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ABSTRACT

Many natural sounds, such as those produced by rainstorms, fires,
or insects at night, consist of large numbers of rapidly occur-
ring acoustic events. We hypothesize that humans encode these
“sound textures” with statistical measurements that capture their
constituent features and the relationship between them. We ex-
plored this hypothesis using a synthesis algorithm that measures
statistics in a real sound and imposes them on a sample of noise.
Simply matching the marginal statistics (variance, kurtosis) of in-
dividual frequency subbands was generally necessary, but insuf-
ficient, to yield good results. Imposing various pairwise enve-
lope statistics (correlations between bands, and autocorrelations
within each band) greatly improved the results, frequently produc-
ing synthetic textures that sounded natural and that listeners could
reliably recognize. The results suggest that such statistical rep-
resentations could underlie sound texture perception, and that the
auditory system may use fairly simple statistics to recognize many
natural sound textures.

Index Terms— texture, statistics, synthesis, envelope, corre-
lations

1. INTRODUCTION

One approach to understanding the representation of natural sen-
sory stimuli in the brain is to develop methods for synthesizing
such stimuli. Successful synthesis implies that the perceptually
relevant information is captured by the synthesis process, whereas
failure indicates that the process is missing something important.
Synthesis thus provides a strong test of a perceptual model [1].

We used synthesis to study the perception of sound textures —
signals that result from multiple, rapidly occurring acoustic events
whose temporal distribution is roughly stationary. These are anal-
ogous to visual textures, which have been studied for decades [2]].
Sound textures are common in natural environments, but have been
neglected in hearing science, though there has been some interest
in the computational audio community [3} 14} 15} 16]]. Their tempo-
ral homogeneity suggests they might be particularly amenable to
statistical modeling.

Natural sounds are known to exhibit statistical properties that
are distinct from those of noise [7} I8 9l [10], including kurtotic
amplitude histograms and long-term amplitude correlations. We
tested the perceptual significance of these and other statistical
properties by synthesizing stimuli that shared the statistics of dif-
ferent natural sound textures, and assessing whether they sounded
like the real textures they were supposed to resemble. Our interest
was to explore the representation of sound textures in the brain, so
we focused on statistics of representations inspired by the periph-
eral auditory system.

2. SOUND STATISTICS

Sounds were analyzed using a bank of bandpass filters. We used
filters with bandwidths and spacing that are similar to what is
found in the ear (30 filters, equally spaced on an ERBN scale [11]],
center frequencies from 20 Hz to 14 kHz). Adjacent filters over-
lapped by 50%, and had frequency responses that were a half cycle
of a cosine function. The summed frequency response of such a
filter bank applied twice is flat; the filter bank can thus be applied
repeatedly without altering the frequency content of the signal.

We obtained a large set of natural sound textures from com-
mercially available CDs, and computed statistics from their sub-
band representations. We examined three classes of statistics: the
moments of the marginal distribution of the amplitude of each sub-
band, the correlations between the Hilbert envelopes of neighbor-
ing subbands at the same point in time, and the autocorrelation of
the envelope of each subband. Envelope correlations were com-
puted on the log of the Hilbert envelope, to retain sensitivity to
low amplitude events. Direct evidence for neural selectivity to
such statistics is scant [12]], but it seems at least plausible that the
statistics we measured (generally, temporal averages of nonlinear
functions of the filter responses) could be computed with simple
neural circuitry.

Natural sound textures contain interesting statistical structure.
Figure [lp compares an example subband histogram for a record-
ing of rain to that of Gaussian noise with the same subband vari-
ance. They clearly differ in shape: the distribution for rain has long
tails, presumably reflecting the discrete raindrop events within the
sound, which yield high amplitude filter responses much more of-
ten than occurs in Gaussian noise. Long-tailed distributions of
subband coefficients have been previously observed in natural im-
ages and sounds [[7|8, 19, [10], and can be quantified by the subband
kurtosis. Figure[Tp shows the average kurtosis of the five subbands
with highest variance for each of an assortment of sounds. The red
bar indicates the kurtosis of Gaussian noise (always equal to 3),
and the others correspond to various natural sound textures (rain,
wind, fire etc.). The kurtosis varies from sound to sound, but is
always greater than that of the Gaussian noise.

Structure is also apparent in spectral and temporal correla-
tions. The sound texture produced by fire contains crackles, pops,
and other broadband features. These are visible as vertical streaks
in the spectrogram (Fig.[2h), and result in non-zero correlations be-
tween neighboring subband envelopes (Fig. [2p). Temporal struc-
ture is also present in many sound textures, such as that produced
by insects at night (Fig.[3h), the calls of which occur with tempo-
ral regularity. This periodicity is apparent in the subband envelope
autocorrelation function (Fig. [3p). Examples such as these raise
the possibility that when we recognize sound textures, we may be
recognizing their statistical properties.
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Figure 1: Marginal subband statistics of sound textures. a) Com-
parison of response histograms of a bandpass filter (4-5 kHz) ap-
plied to a recording of rain, and to Gaussian noise with the same
subband variance. b) Subband kurtosis of Gaussian noise (in red),
and an assortment of natural sound textures. Bars represent aver-
age kurtosis of the five subbands with highest variance.
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Figure 2: Statistics of a recording of fire. a) Spectrogram. b)
Matrix of correlations between subband envelopes. Each cell rep-
resents the correlation coefficient for a pair of subbands.
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Figure 3: Statistics of a recording of swamp insects. a) Spectro-
gram. b) Autocorrelation of envelope for one subband (2.2-2.8
kHz).

3. SYNTHESIS ALGORITHM

To test whether these statistics are sufficient to capture the percep-
tual experience of naturally occurring sound textures, we designed
an algorithm to synthesize new textures with particular statistics.
Synthetic textures were generated by imposing the statistics of a
particular real sound on a sample of (initially) Gaussian noise. Our
method was inspired by visual texture synthesis algorithms
in which statistics act as constraints on a noise signal.

The synthesis process begins by decomposing a sample real
texture into its subband representation, and measuring the statis-
tics of interest (Fig. ). A noise sample is then generated, and
each statistical constraint is imposed on its subbands. To produce
a sound signal from these modified subbands, the filters used to
generate the subbands are applied to each subband once more, and
the results are summed. Such a scheme has the advantage of en-
suring that the subbands remain band-limited despite the statisti-
cal adjustments (which are not guaranteed to respect the subband
band limits). However, the refiltering and recombination of the
subbands generally alters the subband statistics such that they no
longer match their desired values. We thus iterate the process of
imposing the statistical constraints and reconstructing the signal
until the statistics converge to the desired values (see Fig. ).

Imposing a particular value of a statistic (the kurtosis of a sub-
band, for instance) involves changing one of the subbands until
that statistic matches the desired value (as measured from the orig-
inal sound texture). There are in principle many ways this could be
accomplished; we chose to move in the direction of the statistic’s
gradient until the statistic reached the desired value [1]]. The gra-
dient direction has the attractive property of producing the largest
change in the statistic for a given step size in signal-space, and it
is readily derived for all of our statistics.

Gradient descent could be used to move through the space of
signals, but we find that there is typically an analytic solution for
the step size Ax needed to reach the desired value of a statistic ¢y:

§ = 5+ )\ka)k(g)

where 5'and & are the signals before and after the adjustment, and
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Figure 4: Schematic of synthesis algorithm.

V denotes the gradient. The adjustments for the subband moments
are straightforward (details can be found in [1]). The kurtosis, for
instance, has a gradient that is positive at the samples in a signal
that are large in magnitude, and negative at the samples that are
small in magnitude. The kurtosis may thus be increased by making
the large samples larger and the small samples smaller.

The cross-band correlation adjustment is slightly more com-
plex because pairs of subbands must be adjusted simultaneously.
The correlation between subbands §,,, and 3, is:

Cn,m = Z §7n(t)§n(t)

whose partial derivative with respect to a sample of 5, is propor-
tional to the corresponding sample of &,. The gradient projection
for each subband thus takes the form:

1 - -
5, =580+ E An,k Sk
k

Thus, the update to each subband is simply a linear combination of
the other subbands. The adjustment procedure involves solving for
the weights A, , that will produce the desired C,, .. Details are
given in [1]. One can in principle impose the entire matrix of cross-
correlations. In practice, we find it is usually sufficient to enforce
the correlations of each subband with the four nearest subbands
above and below it. This can be done iteratively, proceeding from
the low- to the high-frequency subbands.

We impose the subband envelope autocorrelation at a set of
time lags At;. We express the correlation at At; as:

ane; (5n) = Y 8u(t)3n(t+ Aty)

where §, is zero-padded to reduce edge artifacts. The par-
tial derivative of aa: ’ with respect to 3, (¢;) is proportional to
Sn(ti + At;) + 8n(ti — At;), and thus the gradient is proportional
to the sum of two shifted copies of ). For efficiency we impose
all the autocorrelation coefficients simultaneously. The adjustment
to Sy, thus takes the form:

F(t) = 5n(t) + > Anj[Fn(t + Aty) + 5n(t — At;)]

where we must solve for A that produce correlations A = {aa¢; }.
In lieu of an exact solution we Taylor-expand the coefficients A
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Figure 5: Spectrograms of synthetic examples produced from
statistics of fire (a) and swamp insects (b).

about 3, and solve for the adjustment via the pseudoinverse of the
matrix of gradient vectors. We obtain good results using a set of
25 time lags ranging from 2 to 500 ms.

The statistics in our constraint set are imposed sequentially.
The envelope statistics are imposed first, after which the modified
envelopes are combined with the old fine structure (Fig. f). The
subband marginal statistics are then imposed on the resulting new
subbands. These modified subbands are then combined to yield a
modified noise signal.

Each statistical constraint pushes the signal in a different di-
rection. As these directions are generally not orthogonal, the ad-
justments interfere with each other. The filtering that occurs prior
to combining the subbands also has the potential to partially undo
the effect of the statistical adjustments. However, we find that with
iteration, the process typically converges to a signal whose statis-
tics are close to the desired values (the ratio of the squared statistic
magnitude to the squared error in the statistic typically surpasses
30-40 dB).

We emphasize that the imposition of these statistical con-
straints does not simply recreate the original signal. Because the
synthesis starts with a sample of random noise, the resulting sig-
nal is different every time, and shares only the statistical properties
of the original sound. Fig.[3]shows spectrograms of synthetic fire
and swamp insects sounds. Inspection reveals that they are distinct
from the originals, despite having some qualitative similarities.

4. RESULTS

We find that the imposition of this set of statistics produces com-
pelling synthetic examples of many natural sound textures. A set
of example synthetic sounds may be found at http://www.
cns.nyu.edu/~jhm/texture.html. Much can be learned
simply from listening to results of the synthesis. Although such
assessments are subjective, we have confirmed our observations in
groups of listeners at conferences and seminars. We found that
imposing only the marginal statistics (variance and kurtosis) of the
subbands was sufficient to produce compelling synthetic examples
of many water textures (rain, streams etc.), but not much else. It
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Figure 6: Results of texture recognition experiment (see text).
Dashed line represents chance performance. Error bars denote
standard errors.

was important to constrain the kurtosis in addition to the variance.
If we imposed Gaussian kurtosis, or a value that was too high by
a factor of 8, even the water sounds were generally not synthe-
sized well. Synthesizing non-water sounds using only the marginal
statistics tended to produce textures that sounded like water, and
that sounded categorically different from the originals. Consistent
with these observations, we found that many water sounds had
cross-band correlations and autocorrelations that were near zero,
suggesting they are produced by multiple, independent bandpass
events. Sound examples illustrating these effects can be found at
the website given above.

As a crude means of quantifying the quality of the synthesis,
we ran 10 subjects in a texture recognition task. Subjects were
presented with both synthetic and original samples of various nat-
ural sound textures (25 different textures in total, each 5 seconds
in duration), and had to choose an identifying name for the sound
from a set of five. We measured the percentage of correct choices
for synthetic samples generated according to five different sets of
statistical parameters: 1) the subband variances (approximately
equivalent to matching the power spectrum); 2) the full marginal
statistics; 3) the envelope cross-correlation; 4) the envelope auto-
correlation; and 5) the envelope cross- and auto- correlations. The
last three also included the marginal statistics. As shown in Fig.
subjects performed above chance levels with the spectrum alone
(as many of the examples differed dramatically in frequency com-
position), but steadily improved as additional statistical constraints
were imposed. Filter statistics can thus support the identification
of sound textures.

5. CONCLUSIONS

We find that rudimentary statistics of bandpass filter responses suf-
fice to produce realistic synthetic examples of many naturally oc-
curring sound textures. The results support the notion that the au-
ditory system represents textures through statistical measurements.
Our method also provides a means to test the perceptual signif-
icance of different statistics, and we find that marginal subband
statistics, as well as cross- and auto-correlations of their envelopes,
can each capture perceptually important information.

There are numerous cases where the synthesis is clearly inad-
equate (documented in the online examples), suggesting the need
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for additional statistics. Some of the failures are for obvious rea-
sons: our current set of statistics does not capture frequency mod-
ulation, for instance. Another limitation is that our measure of
temporal correlation is invariant to the directionality of time. We
thus cannot capture the asymmetric temporal envelopes that char-
acterize many sounds. Harmonic sounds that change in pitch, as
are found in many mammalian vocalizations, are also poorly cap-
tured by the present set of statistics, as the harmonics are scattered
across filters, and the filter outputs change in complex ways as
pitch is modulated. These failures can be used to identify addi-
tional statistics that may be important to the auditory system, and
that can be incorporated into future versions of the algorithm to
improve the quality of synthesis.
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