance

matrix. Let 𝑦 = 𝑥 +𝜂, 𝜂 ∼ N(0,𝜎2𝐼3) be the observed noisy pixel. We integrate the information in

the noisy pixel with the UDVD output by computing the mean of the posterior 𝑝 (𝑥 |𝑦,Ω𝑦), given

by

𝑝 (𝑥 |𝑦,Ω𝑦) ∝ 𝑝 (𝑦 |𝑥) 𝑝 (𝑥 |Ω𝑦) (B.1)

where 𝑝 (𝑥 |Ω𝑦) is the prior and 𝑝 (𝑦 |𝑥) is the noise model. Since both the prior and the noise

111

model are Gaussian, we can write the optimal posterior estimate as,

𝐸 [𝑥 |𝑦] = (Σ−1
𝑥 + 𝜎−2𝐼)−1(Σ−1

𝑥 𝜇𝑥 + 𝜎−2𝑦). (B.2)

Note that the posterior mean has a very intuitive interpretation. When the signal variance

is high compared to noise variance (i.e. the uncertainty in our estimation is high) the posterior

mean favours noisy pixel value. We estimate 𝜇𝑥 and Σ𝑥 as a function of the neighbourhood Ω𝑦

using the network architecture discussed earlier. If 𝑥 is a grayscale image, then the output of

the network consists of two channels - one for 𝜇𝑥 and one for 𝜎𝑥 . When the input image has 𝑘

channels, the output consists of 𝑘 channels for 𝜇𝑥 and 𝑘 (𝑘 − 1)/2 for the upper-triangular entries

of Σ𝑥

One can estimate 𝜇𝑥 and Σ𝑥 directly from the noisy data by maximizing the likelihood. Using

our distributional assumptions, the noisy pixels 𝑦 follows a Gaussian distribution, 𝑦 ∼ N(𝜇𝑦 , Σ𝑦),

where 𝜇𝑦 = 𝜇𝑥 and Σ𝑦 = Σ𝑥 + 𝜎2𝐼 . Therefore, the loss function or the negative log likelihood is:

L(𝜇𝑥 , Σ𝑥) =
1
2
[(𝑦 − 𝜇𝑥)𝑇 (Σ𝑥 + 𝜎2𝐼)−1(𝑦 − 𝜇𝑥)] +

1
2
log |Σ𝑥 + 𝜎2𝐼 |. (B.3)

If 𝜎 is unknown during training and has to be estimated, we use a separate neural network with

the same architecture to do so. In such cases, we add a small regularization term equal to −0.1𝜎

for numerical stability, following [68].

For the experiments with real data, the noise distribution is unknown, so we simply ignore

the central pixel.

B.1.3 Architecture and Training

Architecture: The overall architecture is explained in Section 3.3. The network architecture for

the D1 and D2 blocks is described in Table B.1. D1 has 𝑘1 = 9 input channels and 𝑘2 = 32 output

112

Name 𝑁𝑜𝑢𝑡 Function

Input 𝑘1
enc_conv_0 48 Convolution 3 × 3
enc_conv_1 48 Convolution 3 × 3
enc_conv_2 48 Convolution 3 × 3
pool_1 48 MaxPool 2 × 2
enc_conv_3 48 Convolution 3 × 3
enc_conv_4 48 Convolution 3 × 3
enc_conv_5 48 Convolution 3 × 3
pool_2 48 MaxPool 2 × 2
enc_conv_6 96 Convolution 3 × 3
enc_conv_7 96 Convolution 3 × 3
enc_conv_8 48 Convolution 3 × 3
upsample_1 48 NearestUpsample 2 × 2
concat_1 96 Concatenate output of pool_1
dec_conv_0 96 Convolution 3 × 3
dec_conv_1 96 Convolution 3 × 3
dec_conv_2 96 Convolution 3 × 3
dec_conv_3 96 Convolution 3 × 3
upsample_2 96 NearestUpsample 2 × 2
concat_2 96+𝑘1 Concatenate output of Input
dec_conv_4 96 Convolution 3 × 3
dec_conv_5 96 Convolution 3 × 3
dec_conv_6 96 Convolution 3 × 3
dec_conv_7 𝑘2 Convolution 3 × 3

Table B.1: Network architecture used for UDVD. The convolution and pooling layers are the blind-
spot variants described in Section B.1.1. 𝑘1 and 𝑘2 represent the number of input and output channels
of the base network respectively.

113

channels. D2 has 𝑘1 = 96 input channels and 𝑘2 = 96 output channels. The architecture of D1 and

D2 are analogous to the blocks in FastDVDnet [130] to facilitate fair comparison with the super-

vised models. As described in Figure 3.2, D2 is followed by a derotation and the output is passed

to a series of three cascaded 1×1 convolutions and non-linearity for reconstruction with 4 and 96

intermediate output channels, as in [68]. The final convolutional layer is linear and has 9 output

channels, 3 representing the RGB value of the denoised image and 6 representing its covariance

matrix. We use the same architecture for fluorescence microscopy and electron microscopy with

the number of input channels to UDVD modified to 5 and number of output channels modified

to 1.

Training Details: Following the convention in image and video denoising, we train UDVD on

128 × 128 patches extracted from our dataset [68, 96, 129, 130, 150] (this is also consistent with

the training methodology of the supervised baselines). For the natural video and fluorescence

microscopy datasets, no data augmentation was applied. For electron microscopy dataset, we

applied spatial flipping, time reversal and time subsampling (i.e. skipping frames).

Optimization Details: All networks were trained using Adam [64] optimizer with a starting

learning of 10−4. The learning rate was decreased by a factor of 2 at checkpoints [20, 25, 30]

during a total training of 40 epochs. We did not experiment with other learning rate schedules

such as cosine scheduling, which is a popular choice in unsupervised image denoising [68].

B.2 Ablation Study on Number of Input Frames

We perform an ablation study on the number of frames 𝑘 UDVD uses as input, 𝑘 ∈ {1, 3, 5}.

UDVD with 𝑘 = 1 is equivalent to the blind-spot network proposed for image denoising in [68].

In this section we describe the architectural and training details for UDVD with 𝑘 ∈ {1, 3, 5} and

114

DAVIS Set8

Supervised CNN Unsupervised CNN (UDVD) Supervised CNN Unsupervised CNN (UDVD)

𝜎 5 frames 1 frame 3 frames 5 frames 5 frames 1 frame 3 frames 5 frames

20 35.86 34.13 34.91 35.16 33.37 32.39 33.09 33.36
30 34.06 32.80 33.48 33.92 31.60 30.91 31.62 32.01
40 32.80 31.48 32.20 32.68 30.37 29.63 30.42 30.82
50 31.83 30.47 31.20 31.70 29.42 28.65 29.47 29.89
60 31.01 29.65 30.39 30.90 29.08 27.86 28.70 29.13
70 30.21 28.96 29.70 30.22 28.37 27.20 28.06 28.49
80 29.28 28.37 29.10 29.63 27.60 26.65 27.50 27.94

Table B.2: Performance of UDVD. Table shows the mean PSNR values of a state-of-the-art super-
vised video denoiser (FastDVDnet [130]) and UDVD with the denoised frame being predicted from
𝑘 ∈ {1, 3, 5} surrounding frames. The performance of UDVD monotonically increases with 𝑘 and is
comparable for supervised denoising across all noise levels. All the three UDVD networks reported here
are trained for only 𝜎 = 30. FastDVDnet is trained for 𝜎 ∈ [5, 55].

present some additional results.

Architectural Details: UDVD with 𝑘 = 1 contains only one UNet style network in each branch

with architecture described in Table B.1 and Section B.1.3. There are 3 input channels and 9 output

channels (3 for the RGB channels in each denoised pixel and 6 for the corresponding covariance

matrix). UDVD with 𝑘 = 3 has a similar architecture as for 𝑘 = 1 but has 9 input channels instead

(3 channels for each frame). The architecture for 𝑘 = 5 is described in Section B.1.3.

Training Details: UDVD with 𝑘 ∈ {1, 3, 5} was trained on the DAVIS dataset with 𝜎 = 30. The

training details were as described in Section B.1.3.

Results: As shown in Table 3.1 and Table B.2 performance improves substantially and monoton-

ically with 𝑘 (the number of surrounding frames used to denoise each frame) across a wide range

of noise levels. This difference in performance can also be observed visually. Fig B.1 shows an

example where the texture details of the brick wall and the fence are not well recovered when

using only a single noisy frame. The texture is estimated better when using 5 noisy frames to

115

predict the denoised output.

B.3 Denoising Results on Natural Video Datasets

In this section we provide additional comparisons between UDVD and supervised CNN-based

methods.

1. Table B.2 shows the performance of UDVD trained at 𝜎 = 30, and FastDVDnet trained for

𝜎 ∈ [5, 55] when evaluated on theDAVIS test set and Set8 corruptedwith𝜎 ∈ {20, 40, . . . , 80}.

UDVD achieves comparable performance to FastDVDnet on DAVIS test set and slightly

outperforms it on Set8 at all noise levels.

2. Examples of noisy videos, and denoised counterparts obtained using UDVD are included

in the official github repository1 (hypermooth.mp4, rafting.mp4, motorbike.mp4 and

snowboard.mp4).

B.4 UDVD-S: Denoising Using Only a Single Video

UDVD, combined with aggressive data augmentation and early stopping, achieves state-of-

the-art performance even when trained on only a single short video. In this section, we analyze

the contribution of each of the data augmentation and early stopping scheme to the performance

of UDVD-S through an ablation study. We also provide more details about our comparison to

MF2F [29].

B.4.1 Details of test sets.

We evaluate UDVD-S and baselines on the following four datasets:
1https://github.com/sreyas-mohan/udvd

116

https://github.com/sreyas-mohan/udvd

(a) Ground
Truth

(b) Noisy

(c) UDVD
(𝑘 = 1)

(d) UDVD
(𝑘 = 3)

(e) UDVD
(𝑘 = 5)

Figure B.1: Comparison of blind image and video denoising. Example from the DAVIS dataset.
(a) Ground truth frame. (b) Noisy frame. (c) Reconstruction using a single frame. The texture details
of the brick wall and the fence are not recovered well. Reconstruction using (d) 3 and (e) 5 surrounding
frames produces an improved texture estimate.

117

𝜎 = 30

ten-v snow hyper raft motor trac sunf touch park mean

No. of frames 75 59 37 29 32 85 85 85 85 -

No Aug (without ES) 33.37 29.10 29.72 27.26 27.28 32.52 35.07 32.65 30.20 30.80
No Aug (with ES) 34.35 30.67 32.42 30.72 29.21 33.08 37.04 33.63 30.40 32.39
F (without ES) 34.00 30.60 30.15 30.16 28.44 33.09 36.86 33.56 30.37 31.91
F (with ES) 34.68 30.76 32.41 30.76 29.33 33.35 37.13 33.74 30.53 32.52
F+TR (without ES) 34.18 30.73 31.06 30.31 28.98 33.53 37.29 33.51 30.56 32.24
F+TR (with ES) 34.70 30.78 32.60 30.80 29.36 33.54 37.29 33.88 30.56 32.61

UDVD∗ 34.82 30.83 32.34 30.82 29.24 31.73 35.33 33.48 28.98 31.95
FastDVDnet∗ 34.58 30.78 32.48 30.94 29.35 31.39 35.06 33.71 28.73 31.89

MF2F - 8 sigmas 34.45 30.44 30.93 29.70 28.81 31.61 34.43 33.41 28.79 31.40
MF2F - online no teacher 34.50 30.42 30.54 29.45 28.40 32.11 35.19 33.47 28.89 31.44
MF2F - online with teacher 34.48 30.44 31.13 29.91 28.92 32.08 35.20 33.44 28.91 31.61
MF2F - offline no teacher 34.66 30.49 30.20 29.38 28.36 32.19 35.50 33.58 28.98 31.48
MF2F - offline with teacher 34.63 30.52 31.16 29.55 28.92 31.93 35.52 33.61 29.04 31.65

Table B.3: Results for UDVD and MF2F trained on individual noisy videos for 𝜎 = 30. The
top block show PSNR values for UDVD trained on each individual video sequence with and without
data augmentation (spatial flipping(F) and time-reversal(TR)) and early stopping (ES). Early stopping
was performed using the last 5 frames of each video as the held-out set. The last block shows the
result of running MF2F [29] with all the 5 different fine-tuning scheme proposed in Ref. [29]. With the
augmentations and early stopping, UDVD-S, on average outperforms UDVD and FastDVDnet trained
on the full DAVIS dataset (indicated by ∗) and MF2F which fine-tunes a pre-trained FastDVDNet on
each individual video. The best performing method for each video is highlighted in bold and the best
performing method in each block is highlighted in italics. The tennis-vest video is from DAVIS and the
rest of the 8 videos are from Set8.

1. DAVIS [106]: We take all the 30 sequences from the test set of the DAVIS Challenge 2017.

2. Set8 [130]: Following FastDVDNet [130], we use 4 sequences from the GoPro set (hyper-

smooth, motorbike, rafting, snowboard) and 4 sequences from the Derfs Test Media Collec-

tion (park_joy, sunflower, touchdown, tractor).

3. Derfs: Following [29], we use 7 sequences from the Derfs Test Media Collection, which are

park_joy, sunflower, touchdown, tractor (shared with Set8), and blue_sky, old_town_cross,

pedestrian_area. We use the first 85 frames from each sequences with a spatial-resolution

of 960 × 540 [130].

118

𝜎 = 90

ten-v snow hyper raft motor trac sunf touch park mean

No. of frames 75 59 37 29 32 85 85 85 85 -

No Aug (without ES) 24.13 22.89 22.04 20.99 20.06 24.84 25.98 25.67 23.35 23.33
No Aug (with ES) 30.15 25.49 27.48 26.05 23.79 28.18 31.91 29.87 25.46 27.60
F (without ES) 27.21 24.42 24.05 23.32 21.84 27.42 29.53 28.01 25.03 25.65
F (with ES) 30.35 25.60 27.72 26.16 23.89 28.71 32.17 29.93 25.59 27.79
F+TR (without ES) 27.11 24.77 24.25 23.55 21.98 27.80 30.22 28.56 25.44 25.96
F+TR (with ES) 30.40 25.59 27.75 26.16 23.92 28.63 32.18 29.96 25.62 27.80

UDVD∗ 28.78 25.16 26.78 25.81 23.57 26.42 29.04 28.71 24.23 26.50
FastDVDnet∗ 29.44 25.25 27.30 26.35 23.68 27.42 30.29 29.61 24.72 27.12

MF2F - 8 sigmas 28.79 25.04 27.14 26.21 23.56 26.89 29.19 29.04 24.35 26.69
MF2F - online no teacher 28.35 25.12 26.67 26.07 23.39 27.28 30.01 29.49 24.64 26.78
MF2F - online with teacher 29.44 25.25 27.30 26.35 23.68 27.42 30.09 29.53 24.71 27.08
MF2F - offline no teacher 28.70 25.17 26.64 26.02 23.41 27.42 30.29 29.60 24.72 26.89
MF2F - offline with teacher 28.79 25.25 27.22 26.31 23.62 27.34 30.29 29.61 24.69 27.01

Table B.4: Results for UDVD and MF2F trained on individual noisy videos for 𝜎 = 90. The
top block show PSNR values for UDVD trained on each individual video sequence with and without
data augmentation (spatial flipping(F) and time-reversal(TR)) and early stopping (ES). Early stopping
was performed using the last 5 frames of each video as the held-out set. The last block shows the
result of running MF2F [29] with all the 5 different fine-tuning scheme proposed in Ref. [29]. With the
augmentations and early stopping, UDVD-S, on average outperforms, UDVD or FastDVDnet trained on
the full DAVIS dataset (indicated by ∗) and MF2F which fine-tunes on a pre-trained FastDVDNet on
each individual video. The best performing method for each video is highlighted in bold and the best
performing method in each block is highlighted in italics. The tennis-vest video is from DAVIS and the
rest of the 8 videos are from Set8.

4. Vid3oC [62]: We use the first 10 sequences (000 to 009) out of the 50 available sequences.

B.4.2 Ablation study

We train UDVD-S on 128× 128 patches extracted from the noisy video. (see Section B.1.3) for

more details). For each patch, we apply each of the following data augmentations at random:

1. Spatial flipping: We flip all the 5 input patches vertically or horizontally. This operation

only rearranges the pixel location and does not combine the pixel together in anyway,

making sure that the noise statistics is still preserved after the augmentation.

119

2. Time reversal: We reverse the order of frames in the input to generate a new video. Like

spatial flipping, this operation also preserves the noise statistics.

In addition to data augmentation, we employ early stopping by choosing the model param-

eters which produced the best error on a a held-out set of frames. We pick the last 5 frames of

each video as our held out set. Tables B.3 and B.4 show an ablation study over data augmenta-

tions and early stopping for 9 different videos at two different noise levels, 𝜎 = 30 and 𝜎 = 90.

Across videos and noise levels, data augmentation and early stopping significantly increase the

performance of our method.

B.5 Denoising Results on Real-world Datasets

Raw videos: The estimated ground truth, noisy raw data [147], and the denoised videos obtained

with UDVD can be found on the official github repository (raw_video.mp4). The videos were

converted to RGB for illustration.

As discussed in Section 3.5, UDVD was directly trained on the mosaiced raw videos. Existing

unsupervised video denoising methods, like MF2F [29], cannot be applied directly on this dataset

as their pre-trained backbone expects an input in the RGB domain. In Ref. [29], the authors con-

vert mosaiced videos into the RGB domain, apply MF2F [29] and transform the denoised RGB

videos back.

Fluorescence and electronmicroscopy data: The noisy fluorescence microscopy and electron

microscopy data, and the denoised videos obtainedwith UDVD can be found on the official github

repository (fluoro_1.mp4, fluoro_2.mp4 and electron.mp4).

120

B.6 Generalization Across Noise and Frame Rate

Ideally, a denoiser should be able to denoise videos corrupted at a wide range of noise lev-

els. This is usually achieved by training the CNN on examples corrupted with a range of noise

strength [129, 130, 150]. The range of noise levels on which the network is trained is called the

training range of the network.

Generalization outside the training range: The authors of [96] showed that CNNs trained

for image denoising generalize well on test images corrupted with noise in the training range,

but fails catastrophically when corrupted with noise strength outside the training range. The au-

thors provided evidence that the overfitting is due to additive terms in the convolutional layers

(and BatchNorm [55]) and showed that a CNN with no additive terms, called a bias-free CNN

generalizes well outside the training range. UDVD uses a bias-free architecture and generalizes

well to noise levels outside its training range (Fig B.2).

Generalization across frame rates: To test generalization across frame rates, we simulated

faster videos by skipping frames of videos in Set8. Fig B.2 shows that UDVD generalizes robustly

to faster videos andmaintains a significant gain in performance over single-image denoising even

when tested on videos where a large number of frames have been skipped (i.e. at a very low frame

rate).

121

20 30 40 50 60 70 80
Noise

27

28

29

30

31

32

33

PS
N

R
Generalisation across noise levels

UDVD
FastDVDnet
UDVD training sigma
FastDVDnet training range

1 2 3 4 5 6
Frame hops

30.8

31.0

31.2

31.4

31.6

31.8

PS
N

R

Generalisation across frame rate

UDVD
FastDVDnet
UDVD (1 frame)

Figure B.2: Generalization across noise levels and frame rates. (left) UDVD trained at only 𝜎 = 30
generalizes well to noise levels not seen during training. The plotted points represent mean PSNR values
evaluated on Set8. (right) UDVD generalizes well to faster videos (created by skipping frames) and
consistently outperforms a baseline image denoiser (UDVD with a single input frame, shown as a green
dashed line).

B.7 Analysis of CNN-based Video Denoising

B.7.1 Natural Videos

In Section 3.6 we examined the equivalent filters and illustrated that UDVD learns to denoise

by performing an average over a spatiotemporal neighbourhood of each pixel. Here we examine

equivalent filters for more videos and a supervised CNN (FastDVDnet) and show that similar

observations hold.

Adaptive filtering: Fig B.4 and B.5 shows filters computed at a pixel for 2 different videos at 4

different noise levels. The filters adapt to the underlying signal content. They span larger areas

as the noise level increases. These observations also holds for FastDVDnet, which is trained with

supervision (Fig B.6)

Contribution of neighbouring frames for denoising: UDVD tends to ignore temporally dis-

tant frames at lower noise levels as shown in Fig B.4 and B.5. This phenomenon is quantified in

Fig B.3 by plotting the contribution of each frame to the denoised pixel by averaging over 5000

122

pixels from 250 random patches of size 128 × 128. At higher noise levels, UDVD seems to use

distant frames more. This is consistent with the ablation study, which shows that for higher noise

levels using more surrounding frames improves the denoising performance. Similar results hold

for supervised CNN FastDVDnet, as shown in Fig B.6.

Local Averaging: The weighting functions or equivalent filters perform an approximate aver-

aging operation. They are mostly non-negative (although they do have some negative entries as

depicted in blue in Fig B.4, B.5, ?? and ??) and they approximately sum up to one (see Fig B.3).

B.7.2 Real-world Data

Equivalent filters for the raw video, the fluorescence-microscopy and the electron-microscopy

data are shown in Fig B.7. The fluorescence -microscopy data have a low noise level. As expected

from the results on natural videos (see Section B.3), the weighting functions are mostly confined

to the middle frame (as quantified in Fig B.3). In the electron-microscopy dataset the weighting

functions shows that the network relies on adjacent frames to estimate the denoised (as quantified

in Fig B.3).

B.7.3 Motion Estimation

Figures B.4 and B.5 show that the equivalent filters in adjoining frames are automatically

shifted spatially to account for the movement of objects in the videos. We extracted motion in-

formation using the shift as explained in Section 6. Figures B.8, B.9, ?? and ?? show additional

examples for UDVD and FastDVDnet. The estimated optical flow is mostly consistent with the es-

timated obtained by DeepFlow [139] applied on the clean videos. The motion estimates obtained

from the equivalent filters tends to be less accurate for pixels near strongly correlated features or

highly homogeneous regions where the local motion is ambiguous.

123

t-2 t-1 t t+1 t+2
Frames

0.0

0.1

0.2

0.3

0.4

0.5

Su
m

 o
f e

nt
ri

es
 o

f e
ac

h
fil

te
r sigma

20
60
100

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
Sum of values of equivalent filter

t-2 t-1 t t+1 t+2
Frames

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Su
m

 o
f e

nt
ri

es
 o

f e
ac

h
fil

te
r

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
Sum of values of equivalent filter

t-2 t-1 t t+1 t+2
Frames

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Su
m

 o
f e

nt
ri

es
 o

f e
ac

h
fil

te
r

3 2 1 0 1 2 3
Sum of values of equivalent filter

Figure B.3: Quantitative analysis of equivalent filters. Left column: The graphs show the sum of the
entries of the equivalent filters in each frame, averaged over 5000 pixels from 250 random patches of size
128× 128. For all datasets, the central frame dominates. For the DAVIS dataset (top), the contribution
from the other frames increases with the noise level. For the fluorescence-microscopy data (mid) the
contribution of the other frames is rather low, due to the high signal-to-noise ratio. For the electron-
microscopy dataset the contribution of the other frames is larger (bottom). Right column: Histogram
of the sum of all entries in the equivalent filters (over all 5 frames) for 5000 pixels from 250 random
patches of size 128× 128 from the DAVIS test set (top), the fluorescence-microscopy dataset (mid) and
the electron-microscopy dataset (bottom). For the DAVIS and fluorescence-microscopy datasets, the
filters sum to 1 in most cases. The peak of electron microscopy deviates significantly from 1. This could
be due to the noise model, which has non-Gaussian characteristics (it is Poisson with low counts).

124

30
1.5

1.0

0.5

0.0

0.5

1.0

1.5

45
1.0

0.5

0.0

0.5

1.0

60
0.75

0.50

0.25

0.00

0.25

0.50

0.75

75

1.0

0.5

0.0

0.5

1.0

𝜎 𝑦𝑡 𝑑𝑡 𝑎(𝑡 − 2, 𝑖) 𝑎(𝑡 − 1, 𝑖) 𝑎(𝑡 , 𝑖) 𝑎(𝑡 + 1, 𝑖) 𝑎(𝑡 + 2, 𝑖)

Figure B.4: Video denoising as spatiotemporal adaptive filtering; giant-slalom video from the
DAVIS dataset. Visualization of the linear weighting functions (𝑎(𝑘 , 𝑖), Section 3.6) of UDVD. The left
two columns show the noisy frame 𝑦𝑡 at four levels of noise, and the corresponding denoised frame, 𝑑𝑡 .
Weighting functions 𝑎(𝑘 , 𝑖) corresponding to the pixel 𝑖 (at the intersection of the dashed white lines), for
five successive frames, are shown in the last five columns. The weighting functions adapt to underlying
image content, and are shifted to track the motion of the skier. As the noise level 𝜎 increases, their
spatial extent grows, averaging out more of the noise while respecting object boundaries. The weighting
functions corresponding to the five frames approximately sum to one, and thus compute a local average
(although some weights are negative, depicted in blue) as explained in Section B.7.1.

125

30
2

1

0

1

2

45

2

1

0

1

2

60

2

1

0

1

2

75

1.5

1.0

0.5

0.0

0.5

1.0

1.5

𝜎 𝑦𝑡 𝑑𝑡 𝑎(𝑡 − 2, 𝑖) 𝑎(𝑡 − 1, 𝑖) 𝑎(𝑡 , 𝑖) 𝑎(𝑡 + 1, 𝑖) 𝑎(𝑡 + 2, 𝑖)

Figure B.5: Video denoising as spatiotemporal adaptive filtering; rafting video from the GoPro
dataset. Visualization of the equivalent filters, as described in Fig B.4.

126

30
0.75

0.50

0.25

0.00

0.25

0.50

0.75

45

0.6

0.4

0.2

0.0

0.2

0.4

0.6

60

0.6

0.4

0.2

0.0

0.2

0.4

0.6

75

2

1

0

1

2

𝜎 𝑦𝑡 𝑑𝑡 𝑎(𝑡 − 2, 𝑖) 𝑎(𝑡 − 1, 𝑖) 𝑎(𝑡 , 𝑖) 𝑎(𝑡 + 1, 𝑖) 𝑎(𝑡 + 2, 𝑖)

Figure B.6: Video denoising using FastDVDnet as spatiotemporal adaptive filtering; bus video
from the DAVIS dataset. Visualization of the linear weighting functions (𝑎(𝑘 , 𝑖), Section 3.6) of
FastDVDnet which is trained with supervision. The left two columns show the noisy frame 𝑦𝑡 at four
levels of noise, and the corresponding denoised frame, 𝑑𝑡 . Weighting functions 𝑎(𝑘 , 𝑖) corresponding to
the pixel 𝑖 (at the intersection of the dashed white lines), for five successive frames, are shown in the
last five columns. The weighting functions adapt to underlying image content, and are shifted to track
the motion of the stop sign. As the noise level 𝜎 increases, their spatial extent grows, averaging out
more of the noise while respecting object boundaries. The behavior is very similar to the corresponding
filters of UDVD as shown in Fig ??.

127

0.4

0.2

0.0

0.2

0.4

1.0

0.5

0.0

0.5

1.0

3

2

1

0

1

2

3

4

2

0

2

4

6

4

2

0

2

4

6

2

1

0

1

2

0.4

0.2

0.0

0.2

0.4

0.4

0.2

0.0

0.2

0.4

𝑦𝑡 𝑑𝑡 𝑎(𝑡 − 2, 𝑖) 𝑎(𝑡 − 1, 𝑖) 𝑎(𝑡 , 𝑖) 𝑎(𝑡 + 1, 𝑖) 𝑎(𝑡 + 2, 𝑖)

Figure B.7: Equivalent filters of UDVD when applied to real-world data. Visualization of the
linear weighting functions (𝑎(𝑘 , 𝑖), Section 3.6) of UDVD trained to denoise raw video, fluorescence
and electron microscopy data. The left two columns show the noisy frame 𝑦𝑡 and the corresponding
denoised frame, 𝑑𝑡 . Weighting functions 𝑎(𝑘 , 𝑖) corresponding to the pixel 𝑖 (at the intersection of
the dashed white lines), for five successive frames, are shown in the last five columns. In raw video
data and fluorescence-microscopy data, the contributions from neighbouring frames are smaller. For
electron-microscopy data they are larger (see also Fig B.3).

128

𝜎 (a) Noisy Frame (b) DeepFlow on Clean
Frame (c) FastDVDnet (d) Ours

30

45

60

75

Figure B.8: CNNs trained for denoising automatically learn to perform motion estimation.
(a) Noisy frame from giant-slalom video in the DAVIS dataset. (b) Optical flow direction at multiple
locations of the image obtained using a state-of-the-art algorithm applied to the clean video. Optical flow
direction estimated from the shift of the adaptive filter obtained from the gradients of (c) FastDVDnet
and (d) UDVD, both of which are trained with no optical flow information. FastDVDnet is trained with
supervision. Optical flow estimates are well-matched to those in (b), but are not as accurated at oriented
features, and in homogeneous regions where local motion is not well defined (e.g. in the background).
Each row corresponds to a different noise levels. At higher noise levels, the networks perform averages
over more frames, improving the motion estimation results.

129

𝜎 (a) Noisy Frame (b) DeepFlow on Clean
Frame (c) FastDVDnet (d) Ours

30

45

60

75

Figure B.9: CNNs trained for denoising automatically learn to perform motion estimation;
rafting video from Set8. Motion estimated from the gradients of UDVD and FastDVDnet. See
description of Figure B.8.

130

C | GainTuning

C.1 Datasets

We perform controlled experiments on datasets with different signal and noise structure to

evaluate the broad applicability of GainTuning (see Figure C.1 for a visual summary of datasets).

We describe each dataset below:

Generic natural images. We use 400 images from BSD400 [87] dataset for pre-training CNNs.

We evaluate on two test sets, Set12 and Set68, with 12 and 68 images, respectively [150].

Images of urban scenes. We evaluate generalization capabilities of GainTuning using a dataset

of images captured in urban settings, Urban100 [53]. These images often contain repeating pat-

terns and structures, unlike generic natural images (see Figure C.1). We evaluate GainTuning on

the first 50 images from this dataset.

Images of scanned documents. Weuse images of scanned documents from the IUPR dataset [17].

We resized the images in IUPR dataset by a factor of 6, and used the first 50 images from the dataset

for evaluation.

Simulated piecewise constant images. We use a dataset of simulated piecewise constant im-

ages. These images have constant regions with boundaries consisting of various shapes such as

circles and lines with different orientations. The constant region has an intensity value sampled

from a uniform distribution between 0 and 1 (see Figure C.1). These piecewise constant images

provide a crude model for natural images [73, 88, 105], and a CNN pre-trained on this dataset pro-

131

vides a substrate for testing the ability of GainTuning to adapt to the complexity of real-world

images.

C.2 Details of pre-training and GainTuning

In this section, we describe the implementation details of the pre-training process and our

proposed GainTuning framework.

While performing GainTuning, we introduce a scalar multiplicative parameter (gain) in every

channel of the convolutional layers in the denoising CNN.We do not introduce gain parameters in

the last layer of the network. We describe the general optimization process for GainTuning here,

and describe any additional modifications for specific datasets in the supplementary material of

Ref. [94].

Data. We performGainTuning on patches extracted from the noisy image. We extracted 400×400

patches for the electron microscopy dataset, and 50× 50 patches for all other datasets. We do not

perform any data augmentation on the extracted patches.

BatchNorm layers during GainTuning. If the denoising CNN contains batch normalization

(BN) layers (only DnCNN [150] and BFCNN [96] in our experiments), we freeze their statistics

while performing GainTuning. That is, we do not re-estimate the mean and standard deviation

parameter for each layer from the test data. Instead, we re-use the original values estimated from

pre-training dataset.

Optimization for GainTuning. We use Adam [64] optimizer. We empirically find that training

for 100 steps with a starting learning rate of 10−4 which is reduced to 10−5 after the 20th step

performs well across most situations (see sections below for hyper-parameters used in different

experiments). Here, we define each step as a pass through 5000 random patches extracted from

the test image. When performing experiments which compare optimizing all parameters to op-

timizing only gain during the adaptation process, we kept the learning rate constant at 10−5 for

132

BSD400 Set12

BSD68 Urban100

IUPR Piecewise constant images

Figure C.1: Example images from different dataset. Nine images chosen at random from each
dataset. 133

both options, and trained for 1000 steps.

C.3 Approximation for SURE

Let x be an𝑁 -dimensional ground-truth random vector x and let y := x+n be a corresponding

noisy observation, where n ∼ N(0,𝜎2
𝑛I). Stein’s Unbiased Risk Estimator (SURE) provides an ex-

pression for the mean-squared error between x and the denoised estimate 𝑓𝜃 (y) (where 𝑓𝜃 denotes

an arbitrary denoising function), which only depends on the distribution of noisy observations y:

Ex,y

[
1
𝑁

∥x − 𝑓𝜃 (y)∥2
]
= Ey

[
1
𝑁

∥y − 𝑓𝜃 (y)∥2 − 𝜎2 + 2𝜎2

𝑁

𝑁∑︁
𝑘=1

𝜕(𝑓𝜃 (y)𝑘)
𝜕y𝑘

]
(C.1)

The last (divergence) term in the equation is costly to compute. Therefore, we make use of a

Monte Carlo approximation of SURE introduced by Ref. [112]:

𝑁∑︁
𝑘=1

𝜕(𝑓𝜃 (y)𝑘)
𝜕y𝑘

≈ 1
𝜖𝑁

⟨ñ, 𝑓𝜃 (y + 𝜖ñ) − 𝑓𝜃 (y)⟩ (C.2)

where ⟨x,y⟩ represents the dot product between x and y, �̃� represents a sample fromN(0, 1),

and 𝜖 represents a fixed, small, positive number. We set 𝜖 = 𝜎×1.4×10−4 for our computational ex-

periments [123]. Equation (C.2) has been used in the implementation of several traditional [112],

and deep learning based [91, 123, 124] denoisers.

C.4 GainTuning prevents overfitting

We perform controlled experiments to compare test-time updating of (1) all parameters of a

CNN, and (2) only the gain parameters. We briefly describe each experiment and our findings in

this section.

Comparison across different cost functions. We fine-tune (a) all parameters, and (b) only gain

134

parameters of a DnCNN [150] model when the test image is (1) in-distribution, (2) corrupted with

out-of-distribution noise and (c) contains image features which are different from the training

set. Fine-tuning only the gain parameters outperforms fine-tuning all parameters in all of these

situations for different choices of cost functions (see Figures C.2, C.3 and C.4)

Comparison across different architectures. We fine-tune (a) all parameters, and (b) only

gain parameters of a DnCNN [150], BFCNN [96] and, UNet [116] model when the test image

is (a) in-distribution, (b) corrupted with out-of-distribution noise and (c) contains image features

which are different from the training set. Fine-tuning only the gain parameters often outperforms

fine-tuning all parameters in all of these situations for different choices of cost functions (see

Figure C.5). Figure C.5 shows results for a CNN trained on generic natural images and tested on

images of urban scenes. In this case, training all parameters of the CNN outperforms training

only the gains (see Section 4.7 for a discussion). Interestingly, training gains is comparable to

training all parameters when we corrupt the images from urban scenes with a noise level that is

also outside the training range (see Figure C.6).

GainTuning does not require early stopping. Optimizing all parameters of a CNN during

adaptation often results in overfitting (see Figure C.5). In contrast, optimizing only the gain pa-

rameters for longer periods of time results improves performance without overfitting (FigureC.7).

Real electron microscopy data. We fine-tune (a) all parameters, and (b) gain parameters to

adapt a CNN to real images of nanoparticle acquired through an electron microscope. The CNN

was pre-trained on the simulated data described in Section C.1. Optimizing only the gain param-

eters outperforms optimizing all parameter and does not require early stopping (Figure C.8)

GainTuning outperforms fine-tuning last few layers of the CNN. We compared GainTun-

ing to selectively fine-tuning last 𝑛 layers for DnCNN with 𝑛 = 20 layers. GainTuning out-

performed fine-tuning last layers by a substantial margin (see Table C.1 for details). Note that

gains only constitute 1.15K or 0.17% of the parameters, while fine-tuning only the last 2 layers is

37K or 5.63% parameters (about 33x more than the number of gains). The in-distribution and out-

135

Loss In-distribution Out-of-distribution
noise

Out-of-distribution
signal

SURE

All Gain

-1.0

 0.0

 1.0

PS
NR

All Gain
 0.0

 2.0

 4.0

PS
NR

All Gain

-10.0

-5.0

 0.0

PS
NR

Noise
Resam-
pling

All Gain

-1.0

 0.0

 1.0

PS
NR

All Gain
 0.0

 2.0

 4.0

PS
NR

All Gain

-10.0

-5.0

 0.0

PS
NR

Figure C.2: GainTuning prevents overfitting. Comparison of adaptive training of all network pa-
rameters, and GainTuning (training of gains only), using two different unsupervised objectives - SURE
(top) and noise resampling (bottom). The distributions of performance improvements are shown as box
plots. See Figure C.3 for corresponding scatterplots. For in-distribution, we evaluate a CNN pre-trained
on natural images corrupted with Gaussian noise of standard deviation 𝜎 ∈ [0, 55] on natural images
(Set12) at 𝜎 = 30. For out-of-distribution noise we evaluate natural images (Set12) at 𝜎 = 70. For
out-of-distribution signal we evaluate a CNN trained on piecewise constant images at 𝜎 ∈ [0, 55] on
natural images (set12) at 𝜎 = 30. Please refer to Section C.5 for details.

of-distribution noise consists of adapting a DnCNN trained on natural images with 𝜎 ∈ [0, 55]

for natural images (Set12) with 𝜎 = 30 and 𝜎 = 70 respectively. We adapted a CNN trained on

piecewise constant images with 𝜎 ∈ [0, 55] to natural images (Set12) with 𝜎 = 30 for out-of-

distribution signal experiments.

C.5 Performance of GainTuning

C.5.1 In-distribution test image

Different architectures. We evaluated DnCNN [150], UNet [116] and BFCNN [96] architectures

for this task. All models were trained on denoising Gaussian white noise of standard deviation

𝜎 ∈ [0, 55] from generic natural images. Results of DnCNN and UNet are presented in Figure 4.3

in the main paper. Results for the BFCNN architecture are provided in Table C.2.

136

Loss In-distribution Out-of-distribution
noise

Out-of-distribution
signal

SURE

28 30 32
Original PSNR

28

29

30

31

32

Ga
in

Tu
ni

ng
 P

SN
R

22 24 26 28
Original PSNR

22

24

26

28

Ga
in

Tu
ni

ng
 P

SN
R

20 30
Original PSNR

15

20

25

30

Ga
in

Tu
ni

ng
 P

SN
R

Noise
Resam-
pling

28 30 32
Original PSNR

28

29

30

31

32

Ga
in

Tu
ni

ng
 P

SN
R

22 24 26 28
Original PSNR

22

24

26

28

Ga
in

Tu
ni

ng
 P

SN
R

25.0 27.5 30.0
Original PSNR

24

26

28

30

Ga
in

Tu
ni

ng
 P

SN
R

all
gain

Figure C.3: GainTuning prevents overfitting. Performance obtained from adaptively training all
network parameters (blue points), compared to GainTuning (orange points) using the SURE loss, plotted
against performance of the originally trained network. Each data point corresponds to one image in
the dataset. The dashed line represents the identity (i.e., no improvement). Training all parameters
(blue points) often leads to degraded performance, but training only the gains (orange points), leads
to an improvement. For in-distribution test images, we evaluate a CNN pre-trained on natural images
corrupted with Gaussian noise of standard deviation 𝜎 ∈ [0, 55] on natural images (Set12) at 𝜎 = 30.
For out-of-distribution noise we test on natural images (Set12) at 𝜎 = 70. For out-of-distribution signal
we test a CNN trained on piecewise constant images at 𝜎 ∈ [0, 55] on natural images (set12) at 𝜎 = 30.
Please refer to Section C.5 for details.

137

In-distribution Out-of-distribution noise Out-of-distr. signal

Gaussian (𝜎 = 70) Poisson (𝜁 = 0.5)

All Gain

-7.5

-5.0

-2.5

 0.0
PS

NR

All Gain

-10.0

-7.5

-5.0

-2.5

 0.0

PS
NR

All Gain
-10.0

-5.0

 0.0

PS
NR

All Gain
-7.5

-5.0

-2.5

 0.0

 2.5

PS
NR

25 30
Original PSNR

22

24

26

28

30

32

Ga
in

Tu
ni

ng
 P

SN
R

all
gain

20 25
Original PSNR

17.5

20.0

22.5

25.0

27.5
Ga

in
Tu

ni
ng

 P
SN

R
all
gain

10 15 20 25
Original PSNR

10

15

20

25

Ga
in

Tu
ni

ng
 P

SN
R

all
gain

25 30
Original PSNR

22

24

26

28

30

Ga
in

Tu
ni

ng
 P

SN
R

all
gain

Figure C.4: GainTuning prevents overfitting. Comparison of adaptive training of all network param-
eters, and GainTuning (training of gains only) using blind-spot cost function. The distribution of the
gain in performance is visualized as a box plot. For in-distribution, we evaluate a CNN pre-trained on
natural images corrupted with Gaussian noise of standard deviation 𝜎 ∈ [0, 55] on natural images (Set12)
at 𝜎 = 30. For out-of-distribution noise we evaluate natural images (Set12) at 𝜎 = 70 (Gaussian noise),
and 𝜁 = 0.5 for Poisson noise. For out-of-distribution signal we evaluate a CNN trained on piecewise
constant images at 𝜎 ∈ [0, 55] on natural images (Set 12) at 𝜎 = 30. We used network architecture in
[68] for our experiments.

Different cost functions. We provide the results of evaluating DnCNN architecture with dif-

ferent cost functions in Table C.6.

C.5.2 Out-of-distribution noise

DifferentArchitectures. We summarize the results usingDnCNN in Table 4.4 in themain paper.

Figure C.5 shows that the UNet architecture is also able to generalize to out-of-distribution noise.

Different Loss Functions. We provide the results of evaluating DnCNN architecture with dif-

ferent cost functions in Table C.6.

Comparison to baselines. Table C.3 summarizes the result of evaluating a DnCNN trained on

generic natural images for 𝜎 ∈ [0, 55] on a test set of generic natural images corrupted with

𝜎 = {70, 80}, which is outside the training range of the network. GainTuning is able to generalize

138

In distribution. Natural images (𝜎 ∈ [0, 55])→ Set12 (𝜎 = 30)

All Gain

-1.0

-0.5

 0.0

 0.5
PS

NR

All Gain
-0.5

 0.0

 0.5

 1.0

PS
NR

All Gain

-0.5

-0.2

 0.0

 0.2

 0.5

PS
NR

0 200 400 600 800
Number of Epochs

1.5

1.0

0.5

0.0

0.5

PS
NR

Whole
Gain

0 200 400 600 800
Number of Epochs

0.25

0.00

0.25

0.50

0.75

1.00

PS
NR

Whole
Gain

0 200 400 600 800
Number of Epochs

0.6

0.4

0.2

0.0

0.2

0.4

PS
NR

Whole
Gain

Out-of-distribution noise. Natural images (𝜎 ∈ [0, 55])→ Set12 (𝜎 = 70)

All Gain

 1.0

 2.0

 3.0

 4.0

PS
NR

All Gain

 4.0

 5.0

 6.0

 7.0

PS
NR

All Gain
-1.5

-1.0

-0.5

 0.0

 0.5

PS
NR

0 200 400 600 800
Number of Epochs

0

1

2

3

4

5

PS
NR

Whole
Gain

0 200 400 600 800
Number of Epochs

0

2

4

6

8

PS
NR

Whole
Gain

0 200 400 600 800
Number of Epochs

1.5

1.0

0.5

0.0

0.5

PS
NR

Whole
Gain

Out-of-distribution signal. Natural images (𝜎 ∈ [0, 55])→ Urban100 (𝜎 = 30)

All Gain
 0.0

 0.5

 1.0

 1.5

PS
NR

All Gain
 0.0

 0.5

 1.0

 1.5

 2.0

PS
NR

All Gain
 0.0

 0.5

 1.0

 1.5

PS
NR

0 200 400 600 800
Number of Epochs

0.0

0.5

1.0

1.5

PS
NR

Whole
Gain

0 100 200 300 400 500
Number of Epochs

0.0

0.5

1.0

1.5

2.0

PS
NR

Whole
Gain

0 200 400 600 800
Number of Epochs

0.0

0.5

1.0

1.5

PS
NR

Whole
Gain

DnCNN UNet BFCNN
Figure C.5: GainTuning prevents overfitting. We compare training all parameters of the network
(blue) and only the gain parameters (orange) during the adaptation process. All architectures are trained
using the SURE cost function.

139

DnCNN BFCNN

All Gain
 1.0

 2.0

 3.0

 4.0

 5.0

PS
NR

All Gain

 0.0

 1.0

 2.0

PS
NR

0 200 400 600 800
Number of Epochs

0

1

2

3

4

5

PS
NR

Whole
Gain

0 200 400 600 800
Number of Epochs

0.5

0.0

0.5

1.0

PS
NR

Whole
Gain

Figure C.6: Out-of-distribution noise and signal. We compare training all parameters of the network
(blue), and only the gain parameters (orange) during the adaptation process. The CNN is pre-trained
on generic natural images corrupted with Gaussian noise of standard deviation 𝜎 ∈ [0, 55]. We apply
GainTuning to adapt it to images of urban scenes (high self-similarity, hence different signal character-
istics from natural images) corrupted with 𝜎 = 70 (which is outside the training range of noise). All
architectures are trained using the SURE cost function.

140

In-distribution
Natural images (𝜎 ∈ [0, 55]) → Set12 𝜎 = 30

Out-of-distribution noise
Natural images (𝜎 ∈ [0, 55])→ Set12 𝜎 = 70

0 200 400 600 800 1000
Number of Epochs

0.0

0.1

0.2

0.3

0.4

PS
NR

0 200 400 600 800 1000
Number of Epochs

0

1

2

3

4

PS
NR

Out-of-distribution image
Natural images (𝜎 ∈ [0, 55])→ Urban100 𝜎 = 30

Out-of-distribution image and noise
Natural images (𝜎 ∈ [0, 55]) → Urban100 𝜎 = 70

0 200 400 600 800 1000
Number of Epochs

0.0

0.2

0.4

0.6

0.8

PS
NR

0 200 400 600 800 1000
Number of Epochs

0

1

2

3

4

5

PS
NR

Figure C.7: GainTuning does not require early stopping. We plot the improvement in performance
achieved by GainTuning with the number of iterations. Each iteration step is a pass through 10000
random 50× 50 patch extracted from the image. The performance achieved by optimizing only the gain
parameters remains constant or monotonically increases with iteration, while training all parameters
often overfits (see Figure C.5)

141

Gradient
Steps All parameters Gain parameters

0

1.5K

2.5K

5K

10K

25K

50K

Figure C.8: GainTuning prevents overfitting in TEM data. We compare training all parameters
and only the gain parameters while adapting a CNN pre-trained on simulated TEM data to real TEM
data. Training all parameters clearly overfits to the noisy image. Each gradient step is updated over
two random patches of size 400 × 400.

142

Fine-tuning

All params Last 𝑛 layers Only gains
𝑛 = 10 𝑛 = 4 𝑛 = 3 𝑛 = 2 𝑛 = 1

Num. params
(% of total params)

668,225
(100%)

334,081
(49.95%)

111,745
(16.72%)

74,689
(11.18%)

37,633
(5.63%)

577
(0.09%)

1,152
(0.17%)

in-distribution -0.33 0.09 0.05 0.04 0.04 0.06 0.14
out-of-distr.

noise 1.92 1.92 2.05 2.06 2.10 2.13 3.11

out-of-distr.
signal -4.48 0.92 1.12 1.06 0.93 0.83 1.45

Table C.1: GainTuning vs selectively fine-tuning last few layers. We compared GainTuning to
selectively fine-tuning last 𝑛 layers for a DnCNN with 𝑛 = 20 layers. Table entries indicate the change
in performance (i.e., the performance in PSNR after fine-tuning minus the PSNR of the pre-trained
network - larger positive values are better). Across different tasks, GainTuning outperformed fine-
tuning last layers by a significant margin. The in-indistribution and out-of-distribution signal consists of
adapting a DnCNN trained on natural images with 𝜎 ∈ [0, 55] for natural images (Set12) with 𝜎 = 30
and 𝜎 = 70 respectively. We adapted a CNN trained on piecewise constant images with 𝜎 ∈ [0, 55] to
natural images (Set12) with 𝜎 = 30 for out-of-distribution signal experiments.

effectively to this out-of-distribution test set. GainTuning achieves comparable performance to

a network trained with supervision on a large range of noise levels (𝜎 ∈ [0, 100]), and a bias-

free model which is explicitly designed to generalize to noise levels outside the training range.

GainTuning also outperforms LIDIA [133] (a specialized architecture and adaptation procedure).

and Self2Self [110] (a method trained exclusively on the test image).

C.5.3 Out-of-distribution image

Different Architectures. We summarize the results using DnCNN in Table 4.4 in the main

paper. Figures C.5 show that the UNet and BFCNN architectures are also able to generalize to

test data with different characteristics from the training data when adapted using GainTuning .

Different Loss Functions. We provide the results of evaluating the DnCNN architecture with

different cost functions in Table C.6.

143

Model 𝜎
Set12 Set68

Pre-trained GainTuning Pre-trained GainTuning

BFCNN 30 29.52 29.61 28.36 28.45

Table C.2: Results for BFCNN. Results for BFCNN [96] architecture trained on BSD400 dataset
corrupted with Gaussian noise of standard deviation 𝜎 ∈ [0, 55]. Results for other architectures are
provided in Section 4.5.1.

Test set 𝜎
Trained on 𝜎 ∈ [0, 55] Baselines

Bias Free
Model [96]

Trained on
𝜎 ∈ [0, 100]

LIDIA [133] S2S [110]
Pre-trained GainTuning Pre-trained Adapted

Set12 70 22.45 25.54 25.59 25.50 23.69 25.01 24.61
80 18.48 24.57 24.94 24.88 22.12 24.17 23.64

BSD68 70 22.15 24.89 24.87 24.88 23.28 24.57 24.29
80 18.72 24.14 24.38 24.36 21.87 23.97 23.65

Table C.3: GainTuning for out-of-distribution noise. We evaluate a DnCNN trained on generic
natural images for 𝜎 ∈ [0, 55] on a test set of generic natural images corrupted with 𝜎 = {70, 80},
which is outside the training range of the network. GainTuning is able is generalize effectively to this
out-of-distribution test set. GainTuning achieves comparable performance to a network trained with
supervision on a large range of noise levels (𝜎 ∈ [0, 100]) an bias-free models which is an architecture
explicitly designed to generalize to noise levels outside the training range. GainTuning also outperforms
LIDIA [133], a specialized architecture and adaptation procedure, and Self2Self [110], a method trained
exclusively on the test image.

Comparison to baselines. Results of comparison to LIDIA [133], a specialized architecture to

perform adaptation, and Self2Self [110] a method trained exclusively on the test image is sum-

marized in Table C.5. While GainTuning outperforms LIDIA, it does not match the performance

of Self2Self (see Section 4.7 for a discussion on this).

C.5.4 Out-of-distribution noise and image

We evaluated the ability of GainTuning to adapt to test images which have different charac-

teristics from those in the training set, and are additionally corrupted with a noise distribution

that is different from the noise in the training set. Figure C.6 shows that GainTuning is successful

144

(a) 𝜁 CNN trained on Gauss. 𝜎 ∈ [0, 55] (d) Bias-free CNN trained
on Gauss. 𝜎 ∈ [0, 55]

Improvement after GainTuning

(b) Pre-trained (c) GainTuning (e) Maximum (f) Minimum

1 17.58 21.07 17.91 4.79 2.25
0.5 20.19 22.50 20.12 3.43 1.11
0.1 25.28 25.99 24.88 1.16 0.34

Table C.4: CNN trained on Gaussian noise generalizes to Poisson noise. Results on applying
GainTuning to a CNN pre-trained on additive Gaussian noise (which has spatially uniform variance)
to test data corrupted by Poisson noise (where the variance depends on the underlying pixel values
and is hence spatially variant). We evaluate on Poisson noise with three different scaling 𝜁 values (a),
where a larger value of 𝜁 implies that the image is more noisy (if 𝑥 is a clean image, the noisy image
𝑦 is sampled from 𝜁Pois(𝑥/𝜁) where Pois(𝜆) is the PMF of Poisson distribution with parameter 𝜆).
Applying GainTuning on the CNN improves its performance (b) by a significant margin (c). GainTuning
on the pre-trained CNN also outpeforms its bias-free counterpart (d), which is designed to generalize
well to Gaussian noise outside the training range. The maximum improvement in PSNR (e) obtained by
applying GainTuning to the pre-trained CNN (b) is substantial, and the minimum improvement in PSNR
(f) is non-trivial. The CNN used here is [47] and was pre-trained on BSD400 dataset. GainTuning was
performed to adapt to Set12 with Poisson noise.

in this setting. The CNN was pre-trained on natural images corrupted with Gaussian white noise

of standard deviation 𝜎 ∈ [0, 55]. We used GainTuning to adapt this CNN to a test set of images

taken in urban setting (see Section C.1 for a discussion on how it is different from natural images),

corrupted with Gaussian noise of standard deviation 𝜎 = 70 (which is outside the training range

of [0, 55]).

C.5.5 Different loss functions

GainTuning can be used in conjunction with any unsupervised denoising cost function. We

explore three different choices - SURE, noise resampling, and blind-spot cost functions (see Sec-

tion 4.4), and summarize our finding in Table C.6.

SURE loss outperforms other choices in most experiments. Noise resampling has comparable

performance to SURE when the test data is in-distribution, or when it is corrupted with out-

of-distribution noise. However, noise resampling generally under-performs SURE when the test

images have different features from the training images. A possible explanation for this is that

145

Training
Data

Test
Data

DnCNN [150] Baselines

LIDIA [133] S2S [110]
Pre-trained GainTuning Pre-trained Adapted

(a) Piecewise
constant

Natural
images 27.31 28.60 - - 29.21

(b) Natural
images

Urban
images 28.35 28.79 28.54 28.71 29.08

(c) Natural
images

Scanned
documents 30.02 30.73 30.05 30.23 30.86

Table C.5: GainTuning for out-of-distribution images. GainTuning generalizes robustly when the
test image has different characteristics than the training data. We demonstrate this through three
different experiments. (a) GainTuning provides an average of 1.3 dB in performance while adapting
a CNN trained on simulated piecewise constant dataset to natural images. This controlled setting
demonstrates the capability of GainTuning to adapt from a simple simulated training set to a significantly
more complex real dataset. (b) GainTuning provides an average of 0.45 dB improvement in performance
when a CNN trained on natural images is adapted to a dataset of images taken in urban settings. These
images display a lot of repeating structure (see Section C.1) and hence has different characters than
generic natural images. Similarly, (c) GainTuning provides an average of 0.70 dB improvement in
performance when a CNN pre-trained on natural images is adapted to images of scanned documents.
While GainTuning outperforms LIDIA [133], a specialized architecture designed for adapting, it does not
match the performance of Self2Self (see Section 4.7 for a discussion on this). As noted in Section 4.5.3,
we did not train LIDIA for (a).

146

noise resampling relies on the initial denoised image to fine-tune and, therefore, it may not be

able to exploit features which are not present in the initial estimate. In contrast, the SURE cost

function is computed on the noisy test image itself, thereby enabling it to adapt to features that

the pre-trained network may be agnostic to.

Finally, adapting using blind-spot cost function often under-performs both SURE and noise

resampling. The difference in performance is reduced at higher noise levels (see also Section 4.5.4

where we use blind-spot cost function for experiments with real TEM data with very high noise).

The reason for this could be that at higher noise levels, the information contained in a single

pixel becomes less relevant for computing the corresponding denoised estimate (in fact, the reg-

ularization penalty on “self pixel‘ for SURE cost function (Section 4.4) increases as the noise

level increases). Therefore, the loss of performance incurred by the blind-spot cost function is

diminished. At lower noise levels (particularly when the images are in-distribution), adapting

using blind-spot cost function will force the pre-trained network to give up using the “self pixel“,

which results in a degraded performance. An alternative to adapting a generic pre-trained net-

work using blind-spot architecture is to use a CNN that is architecturally constrained to include

a blind-spot. In Table C.7, we show that adapting such a CNN using blind-spot loss improves the

performance its performance. However, the overall performance of this architecture is in general

lower than the networks which also use the “self pixel“. We refer interested readers to Ref. [67,

68, 141] for approaches to incorporate the noisy pixel into the denoised estimate.

147

GainTuning with

Pre-training SURE Noise
resampling

Blind-spot
(Noise2Self [8])

in distribution
Set12 29.52 29.62 29.63 29.50
BSD68 28.39 28.46 28.40 28.36

out-of-distribution
noise

Set12 18.48 24.57 24.11 22.93
BSD68 18.72 24.14 23.65 22.50

out-of-distribution
image

Piecewise constant→
Natural images 27.31 28.60 28.29 27.39

Natural images →
Urban100 28.35 28.79 28.79 28.29

Natural images →
Scanned documents 30.02 30.73 30.57 29.23

Table C.6: Different loss functions for GainTuning. Comparison of the performance of GainTuning
when used in conjunction with three different loss functions. SURE loss outperforms other choices in
most experiments. Noise resampling has comparable performance to SURE when the test data is in-
distribution, or when it is corrupted with out-of-distribution noise. However, noise resampling generally
under-performs SURE when the test images have different features from the training images. This maybe
because such features are absent from the initial denoised estimate (see Section 4.4 for a description
of the different loss functions). Finally, optimizing using blind-spot cost functions often under-performs
both SURE and noise resampling, but the difference in performance is reduced as the test noise increases
(see also Section 4.5.4 where we use blind-spot cost function for experiments with real TEM data with
very high noise). This may be because, at lower noise levels, the information contained in a pixel is
often crucially important to compute its denoised estimate, and blind-spot cost function ignores this
information (see Section 4.4). Here, we implemented blind-spot cost function through masking [8], see
Table C.7 for results where the implemented blind-spot cost function as an architectural constraint [68].

148

in-distribution out-of-distribution image

Set12 BSD68 Urban100
(urban scenes)

IUPR
(scanned documents)

Pre-trained 27.92 26.47 26.59 28.25

GainTuning 27.92 26.61 26.85 28.40

Table C.7: GainTuning using architecturally constrained blind-spot cost function. We perform
GainTuning using blindspot network [68] which is architecturally constrained to estimate a denoised
pixel exclusively from its neighbouring pixels (excluding the pixel itself). The network was pre-trained
on generic natural images corrupted with Gaussian noise of standard deviation 𝜎 ∈ [0, 55]. Performing
GainTuning on this always increases its performance, unlike GainTuning on a generic architecture trained
with supervision and adapted using blind-spot loss implemented via masking. However, note the overall
performance of this architecture is in general lower than the networks which also use the “self pixel“. We
refer interested readers to Ref. [67, 68, 141] for approaches to incorporate the information in noisy pixel
back into the denoised output, thus potentially improving the performance. Our blind-spot architecture
generalizes robustly to out-of-distribution noise (since it is bias-free [96]), and therefore we do not
include an out-of-distribution noise comparison in this table.

149

D | Application to electron microscopy

data

D.1 Data simulation

D.1.1 Simulation process

The simulated TEM image datasetwas generated using themulti-slice image simulationmethod,

as implemented in the Dr. Probe software package [7]. In the multi-slice approach, the modeled

specimen is sectioned into many thin slices (here they are 0.167 Angstroms thick), and quantum

mechanical calculations are performed to simulate the incident electron wave function propa-

gating through and interacting with each slice of the material [65]. The resultant wave function

exiting the last slice is then convolved with a point spread function that emulates the effect of

imaging it in the electron microscope. All of the image simulations were performed using an

accelerating voltage of 300 kV with a beam convergence angle of 0.2 mrad and a focal spread of

4 nm. The third-order spherical aberration coefficient (𝐶𝑠) was set to be -13 𝜇m. The fifth-order

spherical aberration coefficient (𝐶5) was set as 5 mm. All other aberrations (e.g., 2-fold and 3-fold

astigmatism, coma, star aberration, etc.) were approximated to be negligible. The defocus (𝐶1)

was varied systematically between 0 nm and 20 nm, as discussed below. Image calculations were

computed using a non-linear model including partial temporal coherence by explicit averaging

150

Figure D.1: Demonstration of contrast reversal with changes in defocus. (a) Image of the
Pt/CeO2 atomic structural model.(b) to (d) Simulated images under different electron-optical focusing
conditions, emphasizing variations on the Ce and Pt column contrast. In (b), the image shows black
contrast for both Ce and Pt columns. In (c), the Pt columns reverse contrast and now appear white,
while Ce columns become challenging to discriminate. Finally, in (d) all of the atomic columns appear
with white contrast.

and partial spatial coherence, which is treated by a quasi-coherent approach with a dampening

envelope applied to the wave function. An isotropic vibration envelope of 50 pmwas applied dur-

ing the image calculation. Images were simulated with 1024 x 1024 pixels and then later binned

to desired sizes to match the pixel size of the experimentally acquired image series. Finally, to

equate the intensity range of the simulated images with those acquired experimentally, the in-

tensities of the simulated images were scaled by a factor which equalized the vacuum intensity in

a single simulation to the average intensity measured over a large area of the vacuum in a single

0.025 second experimental frame (i.e., 0.45 counts per pixel in the vacuum region).

D.1.2 Experimental parameters

In phase-contrast TEM imaging (the technique employed here), multiple electron-optical and

specimen parameters can give rise to complex, non-linear modulations of the image contrast.

These parameters can include the objective lens defocus, the specimen thickness, the orientation

of the specimen, and its crystallographic shape/structure. Due to the complex image formation

mechanisms, atomic columns of the same material imaged may appear black or white (or some-

where in between, i.e., intermediate) depending on the exact combination of these various factors.

151

Figure D.2: Image contrast variations due to thickness and defocus. (a) Image of the Pt/CeO2
atomic structural model. (b1) to (b4) Simulated images at a defocus value of 13 nm, where the
variations of the contrast are due to the thickness of the model, increased from 3 nm to 6nm. (c1) to
(c4) Contrast variations on simulated images due to defocus: the thickness of the model has been kept
constant at 5 nm and the defocus has been tuned to 1 nm, 7 nm, 13 nm, and 18 nm.

Examples of the type of contrast reversal that may occur for a static structure imaged at constant

thickness and tilt are given in Figure D.1. Additionally, images showing the type of contrast vari-

ations that may occur when the support thickness is changed, and how these compare to those

which arise from changes in defocus are given in Figure D.2.

Here, we systematically varied these parameters to generate a large number of cases (approx-

imately 18,000), corresponding to potential combinations that may arise during a real experiment

(see Figure D.3). First, around 100 atomic-scale structural models of CeO2-supported Pt nanopar-

ticles were generated. Each model represents Pt nanoparticles of various size, shape and atomic

structure (e.g., small, medium, or large size, with either faceted or defected surfaces, or some

combination of both), supported on CeO2, which itself may present either a faceted surface or

one characterized by surface defects. Secondly, the thickness of the CeO2 support was varied

from 3 nm to 6 nm along 1 nm increments. One aspect to note is that the thickness variation is

not equally applied to each of the aforementioned models. Third, each resultant model was tilted

from 0◦ to 4◦ about the x and y axes independently in increments of 1◦. Thus, variations from 0◦

152

Figure D.3: Summary of parameters considered during the modelling and image simulation
processes. Subset of Pt/CeO2 atomic models presenting variations on the (a) structure and shape of
the nanoparticle and the support, (b) the thickness of the CeO2 slab and (c) the tilt of the atomic
models. Color code for the models matches Pt, Ce and O with grey, yellow and red atoms respectively.
(d) Simulated images under different defocus values.

in x and 0◦ in y, to 4◦ in x and 0◦ in y, or 0◦ in x and 4◦ in y were considered. The final parame-

ter systematically varied in the simulated image dataset was the electron optical defocus. Every

model containing a unique shape/structure, thickness, and tilt (855 total) was imaged under a

range of defocus values which often arise experimentally. Namely, the defocus was varied from 0

nm to 20 nm, along increments of 1 nm. Considering all combinations of the varied parameters,

a total of 17,955 simulated images were generated for training and testing the neural network.

D.1.3 Description of nanoparticle structures

The 3D atomic structural models utilized in this work consist of faceted Pt nanoparticles

that oriented in a [110] zone axis and that are supported on a CeO2 (111) surface which is itself

oriented in the [110] zone axis. This crystallographic configuration corresponds to that which

is often observed experimentally and is thus the focus of the current work. All of the models

have been constructed with the freely available Rhodius software [12]. Each model consists of a

153

supercell having x and y dimensions of 5 nm x 5 nm. As discussed above, the support thickness

was systematically varied for each model, and so the supercell’s z dimension varies between 3

nm and 6 nm, depending on the thickness of the particular model.

While imaging these materials systems, experimentalists often aspire to visualize atomic-

level structural rearrangements that can occur at the surfaces of the supported nanoparticles.

Additionally, there are many millions of nanoparticles on a typical TEM sample, and the specific

atomic-scale structural features comprising the surfaces of those imaged during an experiment

may vary slightly from nanoparticle to nanoparticle. In order to encompass such complexity in

the training dataset, a variety of Pt nanoparticles of multiple sizes/shape and surface defect char-

acter were incorporated into the 3D models. For example, four such models of CeO2-supported

Pt nanoparticles having various size and shape are shown in parts (a) to (d) of Figure D.4. The

multi-slice TEM image simulations generated from the models are shown below each for two dif-

ferent conditions, namely in parts (a1) to (d1), images are shown for a case in which the support

is 3 nm thick, the defocus is 9 nm, and the tilt is 0◦ in x and 0◦ in y; in parts (a2) to (d2), images

are shown for the case in which the support is 5 nm thick, the defocus is 6 nm, and the tilt is 4◦ in

x and 0◦ in y. Furthermore, the surface character of the Pt nanoparticles was varied by altering

the defect structure at different surface sites. A few examples are depicted in Figure D.5. Here,

in part (a), a CeO2-supported Pt nanoparticle with faceted surfaces is shown; directly beneath it

in (a1) is an image simulated under conditions in which the support is 3 nm thick, the defocus is

9nm, and there is no tilt. The arrowed sites designate locations on the Pt surface that have been

subsequently altered. In part (b), the surface has been modified by removing a full atomic column

from the arrowed location. In part (c), the occupancy of the arrowed corner site has been reduced

by half. And in part (d), the occupancy of the arrowed corner site has been further reduced to

a single atom. Parts (b1) - (d1) show the images simulated from these respective structures un-

der the same imaging condition. Note that the surface sites altered in the structure correspond

to high-energy sites (e.g., corners and edges) which are more likely to dynamically rearrange or

154

Figure D.4: Variations in the structure/size of the supported Pt nanoparticle.(a) to (d) Atomic
models of Pt nanoparticles (grey atoms) with different shapes and supported over a CeO2 slab (yellow
and red atoms respectively). (a1) to (d1) Simulated images depicting the described atomic models,
considering a thickness of 3 nm, 9 nm of defocus and no tilt on the model, whereas (a2) to (d2)
illustrate the same model under different conditions: 5 nm thickness, 6 nm defocus and 4 degrees tilted
along x axis. All the simulated images present a 𝐶𝑠 value of -13 𝜇m.

show variation than, say, a low-energy terrace site located in the middle of the surface.

D.2 Proposed Architecture: UNet with large field of view

We propose to use a modified version of UNet [116] with 𝑛 = 4, 6 scales to achieve a large

field of view. The network consisting of 𝑛 down-blocks and 𝑛 up-blocks. A down-block consists

of a max-pooling layer, which reduces the spatial-dimension by half, followed by a conv-block.

Similarly, an up-block consists of bilinear upsampling, which enlarges the size of the feature-map

by a factor of two, followed by conv-block. A conv-block consists of conv-BN-ReLU-conv-BN-

ReLU, where conv represents a convolutional layer and BN stands for batch normalization [54].

In our final model, we use 128 channels in each layer of conv-block and 𝑛 = 6 scales.

155

Figure D.5: Variations in the defects of the Pt surface structure. (a) Atomic model of a CeO2-
supported Pt nanoparticle without any defects. The surface has been modified by (b) removing a full
atomic column, (c) removing half of the occupancy and (d) keeping a single atom. Black arrows point
the sites where these defects are taking place. Models (b), (c) and (d) have been slightly tilted to observe
these modifications. (a1) to (d1) Simulated images of the presented atomic columns considering a 3nm
thickness, 9 nm defocus and no tilt.

156

D.3 Additional Results

In this section we include the following additional results:

• Figure D.6 show an additional example of simulated image denoised using the proposed ap-

proach and the methods described in Section 5.5.2.

• Figure D.7 visualizes nine nanoparticle structures used for creating the simulated dataset with

surface defects described in Section 5.5.3.

• Figure D.8 show an additional example of real images denoised using the proposed approach

and the methods described in Section 5.5.2.

157

Noisy WF LPF VST+NLM VST+BM3D

PURE-LET SBD+DnCNN SBD+Small UNet Ours Ground Truth

Figure D.6: Denoising results for simulated data. An additional example comparing SBD and the
baseline methods described in Section 5.5.2. The second row zooms in on the region in red box. Our
proposed approach produces images of much higher quality than the other approaches, and is able to
accurately recover the atomic structure of the nanoparticle. For example, the vacuum region in images
denoised by several of the baselines contain visible artefacts, including missing atoms.

158

Figure D.7: Example of nanoparticle structures used for surface dataset in Section 5.5.3 A
Subset of Pt/CeO2 structual models with atomic-level surface defects like removal of an atom from a
column, removal of two atoms, removal of all but one atom and the addition of a new atom at a site.
See Section 5.5.3 for more details.

159

Noisy WF Spot Filter VST+NLM VST+BM3D

PURE-LET SBD+DnCNN SBD+Small UNet Ours Likelihood Map

0.02

0.01

0.00

0.01

0.02

Figure D.8: Denoising results for real data. An additional example comparing SBD and the baseline
methods described in Section 5.5.2 when applied on the real data described in Section 5.4.1. The
second row zooms in on the region in red box. In contrast to the other methods, SBD combined with
the proposed architecture is able to precisely recover the structure of the nanoparticle and has very
few artefacts, particularly in the vacuum region. The likelihood map quantifies the agreement between
recovered structures in the denoised images, such as atomic columns and the vacuum, and the observed
data (see Section 5.3.3 for more details).

160

Bibliography

[1] Eirikur Agustsson and Radu Timofte. “NTIRE 2017 Challenge on Single Image Super-

Resolution: Dataset and Study”. In: The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) Workshops. July 2017.

[2] Pablo Arias and Jean-Michel Morel. “Video denoising via empirical Bayesian estimation

of space-time patches”. In: Journal of Mathematical Imaging and Vision 60.1 (2018), pp. 70–

93.

[3] Xiao-Chen Bai, Greg McMullan, and Sjors H.W Scheres. “How cryo-EM is revolutionizing

structural biology”. In: Trends in Biochemical Sciences 40.1 (2015), pp. 49–57. issn: 0968-

0004. doi: https://doi.org/10.1016/j.tibs.2014.10.005.

[4] J Ballé, V Laparra, and E P Simoncelli. “Density modeling of images using a generalized

normalization transformation”. In: Int’l Conf on Learning Representations (ICLR). Available

at http://arxiv.org/abs/1511.06281. San Juan, Puerto Rico, May 2016.

[5] J Ballé, V Laparra, and E P Simoncelli. “End-to-end optimized image compression”. In:

Int’l Conf on Learning Representations (ICLR). Available at http://arxiv.org/abs/1611.01704.

Toulon, France, Apr. 2017.

[6] Norman Charles Barford. “Experimental measurements: precision, error and truth”. In:

(1967).

161

https://doi.org/https://doi.org/10.1016/j.tibs.2014.10.005

[7] Juri Barthel. “Dr. Probe: A software for high-resolution STEM image simulation”. In: Ul-

tramicroscopy 193 (2018), pp. 1–11.

[8] Joshua Batson and Loic Royer. “Noise2Self: Blind Denoising by Self-Supervision”. In: Pro-

ceedings of the 36th International Conference on Machine Learning. 2019, pp. 524–533.

[9] Simon Beckouche, Jean-Luc Starck, and Jalal Fadili. “Astronomical image denoising using

dictionary learning”. In: Astronomy & Astrophysics 556 (2013), A132.

[10] Yoav Benjamini. “Simultaneous and selective inference: Current successes and future chal-

lenges”. In: Biometrical Journal 52.6 (2010), pp. 708–721.

[11] Yoav Benjamini and Yosef Hochberg. “Controlling the False Discovery Rate: A Practical

and Powerful Approach to Multiple Testing”. In: Journal of the Royal Statistical Society.

Series B (Methodological) 57.1 (1995), pp. 289–300. issn: 00359246. doi: 10.2307/2346101.

[12] S Bernal et al. “The interpretation of HREM images of supported metal catalysts using

image simulation: profile view images”. In: Ultramicroscopy 72.3-4 (1998), pp. 135–164.

[13] Antoni Buades, Bartomeu Coll, and J-M Morel. “A non-local algorithm for image denois-

ing”. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR’05). Vol. 2. IEEE. 2005, pp. 60–65.

[14] Antoni Buades, Jose-Luis Lisani, and Marko Miladinović. “Patch-based video denoising

with optical flow estimation”. In: IEEE Transactions on Image Processing 25.6 (2016), pp. 2573–

2586.

[15] Tim-Oliver Buchholz et al. “Cryo-care: content-aware image restoration for cryo-transmission

electronmicroscopy data”. In: 2019 IEEE 16th International Symposium on Biomedical Imag-

ing (ISBI 2019). IEEE. 2019, pp. 502–506.

[16] Tim-Oliver Buchholz et al. “DenoiSeg: joint denoising and segmentation”. In: European

Conference on Computer Vision. Springer. 2020, pp. 324–337.

162

https://doi.org/10.2307/2346101

[17] Syed Saqib Bukhari, Faisal Shafait, and Thomas M Breuel. “The IUPR dataset of camera-

captured document images”. In: International Workshop on Camera-Based Document Anal-

ysis and Recognition. Springer. 2011, pp. 164–171.

[18] Matteo Carandini andDavid J Heeger. “Normalization as a canonical neural computation”.

In: Nature Reviews Neuroscience 13.1 (2012), pp. 51–62.

[19] S Grace Chang, Bin Yu, and Martin Vetterli. “Adaptive wavelet thresholding for image

denoising and compression”. In: IEEE Trans. Image Processing 9.9 (2000), pp. 1532–1546.

[20] Ting Chen et al. “On self modulation for generative adversarial networks”. In: arXiv

preprint arXiv:1810.01365 (2018).

[21] Yunjin Chen and Thomas Pock. “Trainable nonlinear reaction diffusion: A flexible frame-

work for fast and effective image restoration”. In: IEEE Trans. Patt. Analysis and Machine

Intelligence 39.6 (2017), pp. 1256–1272.

[22] Sungjoon Choi et al. “Fast, Trainable, Multiscale Denoising”. In: 2018 25th IEEE Interna-

tional Conference on Image Processing (ICIP). IEEE. 2018, pp. 963–967.

[23] Michele Claus and Jan van Gemert. “ViDeNN: Deep Blind Video Denoising”. In: Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshop.

2019, pp. 1843–1852.

[24] Peter A. Crozier et al. “Dynamic restructuring during processing: approaches to higher

temporal resolution”. In: Microscopy and Microanalysis 25.S2 (2019), pp. 1464–1465.

[25] Kostadin Dabov et al. “Image Denoising by Sparse 3-D Transform-Domain Collaborative

Filtering”. In: IEEE Transactions on Image Processing (2017), pp. 2080–2095.

[26] Kostadin Dabov et al. “Image denoising with block-matching and 3D filtering”. In: Image

Processing: Algorithms and Systems, Neural Networks, and Machine Learning. Vol. 6064.

International Society for Optics and Photonics. 2006, p. 606414.

163

[27] Axel Davy et al. “A non-local CNN for video denoising”. In: 2019 IEEE International Con-

ference on Image Processing (ICIP). IEEE. 2019, pp. 2409–2413.

[28] Harm De Vries et al. “Modulating early visual processing by language”. In: arXiv preprint

arXiv:1707.00683 (2017).

[29] Valery Dewil et al. “Self-Supervised Training for Blind Multi-Frame Video Denoising”. In:

Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2021,

pp. 2724–2734.

[30] Jeff Donahue et al. “Decaf: A deep convolutional activation feature for generic visual

recognition”. In: International conference on machine learning. PMLR. 2014, pp. 647–655.

[31] D Donoho and I Johnstone. “Adapting to Unknown Smoothness via Wavelet Shrinkage”.

In: J American Stat Assoc 90.432 (Dec. 1995).

[32] JeffreyMEde and Richard Beanland. “Improving electronmicrograph signal-to-noisewith

an atrous convolutional encoder-decoder”. In: Ultramicroscopy 202 (2019), pp. 18–25.

[33] Jeffrey Mark Ede. “Deep Learning in Electron Microscopy”. In: Machine Learning: Science

and Technology (2020).

[34] Thibaud Ehret et al. “Model-Blind Video Denoising via Frame-To-Frame Training”. In:

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019,

pp. 11361–11370.

[35] Michael Elad and Michal Aharon. “Image denoising via sparse and redundant representa-

tions over learned dictionaries”. In: IEEE Trans. on Image processing 15.12 (2006), pp. 3736–

3745.

[36] Michael Elad and Michal Aharon. “Image denoising via sparse and redundant represen-

tations over learned dictionaries”. In: IEEE Transactions on Image processing 15.12 (2006),

pp. 3736–3745.

164

[37] Peter Ercius et al. “The 4D Camera – a 87 kHz Frame-rate Detector for Counted 4D-

STEM Experiments”. In: Microscopy and Microanalysis (2020), pp. 1–3. doi: 10.1017/

S1431927620019753.

[38] A.R. Faruqi and G. McMullan. “Direct imaging detectors for electron microscopy”. In: Nu-

clear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,

Detectors and Associated Equipment 878 (2018). Radiation Imaging Techniques and Appli-

cations, pp. 180–190. issn: 0168-9002. doi: https://doi.org/10.1016/j.nima.2017.

07.037.

[39] Golnaz Ghiasi et al. “Exploring the structure of a real-time, arbitrary neural artistic styl-

ization network”. In: arXiv preprint arXiv:1705.06830 (2017).

[40] E Giannatou et al. “Deep learning denoising of SEM images towards noise-reduced LER

measurements”. In: Microelectronic Engineering 216 (2019), p. 111051.

[41] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep sparse rectifier neural net-

works”. In: Proceedings of the fourteenth international conference on artificial intelligence

and statistics. JMLR Workshop and Conference Proceedings. 2011, pp. 315–323.

[42] Kuang Gong et al. “PET image denoising using a deep neural network through fine tun-

ing”. In: IEEE Transactions on Radiation and Plasma Medical Sciences 3.2 (2018), pp. 153–

161.

[43] Kuang Gong et al. “PET image denoising using a deep neural network through fine tun-

ing”. In: IEEE Transactions on Radiation and Plasma Medical Sciences 3.2 (2018), pp. 153–

161.

[44] Bichuan Guo et al. “Learning Model-Blind Temporal Denoisers without Ground Truths”.

In: arXiv preprint arXiv:2007.03241 (2020).

165

https://doi.org/10.1017/S1431927620019753
https://doi.org/10.1017/S1431927620019753
https://doi.org/https://doi.org/10.1016/j.nima.2017.07.037
https://doi.org/https://doi.org/10.1016/j.nima.2017.07.037

[45] Han Guo, Philippe Sautet, and Anastassia N. Alexandrova. “Reagent-Triggered Isomer-

ization of Fluxional Cluster Catalyst via Dynamic Coupling”. In: The Journal of Physi-

cal Chemistry Letters 11.8 (2020). PMID: 32227852, pp. 3089–3094. doi: 10.1021/acs.

jpclett.0c00548.

[46] Shi Guo et al. “Toward Convolutional Blind Denoising of Real Photographs”. In: Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019,

pp. 1712–1722.

[47] Jingwen He, Chao Dong, and Yu Qiao. “Modulating image restoration with continual lev-

els via adaptive feature modification layers”. In: Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition. 2019, pp. 11056–11064.

[48] YHel-Or andD Shaked. “A discriminative approach for wavelet denoising”. In: IEEE Trans.

Image Processing (2008).

[49] Y. Hel-Or and D. Shaked. “A Discriminative Approach for Wavelet Denoising”. In: IEEE

Transactions on Image Processing 17 (2008), pp. 443–457.

[50] David Honzátko et al. “Defect segmentation for multi-illumination quality control sys-

tems”. In: Machine Vision and Applications 32.6 (2021), pp. 1–16.

[51] James P Horwath et al. “Understanding important features of deep learning models for

segmentation of high-resolution transmission electron microscopy images”. In: npj Com-

putational Materials 6.1 (2020), pp. 1–9.

[52] Gao Huang et al. “Densely connected convolutional networks”. In: Proc. IEEE Conf. Com-

puter Vision and Pattern Recognition. 2017, pp. 4700–4708.

[53] Jia-BinHuang, Abhishek Singh, andNarendra Ahuja. “Single image super-resolution from

transformed self-exemplars”. In: Proceedings of the IEEE conference on computer vision and

pattern recognition. 2015, pp. 5197–5206.

166

https://doi.org/10.1021/acs.jpclett.0c00548
https://doi.org/10.1021/acs.jpclett.0c00548

[54] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep network

training by reducing internal covariate shift”. In: arXiv preprint arXiv:1502.03167 (2015).

[55] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep network

training by reducing internal covariate shift”. In: arXiv preprint arXiv:1502.03167 (2015).

[56] Kevin Jarrett et al. “What is the best multi-stage architecture for object recognition?” In:

2009 IEEE 12th international conference on computer vision. IEEE. 2009, pp. 2146–2153.

[57] Wen Jiang et al. “Applications of a bilateral denoising filter in biological electron mi-

croscopy”. In: Journal of structural biology 144.1-2 (2003), pp. 114–122.

[58] Aakash Kaku et al. “Be like water: Robustness to extraneous variables via adaptive feature

normalization”. In: arXiv preprint arXiv:2002.04019 (2020).

[59] Wesley Khademi et al. “Self-Supervised Poisson-Gaussian Denoising”. In: arXiv preprint

arXiv:2002.09558 (2020).

[60] Wesley Khademi et al. “Self-Supervised Poisson-Gaussian Denoising”. In: Proceedings of

the IEEE/CVF Winter Conference on Applications of Computer Vision. 2021, pp. 2131–2139.

[61] Byeongjoon Kim et al. “A performance comparison of convolutional neural network-

based image denoising methods: The effect of loss functions on low-dose CT images”.

In: Medical physics 46.9 (2019), pp. 3906–3923.

[62] Sohyeong Kim et al. “The Vid3oC and IntVID Datasets for Video Super Resolution and

Quality Mapping”. In: 2019 IEEE/CVF International Conference on Computer Vision Work-

shop (ICCVW). 2019, pp. 3609–3616.

[63] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In:

arXiv preprint arXiv:1412.6980 (2014).

[64] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In:

arXiv preprint arXiv:1412.6980 (2014).

167

[65] Earl J Kirkland et al. “Image simulation in transmission electron microscopy”. In: Cornell

University, Ithaca (2006).

[66] Alexander Krull, Tim-Oliver Buchholz, and Florian Jug. “Noise2Void - Learning Denoising

From Single Noisy Images”. In: Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition. 2019, pp. 2124–2132.

[67] Alexander Krull, Tomas Vicar, and Florian Jug. “Probabilistic Noise2Void: Unsupervised

Content-Aware Denoising”. In: arXiv preprint arXiv:1906.00651 (2019).

[68] Samuli Laine et al. “High-Quality Self-Supervised Deep Image Denoising”. In: Advances

in Neural Information Processing Systems 32. 2019, pp. 6970–6980.

[69] Ethan L. Lawrence et al. “Approaches to Exploring Spatio-Temporal Surface Dynamics in

Nanoparticles with In Situ Transmission Electron Microscopy”. In:Microscopy and Micro-

analysis 26.1 (2020), pp. 86–94. doi: 10.1017/S1431927619015228.

[70] Chenyang Le et al. “Perceptually OptimizedDeepHigh-Dynamic-Range Image ToneMap-

ping”. In: arXiv preprint arXiv:2109.00180 (2021).

[71] Marc Lebrun, Antoni Buades, and Jean-Michel Morel. “A nonlocal Bayesian image denois-

ing algorithm”. In: SIAM Journal on Imaging Sciences 6.3 (2013), pp. 1665–1688.

[72] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: nature 521.7553

(2015), p. 436.

[73] Ann B Lee, David Mumford, and Jinggang Huang. “Occlusion models for natural images:

A statistical study of a scale-invariant dead leaves model”. In: International Journal of

Computer Vision 41.1 (2001), pp. 35–59.

[74] Jaakko Lehtinen et al. “Noise2Noise: Learning Image Restoration without Clean Data”. In:

Proceedings of the 35th International Conference on Machine Learning. 2018, pp. 2965–2974.

168

https://doi.org/10.1017/S1431927619015228

[75] Barnaby D.A. Levin, Ethan L. Lawrence, and Peter A. Crozier. “Tracking the picoscale

spatial motion of atomic columns during dynamic structural change”. In: Ultramicroscopy

213 (2020), p. 112978. issn: 0304-3991. doi: https://doi.org/10.1016/j.ultramic.

2020.112978.

[76] Zhi Li et al. “Toward A Practical Perceptual Video Quality Metric”. In: Netflix Technology

Blog (2016).

[77] Jeff W Lichtman and José-Angel Conchello. “Fluorescence microscopy”. In: Nature meth-

ods 2.12 (2005), pp. 910–919.

[78] Jae S Lim. “Two-dimensional signal and image processing”. In: ph (1990).

[79] Tony Lindeberg. “Scale selection properties of generalized scale-space interest point de-

tectors”. In: Journal of Mathematical Imaging and vision 46.2 (2013), pp. 177–210.

[80] Ce Liu and William T Freeman. “A high-quality video denoising algorithm based on

reliable motion estimation”. In: European conference on computer vision. Springer. 2010,

pp. 706–719.

[81] F. Luisier, T. Blu, and M. Unser. “A New SURE Approach to Image Denoising: Interscale

Orthonormal Wavelet Thresholding”. In: IEEE Transactions on Image Processing 16 (2007),

pp. 593–606.

[82] Florian Luisier, Thierry Blu, and Michael Unser. “Image denoising in mixed Poisson–

Gaussian noise”. In: IEEE Transactions on image processing 20.3 (2010), pp. 696–708.

[83] Jacob Madsen et al. “A deep learning approach to identify local structures in atomic-

resolution transmission electron microscopy images”. In: Advanced Theory and Simula-

tions 1.8 (2018), p. 1800037.

169

https://doi.org/https://doi.org/10.1016/j.ultramic.2020.112978
https://doi.org/https://doi.org/10.1016/j.ultramic.2020.112978

[84] MatteoMaggioni et al. “Video denoising, deblocking, and enhancement through separable

4-D nonlocal spatiotemporal transforms”. In: IEEE Transactions on image processing 21.9

(2012), pp. 3952–3966.

[85] Markku Makitalo and Alessandro Foi. “Optimal inversion of the generalized Anscombe

transformation for Poisson-Gaussian noise”. In: IEEE transactions on image processing 22.1

(2012), pp. 91–103.

[86] Bryce Manifold et al. “Denoising of stimulated Raman scattering microscopy images via

deep learning”. In: Biomedical optics express 10.8 (2019), pp. 3860–3874.

[87] D. Martin et al. “A Database of Human Segmented Natural Images and its Application to

Evaluating Segmentation Algorithms and Measuring Ecological Statistics”. In: Proc. 8th

Int’l Conf. Computer Vision. Vol. 2. July 2001, pp. 416–423.

[88] GFPM Matheron. “Random sets and integral geometry”. In: (1975).

[89] Ian S McLean. Electronic imaging in astronomy: detectors and instrumentation. Springer

Science & Business Media, 2008.

[90] William Meiniel, Jean-Christophe Olivo-Marin, and Elsa D Angelini. “Denoising of mi-

croscopy images: a review of the state-of-the-art, and a new sparsity-based method”. In:

IEEE Transactions on Image Processing 27.8 (2018), pp. 3842–3856.

[91] Christopher A Metzler et al. “Unsupervised Learning with Stein’s Unbiased Risk Estima-

tor”. In: arXiv preprint arXiv:1805.10531 (2018).

[92] Peyman Milanfar. “A tour of modern image filtering: New insights and methods, both

practical and theoretical”. In: IEEE signal processing magazine 30.1 (2012), pp. 106–128.

[93] David Minarik, Olof Enqvist, and Elin Trägårdh. “Denoising of scintillation camera im-

ages using a deep convolutional neural network: a Monte Carlo simulation approach”. In:

Journal of Nuclear Medicine 61.2 (2020), pp. 298–303.

170

[94] Sreyas Mohan et al. “Adaptive Denoising via GainTuning”. In: Advances in Neural Infor-

mation Processing Systems 34 (2021).

[95] Sreyas Mohan et al. “Deep Denoising For Scientific Discovery: A Case Study In Electron

Microscopy”. In: arXiv preprint arXiv:2010.12970 (2020).

[96] Sreyas Mohan et al. “Robust and Interpretable Blind Image Denoising via Bias-free Con-

volutional Neural Networks”. In: Proceedings of the International Conference on Learning

Representations. 2020.

[97] Grégoire Montavon et al. “Explaining nonlinear classification decisions with deep taylor

decomposition”. In: Pattern Rec. 65 (2017), pp. 211–222.

[98] TizianoMontini et al. “Fundamentals and catalytic applications of CeO2-based materials”.

In: Chemical reviews 116.10 (2016), pp. 5987–6041.

[99] Nick Moran et al. “Noisier2noise: Learning to denoise from unpaired noisy data”. In: Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020,

pp. 12064–12072.

[100] Zachary Nado et al. “Evaluating prediction-time batch normalization for robustness under

covariate shift”. In: arXiv preprint arXiv:2006.10963 (2020).

[101] PD Nellist and SJ Pennycook. “Accurate structure determination from image reconstruc-

tion in ADF STEM”. In: Journal of Microscopy 190.1-2 (1998), pp. 159–170.

[102] Yao Nie, Li Li, and Zidong Wei. “Recent advancements in Pt and Pt-free catalysts for

oxygen reduction reaction”. In: Chemical Society Reviews 44.8 (2015), pp. 2168–2201.

[103] Ethan Perez et al. “Film: Visual reasoning with a general conditioning layer”. In: Proceed-

ings of the AAAI Conference on Artificial Intelligence. Vol. 32. 1. 2018.

171

[104] JR Peterson et al. “Simulation of astronomical images from optical survey telescopes us-

ing a comprehensive photon Monte Carlo approach”. In: The Astrophysical Journal Sup-

plement Series 218.1 (2015), p. 14.

[105] Xaq Pitkow. “Exact feature probabilities in images with occlusion”. In: Journal of vision

10.14 (2010), pp. 42–42.

[106] Jordi Pont-Tuset et al. “The 2017 DAVIS Challenge on Video Object Segmentation”. In:

arXiv preprint arXiv:1704.00675 (2017).

[107] Javier Portilla et al. “Image denoising using scale mixtures of Gaussians in the wavelet

domain”. In: IEEE Trans. Image Processing 12.11 (2003).

[108] Mangal Prakash et al. “Fully Unsupervised Probabilistic Noise2Void”. In: arXiv preprint

arXiv:1911.12291 (2019).

[109] Franco P Preparata and Michael Ian Shamos. “Convex hulls: Basic algorithms”. In: Com-

putational geometry. Springer, 1985, pp. 95–149.

[110] Y. Quan et al. “Self2Self With Dropout: Learning Self-Supervised Denoising From Single

Image”. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

2020, pp. 1887–1895. doi: 10.1109/CVPR42600.2020.00196.

[111] Marco Ragone et al. “Atomic column heights detection in metallic nanoparticles using

deep convolutional learning”. In: Computational Materials Science 180 (2020), p. 109722.

[112] Sathish Ramani, Thierry Blu, and Michael Unser. “Monte-Carlo SURE: A black-box opti-

mization of regularization parameters for general denoising algorithms”. In: IEEE Trans-

actions on image processing 17.9 (2008), pp. 1540–1554.

[113] M Raphan and E P Simoncelli. “Least squares estimation without priors or supervision”.

In: Neural Computation 23.2 (Feb. 2011). Published online, Nov 2010., pp. 374–420. doi:

10.1162/NECO_a_00076.

172

https://doi.org/10.1109/CVPR42600.2020.00196
https://doi.org/10.1162/NECO_a_00076

[114] M Raphan and E P Simoncelli. “Optimal denoising in redundant representations”. In: IEEE

Trans Image Processing 17.8 (Aug. 2008), pp. 1342–1352. doi: 10.1109/TIP.2008.925392.

[115] Martin Raphan and Eero P Simoncelli. “Optimal denoising in redundant representations”.

In: IEEE Transactions on image processing 17.8 (2008), pp. 1342–1352.

[116] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional Networks

for Biomedical Image Segmentation”. In:Medical Image Computing and Computer-Assisted

Intervention, Springer, LNCS 9351 (2015), pp. 234–241.

[117] Uwe Schmidt and Stefan Roth. “Shrinkage fields for effective image restoration”. In: Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014, pp. 2774–

2781.

[118] Steffen Schneider et al. “Improving robustness against common corruptions by covariate

shift adaptation”. In: Advances in Neural Information Processing Systems 33 (2020).

[119] Dev Yashpal Sheth et al. “UnsupervisedDeepVideoDenoising”. In: arXiv preprint arXiv:2011.15045

(2020).

[120] E P Simoncelli and E H Adelson. “Noise removal via Bayesian wavelet coring”. In: Proc 3rd

IEEE Int’l Conf on Image Proc. Vol. I. Lausanne: IEEE Sig Proc Society, Sept. 1996, pp. 379–

382. doi: 10.1109/ICIP.1996.559512.

[121] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Deep inside convolutional

networks: Visualising image classification models and saliency maps”. In: arXiv preprint

arXiv:1312.6034 (2013).

[122] David Smith. “CHAPTER 1: Characterization of nanomaterials using transmission elec-

tron microscopy”. English (US). In: Hierarchical Nanostructures for Energy Devices. Ed. by

Angus I. Kirkland and Sarah J. Haigh. 37th ed. RSC Nanoscience and Nanotechnology 37.

Royal Society of Chemistry, Jan. 2015, pp. 1–29. doi: 10.1039/9781782621867-00001.

173

https://doi.org/10.1109/TIP.2008.925392
https://doi.org/10.1109/ICIP.1996.559512
https://doi.org/10.1039/9781782621867-00001

[123] Shakarim Soltanayev and Se Young Chun. “Training and Refining Deep Learning Based

Denoisers without Ground Truth Data”. In: arXiv preprint arXiv:1803.01314 (2018).

[124] Shakarim Soltanayev and Se Young Chun. “Training deep learning based denoisers with-

out ground truth data”. In: Advances in Neural Information Processing Systems. Vol. 31.

2018.

[125] Geng Sun, Anastassia N. Alexandrova, and Philippe Sautet. “Structural Rearrangements

of Subnanometer Cu Oxide Clusters Govern Catalytic Oxidation”. In: ACS Catalysis 10.9

(2020), pp. 5309–5317. doi: 10.1021/acscatal.0c00824.

[126] Amit Suveer et al. “Super-Resolution Reconstruction of Transmission ElectronMicroscopy

Images Using Deep Learning”. In: 2019 IEEE 16th International Symposium on Biomedical

Imaging (ISBI 2019). IEEE. 2019, pp. 548–551.

[127] Hossein Talebi et al. “Better compression with deep pre-editing”. In: IEEE Transactions on

Image Processing 30 (2021), pp. 6673–6685.

[128] Franklin Tao and Peter Crozier. “Atomic-Scale Observations of Catalyst Structures under

Reaction Conditions and during Catalysis”. English (US). In: Chemical Reviews 116.6 (Mar.

2016), pp. 3487–3539. issn: 0009-2665. doi: 10.1021/cr5002657.

[129] Matias Tassano, Julie Delon, and Thomas Veit. “DVDnet: A Fast Network for Deep Video

Denoising”. In: Proceedings of the IEEE International Conference on Image Processing. 2020,

pp. 1805–1809.

[130] Matias Tassano, Julie Delon, and Thomas Veit. “FastDVDnet: Towards Real-Time Deep

Video Denoising Without Flow Estimation”. In: Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition. 2020, pp. 1351–1360.

[131] Carlo Tomasi and Roberto Manduchi. “Bilateral filtering for gray and color images.” In:

ICCV. Vol. 98. 1. 1998.

174

https://doi.org/10.1021/acscatal.0c00824
https://doi.org/10.1021/cr5002657

[132] Vladimír Ulman et al. “An objective comparison of cell-tracking algorithms”. In: Nature

Methods 14 (2017), pp. 1141–1152.

[133] Gregory Vaksman, Michael Elad, and Peyman Milanfar. “Lidia: Lightweight learned im-

age denoising with instance adaptation”. In: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition Workshops. 2020, pp. 524–525.

[134] Rama K Vasudevan and Stephen Jesse. “Deep Learning as a Tool for Image Denoising and

Drift Correction”. In: Microscopy and Microanalysis 25.S2 (2019), pp. 190–191.

[135] Joshua L. Vincent et al. “Developing and Evaluating Deep Neural Network-based Denois-

ing for Nanoparticle TEM Images with Ultra-low Signal-to-Noise”. In: (2021).

[136] Dequan Wang et al. “tent: fully test-time adaptation by entropy minimization”. In: Inter-

national Conference on Learning Representations. Vol. 4. 2021, p. 6.

[137] Zhong Lin Wang. “New developments in transmission electron microscopy for nanotech-

nology”. In: Advanced Materials 15.18 (2003), pp. 1497–1514.

[138] ZhouWang et al. “Image quality assessment: from error visibility to structural similarity”.

In: IEEE Trans. Image Processing 13.4 (2004), pp. 600–612.

[139] Philippe Weinzaepfel et al. “DeepFlow: Large displacement optical flow with deep match-

ing”. In: Proceedings of the IEEE international conference on computer vision. 2013, pp. 1385–

1392.

[140] Norbert Wiener. Extrapolation, interpolation, and smoothing of stationary time series: with

engineering applications. Technology Press, 1950.

[141] YaochenXie, ZhengyangWang, and Shuiwang Ji. “Noise2Same: OptimizingA Self-Supervised

Bound for Image Denoising”. In: Advances in Neural Information Processing Systems 33

(2020).

175

[142] Jun Xu et al. “Noisy-As-Clean: Learning self-supervised denoising from corrupted image”.

In: IEEE Transactions on Image Processing 29 (2020), pp. 9316–9329.

[143] Tianfan Xue et al. “Video Enhancement with Task-Oriented Flow”. In: International Jour-

nal of Computer Vision (IJCV) 127.8 (2019), pp. 1106–1125.

[144] Jason Yosinski et al. “How transferable are features in deep neural networks?” In: arXiv

preprint arXiv:1411.1792 (2014).

[145] Songhyun Yu et al. “Joint Learning of Blind Video Denoising and Optical Flow Estima-

tion”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion (CVPR) Workshops. June 2020.

[146] Weiting Yu, Marc D Porosoff, and Jingguang G Chen. “Review of Pt-based bimetallic

catalysis: from model surfaces to supported catalysts”. In: Chemical reviews 112.11 (2012),

pp. 5780–5817.

[147] H. Yue et al. “Supervised Raw Video Denoising With a Benchmark Dataset on Dynamic

Scenes”. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

2020, pp. 2298–2307. doi: 10.1109/CVPR42600.2020.00237.

[148] Christopher Zach, Thomas Pock, and Horst Bischof. “A duality based approach for real-

time tv-l 1 optical flow”. In: Joint pattern recognition symposium. Springer. 2007, pp. 214–

223.

[149] Kai Zhang, Wangmeng Zuo, and Lei Zhang. “FFDNet: Toward a Fast and Flexible Solution

for CNN based Image Denoising”. In: IEEE Trans. Image Processing (2018).

[150] Kai Zhang et al. “Beyond a Gaussian denoiser: Residual learning of deep CNN for image

denoising”. In: IEEE Trans. Image Processing 26.7 (2017), pp. 3142–3155.

[151] Xiaoshuai Zhang et al. “Dynamically unfolding recurrent restorer: A moving endpoint

control method for image restoration”. In: arXiv preprint arXiv:1805.07709 (2018).

176

https://doi.org/10.1109/CVPR42600.2020.00237

[152] Yide Zhang et al. “A poisson-gaussian denoising datasetwith real fluorescencemicroscopy

images”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

2019, pp. 11710–11718.

[153] Yulun Zhang et al. “Residual DenseNetwork for Image Restoration”. In:CoRR abs/1812.10477

(2018).

[154] Qian Zheng et al. “Single Image Reflection Removal with Absorption Effect”. In: Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021,

pp. 13395–13404.

[155] Hai Jing Zhu, Bo Chong Han, and Bo Qiu. “Survey of astronomical image processing

methods”. In: International Conference on Image and Graphics. Springer. 2015, pp. 420–

429.

[156] Jian-Min Zuo and J.C.H. Spence. Advanced Transmission Electron Microscopy, Imaging and

Diffraction in Nanoscience. Jan. 2017. isbn: ISBN 978-1-4939-6607-3.

177

	Dedication
	Acknowledgments
	Abstract
	List of Figures
	Introduction
	Motivation
	The Denoising Problem
	Classical Methods
	Convolutional Neural Network Based Denoising
	Challenges in Denoising and Thesis Outline

	Bias-free denoising: Generalization to unseen noise variance
	Overview
	Network Bias Impairs Generalization
	Proposed Methodology: Bias-Free Networks
	Bias-Free Networks Generalize Across Noise Levels
	Revealing the Denoising Mechanisms Learned by BF-CNNs
	Discussion

	Unsupervised denoising: Learning without ground truth data
	Overview
	Background and Related Work
	Unsupervised Deep Video Denoising
	Datasets
	Experiments and Results
	Automatic Motion Compensation
	Conclusion

	Adaptive denoising: Generalizing pre-trained denoisers to out-of-distribution data
	Overview
	Related Work
	Proposed Methodology: GainTuning
	Cost Functions for GainTuning
	Experiments and Results
	GainTuning surpasses state-of-the-art performance for in-distribution data
	GainTuning generalizes to new noise distributions
	GainTuning generalizes to out-of-distribution image content
	Application to Electron microscopy

	Analysis
	Limitations
	Conclusions

	Application to electron microscopy data
	Overview
	Related work
	Methodology
	Simulation-based denoising
	Exploiting non-local signal structure
	Likelihood maps

	Dataset
	Real Data
	Simulation Dataset
	Noise model

	Experiments and Results
	Generalization to unseen structures and acquisition conditions
	Comparison of SBD with other methods
	Beyond PSNR: Towards scientifically-meaningful evaluation metrics
	Evaluation metrics
	Evaluating atom detection accuracy

	Performance on real data
	Comparison to unsupervised deep denoising methods
	A word of caution: Effect of training data on SBD

	Discussion and Conclusions

	Conclusion
	Bias-free denoising
	Description of denoising architectures
	DnCNN
	Recurrent CNN
	UNet
	Simplified DenseNet

	Datasets and training procedure
	Additional results

	Unsupervised denoising
	Implementation Details of Unsupervised Deep Video Denoising
	Restricting field of view
	Adding the Noisy Pixel Back
	Architecture and Training

	Ablation Study on Number of Input Frames
	Denoising Results on Natural Video Datasets
	UDVD-S: Denoising Using Only a Single Video
	Details of test sets.
	Ablation study

	Denoising Results on Real-world Datasets
	Generalization Across Noise and Frame Rate
	Analysis of CNN-based Video Denoising
	Natural Videos
	Real-world Data
	Motion Estimation

	GainTuning
	Datasets
	Details of pre-training and GainTuning
	Approximation for SURE
	GainTuning prevents overfitting
	Performance of GainTuning
	In-distribution test image
	Out-of-distribution noise
	Out-of-distribution image
	Out-of-distribution noise and image
	Different loss functions

	Application to electron microscopy data
	Data simulation
	Simulation process
	Experimental parameters
	Description of nanoparticle structures

	Proposed Architecture: UNet with large field of view
	Additional Results

	Bibliography

