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The sounds that enter our ears are transduced with a temporal resolu-
tion that is notably fine-grained. Listeners can detect gaps in continuous 
sounds that are as short as a few milliseconds1 and can localize 
sounds using time differences between the two ears as brief as a few  
hundredths of a millisecond2. However, the information rate implied 
by this temporal resolution is prohibitive for storage—the represen-
tations retained for short- or long-term memory must somehow be 
compressed. Moreover, although fine-grained measurements of the 
sound waveform capture temporal detail, they do not make explicit 
the similarities and differences between categories that are important 
for behavior. The auditory system must derive more compact and 
abstract representations for memory and recognition.

Sound textures provide an attractive means to study this process 
of abstraction. Textures are formed from the superposition of many 
similar acoustic events, collectively giving rise to aggregate statistical 
properties3–7. These properties can in turn be captured by statistical 
measurements: time averages of short-term acoustic characteristics, 
which summarize the qualities of a sound8,9. Such time averages might 
be measured by the auditory system following peripheral filtering 
operations (Fig. 1a) and could provide a compact representation for 
encoding sound. Previously, we found that statistical measurements 
could be used to synthesize realistic textures: sounds generated to 
match the statistics of real-world texture recordings (rain, fire, wind, 
insect swarms, etc.) often sounded like new examples of the original 
recording8,9 (Fig. 1b). The success of this synthesis method suggests 
that statistics can capture perceptually important information and 
could, in principle, underlie texture recognition. However, it remains 
to be seen whether statistical representations are actually used by the 
auditory system and under what circumstances.

We asked whether the human auditory system summarizes sounds 
with time-averaged statistics, whether these statistics are retained 
in lieu of the fine-grained temporal details from which they are  
computed and whether any such dependence on summary statistics 

is specific to textures. To explore these questions, we assessed the 
ability of listeners to discriminate texture examples. If textures are 
represented exclusively with time-averaged statistics, signals with 
distinct statistical properties should be discriminable, whereas those 
with similar statistics should be difficult to distinguish even when 
their temporal details are completely different.

We manipulated texture statistics by first generating multiple 
examples of textures with particular long-term statistics. We then 
extracted excerpts of different durations from these textures, exploit-
ing the natural variability that arises in statistics that are computed 
from small samples. Specifically, the statistics computed from brief 
excerpts of a particular texture vary considerably from one excerpt 
to the next (as they are biased by the particular features that happen 
to occur in each excerpt), but converge to their ‘true’ values as the 
duration increases (Fig. 1c). This convergence must occur for any 
statistic that the brain might measure, assuming that the statistic is an 
average over time and that the excerpts are drawn from a stationary 
signal such as a texture.

We designed two tasks in which the discrimination of these texture 
excerpts was measured as a function of their duration. In the first 
task, listeners discriminated texture excerpts with different long-term 
statistics. If perception relies on these statistics, performance should 
improve with excerpt duration as the measured statistics converge to 
their long-term values. In the second task, listeners discriminated tex-
ture excerpts with the same long-term statistics. If perception is again 
determined by summary statistics, performance in this case should 
decline with duration despite the concomitant increase in stimulus 
information, because the statistics converge to similar values.

RESULTS
We first conducted experiments using synthetic textures whose sta-
tistics matched those of natural sound textures. The statistics were 
measured from a model of the auditory periphery (Fig. 1a) and  
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Sensory signals are transduced at high resolution, but their structure must be stored in a more compact format. Here we 
provide evidence that the auditory system summarizes the temporal details of sounds using time-averaged statistics. We 
measured discrimination of ‘sound textures’ that were characterized by particular statistical properties, as normally result from 
the superposition of many acoustic features in auditory scenes. When listeners discriminated examples of different textures, 
performance improved with excerpt duration. In contrast, when listeners discriminated different examples of the same texture, 
performance declined with duration, a paradoxical result given that the information available for discrimination grows with 
duration. These results indicate that once these sounds are of moderate length, the brain’s representation is limited to time-
averaged statistics, which, for different examples of the same texture, converge to the same values with increasing duration.  
Such statistical representations produce good categorical discrimination, but limit the ability to discern temporal detail.

np
g

©
 2

01
3 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

http://www.nature.com/doifinder/10.1038/nn.3347
http://www.nature.com/natureneuroscience/


494 VOLUME 16 | NUMBER 4 | APRIL 2013 NATURE NEUROSCIENCE

A R T I C L E S

synthetic textures were generated by adjusting a 5-s sample of random 
noise until it attained the same values of these statistics9.

These sounds offer two notable benefits as experimental stimuli. 
First, synthetic textures generated in this way share many statistical 
and perceptual properties of natural sounds, but allow a degree of con-
trol that is difficult to attain with real-world recordings. In particular, 
synthetic textures lack the occasional extraneous sounds that are often 
present in recordings of naturally occurring sound textures. Second, 
the synthesis procedure can generate multiple distinct exemplars with 
nearly identical summary statistics, simply by initializing the proce-
dure with different samples of noise. Visual inspection reveals that 
the exemplars in each pair (Fig. 1b) differ in their acoustic details, but 
have the same global texture characteristics. Our synthesis method 
thus provides a way to generate examples of stationary signals that 
nonetheless have meaningful, naturalistic structure. To confirm that 
our results would also hold for real-world sounds and to explore the 
relation of statistical representations to texture, we also experimented 
with textures generated by combining multiple recordings of indi-
vidual real-world sound sources (experiments 4 and 5).

Experiment 1: texture discrimination
We began by measuring the ability of listeners to discriminate tex-
tures with different long-term statistics. On each trial, listeners heard 
three sounds of equal duration: two different exemplars of one texture 
(excerpts of synthetic signals with the same long-term statistics) and 
one exemplar of another (Fig. 2a). The excerpt with distinct long-
term statistics could occur first or last in the sequence, and listeners 
were asked to identify whether the first or last sound was generated 
by a source that was distinct from that of the other two.

Performance in this task was relatively poor for brief texture 
excerpts, but improved gradually with duration (F5,55 = 50.96,  
P < 0.001; Fig. 2b). Improvement in performance with duration is 

arguably expected, as the information available for discrimination 
grows with duration, but is nevertheless consistent with the hypoth-
esis that perception is based on time-averaged statistics. Over short 
durations, these statistics are variable, such that they are different 
for all three sounds in a trial, rendering discrimination difficult. 
However, as the excerpts lengthen, the statistics converge to values 
that are similar for the two excerpts of the same texture and differ-
ent for the excerpt of the alternative texture, enabling the listener to 
identify which of the three sounds is distinct.

Experiment 2: exemplar discrimination
We next measured the ability of listeners to discriminate different tex-
ture exemplars with the same long-term statistics. We again presented 
three sounds on each trial. Two of them were physically identical (the 
same excerpt of a particular texture repeated), and the third was a dif-
ferent excerpt of the same texture (which differed in temporal detail 
from the other two sounds) (Fig. 2a). Because all three stimuli were 
samples of the same texture, they had the same long-term statistics.

In this experiment, performance was high for brief excerpts and 
paradoxically declined with duration (F5,55 = 40.66, P < 0.001; Fig. 2b). 
Although listeners received more information in the longer duration 
texture excerpts, they could not use it to discriminate sounds; indeed, the 
added information actually impaired performance. This result is consist-
ent with the hypothesis that discrimination is based on time-averaged 
statistics, which, for the three sounds presented in a trial, converged to 
the same values as the excerpt duration increased (Fig. 1c).

The high performance at short durations indicates that the two tex-
ture excerpts in a trial differed in their details to a degree that was 
readily detectable if the excerpts were short. Moreover, the fact that 
performance continuously increased with duration in experiment  
1 suggests that details over the full stimulus time course contribute to 
the discrimination of sounds with distinct statistics and that listeners 
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Figure 1 Textures and time-averaged statistics. (a) Auditory  
texture model9. Three representational stages are derived from  
the sound waveform, mimicking peripheral auditory processing  
from the cochlea through roughly the thalamus: (1) frequency subbands are generated as responses of cochlear bandpass filters, (2) their envelopes are 
extracted and passed through a compressive nonlinearity, and (3) modulation bands are generated by filtering the compressed cochlear envelopes. Summary 
statistics are measured from the envelopes and modulation bands and are proposed to underlie the perception of texture. Synthetic textures are generated  
by adapting samples of Gaussian noise to cause them to have the same statistics as a real-world sound recording. Model diagram is modified from ref. 9.  
(b) Spectrograms of two 2.5-s exemplars of each of three different textures. The top and bottom exemplars of each pair have the same long-term (5 s) 
statistics, but differ in temporal detail. (c) Variability of texture statistics. Graphs show the median s.d. of each of seven classes of statistic (computed for 
the textures used in our experiments by measuring the statistics in multiple excerpts of each texture). The measured statistics are variable for short excerpts, 
but converge to fixed values as the excerpt length is increased. Error bars show lower and upper quartiles; s.d. is plotted on a logarithmic scale. The slight 
nonmonotonicity evident in some of the plots is a result of the onset and offset of the excerpt, which can influence the statistics when the excerpts are short.
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can flawlessly discriminate such sounds even when their duration is 
long. Taken together, these findings indicate that temporal detail is 
used to construct a statistical summary of a texture, but is otherwise 
inaccessible to the listener once the texture is of moderate length.

Experiment 3: control for time delay
An alternative explanation for the poor performance at long durations 
in experiment 2 is that temporal detail simply cannot be retained 
over such durations. In experiments 1 and 2, the interstimulus inter-
val (ISI) was fixed across conditions. As a result, the elapsed time 
between the temporal details that listeners were asked to compare 
was greater for the long durations than for the short (Fig. 2a,c). To 
test whether elapsed time alone could explain the poor performance 
at long durations, we conducted a second version of the task in which 
the inter-onset interval was fixed across conditions such that a long 
silent period separated the short duration excerpts (Fig. 2c). For 
comparison, the same listeners also completed the original exemplar 
discrimination task of experiment 2.

We found that discrimination was largely unaffected by time delay 
per se (Fig. 2d). Performance with short excerpts was similar for the 
two task variants (t11 = 1.75, P = 0.11) and, in both cases, listen-
ers were markedly better at discriminating short excerpts than long 
excerpts (F1,11 = 34.29, P < 0.001; no interaction between duration and 
delay, F1,11 = 2.96, P = 0.11). Elapsed time alone therefore does not 
have a large effect on memory for temporal detail, at least not for the 
sounds and timescales that we explored (also see ref. 10). Instead, the 
ability to distinguish sounds of moderate or longer duration appears 
to be constrained by their statistics.

Experiments 4 and 5: single sources versus textures
How general is the perceptual dependence on statistics? In real-world 
conditions, textures arise from the superposition of multiple sources 
(raindrops, animal calls, handclaps, etc.). It is natural to ask whether 
the effects seen in experiments 2 and 3 can be obtained for textures 
generated by superimposing sources and whether similar effects 
would occur for individual sound sources in addition to textures. To 
address these questions, we measured discrimination of superposi-
tions of different numbers of individual real-world sound sources.

We first generated ‘cocktail party’ textures by superimposing 
recordings of different speakers (Fig. 3a). To avoid lexical or linguistic 
confounds, we used German speech (and selected subjects who did 
not understand German). The task was the same as in experiment 2: 
listeners were presented with two excerpts taken from the same signal 
(different clips of the same group of people talking), one of which 
was presented twice, and had to judge which of the three sounds was 

 different from the other two. The signals from which the excerpts 
were drawn consisted of 1, 7, 29 or 115 different speakers.

In this experiment, short duration exemplars were highly discrimi-
nable for all signal types (Fig. 3b). In contrast, performance for long 
durations varied considerably across conditions, producing an inter-
action between duration and the number of sources (F3,33 = 16.30,  
P < 0.001). For a single speaker, performance improved with duration 
(t11 = 2.79, P = 0.018), as one would expect given that the longer 
excerpts provide more information to support discrimination. For 
mixtures of speakers, however, performance declined with duration, 
with a larger decrement for mixtures of more speakers.

We conducted an analogous experiment with random sequences 
of drum hits that varied from sparse to dense (Fig. 3c; also see  
refs. 11,12). Performance was again good at short durations in all 
conditions, but exhibited an interaction between the effect of dura-
tion and density (F2,22 = 16.04, P < 0.001; Fig. 3d); performance 
improved with duration in the sparse condition (t11 = 2.29, P = 0.04) 
and decreased with duration in the denser conditions.

In both experiments, one might expect that adding together large 
numbers of sources would produce a completely uniform sound, ren-
dering discrimination difficult for uninteresting reasons. However, 
the high levels of performance at short durations suggest that this is 
not the case; the signals contained readily detectable variation irre-
spective of their density. For longer excerpts, this variation was inac-
cessible when the signals were composed of a large number of sound 
sources, but it remained available for individual sources.

One might imagine that these results could be consistent with 
discrimination based on summary statistics, as the statistics of  
single sources, or sparse mixtures thereof, might plausibly remain 
highly variable even for longer excerpts. To explore this issue, we 
measured the variability of our model’s texture statistics for the speech 
and drum stimuli used in our experiments. The texture statistics were 
indeed more variable for single sources than for dense textures, which, 
at first glance, seems to mirror the behavioral results (Fig. 3e). However, 
note that the variability of the statistics of single sources nonetheless 
decreased with duration, and, in particular, was lower at long durations 
than that of the densest stimuli at short durations. In contrast, discrimi-
nation was better for single sources at long durations than for any of 
the short-duration conditions. This discrepancy between the statistic 
variability and discrimination suggests that something other than, or in 
addition to, time-averaged statistics underlies the perception of single 
sound sources (see Discussion).
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Figure 2 Texture and exemplar discrimination results. (a) Schematic 
of trial structure for experiments 1 and 2. Three sounds were played in 
succession, separated by a fixed interval. In the texture-discrimination 
task, two of the sounds were distinct excerpts of the same texture and the 
third (presented first or last) was an excerpt of a different texture. In the 
exemplar-discrimination task, two of the sounds were physically identical 
excerpts of a texture and the third was a different excerpt from the same 
texture. (b) Results of experiments 1 and 2. (c) Schematic trial structure 
for experiment 3. One set of conditions fixed the ISI, as in experiments 1 
and 2. Another set of conditions fixed the inter-onset interval, such that 
shorter excerpts were separated by longer intervals than longer excerpts. 
Short excerpts are depicted for comparison to the long excerpts shown 
in a for fixed ISI, and are not drawn to scale. The actual ISI for the 
short duration conditions was 400 ms in the fixed-ISI configuration and 
2,809 ms in the fixed inter-onset interval configuration. (d) Results of 
experiment 3. Error bars represent s.e.
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DISCUSSION
Our results suggest that the brain summarizes collections of acoustic 
features with their time-averaged statistics. As sounds become more 
texture-like and of longer duration, listeners lose access to detailed 
temporal structure and become dependent on these summary statis-
tics. As a result, excerpts of dense mixtures of sources (that is, tex-
tures) are difficult to discriminate once they are of moderate length, 
even though the individual sources, as well as short excerpts of the 
same textures, are readily discriminable. The real-world implication 
of our results is that for most naturally occurring sound textures  
(rain, fire, wind, etc.), which typically have durations well in excess of 
our experimental stimuli, the brain’s representation is likely to consist 
primarily of time-averaged statistics.

Our results provide an explanation for pre-
vious findings that discrimination of white 
noise samples is best for relatively short dura-
tion samples (less than 100 ms)11,13–16. In most 
cases, however, performance on psychophysi-
cal tasks improves with stimulus duration, be 
it absolute detection17, frequency discrimina-
tion18, modulation detection19,20 or locali-
zation21,22. Discrimination of textures with 
distinct statistical properties also improved 
with duration (experiment 1), as did discrimi-
nation of the temporal detail of single sources 
(experiments 4 and 5). The decline in per-
formance with duration (experiment 2) seems 
to be limited to cases in which discrimination 
depends on the retention of fine-grained tem-
poral detail in dense signals.

Two modes of auditory representation
Why does the effect of duration interact with 
that of density? We believe our results col-
lectively suggest a framework for the organi-
zation of auditory processing, built on two 
modes of representation. In brief, we suppose 
the following: (i) Incoming sound signals are 
encoded as sequences of features (perhaps 
including phoneme-like elements in speech, 
notes in music, or onsets in environmental 
sounds). Their sequential order makes tem-
poral structure explicit. (ii) Concurrent with 
this sequential encoding, temporal detail 
is summarized with statistics, computed as 
running averages over time. (iii) The sequen-
tial feature encodings used by the auditory 
 system are typically sparse for individual 
natural sound sources23–25, perhaps because 
the encoding process is designed to recover 
sparse generative processes in the world when 
they exist. As a consequence, individual sound 
sources, or superpositions of small numbers 
of sources, are encoded with small numbers 
of features. Typical textures, however, require 
larger numbers of features per unit time.  
(iv) Memory capacity places limits on the 
number of features that can be retained  
(for instance, for comparison with a subse-
quent stimulus), rather than on the duration of 
the sound to be retained. It is therefore possi-

ble to remember a longer segment of an individual source than of a tex-
ture. (v) The signal that enters the ears is continuously and obligatorily 
encoded, and once the feature memory capacity is reached, its contents 
are overwritten by subsequent input. At that point, previous temporal 
detail is available only via its contribution to summary statistics.

Obligatory encoding of incoming sound information into memory 
could explain why the discrimination of texture excerpts worsens with 
increasing duration, rather than saturating (as might be expected if 
a memory buffer reached capacity): listeners cannot simply remem-
ber the initial part of a long texture excerpt, as its representation is 
replaced by temporal details from the later portions of the excerpt. 
Nor can they remember the end of a long texture excerpt, as its rep-
resentation is replaced by the details from initial portions of the 
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subsequent excerpt in a trial. In support of this obligatory encoding 
hypothesis, we found that exemplar discrimination remained poor 
when a brief initial or final segment of a long texture excerpt was sepa-
rated from the rest of the excerpt with a silent gap (Supplementary  
Fig. 1). Subsequent detail appears to overwrite previous detail even 
when listeners are explicitly cued to remember a particular subseg-
ment of a sound.

Similar auditory interference effects are well documented in other  
contexts (for example, see refs. 26,27). However, our findings indicate  
that although this interference can prevent direct conscious access to 
 temporal detail, it does not eliminate its contribution to a statistical 
 summary. Taken together, our results are suggestive of two modes of audi-
tory representation: one in which temporal detail is made explicit, but whose 
memory capacity is limited, and one in which temporal detail is continu-
ously incorporated into summary statistics, but not otherwise retained.

In both cases, the sound waveform is converted into a more abstract 
and compact representation suitable for recognition and retention. 
Although the temporal details of textures are left inaccessible by this 
arrangement once they are of moderate duration, for most real-world 
tasks that listeners must perform on textures (for example, distin-
guishing wind from fire or judging the intensity of rain), the sum-
mary statistics are more informative than the precise arrangement of 
features, and this strategy may thus be both economical and adap-
tive. Moreover, the two types of representation need not be mutually 
exclusive. Even in signals that produce sparse temporal encodings, 
such as speech or music, summary statistics may have a complemen-
tary role in representing properties that are time invariant, such as 
voice qualities and speaker identity28 or aspects of musical genre and 
style29. Dense textures, such as those that we explored in this study, 
may be unique only in allowing us to isolate the role of time-averaged 
statistics by removing direct access to temporal detail.

It remains unclear whether summary statistics are also involved in 
representing brief sounds. The variability in the statistics of short tex-
ture excerpts (Fig. 1c) is consistent with the performance levels that 
we observed at short durations (high for exemplar discrimination, low 
for texture discrimination) under the hypothesis that discrimination 
is based on the excerpt statistics. However, at short durations, the 
summary statistic hypothesis becomes less distinct from alternative 
possibilities, in part because there is less to summarize. The set of 
sounds with the same statistics shrinks as the duration decreases, 
and the distinction between a statistical representation and one that 
explicitly encodes temporal detail therefore becomes blurred, as the 
statistics inevitably capture aspects of temporal detail that are lost 
through the averaging process at longer durations.

Related findings
One exception to our findings may occur when a particular texture 
excerpt is presented repeatedly (that is, more than the two presentations  
that occurred in the trials of our experiments). Individual features 
of repeated segments of noise, for instance, can be detected and 
learned30–34. In these cases, repetition seems to allow detail to be 
retained that would otherwise be discarded. Repetition may provide a 
cue that a sound is not actually a texture and could promote the learn-
ing of features for its temporal description, allowing a representation 
that can be retained in memory.

Statistical representations may also be evident in auditory percep-
tual completion. Tones that are modulated in amplitude or frequency 
are heard as continuous when interrupted with a brief burst of intense 
noise35,36. However, continuity is perceived even if the modulations 
on either side of the noise are 180 degrees out of phase, such that a 
continuous modulation is physically inconsistent with the stimulus. 

Apparently, the auditory system represents the modulation in a way 
that discards the phase while retaining the rate, perhaps using sum-
mary statistics similar to those we have implicated in texture represen-
tation. We found informally that textures interrupted by intense noise 
bursts are also heard as continuous, despite the absence of individual 
features that might be tracked or completed across the noise, sug-
gesting that a statistical representation is used to fill in the masked 
portion of the texture.

Although the mechanisms seem likely to be different, our finding that 
details are discarded in lieu of a more abstract representation is reminis-
cent of the well-known phenomenon of categorical perception, in which 
stimulus variation that does not straddle a learned category boundary is 
reduced in salience37. The need to encode speech categorically can also 
apparently influence access to fine-grained time differences between the 
two ears38. All these instances reflect the transformation of the sound 
waveform to a more abstract and compact representation.

Our results have interesting parallels in the visual system, which has 
been hypothesized to represent summary measures of sets of image 
features39–41. The averaging that has been characterized in vision 
occurs over spatial regions of the visual field rather than time and 
is most evident in the periphery, where the dependence on ensem-
ble statistics has been related to the phenomenon of crowding42–45. 
Statistical measures also seem to dominate visual perception in the 
absence of attention46. In contrast, our auditory effects involved pool-
ing information over time, and the dependence on statistical measures 
seems to be related to memory capacity limitations. It is possible that 
analogous effects would occur for visual stimuli that vary over time.

Potential mechanisms
Our conclusions are based, in part, on experiments with textures synthe-
sized from statistics measured in real-world texture recordings. Because 
the textures are defined by multiple statistics, it is difficult to know 
which statistics might have been used by listeners as they performed 
our tasks. We examined whether trial-to-trial variation in the differ-
ence between the values of a particular statistic for the two excerpts 
could predict performance in experiment 2. We found that all of the 
statistics used in our texture model exhibited correlations with per-
formance when analyzed in this way: the difference in their values for 
the two excerpts was, on average, larger on trials that produced correct 
responses. However, the differences in statistics between two excerpts 
are themselves typically correlated across statistics, making it difficult 
to establish a causal role for any particular statistic. Moreover, the con-
vergence phenomenon on which our experiments relied (Fig. 1c) is 
not specific to the statistics in our model, and must hold for any time-
 averaged statistic. We therefore do not claim that the brain computes 
statistics that are identical to those in our model, only that the brain’s 
perceptual representations of textures consist of temporal summaries, 
of which our model statistics provide examples.

Our experimental results also do not constrain the details of the tem-
poral averaging process by which statistics are derived. In particular, 
averages are presumably computed over an integration window of some 
duration47,48 (possibly different for different statistics). It is notable 
that, for even the longest excerpts that we used, exemplar discrimina-
tion was not fully at chance. One explanation is that listeners do not 
exclusively average over the full signal length, but instead retain some 
degree of access to information averaged over shorter timescales, at 
which the statistics vary enough to support above-chance discrimina-
tion. A sequence of such statistics could form a coarse representation 
of temporal structure, raising the possibility that summary statistics 
and the feature encodings discussed above could lie on the ends of a 
continuum of representations of varying temporal specificity.
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We have argued that information from the different sound events 
within a texture is averaged over time to form a summary and that the 
individual events become inaccessible once the sound is of moderate 
length. However, it is clear that if an event is sufficiently incongruous  
with a texture, it may be heard and remembered as a distinct event. 
This phenomenon was apparent in pilot versions of experiment 2 that 
we conducted with recordings of real-world textures. We observed 
informally that different excerpts of a recording were often discrimi-
nable by virtue of particular distinctive acoustic events (for example,  
a bird call that was faintly audible in one excerpt of a recording of 
a stream). The audibility of such discrepant events suggests that 
the averaging process that generates texture representations occurs 
somewhat selectively49, perhaps in conjunction with a clustering or 
grouping process, as has been proposed to underlie auditory stream 
segregation50. Coordination of integration with segregation could 
allow for efficient estimates of texture properties along with tempo-
rally precise descriptions of foreground sounds in auditory scenes.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Synthetic textures. Sound texture stimuli were synthesized using a previously 
published method9. Statistics were first measured in 7-s recordings of real-world 
sound textures processed in an auditory model (Fig. 1a). Sounds were then syn-
thesized to have the same values of these statistics. The statistics that were used 
for synthesis are depicted in Figure 1a and are time averages of simple functions 
of either the cochlear envelopes or the modulation bands. They include the mean, 
variance, skew and kurtosis of each cochlear envelope, the correlation coefficient 
between pairs of cochlear envelopes, the normalized power in each modula-
tion band, and two types of correlations between modulation bands. Statistics 
were measured with a temporal weighting function that faded to zero over the 
first and last second of the original recordings to avoid boundary artifacts. The 
statistics were imposed on 5-s samples of Gaussian noise, with a flat weight-
ing function (circular boundary conditions). All synthesis parameters were as 
described previously9.

Four 5-s synthetic exemplars were synthesized from the statistics of each real-
world recording. For the analysis shown in Figure 1c, we measured the statistics 
in excerpts taken from the first and last half (2.5 s) of each of the four exemplars 
of each of the 61 textures used in the experiments (Supplementary Table 1), 
yielding eight sets of statistics per texture per excerpt length (it would have been 
largely equivalent to synthesize eight 2.5-s exemplars, but these are somewhat 
more vulnerable to artifacts from the circular boundary conditions of the syn-
thesis process). The s.d. of these eight values for each texture and excerpt length 
was computed; the median and quartiles of the s.d. across textures are plotted in 
Figure 1c for the textures used in the experiments over a range of excerpt lengths. 
Statistics involving modulation bands centered at rates whose period was more 
than the excerpt length were not included in this analysis, as such modulations 
are too slow to be meaningfully measured. However, this decision was not crucial 
to the qualitative form of Figure 1c.

The measurements of variability shown in Figure 1c are computed for the 
statistics in our texture model, the same set used for synthesis. The textures were 
generated such that these statistics were matched for a 5-s segment (within the 
tolerance used to test for convergence of the synthesis procedure), which ensures 
that the s.d. of those particular statistics would approach zero by 5 s. However, 
convergence with increasing excerpt length is not unique to these statistics; any 
statistic that is an average over time will converge to fixed values as the excerpt 
length increases, assuming that the excerpts are drawn from a stationary signal 
for which the statistic in question is well-defined. Convergence is also not unique 
to the synthetic textures that we used. For instance, the same phenomenon is 
evident in the textures that we generated for experiments 4 and 5 by superimpos-
ing real-world recordings of individual sound sources (Fig. 3e).

Experiments 1 and 2. To prevent performance in the texture discrimination 
task of experiment 1 from reaching ceiling levels, we chose pairs of textures that 
sounded relatively similar. For each texture in the set used previously9, we selected 
a companion texture that was judged subjectively by the first two authors to be 
most similar in its texture qualities (out of the other textures in the set). The 
quality of the match was then rated on a scale of 1–5, and pairs with ratings 
below 3 were eliminated. We make no claim that these pairings were optimal or 
objective, but they served to keep performance levels in an informative range 
(that is, below ceiling).

From these pairs, we selected textures whose statistics had relatively low vari-
ability when measured in 2.5-s segments. To get a single measure of variability 
(pooled across statistics), we divided each statistic’s s.d. by the mean of the statistic 
for that texture (because different statistics have different units), and averaged 
these normalized s.d. measurements across statistics to get a single measure 
of the statistic variability of each texture. We then ranked the texture pairs  
according to the statistic variability of the first texture in the pair, and chose the 
50 pairs with the lowest variation for use in experiments. Both textures in a pair 
were used in experiment 1; the first texture in a pair was used in experiment 2 
(Supplementary Table 1).

The sound stimuli presented on a trial of experiment 1 consisted of one 
excerpt from each of two exemplars of the first texture in a pair, and one excerpt 
from one exemplar of the second texture in that pair. The excerpts on a trial 
were either 40, 91, 209, 478, 1,093 or 2,500 ms in duration (chosen to be equally 
spaced on a logarithmic scale). The beginning of each excerpt was randomly 
chosen from within the 5-s exemplar, with the same beginning point for each 

of the three sounds. A 10-ms half-Hanning window was applied to the begin-
ning and end of each sound. Each excerpt was presented at 70 dB SPL. Excerpts 
were separated by an ISI of 400 ms, and the window in which subjects entered 
their response (by clicking a button with a mouse) appeared 40 ms after the 
end of the last sound.

The order in which the two experiments were completed was counterbalanced 
across subjects. Subjects completed two blocks of trials across 2 d, each of 
which contained one trial per condition per sound pair for a total of 300 tri-
als, randomly intermixed. In all experiments, subjects were recruited from the  
New York University community via poster advertisements (and as such were 
inexperienced psychophysical observers, naive as to the hypotheses), and had 
self-reported normal hearing. Subjects gave written consent (overseen by the 
New York University Institutional Review Board) and were paid an hourly wage 
in compensation for their efforts.

Nineteen subjects participated in experiments 1 and 2. Subjects were included 
in the analysis if their performance exceeded 85% correct in at least one condition 
of both experiments 1 and 2. This inclusion criterion was neutral with respect 
to the hypotheses and was designed to exclude subjects who were unable or 
unmotivated to perform the task. Seven subjects were excluded by this criterion, 
yielding 12 subjects whose data were analyzed (all female, averaging 21.1 years 
of age, s.d. of 3.0 years).

Here and in all other experiments, subjects were first given a small number 
(less than 20) of practice trials with feedback. Feedback consisted of a message 
stating whether their response was correct or incorrect. Stimulus excerpts on 
practice trials were distinct from those in the main experiment. In the main 
experiment, feedback was not provided.

Experiment 3. Subjects completed two versions of the exemplar discrimination 
task: part A, which was identical to experiment 2 (in which the ISI was fixed 
across conditions), and part B, in which the inter-onset interval was fixed. We 
tested only two excerpt durations in part B (91 ms and 2,500 ms), as the purpose 
was to investigate the effect of time delay on performance with short excerpts. 
In part B, the inter-onset interval was set to 2,900 ms (the inter-onset interval for 
the longest duration condition in part A). The short excerpts were thus separated 
by extended silences. The time interval between the onset of the third sound in 
a trial and the onset of the response window was also fixed across condition, to 
2,540 ms (again, to match part A). All other parameters in part A and part B were 
identical to those of experiment 2.

Eighteen new subjects participated in experiment 3. The order in which parts 
A and B were completed was counterbalanced across subjects. Subjects com-
pleted one block of 300 trials of part A and one block of 200 trials (two trials per 
texture per condition) of part B. Six subjects were again excluded from analysis 
because they did not exceed 85% correct in at least one condition, yielding  
12 subjects whose data were analyzed (nine female, averaging 22.2 years of age, 
s.d. of 5.3 years).

Experiment 4. Speech stimuli were generated from freely available online record-
ings of German speakers reading books. We obtained recordings of 115 unique 
speakers (62 male), from which pauses and breaths were excised. Mixtures of 
these speakers were created by adding together random selections of speakers 
at equal amplitudes. The excerpts used on a trial were randomly selected from 
two unique 5-s segments of the resulting signals as they were in experiment 2. 
The analysis of Figure 3e was conducted on 30 speech textures produced in this 
way for each density (using four 5-s excerpts, divided into two 2.5-s segments, 
with the same procedure used in the analysis shown in Fig. 1c). The 115-speaker 
textures had the same set of speakers in each instantiation; each of the 30 textures 
for the other densities had a distinct set of speakers. To bring performance below 
ceiling, we embedded the speech mixtures in pink noise (5 dB below the level 
of the speech). Without noise, a similar interaction was observed between dura-
tion and mixture density, but ceiling levels of performance obscured differences 
between short and long durations for the single- and seven-speaker conditions 
in most subjects (Supplementary Fig. 2). The combined stimulus was presented 
at 70 dB SPL.

Seventeen subjects completed 30 trials in each of eight conditions (short and 
long durations × four mixture densities). Five subjects were excluded from analysis 
because they were at ceiling in more than one condition, yielding 12 subjects whose 
data were analyzed (nine female, averaging 21.3 years of age, s.d. of 4.4 years).
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Experiment 5. Drum stimuli were generated from MIDI renditions of 25 different 
drum or percussion sounds. Single drum hits were synthesized as WAV files  
(1.8 s in duration), and multiple copies of the resulting waveforms were superim-
posed with different random time offsets to generate texture stimuli. Four exem-
plars of 25 different textures were generated at each density, each containing four 
randomly selected drum types, used with equal probability. Textures were gener-
ated with 5, 60 and 250 hits per second. We generated 8-s signals by sampling 
8*d (where d is the density in hits per s) onset times from a uniform distribution 
between 0 and 8 and laying down a drum hit at each onset time. The level of each 
drum hit was randomly selected from a uniform distribution spanning 10 dB. The 
first and last 1.5 s were then truncated, leaving a 5-s texture without boundary 
artifacts. The analysis of Figure 3e was conducted on these 5-s exemplars with 
the same procedure used for Figure 1c. The short and long excerpts presented 
in the experimental trials were drawn from the texture examples as they were in 

experiment 2, and were presented at 70 dB SPL. The task was otherwise like that 
of experiment 2. 19 subjects completed 25 trials (one per texture) in each of six 
conditions (short and long duration × three mixture densities). Seven subjects 
were excluded from the analysis because their performance did not exceed 0.85 
in at least one condition or because they were at ceiling in more than one condi-
tion. This yielded 12 subjects whose data were analyzed (ten female, averaging 
24.4 years old, s.d. of 6.7 years).

Statistical tests. ANOVAs and t tests (two tailed) were used to test for statisti-
cal significance. These tests were performed on percent correct scores passed 
through the inverse of the normal cumulative distribution function (which served 
to make their distribution more closely approximate a normal distribution). Prior 
to this, scores of 0 and 1 were changed to 0.001 and 0.999, respectively, to avoid 
infinite values. Sphericity was verified with Maunchly’s test.
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