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Abstract

An algorithm for estimating optical flow based on the discrete-time rigid motion of an uncalibrated
camera through a static planar world is presented. The algorithm is based on differential mea-
surements, and estimates are computed within a multi-scale decomposition and propagated from
coarse to fine scales. The algorithm is designed to operate properly with large displacements (i.e.,
large velocities or low frame rates). The quality of the algorithm is demonstrated by comparing
with a simple (smoothness-based) multi-scale optical flow estimator and an instantaneous-time
direct method.

1. Introduction

Multi-scale algorithms for optical flow estimation allow the estimation of large image displacements and
also improve overall accuracy of the flow [1, 5, 10, 14]. However, these techniques make an assumption
(often implicitly) of smoothness on the optical flow field. In many situations, smoothness is not a realistic
assumption. But there are often more realistic constraints available. The most well known is the assumption
that the camera moves through a static scene. If n represents the number of pixels in the image, the basic
optical flow problem has 2n degrees of freedom while the rigidity-constrained problem has, typically, n+5+¢,
where ¢ represents the number of degrees of freedom from calibration.

Stronger assumptions may reduce the problem complexity even further. For many applications, the structure
of the scene is well-approximated by a plane. Even when the scene structure is not planar, it is often useful to
estimate a ‘relevant’ reference plane [9, 12]. The planar structure assumption greatly simplifies the problem,
since the number of degrees of freedom no longer depends on the image size.

Given point and/or line correspondences, the discrete time motion problem has been solved by several
authors [6, 7, 11, 13, 16]. For instantaneous representations, excellent work has been done in using multi-
scale estimation techniques to couple the flow and motion estimation problems to provide a direct method
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[4, 8]. This method uses the multi-scale technique to capture large motions while significantly constraining
the flow with a global model. However, this approach contains a hidden contradiction; the algorithm can
observe large image motions but can only represent small camera motions due to its instantaneous time
assumption.

This paper describes a global optical flow model for discrete camera motion through a static planar world.
The algorithm is based on differential measurements, and estimates are computed within a multi-scale
decomposition and propagated from coarse to fine scales. Comparisons between simple (smoothness-based)
multi-scale optical flow, differential planar model, and two methods for estimating discrete planar models
are shown.

2. Discrete-Time Optical Flow for a Planar Surface

The imaging system is assumed to use perspective projection, and is approximated using the following model

(similar to the model used in [15]):

1
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where x; is the world coordinate vector and p; the normalized image coordinate vector:
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The matrix C contains the camera calibration parameters:

fs —fcos(0) ¢y
C = 0 f e |,
0 0 1

where f is the focal length, s a scale factor describing the ratio of vertical to horizontal pixel size, 8 is an

m

axis skew parameter (typically close to 7), and (cy,c,) represents the image center.

For any reasonable system, the matrix C is invertible. Inverting equation (1) gives an expression for world
coordinates in terms of the image coordinates and depth:

X; = C_lpizi. (2)

The rigid-body motion constraint on world positions at two discrete times is expressed as:
x'; = Rx; +t,

where R is a three-dimensional (discrete-time) rotation matrix, and t an arbitrary three-dimensional trans-
lation vector.

An expression for the final position p’; given calibration, motion, and structure parameters is derived below.
Substituting the inverse projection relation of equation (2) into the rigid-body motion constraint:

C_lp’izl'» =RC !p;z + t.
This can be solved for the image position after the motion:

pIZ- = i/ (CRC_lpZ’Zi + Ct) . (3)
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The planar assumption provides the following constraint:
a x; = 1.

Combining with equation (2) gives:

1

— = aTC_lpia

z;

Finally, substituting into equation (3) yields an expression that provides the final image coordinates given
the initial coordinates, the camera projection matrix, and the rigid-body motion parameters.

Z
Pli = yApi . (4)
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Where A is the matrix with arbitrary components defined by:

A=C(R+ta’)C™?

This rigid-world based constraint on the motion of image points must be related to measurements of image
displacements. Since differential optical flow techniques have proven to be quite robust [2], the estimator
is based upon differential measurements. At each point in the image the differential form of the brightness

constancy constraint is:

o1 ou; 91 dv oI
0 ot Tow o Tar T

For the differential changes in image positions discrete displacements are substituted. Rewriting in vector

0.

notation:
9I/du ’ uf —
9I/dv vi—v | =0
o1/ot 1

Displacements can be assumed small since the algorithm is implemented in a multi-scale (coarse-to-fine)
framework. In order to combine this equation with the constraint of equation (4), p} is isolated:

O1/0u 1 0 —u
9I/dv 0 1 —v |p;=0. (5)
a1/t 00 1

Assuming the value of % is well-defined and non-zero, the constraint of equation (5) can be combined with

equation (4) to producez:l
9I/du Tt o —uy

0I/dv 0 1 —v |Ap;=0.
oI /ot 0 0 1

This constraint is used to produce a local error metric:
T
Ei(A) = (Api)” D;(Ap;),

where D; is a matrix constructed from the differential image measurements and known position values:

T

1 0 —w ][] 01/ou [ 8I/0u 10 —u
D;=|0 1 —v oI /dv oI /dv 0 1 —vu
00 1 o1/t o1/t 00 1



This leads to the global error metric:
E(A)=> p/A"D;Ap;.

The minimization of this metric provides an estimate for A which can be used to produce the optical flow
at each pixel by coupling equation (4) with the constraint that the third component of p’; is one.

3. Removing the Implicit Weighting of Observations

The least-squares estimation of A uses an implicit weighting of the observations, since - by necessity - the
factor of z—z isignored. This can be approximately ‘corrected’ by iteratively re-estimating A using a weighting
factor of magnitude 2+ for each observation. Given an estimate of A, an expression for the weighting factor

comes from consideriﬂg the third component of equation (4):

Z5 1

4 107"
0 Ap;
1

For later reference, the algorithm incorporating these weights is called the ‘normalized discrete algorithm’.

4. Multi-Scale Implementation

Since this method is capable of representing large (discrete) camera motions, it should be able to handle
large image displacements. This is accomplished by implementing a coarse-to-fine version of the algorithm
on a multi-scale decomposition.

First, a Gaussian pyramid on the pair of input frames [3] is constructed. At the coarsest scale of the pyramid,
the algorithm is employed as derived. This provides an initial coarse estimate of optical flow. This optical
flow is interpolated to give a finer resolution flow field, denoted (A°u;, A®v;). This motion is removed from
the finer scale images using warping; the warped images are denoted I".

The optical flow equation (5) is written only in terms of the final positions p’;. Thus a slightly modified
constraint on the warped images may be used:

oI%/ou 1" [1 0 —(ui + Au)
oI [dv 0 1 —(v;+A%;) | p;=0.
oI /ot 00 1

The remainder of the algorithm is as before: new matrices D; are computed from this constraint and used
to estimate A.

5. Experimental Results

The following are comparative results obtained from the ‘Yosemite’ sequence!. The first method is a simple
multi-scale optical flow (msof) algorithm [14]. The second is the well-known differential approximation

1 This sequence was graphically rendered from an aerial photograph and range map by Lyn Quam at SRI.



(differential) to the rigid camera motion through a static planar world [4, 8]. The third is the normalized
discrete (norm. discrete) version presented in this paper and the forth the non-normalized (discrete) version.

The metric presented is the RMSE of the error vector magnitudes. The true optical flow values were computed
from the motion, structure, and calibration data provided with the Yosemite sequence. In particular, this
means that the textureless top region of the image was assigned the flow appropriate to the rotation of a
point at infinity. In order to obtain large motions, the computations on the sequence were subsampled at
different temporal rates.

frame interval — 1 2 3 4
msof 0.68667 1.80693 3.62789 5.90103
differential 0.37816 0.99433 2.57761 5.33927
norm. discrete 0.44741 0.84904 1.25650 2.12269
discrete 0.45764 0.84916 1.24869 2.11088

Table 1. RMSE of flow error vector magnitudes, for four different algorithms and four different temporal
subsampling factors. See text.

At the full temporal resolution, the differential algorithm gives the best performance for this sequence.
However, it is clear that the discrete algorithm provides the best optical flow estimate for large motions.
The relative performance of the normalized and non-normalized algorithms requires explanation. In the
non-normalized algorithm, each observation is weighted by the ratio of its final depth to its initial depth.
For the Yosemite sequence, all points are moving closer to the camera implying the ratio of final to initial
depth is nearly one at distant points and the ratio decreases as initial depth decreases. By focusing the fit
of the plane on the distal data a lower evaluation metric is obtained for the data with the lower temporal
samplings. This is, primarily, a statement about the sequence and not the algorithms.

6. Conclusion

The derivation of a multi-scale algorithm for estimating optical flow based on an uncalibrated camera moving
rigidly through a static planar world has been presented. Its implementation is only slightly more complicated
and time consuming than the instantaneous motion model. In situations where the camera may be undergoing
relatively large motions, the superiority of the discrete model has been demonstrated on the Yosemite
sequence.
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Figure 1. Optical flow fields for the Yosemite sequence. A True flow field. B Standard (smoothness-

based) multi-scale differential flow. C Differential flow, using a planar world assumption. D Discrete-

time flow, using a planar world assumption.
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Figure 2. Error magnitudes for optical flow estimates on the ‘Yosemite’ sequence. Images are scaled
so that white indicates no error and black corresponds to an error of magnitude five or more pixels.
B Standard (smoothness-based) multi-scale differential flow. C Differential flow, using a planar world
assumption. B Discrete-time flow, using a planar world assumption.
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