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Abstract. An algorithm for optical 
ow estimation is presented for the
case of discrete-time motion of an uncalibrated camera through a rigid
world. Unlike traditional optical 
ow approaches that impose smoothness
constraints on the 
ow �eld, this algorithm assumes smoothness on the
inverse depth map. The computation is based on di�erential measure-
ments and estimates are computed within a multi-scale decomposition.
Thus, the method is able to operate properly with large displacements
(i.e., large velocities or low frame rates). Results are shown for a synthetic
and a real sequence.

1 Introduction

Estimation of optical 
ow, a longstanding problem in computer vision, is par-
ticularly di�cult when the displacements are large. Multi-scale algorithms can
handle large image displacements and also improve overall accuracy of optical

ow �elds [1, 5, 9, 15]. However, these techniques typically make the unrealistic
assumption that the 
ow �eld is smooth. In many situations, a more plausible
assumption is that of a rigid world.

Given point and/or line correspondences, the discrete-time rigid motion problem
has been studied and solved by a number of authors (e.g. [6, 7, 11, 14, 17]). For
instantaneous representations, multi-scale estimation techniques have been used
to couple the 
ow and motion estimation problems to provide a direct method
for planar surfaces [4, 8]. These methods use the multi-scale technique to capture
large motions while signi�cantly constraining the 
ow with a global model. But
the planar world assumption is quite restrictive, and the approach also contains
a hidden contradiction; the algorithm can observe large image motions but can
only represent small camera motions due to the instantaneous time assumption.
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This paper describes an optical 
ow algorithm for discrete camera motion in a
rigid world. The algorithm is based on di�erential image measurements and esti-
mates are computed within a multi-scale decomposition; the estimates are prop-
agated from coarse to �ne scales. Unlike traditional coarse-to-�ne approaches
which impose smoothness on the 
ow �eld, this algorithm assumes smoothness
of the inverse depth values.

2 Discrete-Time Optical Flow

The imaging system is assumed to use the following projection model:

pi = Cxi
1

zi
where xi �

2
4
xi
yi
zi

3
5 and pi �

2
4
ui
vi
1

3
5 ; (1)

xi denotes the point's coordinates in the camera's frame of reference and pi the
image coordinates. The matrix C contains the camera calibration parameters
and is presumed invertible.3

The discrete motion of a point is expressed as:

x0

i = Rxi + t ; (2)

where R is a (discrete-time) rotation matrix, t is a translation vector, and x0

i

denotes the point's coordinates after the discrete motion.

A classic formulation of this constraint is due to Longuet-Higgins [10]:

x0T
i (t�Rxi) = 0 :

Using equation (1) to substitute for xi gives:

z0ip
0T
i (C

0�1)T
�
t�RC�1pizi

�
= 0 : (3)

Let t� represent the skew-symmetric matrix corresponding to a cross-product
with t. Using suitable linear algebraic identities, and assuming that zi 6= 0 and
z0i 6= 0, leads to the following simpli�cation:

0 = z0ip
0T
i (C

0�1)T t�RC�1pizi

0 = p0T
i (C

0�1)T t�C0�1C0RC�1pi

0 = p0T
i (C

0t)�C0RC�1pi

0 = p0T
i Lpi ; (4)

where L � (C0t)�C0RC�1 is a matrix that depends on the global motion and
camera calibration information. Equation (4) provides a constraint on the initial

3 This assumption is valid for any reasonable camera system. For example, the pin-
hole model is included in this family, as well as more complex models such as that
given in [16].
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and �nal image positions assuming rigid-body motion and is, essentially, the
fundamental matrix [12].

In addition, it will be useful to develop an expression for the �nal position, p0

i,
given the calibration, motion, and structure parameters. Substituting the inverse
of equation (1) into the rigid-body motion constraint of equation (2):

C0�1p0

iz
0

i = RC�1pizi + t :

Solving for the image position after the motion:

p0

i =
C0RC�1pi +C0t 1

zi

ẑT
�
C0RC�1pi +C0t 1

zi

� where ẑ =

2
4
0
0
1

3
5 : (5)

This rigid-world motion constraint must be connected with measurements of im-
age displacements. Since di�erential optical 
ow techniques have proven to be
quite robust [2], the formulation is based on the di�erential form of the `bright-
ness constancy constraint' [8]:
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Substituting discrete displacements for the di�erential changes in image positions4

and rewriting to isolate p0i gives:

2
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5p0i = 0 : (6)

This constraint is combined with equation (5), squared, and summed over a local
neighborhood, N(i), to produce an error metric:

Ei(A;b;
1

zi
) =

�
Api + b 1

zi

�T
Di

�
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zi

�

�
ẑTApi + ẑTb 1

zi

�2 ;

where A � C0RC�1, b � C0t, and Di is a matrix constructed from the di�er-
ential image measurements and known position vectors:
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2
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0 1 �vi
0 0 1
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4 The displacements are assumed to be small; this is reasonable given the multi-scale
(coarse-to-�ne) framework described in Section 3.
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Minimizing Ei(A;b; 1
zi
) with respect to 1

zi
gives:

1

zi
= �

pTi A
TDi

�
I� bẑT

�
Api

bTDi (I� bẑT )Api
:

Substituting back into Ei(A;b; 1
zi
), and noting that L = b�A:

Ei(A;b) = �
bTDi (Lpi)

�
DiApi

(Lpi)
T (ẑ�)TDiẑ� (Lpi)

:

Using a series of linear algebraic manipulations, the numerator may be rewritten
as an expression quadratic in L:

�(Dib)
T (Lpi)

�DiApi = (Lpi)
T (Dib)

�DiApi

= jDij(Lpi)
TD�1

i b�Api

= jDij(Lpi)
TD�1

i Lpi ;

where jDij indicates the determinant of the matrix Di.

To e�ciently solve for L, a global metric is formed by summing over the image
the weighted numerators of the Ei(A;b):

E(A;b) =
X
i

jDij(Lpi)
TD�1

i Lpi=wi ; (7)

where wi is the value of the denominator of Ei(A;b) using the previous estimate
of L. This metric is computed iteratively in the coarse-to-�ne procedure and,
from empirical observations, only one iteration at each scale is necessary.

The algorithm proceeds by �rst globally minimizing equation (7) to obtain a
solution for the nine entries of the matrix L, subject to the constraints jLj =

0 and
P

j

P
i (Lj;i)

2 = 1 (to remove the scale ambiguity). Then, the squared
optical 
ow constraint

Ef (p
0

i) = p0T
i Dip

0

i ; (8)

is minimized at each pixel, subject to equation (4) with the estimated value of
L, to obtain an optical 
ow �eld.

3 Multi-Scale Implementation

Since the method is capable of estimating large (discrete) camera motions, it
must be able to handle large image displacements. This is accomplished with a
coarse-to-�ne version of the algorithm on a multi-scale decomposition.

First, a Gaussian pyramid is constructed on the pair of input frames [3]. At
the coarsest scale of the pyramid, the algorithm is employed as derived in the
previous section to provide an initial coarse estimate of optical 
ow. This optical

ow is interpolated to give a �ner resolution 
ow �eld, denoted (�cui; �

cvi). This
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motion is removed from the �ner scale images using warping; the warped images
are denoted Iw.

Since the optical 
ow equation (8) is written only in terms of the �nal positions
p0

i, the constraint on the warped images needs only a slight modi�cation:

2
4
@Iw=@u
@Iw=@v
@Iw=@t

3
5
T

i

2
4

1 0 �(ui +�cui)
0 1 �(vi +�cvi)
0 0 1

3
5p0i = 0 :

The remainder of the algorithm is as before: new matrices Di are computed
from this constraint and these are used to estimate L using equation (7). The
weightings, wi, are computed using the estimate of L from the previous scale.
Finally, equation (8) is minimized at each pixel, subject to the constraint of
equation (4), to estimate the optical 
ow.

4 Experimental Results

Experimental results were collected for three di�erent algorithms on two se-
quences. The �rst method is a simple multi-scale optical 
ow (msof) algo-
rithm [15]. The second computes 
ow for discrete motion of a planar world
(planar) [13]. The third is the algorithm presented in this paper (rigid).

The �rst sequence is the `Yosemite' sequence.5 True optical 
ow vectors were
computed from the motion, structure, and calibration data provided with the
sequence. The textureless top region was ignored during error calculations. In
order to obtain large motions, the computations are performed on the sequence
subsampled at di�erent temporal rates.

The second sequence was taken in the GRASP Laboratory from a camera mounted
on a tripod. Six markers consisting of seven black disks on a white planar surface
were placed in the scene and used to calculate ground-truth. Using knowledge
of the individual targets, accurate centroids for the disks were computed. Flow
was calculated from the motion of each centroid for a total of 42 
ow vectors.

Table 1 shows results. The metric is the mean angular error in degrees [2]:

Ea =
1

n

nX
i=1

cos�1(v̂Tti v̂ei)

where v̂ti is a unit three-vector in the direction of the true 
ow and v̂ei is a unit
three-vector in the direction of the estimated 
ow. The multi-scale optical 
ow
algorithm did well for small motions but poorly for large ones. Since the range
map for the Yosemite sequence is nearly planar, the di�erence in performance be-
tween the discrete algorithms is less signi�cant than those for the real sequence.
It is clear that the rigid algorithm provides the best optical 
ow estimates.

5 This sequence was graphically rendered from an aerial photograph and range map
by Lyn Quam at SRI.
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sequence ! Yosemite Real

frame interval ! 1 2 3 4 5 6 7 1

msof 6.13o 7.49o 13.10o 21.32o 29.09o 35.82o 42.43o 3.28o

planar 5.82o 6.56o 6.70o 6.70o 6.92o 6.82o 7.63o 2.87o

rigid 5.77o 5.86o 6.18o 6.53o 6.55o 6.77o 6.95o 2.05o

Table 1. Mean angular error in 
ow vectors for three di�erent algorithms. See text.

BA

DC

Fig. 1. Sample image from the Yosemite sequence (A) and the angular error metric of
the computed 
ow �elds for the Yosemite sequence by the msof (B), planar (C), and
rigid (D) algorithms with a frame interval of four. White corresponds to 0o of error
and black to 45o.

5 Conclusion

A multi-scale algorithm for estimating optical 
ow based on an uncalibrated
camera moving through a rigid world has been presented. Its implementation is
only slightly more complicated and time-consuming than standard multi-scale
algorithms. In situations where the camera may be undergoing relatively large
motions, the superiority of the rigid model has been demonstrated on both a
synthetic and a real sequence.
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ow �eld (A) and computed 
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