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Modeling temporal response characteristics of V1 neurons
with a dynamic normalization model

Samuel Mikaelian*��, Eero P. Simoncelli
Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA

Abstract

We present a dynamic normalization model to characterize both the transient and the
steady-state components of V1 simple and complex cell responses. Primary receptive "eld
properties are chie#y determined by the convergence of LGN a!erents. These linear responses
are recti"ed, and subjected to shunting inhibition through cortical feedback, which accounts for
the non-linear characteristics of the neuronal responses. The duration of the transient response
is determined by the time delay and the low-pass "ltering of the cortical feedback. In addition to
accounting for basic non-linear behaviors such as response saturation and cross-orientation
inhibition, the model is also able to reproduce several short-term contrast and pattern-selective
adaptation e!ects. � 2001 Published by Elsevier Science B.V.
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1. Introduction

Normalization models have been used to account for various non-linear aspects of
the steady-state responses of V1 simple and complex cells. In the simplest form of such
a model, neural responses are computed by rectifying the responses of a set of oriented
linear "lters, and dividing each of these responses by the sum of the full set of
responses [5]. Such a model can account for non-linear phenomena such as response
saturation, cross-orientation suppression and contrast-dependent phase advance of
simple cell responses [2]. More recently, a pattern-selective normalization model, in
which the divisive signal is a weighted sum of nearby neural responses, has been used
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to account for surround suppression [9]. None of these models, however, account for
the dynamic temporal aspects of neural responses, such as transient responses after
the onset or o!set of stimuli, and short-term contrast and pattern-selective adapta-
tion. If such e!ects are not within the scope of a functional description, it cannot
meaningfully be connected with a more biophysically detailed one. An earlier attempt
at incorporating realistic temporal dynamics, successfully reproduced the typical
transient response of an MT cell to a simple stimulus [6]. Here we propose a general-
ized normalization model that can capture a host of dynamical e!ects associated with
V1 cells.

2. The model

The membrane potential is modeled through an RC-type circuit,

C
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whose driving current is provided by the "ring of LGN a!erents [2,3]. The membrane
conductance g

�
(t) is modulated by intra-cortical interactions, and is chie#y responsible

for gain-control e!ects associated with normalization. The constant membrane
capacitance C, introduced in Ref. [2] to account for the observed contrast-dependent
phase advance of simple cell responses, is retained here. The neuron's instantaneous
"ring rate, R

�
(t), is obtained by half-wave recti"cation and squaring of the potential.

For the case of modeling simple cell responses, the current I
�
(t) is represented by

a linear sum of local stimulus contrasts "ltered through a kernel that is the product of
a spatial Gabor function and a causal temporal kernel with realistic parameter values.
To obtain model complex cell responses, a quadrature pair of such "lters is employed
so as to render the input, I

�
(t), nearly independent of the overall spatio-temporal

phase, à la energy models [1].
The various dynamical e!ects described here are attributable to the following

functional dependence of the conductance:
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#��, (2)

where g� indicates a uniform averaging of g� over the pool of neurons, �t is the time
delay in cortical feedback, l.p. denotes low-pass temporal "ltering, and �� is the semi-
saturation constant. The set of weights w

��
allow for pattern selectivity of the normal-

ization. If the model response represents that of a simple or complex cell, the
corresponding pool consists entirely of model simple or complex cells, respectively.
For the simple cell model, the normalization pool contains quadrature pairs of
neurons with equal weighting, and thus the normalization signal (and resulting
conductance changes) are independent of spatio-temporal phase. (Note that the phase
independence can also be simulated by an averaging over phases or spatio-temporal
locations.) For simplicity, in our simulations all the neurons in the poll have the same
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Fig. 1. Response histogram of a directionally non-selective model complex cell to a stationary grating of
optimal frequency and orientation lasting for 1.25 s. The time delay for cortical feedback is 0.05 s and the
time constant of low-pass "ltering is 0.1 s. The time course of the stimulus is traced (heavy line) below the
graph.

constant frequency tuning, though their orientation tunings are allowed to cover the
entire range, and the weights follow a normal distribution given by

w
��

"exp�!
2(�

�
!�

�
)�

�� �, (3)

where � denotes the preferred orientation (in radians). If the weights w
��
are taken to

be uniform, the model reduces to a standard normalization model when in steady
state, thus, encompassing the e!ects previously studied via normalization.

3. Results

Simulations of the model have so far been consistent with physiological data. Fig.
1 shows the response histogram of a directionally non-selective model complex cell to
a stationary grating of optimal frequency and orientation lasting for 1.25 s. It clearly
shows a transient response followed by a sustained one. The duration of the transient
is controlled by the time delay in cortical feedback, 0.05 s in this case, and the time
constant of the low-pass "ltering, 0.1 s. The response during the steady state is
noticeably reduced compared to the peak of the transient response, because cortical
feedback has instituted the normalization and, consequently, gain control. Transient
characteristics can be explored further. Because normalization has not yet taken e!ect,
the early stage of the transient response does not exhibit contrast saturation. Even so,
the orientation tuning curve based on the average "ring rate obtained from the "rst
0.5 s of the response of the neuron of Fig. 1 is essentially identical in shape to that
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Fig. 2. Normalized orientation tuning curves of the neuron of Fig. 1. The continuous and dashed curves
correspond to the average response during the "rst 0.5 s and the subsequent portion of the histogram,
respectively. The curves have been normalized such that their peak values are at one.

obtained from the steady-state portion of the response. This is evident from the
normalized tuning curves in Fig. 2, supporting the inference made in Ref. [7] that
orientation discrimination is as reliable during the transient stage as subsequently.
One can also examine response characteristics when combinations of gratings are

presented either simultaneously or sequentially in time. Cross-orientation suppression
refers to the suppression of the response to a stimulus at the preferred orientation of
the neuron if that stimulus is paired with one oriented in an orthogonal direction. It
has been shown previously that normalization provides a quantitative description of
that e!ect during steady state. Correspondingly, in our model, this suppression is not
displayed at the early stage of the transient response, when normalization is not yet
operational. However, once normalization manifests itself during the transition from
a transient response to the steady state, cross-orientation suppression becomes evi-
dent.
With the stimuli presented sequentially in time, adaptation and `forward maskinga

e!ects may be explored. For example, Fig. 3 shows responses to a stationary grating
with optimal parameters presented for 0.5 s, followed by two similar probe gratings of
0.15 s duration presented 0.2 and 2 s after the adapting grating. The diminished
response to the "rst probe shows rapid contrast adaptation, a gain-control e!ect. That
this e!ect should fade by the time the second probe is presented, is determined by our
choice values for the time-delay and low-pass "ltering constants. These parameters
dictate which part of the neuron's histogram is contributing to the normalization
term. The "gure is consistent with the data in Ref. [7,8].
Our model can also reproduce the pattern-speci"c adaptation reported in Ref.

[7,8]. Fig. 4 shows the orientation-tuning curves of a complex cell in the model, before
(continuous curve) and after (dashed curve) adaptation to a stationary grating. The
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Fig. 3. Response histogram of the neuron described in Fig. 1 to a stationary adapting grating presented for
0.5 s, followed by two probe gratings 0.2 and 2.0 s later, respectively, lasting for 0.15 s each. All stimuli have
optimal frequency and orientation. The time course of the stimulus is traced (heavy line) below the graph.

Fig. 4. Orientation tuning curves of the neuron described in Fig. 1 before (continuous curve) and 0.2 s after
(dashed curve) rapid adaptation to a stationary grating that lasts for 0.5 s. The orientation of the adapting
stimulus is indicated by the arrow.

grating, lasting for 0.5 s, has an orientation that is o!set 143 from the optimal
orientation for the cell by 143. Beyond the overall diminishing of the response, there is
the relative suppression in the neighborhood of the adapting orientation. The model
predicts that this `rapid adaptationa e!ect will not be evident during the interval
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(roughly 0.02 s) immediately following the onset of the probe stimulus. Furthermore,
this e!ect is present even if the weights w

��
in Eq. (2) were chosen to be uniform. It

arises due to the underlying dynamics of the normalization model. This is in contrast
to recent accounts of such stimulus-speci"c adaptation in which the feedback (normal-
ization) weights are adjusted according to image statistics [10] or short-term synaptic
depression [4].

4. Summary

We have generalized the basic normalization model in a rather simple manner to
account for the time course of V1 neuronal responses. Our model extends the range of
observed non-linear behaviors encompassed by such a functional description and
advances a step toward a more biophysical account of these mechanisms. But we have
not yet determined a biophysically detailed explanation, and the particular choice in
Eq. (2) is somewhat ad hoc. However, it can be shown mathematically that extending
normalization models to incorporate pattern selectivity is fairly constrained based on
the steady-state responses they generate. It appears, then, that incorporating both
biophysical and mathematical constraints should narrow the "eld of candidate
models considerably.
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