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Supplementary Methods 
 
Experiments were performed on two adult male rhesus macaque monkeys (Macaca mulatta), 
with weights of 11 kg and 12 kg and estimated ages of 10 years and 7 years, respectively. Both 
animals were implanted with head posts and recording chambers. All procedures were 
performed in accordance with the guidelines of the University of Pennsylvania Institutional 
Animal Care and Use Committee.  
 
The single-exposure, contrast-invariant visual memory task: 
 
All behavioral training and testing were performed using standard operant conditioning (juice 
reward), head stabilization, and high-accuracy, infrared video eye tracking. Stimuli were 
presented on an LCD monitor with an 85 Hz refresh rate using customized software 
(http://mworks-project.org).  
 
As an overview of the monkeys’ task, each trial involved viewing one image for 500 ms, after 
which the monkeys indicated whether it was novel (never seen before) or repeated (seen 
exactly once prior) with an eye movement to one of two response targets. Images were never 
presented more than twice during the entire training and testing period of the experiment. Trials 
were initiated when the monkey fixated on a small red square (0.25°) on the center of a gray 
screen followed by a 200 ms delay before a 4° image appeared within a circular aperture, 
positioned at the center of gaze. The monkeys needed to maintain fixation of the stimulus for 
500 ms, at which time the red square turned green (the go cue) and the targets appeared. The 
monkeys then made a saccade to a target indicating whether the stimulus was novel or 
repeated, and correct responses were rewarded with juice. Targets were positioned 8° above or 
below the stimulus. The association between the target (up vs. down) and the report (novel vs. 
repeated) was swapped between the two animals.   
 
The images used in these experiments collected via an automated procedure that gathered 
images from the internet. Images smaller than 96*96 pixels were not considered. Eligible 
images were cropped to be square and resized to 256*256 pixels. Duplicate images were 
removed. Colored images were converted to grayscale and were presented at two contrasts 
(“low (L)” and “high (H)”) in all possible combinations as novel and repeated (novel-repeated = 
low-low (LL); high-high (HH); low-high (LH); high-low (HL)). Contrast modifications were applied 
in a manner that did not adjust image luminance (Lv), the mean pixel intensity. Images with Lv 
outside the range 0.25 – 0.75 were excluded. The computation of contrast began by first 
computing the median of the pixel intensities that fell above and below Lv, Lv-hi and Lv-lo. The 
native contrast for each image Cnative was computed as: 
    Cnative= (Lv-hi – Lv) + (Lv – Lv-lo) 
Each image was manipulated to produce a high contrast version (Chi = 0.4) and low contrast 
version (Clo = 0.2) via a procedure that maintained Lv for each image. Adjustments to contrast 
involved: 1) subtracting the mean pixel value, 2) rescaling the residual pixel values all by the 
same amount, and 3) adding back the mean. When the procedure resulted in the saturation of 
more than 10% of pixels beyond their maximal value (black and white), that image was 
excluded.  
 
Trial locations for novel images and their repeats were presented with a uniform distribution of 
the subset of n-back used in the experiment. The n-back distribution was adjusted for each 
monkey based on training history to approximately equate overall performance between the two 
animals: n-back = 1, 4, 16, and 32 for monkey 1, and n-back = 1, 2, 4, and 8 for monkey 2. The 
specific random sequence of images presented during each session was generated offline 
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before the start of the session. Uniform n-back distributions were achieved by constructing a 
sequence slightly longer than what was anticipated to be needed for the session, and by 
iteratively populating the sequence with novel images and their repeats at positions selected 
randomly from all the possibilities that remained unfilled. Because the longest n-back values (8 
or 32) were the most difficult to fill, a fixed number of those were inserted first. In the relatively 
rare cases that the algorithm did not converge, it was restarted. The result was a partially 
populated sequence in which 83% of the trials were occupied. Next, the remaining 17% of trials 
were examined to determine whether they could be filled with novel/repeated pairs from the list 
of possible n-back options. The very small number of trials that remained after all possibilities 
had been extinguished (e.g. a 3-back scenario) were filled with ‘off n-back’ novel/repeated 
image pairs and these trials were disregarded in later analyses.  
 
The monkeys’ behavioral patterns were computed for each condition after collapsing across n-
back. The degree of contrast invariance reflected in each monkey’s session-averaged 
behavioral pattern was computed as the mean of contrast invariance computed for the novel 
and repeated memory conditions separately. Within each memory condition M, contrast 
invariance (I) of the behavioral pattern X in either memory condition was defined by: 
 

I = 1 −	
Var(X)

Var(X,-.)
 

(1) 
Where, Var(X) is the variance of pattern X, and Var(X,-.) is the maximum possible variance 
associated with contrast in memory condition M given monkeys’ overall performance in the 
same memory condition M. For example, the X,-. for an overall performance across the 
repeated conditions of 85% would correspond to 70%, 100%, 100% and 70% for HH, LL, HL 
and LH, respectively.   
 
Neural recording:  
 
The activity of neurons in IT was recorded via a single recording chamber in each monkey. 
Chamber placement was guided by anatomical magnetic resonance images in both monkeys. 
The region of IT recorded was located on the ventral surface of the brain, over an area that 
spanned 5 mm lateral to the anterior middle temporal sulcus and 14-17 mm anterior to the ear 
canals. Recording sessions began after the monkeys were fully trained on the task and 
behavioral performance had plateaued. The depth and extent of IT was mapped within the 
recording chamber in a previous experiment 1. Combined recording and behavioral training 
sessions happened 2-5 times per week across a span of 4 weeks (monkey 1) and 6 weeks 
(monkey 2). Neural activity was recorded with 24-channel U-probes (Plexon, Inc.) with linearly 
arranged recording sites spaced with 100 µm intervals. Continuous, wideband neural signals 
were amplified, digitized at 40 kHz and stored using the Grapevine Data Acquisition System 
(Ripple, Inc.). Spike sorting was done manually offline (Plexon Offline Sorter). At least one 
candidate unit was identified on each recording channel, and 2-3 units were occasionally 
identified on the same channel. Spike sorting was performed blind to any experimental 
conditions to avoid bias. A multi-channel recording session was included in the analysis if: (1) 
the recording session was stable, quantified as the grand mean firing rate across channels 
changing less than 3-fold across the session; (2) over 50% of neurons were visually responsive 
(a loose criterion based on our previous experience in IT), assessed by a visual inspection of 
the rasters; and (3) the number of successfully completed novel/repeated pairs of trials 
exceeded 100. In monkey 1, 19 sessions were recorded and five were removed (one based on 
criterion 1 and four based on criterion 3). In monkey 2, 15 sessions were recorded and one was 
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removed (based on criterion 1). The resulting data set included 14 sessions for monkey 1 (n = 
427 candidate units), and 14 sessions for monkey 2 (n = 429 candidate units). The sample size 
(number of successful sessions recorded) was chosen based on our previous work 1.  
 
The data reported here correspond to the subset of images for which the monkeys’ behavioral 
reports were recorded for both novel and repeated presentations (e.g. trials in which the 
monkeys did not prematurely break fixation during either the novel or the repeated presentation 
of an image). Accurate estimate of population response magnitude requires many hundreds of 
units, and when too few units are included, magnitude estimates are dominated by the stimulus 
selectivity of the sampled units. To perform our analyses, we thus concatenated units across 
sessions to create larger pseudopopulations. When creating these pseudopopulations, we 
aligned data across sessions in a manner that preserved whether the trials were presented as 
novel or repeated and their experimental contrast condition. To prevent artificial correlations 
from influencing our results, analyses were performed after re-randomizing the responses within 
each condition for each unit to create many pseudopopulations. To deal with varying data sizes 
across sessions, the number of images included in the analysis was selected to balance 
incorporating data of equal sizes across sessions with not needlessly discarding data. NaNs 
were used as place holders for the more limited sessions in which data did not exist. The 
resulting pseudopopulations consisted of the responses to 180 images presented as both novel 
and repeated (i.e. 45 images per condition: HH, LL, HL, and LH). Spikes were counted in a 
temporal window over the range 100-500 ms following stimulus onset. 
 
Contrast and memory modulations:  
 
Contrast (c) and memory (m) modulations were computed from the grand mean firing rate 
(GMFR) across all units and images as: 
 

𝑐 = 	100 ×
GMFR3 −GMFR4

GMFR3
 

(2) 

𝑚 = 	100 ×
GMFR3 −GMFR33

GMFR3
 

(3) 
 
In the Results, we present both raw and baseline-corrected contrast and memory modulations. 
To determine the modulations after correcting for pre-stimulus baseline activity, the pre-stimulus 
GMFR in a 200-ms pre-stimulus time window was subtracted from the GMFR for each 
condition.  
 
 
Linear population decoders: 
 
For all decoders, the population response was quantified as the vector 𝐱 containing spike 
counts on a given trial. To ensure that the decoder did not erroneously rely on visual selectivity, 
the decoder was trained on balanced pairs of novel/repeated trials in which monkeys viewed the 
same image (regardless of behavioral outcome or experimental contrast condition).   
 
 
 
 



 
 

5 
 

Cross-validated training and testing: 
 
We applied the same, iterative cross-validated procedure for each linear decoder. On each 
iteration of the resampling procedure, the responses for each unit were randomly shuffled within 
each experimental condition to ensure that artificial correlations (e.g. between the neurons 
recorded in different sessions) were removed. Each iteration also involved setting aside the 
responses to one randomly selected image within each contrast condition (presented as both 
novel and repeated, for 8 trials in total) for testing classifier performance. The remaining trials 
were used to train one of the linear decoders to distinguish novel versus repeated images 
invariant to contrast, where the novel and repeated classes included the data corresponding to 
all n-backs and all trial outcomes. A neural prediction of the proportion of trials on which 
“repeated” would be reported was computed as the proportion of each distribution that took on a 
value less than the criterion. Finally, the predicted response pattern was rescaled by a rescaling 
parameter (see below) as a proxy for adjusting the population size to consider.   
 
All decoders in this study took the general form of linear discriminators. The class 
(novel/repeated) of a population response vector, 𝐱 was determined by the sign of:  
 

𝑓(𝐱) = 	𝐰. 𝐱 − 𝑏 
(4) 

where w is an N-dimensional weight vector in the N-dimensional IT neural space (N is the 
number of units), and b is decision criterion, given by: 

𝑏 = 	
1
2
𝐰. (𝛍= + 𝛍?) 

(5) 
Here 𝛍= and 𝛍? are the mean population response vectors across novel and repeated images 
in the training set, respectively. A population response vector 𝐱 was classified as “novel” if 
𝑓(𝐱) > 0, and “repeated” if 𝑓(𝐱) < 0.  
 
 
Spike count classifier (associated with repetition suppression, RS): 
 
Arguably the simplest classifier, the total spike decoder uses a homogeneous weight vector: 
 

𝐰?B = 𝟏 = (1, 1, … , 1) 
(6) 

 
Fisher Linear Discriminant (iFLD): 
 
The iFLD used in this study follows our previous implementation1. The Fisher Linear 
Discriminant (FLD) is defined as: 
 

𝐰F4G = ΣI𝟏(𝛍= − 𝛍?) 
(7) 

where ΣIJ is the inverse of the average covariance matrix across novel and repeated 
conditions: 
 

Σ =
1
2
(Σ= + Σ?) 

(8) 
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The dimensionality of our neural populations is high enough that we do not have enough data to 
obtain reliable covariance estimates (the amount of data needed for acceptable estimates of the 
off-diagonal entries is >10x what we collected in a single session). As such, we assume 
independence of the stimulus responses within conditions (i.e., we set the off-diagonal entries to 
zero). The resulting iFLD uses a weight for each unit that is proportional to its visual memory 
discriminability (d’): 
 

𝐰KF4G =L𝐞𝐢 	O
µ=
(K) − µ?

(K)

σKQ
R

=

KSJ

 

(9) 
where 𝐞𝐢 is the unit vector along i-th dimension (i-th unit’s response); N is the number of units; 
µ=
(K) and µ?

(K) are i-th unit’s mean responses to novel and repeated images, respectively; and 𝜎KQ 
is the i-th unit’s average response variance across novel and repeated conditions:  
 

𝜎KQ = 	
1
2
Uσ=

(K)Q + σ?
(K)QV 

(10) 
Family of contrast-corrected linear decoders: 
 
The family of contrast-corrected linear decoders are based on weight vectors that are rotated 
within the plane containing the RS decoder (𝟏) and a contrast decoder, 𝐰𝒄:  
 

𝐰X(𝜃) = (cos 𝜃 − cot 𝛾 sin 𝜃)𝟏a 	+ (csc 𝛾 	sin 𝜃)𝐰X𝒄	; 			𝜃 ∈ [γ − 𝜋, 𝛾] 
(11) 

where, 𝐰X(𝜃), 𝟏a and 𝐰X𝒄 are the unit vectors representing the decoding axis, RS decoder, and 
contrast decoder, respectively. 𝜃 is the angle between the decoder axis (𝐰X(𝜃)) and the RS axis 
(𝟏), and 𝛾 is the angle between the RS and contrast axes. The contrast weight vector 𝐰𝒄 was 
defined as:  
 

𝐰𝒄 = (𝛍3 − 𝛍4) 
(12) 

where 𝛍3 and 𝛍4 are the mean population response vectors across high and low contrast 
images in train set, respectively. This is a simple form of FLD that arises when the average 
covariance is a multiple of the identity, and is sometimes called a “prototype classifier”. We 
define the SRS decoder as the axis that is orthogonal to contrast, i.e. 
 

𝜃B?B = 𝛾 −
𝜋
2

 
(13) 

 
Variant decoding scheme that incorporates a contrast correction: 
 
We also evaluated a variant decoding scheme that corrected for contrast modulation (SI 
Appendix, Fig. S6). This decoder operated by correcting modulations caused by contrast along 
the RS axis by estimating and then subtracting the mean of population response across novel 
images for each contrast condition. The estimate of the mean population response at each 
contrast was computed after classifying novel images by contrast based on the training data, 
using the same prototype linear decoder used for SRS (Eq. 12). 
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Family of linear decoders in a 3D subspace spanned by SRS, RS, and iFLD: 
  
To compute the 3D plots presented in SI Appendix, Fig. S8, we considered a 3D subspace of 
our high dimensional neural space spanned by SRS, RS, and iFLD where plane 𝛑J:w𝑺𝑹𝑺 ∧w𝑹𝑺 
intersects with plane 𝛑Q:w𝑺𝑹𝑺 ∧w𝒊𝑭𝑳𝑫 along SRS (∧ denotes exterior product; see SI Appendix, 
Fig. S8a). In this 3D subspace a decoding axis is given by: 
 

w(𝜃, 𝜙) = cos 𝜃w𝑺𝑹𝑺 + sin 𝜃(cos𝜙w𝒄 + sin𝜙w𝟎) 
(14) 

where 𝜃 and 𝜙 are polar and azimuthal angles in a spherical coordinate system measured 
relative to w𝑺𝑹𝑺 (zenith direction) and w𝒄 in the plane 𝛑J:w𝑺𝑹𝑺 ∧w𝑹𝑺 (azimuth reference), 
respectively. Furthermore: 
  

w𝒄 = csc 𝛾J w𝑹𝑺 − cot 𝛾J w𝑺𝑹𝑺 
(15) 

w𝟎 = csc 𝛾Q csc 𝛾s w𝒊𝑭𝑳𝑫 − (cot 𝛾Q csc 𝛾s + cot 𝛾J cot 𝛾s)w𝑺𝑹𝑺 −	csc 𝛾J cot 𝛾s w𝑹𝑺 
(16) 

and 
𝛾J = acos(w𝑺𝑹𝑺 ∙w𝑹𝑺) 

(17) 
𝛾Q = acos(w𝑺𝑹𝑺 ∙w𝒊𝑭𝑳𝑫) 

(18) 
𝛾s is the angle between planes 𝛑J:w𝑺𝑹𝑺 ∧w𝑹𝑺 and 𝛑Q:w𝑺𝑹𝑺 ∧w𝒊𝑭𝑳𝑫. This angle can be 
determined in exterior algebra as: 

𝛾s = acos	 u
〈w𝑺𝑹𝑺 ∧w𝑹𝑺	,w𝑺𝑹𝑺 ∧w𝒊𝑭𝑳𝑫〉

(〈w𝑺𝑹𝑺 ∧w𝑹𝑺	,w𝑺𝑹𝑺 ∧w𝑹𝑺	〉	〈w𝑺𝑹𝑺 ∧w𝒊𝑭𝑳𝑫,w𝑺𝑹𝑺 ∧w𝒊𝑭𝑳𝑫〉)J/Q
y 

(19) 
where  

〈𝐚 ∧ 𝐛, 𝐚 ∧ 𝐜〉 ≡ det	 ��
〈𝐚, 𝐚〉 〈𝐚, 𝐜〉
〈𝐛, 𝐚〉 〈𝐛, 𝐜〉�� 

(20) 
〈. , . 〉 and det(.) are the operators of inner product and determinant, respectively. 
 
Rescaling parameter and prediction quality (PQ): 
 
Comparing IT population decoding performance with behavior depends on the neural population 
size under consideration, and there is no good way to choose this a priori. We thus applied a 
fitting approach for each decoder. After confirming that performance using all recorded units in 
our dataset fell below saturation, we simulated increases in population size by fitting a single 
rescaling parameter (𝛼) to minimize the MSE between the neural predictions and actual 
behavioral patterns. We emphasize that while this adjustment changed the overall performance, 
it did not impact the shape of the predicted behavioral patterns. The minimization of MSE yields 
the standard analytical solution for 𝛼: 
 

𝛼 =
∑ 𝑦�K𝑦K�
KSJ
∑ 𝑦KQ�
KSJ

 

(21) 
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where 𝑦�K and 𝑦K are the actual and neutrally predicted performance for condition i, respectively, 
and i indexes each of six conditions {HH, LL, HL, LH, H, L}.  
 
Next, to quantify the quality of the fit after rescaling the predicted pattern, we computed a 
measure of prediction quality (PQ): 
 

PQ = 1 −
𝑀𝑆𝐸

𝑀𝑆𝐸,-.
 

(22) 
where MSE and MSEmax denote the mean squared error of the rescaled predicted pattern and 
the pattern with maximum MSE that was matched in overall performance, respectively, i.e. 
 

𝑀𝑆𝐸 =
1
6
L (𝑦�K − 𝑦′K)Q

�

KSJ
 

(23) 
and  
 

𝑀𝑆𝐸,-. = max
��

�
1
6
L (𝑦�K − 𝛿K)Q

�

KSJ
�	

(24) 
𝑦�K and 𝑦′K are the actual and rescaled predicted performance for condition i, respectively, and i 
corresponds to each of six conditions including HH, LL, HL, LH, H, and L. Each 𝛿K was chosen 
to be either 1 or 2𝑦� − 1 (with 𝑦� the mean performance across all six conditions), in order to 
maximize MSE. The upper bound of PQ = 1 reflects a neural prediction that perfectly replicates 
the actual behavioral pattern. A value of PQ = 0 reflects the worst possible predicted behavioral 
pattern that is matched in overall performance. Negative PQ values reflect predicted behavioral 
patterns that could not be rescaled with 𝛼 to match overall performance because one or more 
entries were pinned at saturation (e.g., as a consequence of extreme contrast modulation). 
  
Covariance error ellipse: 
 
Error ellipses (shown in Fig. 3a, 5a, and SI Appendix, Fig. S7a) were computed by first 
projecting the neural response vectors onto the non-orthogonal discriminant axes 𝟏a and 𝐰X𝒄, 
producing coordinates (u, v). These were transformed to orthogonal coordinates using a 
transformation matrix (derived from Eq. 11): 

 
R = � 1 0

− cot γ csc γ� 
(25) 

where γ is the angle between the two discriminant axes: 
 

γ = ∠(𝐰𝟏,𝐰𝟐) = acos(𝐰𝟏 ∙ 𝐰𝟐) 
(26) 

 
We then rotate this coordinate system in the plane by angle 𝜑, using transformation matrix: 

 
R� = �cos𝜑 −sin𝜑

sin𝜑 cos𝜑 � 
(27) 
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Combining Eq. 25 and 27 gives an expression for the (x, y) coordinates of the projected neural 
responses: 

  
�
𝑥
𝑦� = �cos𝜑 − sin𝜑

sin𝜑 cos𝜑 � × � 1 0
− cot γ csc γ� × �

𝑢
𝑣� 

(28) 
 
For each condition, the covariance matrix of the transformed data was computed, and the 
eigenvectors of this matrix provide the major and minor axes of the associated ellipse. To 
determine the dimensions of the ellipse, we multiplied the square root of the eigenvalues by a 
scale factor equal to the square root value of the cumulative chi-square distribution function 
(CDF) for 2-degrees of freedom evaluated at 95%. 
 
Decomposition of total variance into variance due to identity/trial variability and contrast: 
 
For Figs. 4, 5, and SI Appendix, Fig. S7, we used the following equations to decompose the 
average variance across novel (N) and repeated (R) conditions, 𝜎- ¡Q =

J
Q
(𝜎=Q + 𝜎?Q), into the 

variance due to image identity and trial variability (ID) and contrast (C): 
 

𝜎- ¡Q =
1
2
(𝜎¢GQ + 𝜎£Q) 

Where: 

𝜎¤¥Q =
1
2
(𝜎3Q + 𝜎4Q) +

1
4
(𝜎33Q + 𝜎44Q + 𝜎34Q + 𝜎43Q) 

 

𝜎§Q =
1
2
[(𝜇3Q − 𝜇=Q) + (𝜇4Q − 𝜇=Q)] + ⋯ 

1
4
[(𝜇33Q − 𝜇?Q) + (𝜇44Q − 𝜇?Q) + (𝜇34Q − 𝜇?Q) + (𝜇43Q − 𝜇?Q)] 

(29) 
In each condition, 𝜎 and 𝜇 denote the standard deviation and mean of the corresponding 
distribution, respectively.  
 
 
Fitting the four-parameter tuning model to each unit and synthesizing data: 
 
In Fig. 5, and SI Appendix, Fig. S8 we assessed the population geometry in the limit of infinite 
samples by fitting a model to each unit that we recorded, and then using these models to 
synthesize population data. A 4-parameter model was used to describe the mean spike count 
response of each unit: 
 

𝑦(𝑥;𝑀, 𝐶) = 	𝐴.𝑚. 𝑐. exp	(−𝑎𝑥) 
(30) 

 
where x is stimulus rank, M is image memory condition (novel or repeated), C is image contrast 
(high or low), A is amplitude, m is memory modulation (set to 1 for novel images, and a fitted 
value for repeated images), c is contrast modulation (set to 1 for high contrast images, and fitted 
value for low contrast), and a controls stimulus selectivity.  
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We estimated each unit’s tuning curve parameters by maximizing the likelihood (MLE) of 
observing the spike count data from 100 ms to 500 ms relative to stimulus onset using the 
techniques introduced in ref. 2. If {𝜈J, 𝜈Q, … , 𝜈°	} is the spike count data for a unit in all six 
conditions (n trials in total), the log-likelihood of observing the data is given by: 
 

log ℒ(𝜈|	𝐴, 𝛼,𝑚, 𝑐) =Llog¶𝑃(𝜈K|𝐴, 𝛼,𝑚, 𝑐)¸
°

KSJ

 

(31) 
where 
 

𝑃(𝜈|𝐴, 𝛼,𝑚, 𝑐) =

⎩
⎪
⎨

⎪
⎧ 1 +

1
𝑎L

(−1)½𝐴¾½

𝑘. 𝑘! ¶	1 − 𝑒I½-¸
Â

½SJ

				 ; 𝜈 = 0

1
𝑎. 𝜈

L
𝐴¾½

𝑘!
¶𝑒I(½-ÃÄÅÆÇÈ) − 𝑒IÄÅ¸

ÉIJ

½SÊ

; 𝜈 ≠ 0

 

(32) 
and 
 

𝐴¾ = Ì

𝐴																																								; 𝑋: H
𝑐. 𝐴																																				; 	𝑋: 𝐿
𝑚. 𝐴																		; 𝑋:	𝐻𝐻, or	𝐿𝐻
𝑚. 𝑐. 𝐴																; 𝑋:	𝐿𝐿, or	𝐻𝐿

 

(33) 
 

We estimated four tuning parameters of the unit by maximizing Eq. 31 with respect to the 
parameters A, a, m, and c. 
 
Goodness of fit was assessed by comparing the actual and predicted grand mean spike counts, 
and only accepting units whose predicted grand mean spike counts fell in the range 0.83-1.2x of 
the actual values. Of 856 units, 661 units fulfilled this criterion. 
 
Finally, we used the tuning parameters for each unit to synthesize the responses to 1000 
images per condition. For each unit, we sampled x in Eq. 30 as 1000 draws from a uniform 
distribution between 0 and 1 and used those values to compute spike count rates, which were 
converted to spike counts by drawing from a Poisson process.  
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Fig. S1. Behavioral performance patterns for individual monkeys. (a-b) Fig. 1c replotted for two animals. 
Small black dots indicate average performance for an individual session and large colored dots indicate the 
average performance across sessions (14 sessions per animal). The contrast invariance reflected in each 
behavioral pattern (I) is labeled in each plot. Insets correspond to behavioral patterns with maximal (I = 0) 
and minimal (I = 1) contrast confusion, matched for overall performance. 
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Fig. S2. RS decoding performance, sorted by decoding performance on novel trials. Shown is a breakdown 
of the behavioral pattern predicted by the RS decoder depicted in Fig. 2a, sorted by images that were (a) 
correctly, and (b) incorrectly classified when presented as novel. These results indicate that even when 
novel images are correctly classified (panel a), the predicted behavioral pattern for repeated images reflects 
contrast confusions. 
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Fig. S3. Classic linear decoders fail to map IT neural responses to behavior for each monkey. (a, c) Fig. 
2a replotted for each animal. (b, d) Fig. 2b replotted for each animal. In all panels, dots indicate the actual 
behavioral patterns and bars indicate the neural predictions of behavior for each type of linear decoder. 
Prediction quality (PQ) is indicated for each case. 
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Fig. S4. Neural predictions of behavior for a family of weighted linear decoders that include SRS, plotted 
for each monkey. (a, d) Fig. 3b, plotted for each animal: prediction quality (PQ) for the family of linear 
decoders that lie on the plane spanned by RS and contrast axis (Fig. 3a). Markers correspond to SRS 



 
 

15 
 

(black), RS (blue), and the linear decoder with largest PQ (grey). (b, e) Fig. 3c, plotted for each animal: the 
alignment of the actual behavioral pattern and the SRS prediction (c, f) Fig. 3d, plotted for each animal: the 
alignment of the actual behavioral pattern and the decoder with the highest PQ on this plane. In b-f, dots 
indicate actual behavioral patterns and bars indicate the linearly decoded neural predictions of behavior. 
The decoder’s direction relative to RS, and prediction quality (PQ) are labeled for each case. 
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Fig. S5. Temporal evolution of IT contrast and memory representations and their impact on decoding image 
memory. (a) Grand mean firing rate (GMFR) of IT neurons as a function of time relative to stimulus onset. 
Traces in different colors correspond to different conditions (n = 856 units). (b) The evolution of contrast 
modulation (black) and memory modulation (grey), plotted along the left y-axis. We used traces depicted 
by thick lines in (a) to compute the modulations, such that: Contrast = 	100 × GMFRÑIGMFRÒ

GMFRÑ
, and Memory =

	100 × GMFRÑIGMFRÑÑ
GMFRÑ

, where GMFR denotes grand mean firing rate in the subscripted condition. The time-
course of prediction quality (PQ) for RS (red) and SRS (blue) decoders are also shown, plotted along the 
right y-axis.  (c) The behavioral pattern predicted by RS (bottom row) and SRS (top row) decoders for two 
time points: t = 250 ms (first column), and t = 400 ms (second column). To perform these analyses, spikes 
were counted in 200 ms bins with bin centers that were shifted by 10ms. 
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Fig. S6. Variant decoder that incorporates a contrast correction. Shown are the results for a decoder that 
operates by correcting the projection of IT responses along the RS axis by subtracting an estimate of the 
mean population response across novel images in each contrast condition (see Methods). The estimate of 
the mean population response at each contrast was computed after classifying novel images by contrast 
based on the training data, using the same prototype linear decoder used for SRS (see Methods).  This 
scheme produced a lower prediction quality (PQ = 0.75) than SRS (PQ = 0.88; Fig. 3c). 
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Fig. S7. Synthetic data generated from the 4-parameter model recapitulates the actual data. Simulations 
were performed for 650 units x 4K images (1K images/condition). All analyses were performed in the same 
manner as described for the physiological data. Plotted for the synthetic data (a) Fig. 3a (b-d) Fig. 4b-d. 
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Fig. S8. Decoding performance in the 3-D subspace spanned by the SRS, RS and iFLD linear decoders. 
(a) Depiction of the 3-D subspace in a spherical coordinate system. A decoding axis (w) in this subspace 
is determined by the polar angle relative to SRS (θ) and the azimuthal angle (f) relative to the contrast axis 
in the 2-D plane defined by SRS and RS. Because the 3-D subspace spanned by SRS, RS, and iFLD is a 
non-orthogonal coordinate system, we used angles 𝜸𝟏, 𝜸𝟐, and 𝜸𝟑 to transform the illustrated cartesian 
coordinate system to the coordinate system spanned by SRS, RS, and iFLD (see Methods). 𝜸𝟏 indicates 
the angle between SRS and RS, 𝜸𝟐 is the angle between SRS and iFLD, and 𝜸𝟑 represents the angle 
between SRS-RS and SRS-iFLD planes (see Methods). (b) Discriminability for image memory (d’), 
computed as described for Figs. 4b, 5b, and SI Appendix, Fig. S7b, plotted as a function of polar and 
azimuthal angles in the 3-D subspace (see Methods). Shown are the results applied to synthetic data taken 
from the model described for Fig. 5 and the actual data. Values corresponding to SRS, RS, iFLD, and 
contrast are labeled by black, blue, green, and open markers, respectively. Black and grey dashed lines 
mark the azimuthal angles associated with SRS-RS and SRS-iFLD planes, respectively. 
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