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Nonlinear Image Representation
for Efficient Perceptual Coding

Jesus Malo, Irene Epifanio, Rafael Navarro, and Eero P. Simoncelli

Abstract—Image compression systems commonly operate by
transforming the input signal into a new representation whose el-
ements are independently quantized. The success of such a system
depends on two properties of the representation. First, the coding
rate is minimized only if the elements of the representation are
statistically independent. Second, the perceived coding distortion
is minimized only if the errors in a reconstructed image arising
from quantization of the different elements of the representation
are perceptually independent. We argue that linear transforms
cannot achieve either of these goals and propose, instead, an
adaptive nonlinear image representation in which each coefficient
of a linear transform is divided by a weighted sum of coefficient
amplitudes in a generalized neighborhood. We then show that
the divisive operation greatly reduces both the statistical and
the perceptual redundancy amongst representation elements. We
develop an efficient method of inverting this transformation, and
we demonstrate through simulations that the dual reduction in
dependency can greatly improve the visual quality of compressed
images.

Index Terms—Independent components, JPEG, nonlinear
response, perceptual independence, perceptual metric, scalar
quantization, statistical independence, transform coding.

1. INTRODUCTION

FFICIENT encoding of signals relies on an understanding

of two fundamental quantities, commonly known as rate
and distortion. The rate expresses the cost of the encoding (typ-
ically in bits) and the distortion expresses how closely the de-
coded signal approximates the original. A large body of literature
has shown that the problem can be made much more tractable by
transforming the image from an array of pixels into a new rep-
resentation in which rate or distortion are more easily quantified
and controlled. Such transforms are typically linear and in recent
years are almost always based on basis functions that provide a
local representation of orientation and spatial frequency.
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In this paper, we examine a nonlinear transformation, moti-
vated by both the statistical properties of typical photographic
images and the known properties of the human visual system.
The transformation is formed as a cascade of a linear transform
and a divisive normalization procedure, in which each transform
coefficient is divided by a signal computed from the magnitudes
of coefficients of similar spatial position, orientation and fre-
quency. We argue that this representation provides an effective
representation for simultaneous optimization of both rate and
perceptual distortion in compression of visual images. We begin
by reviewing the literature about image statistics and perception
leading to the idea of divisive normalization (Section II). Sec-
tion III provides a technical definition of the normalization, ex-
plains a particular way to obtain its parameters and illustrates
its statistical and perceptual benefits for image coding.! In Sec-
tion IV, we discuss in detail the problem of inverting a divisive
normalization transformation: We describe a numerical alter-
native to analytical inversion; derive the general condition for
the normalization to be invertible; and check the invertibility
of the particular proposed normalization according to this gen-
eral condition when the coefficients are quantized. In Section V,
we show through simulations that the quality of images recon-
structed from the quantized normalization representation can
significantly exceed that of images reconstructed from the quan-
tized linear representation.

II. BACKGROUND: STATISTICAL AND
PERCEPTUAL DEPENDENCE

Traditional transform coding solutions emphasize rate op-
timization, by attempting to represent the image in a domain
where the statistical dependence between coefficients is elimi-
nated. Under this condition, each coefficient may be encoded
independently. More specifically, statistical independence of
the coefficients justifies the use of scalar quantization and
zero-order entropy coding [2], [3]. The classical solution to the
problem of transform design is derived by considering only
the second-order statistics of the input signal. In this case,
the linear transformation that minimizes the correlation of
the coefficients may be computed using principal components
analysis (PCA). If one assumes spatial stationarity, the Fourier
transform achieves this optimum, but this solution is not unique
and only considers second-order relations. In recent years,
a variety of approaches, known collectively as “independent
components analysis” (ICA), have been developed to exploit
higher-order statistics for the purpose of achieving a unique

1Tt is important to stress that the statistical benefits of using this advanced
perceptual model are not limited to its application in coding (see [1] for an ap-
plication in image restoration).
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linear solution [4]. The basis functions obtained when these
methods are applied to images are spatially localized, and
selective for orientation and spatial frequency (scale) [5], [6]
and are, thus, similar to basis functions of multiscale wavelet
representations.

Despite its name, ICA does not actually produce statistically
independent coefficients when applied to photographic images.
Intuitively, independence would seem unlikely, since images are
not formed from linear superpositions of independent patterns:
The typical combination rule for the elements of an image is
occlusion. This suggests that achieving independence requires
the introduction of nonlinearities in the transform. Empirically,
the coefficients of orthonormal wavelet decompositions of vi-
sual images are found to be fairly well decorrelated (i.e., their
covariance is almost zero), but the amplitudes of coefficients at
nearby spatial positions, orientations, and scales are highly cor-
related [7]. These relationships have been exploited, both im-
plicitly [8], [9] and explicitly [10] in compression systems.

The dependencies between responses of linear filters may be
substantially reduced by a nonlinear operation known as divi-
sive normalization, in which each coefficient is divided by a
Minkowski combination of neighboring coefficient amplitudes
[7], [10], [11]. This empirical observation is consistent with a
hidden Markov model in which the amplitude of groups of co-
efficients is modulated by a hidden scaling variable [12]-[16].

The second fundamental ingredient of the transform coding
problem is distortion. When coding visual images, distortion
should be measured perceptually. Ideally, we would like to be
able to express the overall perceived image distortion as an
additive combination of the distortions arising from each of the
transformed elements, as assumed in the standard theory [2], [3].
This requirement implies that the transformed elements should
be perceptually independent: The visibility of the distortion in
the image introduced by altering one element should not depend
on the values of the other elements. Thus, we should seek a
transformation that eliminates perceptual redundancies [11],
[17].

The most standard measure of distortion is mean-squared
error (MSE), computed by averaging the squared intensity
differences of distorted and reference image pixels, along with
the related quantity of peak signal-to-noise ratio (PSNR). These
are appealing because they are simple to calculate, have clear
physical meanings, and are mathematically convenient in the
context of optimization, but it is well known that they do not
provide a good description of perceived distortion [18]-[21]. In
particular, the visibility of error in one pixel clearly depends on
the values of surrounding pixels.

A simple and widely used improvement comes from incorpo-
rating the known sensitivity of human vision to different spatial
frequencies. Specifically, within the Fourier domain, distortion
is measured by summing the squared errors in each frequency,
weighting each term by the sensitivity to its corresponding fre-
quency. The most widely known image and video coding stan-
dards (JPEG and MPEG) use a block-DCT decomposition to
decorrelate the coefficients, and a frequency-dependent quan-
tizer based on the human contrast sensitivity function (CSF)
[22], [23]. Similar methods are applied to wavelet image repre-
sentations such as in JPEG2000 [24]. Note that, in all these sit-

uations, the perceptual factors are taken into account only after
the selection of the representation (e.g., in the quantizer).

It is well known that the visibility of errors in coefficients of
local frequency or wavelet representations is not independent,
a phenomenon known in the perceptual literature as masking
[25]. Specifically, the presence of large coefficients can reduce
the visibility of errors in coefficients that are nearby in position,
orientation and scale. The linear coefficients may be modified so
as to more accurately represent perceptual distances by normal-
izing (dividing) each coefficient by a gain signal obtained from a
combination of adjacent coefficients [11], [17], [18], [25], [26].
This is consistent with recent models of neurons in visual cortex,
in which primarily linear neural responses are modulated by a
gain signal computed from a combination of other neural re-
sponses [27]-[29].

One can see from this brief description that there has been a
remarkable parallel development of transformations that reduce
either statistical or perceptual redundancy, beginning with global
frequency-based representations, to local frequency or wavelet-
based representations, to most recent solution of divisively
normalized representations. Perhaps this is not so surprising
given that the human visual system is hypothesized to have been
shaped, through processes of evolution and development, by the
statistical properties of the visual world (for review, see [30]).
Although both the statistical and perceptual observations that
lead to normalized representations have been exploited in image
coding, they have been used indirectly [10], [17]. The fact that
normalized representations appear to be the current best choice
for reduction of both statistical and perceptual dependencies
suggest that one should explicitly encode the normalized local
frequency coefficients. In the following sections, we propose
an invertible psychophysically inspired divisive normalization
scheme, whose elements are (pairwise) perceptually independent
with low statistical dependence. In order to do this, we need to
develop an invertible normalization transformation, and must
ensure that this inversion process may be used to obtain the
decoded image from a set of quantized coefficients.

III. Di1VISIVE NORMALIZATION MODEL

We define a general divisive normalization as a cascade of
two transformation stages

{ai} 5 {e} 5 {3} (1)

where the image pixels {a;} are first analyzed using a linear
transform 7', followed by a nonlinear transform R of the
linear coefficients [25]-[29]. The linear transform should
be a local-frequency representation as is commonly used in
transform coding (e.g., block-DCT or a wavelet filterbank).
The divisive normalization stage describes the gain control
mechanisms normalizing the energy of each linear coefficient
by a linear combination of its neighbors in space, orientation
and scale

sgn(ci)ci|”
T
Bi + 32 hijlej|

Each coefficient ¢; is first rectified and exponentiated. Each of
the resulting values are then divided by a weighted sum of the
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Parameters of the model and examples of the nonlinearity for the DCT case. The top left and top right panels show the parameters « and /3, respectively.

The bottom left panel shows examples of the interaction kernel for three different frequencies. The bottom right panel shows examples of the normalized responses
as a function of coefficient amplitude, on a zero background. In the bottom panels, the different line styles represent kernels (rows of h) and responses for coefficients
of different frequency: 4 cpd (solid), 8 cpd (dashed), and 16 cpd (dotted). Note that the parameters are slightly different from those reported in [1] because we are
using here a slightly different model based on the local DCT instead of the local Fourier transform. However, the final behavior (bottom right panel) is qualitatively

the same.

others, where h;; is the set of weights that specify the interac-
tions between all the coefficients of the vector ¢ and coefficient
¢;. The sign (or phase, in the case of a complex-valued trans-
form) of each normalized coefficient, is inherited from the sign
of the corresponding linear coefficient, sgn(c; ).

A. Model Parameters

For this paper, we use a 16 x 16-point block DCT for the
transformation 7', in order to facilitate comparisons with the
JPEG standard and related literature [17], [22], [23], [31]-[35].
The main results are general, and would apply to wavelet-style
filterbank representations, as well, where they are likely to yield
better compression results.2

There are three basic sources from which one can obtain the
normalization parameters: psychophysics [25], [36], [37], elec-
trophysiology [29] and image statistics [10], [38], [39]. In the
psychophysically inspired divisive normalization proposed in
this paper, the parameters are chosen by fitting data from human
vision experiments, using a method similar to that of [25], [37].
As in [25], we augment the standard DCT with an additional
scalar weighting parameter «, accounting for the global sensi-
tivity to the frequency range represented by each basis function
(the CSF [40]). Thus, the transform coefficients c; are given by

N2
C; = Qg+ E T7;jaj
j=1

where T;; are the basis functions of the linear transform that an-
alyzes the image a;. The amplitudes of the DCT are expressed
as contrast values, by dividing the coefficients by the local lu-

2Preliminary comparisons of the proposed method with JPEG2000 show that
this is the case [36].

minance. Similar contrast measures have been proposed in the
literature in the context of pyramidal decompositions [41], [42].

The parameters of the normalization are determined by fitting
the slopes of the normalization function in (2) to the inverses of
the psychophysically measured contrast incremental thresholds
for gratings [25], [37]. The values of «, (3, and h that fit the
experimental responses of isolated sinusoidal gratings [43] are
shown in Fig. 1. In the same way, the exponent was found to be
v = 0.98.

Given an image a of size NV x N, if T' corresponds to a nonre-
dundant basis, the size of the vectors ¢, r, o, 3 is N2. The size of
the matrix h;; is N 2 % N2. For redundant bases the dimensions
will be bigger. Considering these sizes, an arbitrary interaction
pattern in the matrix h would imply an explicit (expensive) com-
putation of the products »_; hij|c;|7. As shown in Fig. 1, the
nature of the interactions between the coefficients is local [25],
[44], which means that h need only describe relationships be-
tween coefficients of similar spatial frequency and orientation.
This fact induces a sparse structure in h and allows a very ef-
ficient computation of }_ ; hij|c;|” as a convolution. Since our
experimental data do not constrain the shape of the interaction
function, we follow [25] and assume that each row of the ma-
trix h has a two-dimensional (2-D) circular Gaussian form in
the Fourier domain. Specifically, we set the kernels h;; as

. f.]2
i )

95

1
o7, = 5Ifil +0.05

hij =exp

“

where f; and f; are 2-D frequency vectors (with components in
cycles per degree) of the ith and jth basis functions, respectively.
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For other bases of interest such as wavelets, the perceptual
normalization model can be extended by introducing spatial in-
teractions in the Gaussian kernels. Previous work indicates that
the spatial extent of the interactions should be about twice the
size of the impulse response of the CSF [25], [44]. See [36] and
[39] for examples of this kind of kernel.

B. Perceptual and Statistical Independence

In this section, we describe the perceptual and statistical de-
pendence problems of linear local frequency representations and
demonstrate that normalization reduces these problems. First,
consider the perceptual dependence. As stated in Section II, the
coefficients of a representation are perceptually independent if
the visibility of the distortion introduced by altering one coeffi-
cient does not depend on the values of the other coefficients. A
quantitative measure of this can be defined using the perceprual
metric matrix of the representation [17]. Specifically, we write
a second-order approximation of the perceptual difference be-
tween an image, ag, and a distorted version, ag + Aa as

d(ag, ag + Aa)? = Aa® - W,(ag) - Aa
= Z Wa(ao)iiAa?

+ ZZWa(ao)ijAaiAaj. (5)
i#]
We refer to W, (ag) as the perceptual metric matrix in the spatial
domain at the point (image) ag. In general, the diagonal elements
of such a perceptual metric matrix represent the independent con-
tribution of the deviations in each element to the perceptual dis-
tortion, whereas the off-diagonal elements represent the distor-
tion resulting from perceptual interactions between elements. As
such, perceptual independence of a representation is equivalent
to diagonality of the perceptual metric of that representation.
The perceptual metric for any representation can be computed
from that of another representation by transforming according
to the rules of Riemannian geometry [45]. If we assume that the
normalized domain is perceptually independent (i.e., the matrix
is diagonal), as is common for psychophysically defined nor-
malization models [25], [37] and as suggested by the success of
a number of recent image distortion measures [18], [19], [44],
[46], [47], then the metric matrix for any linear representation
cannot be diagonal. To see this, note that in any linear represen-
tation ¢’ defined by ¢/ = T’~! - ¢ the perceptual metric at the
point ¢, is given by [17]
W (cy) =TT -VR(co)T - D-VR(co) - T’ (6)
where ¢ = 1" - ¢, D is the diagonal metric in the normalized
domain, and the Jacobian of the transformation is

VER(e)ij = —5

J

=sgn(ci)y (

lei| " 163

Bi + 22 hijlej|
lei[Y|ej |7 hi

) (ﬂi +2; hz‘j|¢j|”)2

)

Assuming the Jacobian is nondiagonal because of the masking
interactions (h;; # 0), and input dependent, no linear represen-
tation ¢’ can achieve the desired perceptual independence.

As described in Section II, despite the (second order) decor-
relation power of linear local frequency transforms, their coef-
ficients still exhibit intriguing statistical relationships. A reason
for this is that, in general, natural images do not come from a
linear combination of signals drawn from independent sources
(the central assumption in ICA theory). This means that al-
though the linear representations used in transform coding [the
analogue to transform 7' in the model of (1)] constitute an
appropriate step in the right direction, additional processing
is needed to remove (or reduce) the higher order relations.

As a quantitative measure of the higher order statistical de-
pendencies, we first use both the cross correlation and the
covariance between the amplitudes (absolute values) of the
coefficients of the local DCT representation of a set of im-
ages. Second-order relationships between the amplitudes (or
analogously the energies) correspond to higher order relation-
ships between the original coefficients, and even in the case
of a local frequency transform that is designed to remove the
second order correlations in the original signal (e.g., local
PCA and its fixed basis approximation, the local-DCT [2],
[48]), the coefficient amplitudes (or energies) may still exhibit
strong correlations [7], [10], [11]. Thus, we can use a simple
(second order) analysis of the amplitudes of the coefficients
as an indicator of independence (or lack of independence) in
a broader sense than second-order decorrelation.

First, in Fig. 2, we analyze the cross-correlation between the
amplitudes of the coefficients of the local DCT transform. As the
local-DCT spectrum of natural images is not stationary, a direct
comparison between coefficients at very different frequencies
is biased. Natural images exhibit 1/f amplitude spectrum;
then, the comparison of a high-frequency coefficient with a
low-frequency coefficient is biased by the high amplitude of the
latter. Therefore, instead of a direct comparison, we first divide
each coefficient by the average amplitude of that frequency
(gathered across all DCT blocks). In that way, a unit mean process
is obtained and a fair computation of the cross correlation can
be done. Fig. 2 shows cross correlation contours for amplitudes
of nine particular coefficients of increasing frequency in the
vertical, horizontal and the diagonal directions. For each of
the nine chosen coefficients, the cross correlation function
is maximal at the frequency coordinates of that coefficient,
and decreases monotonically as one moves away from those
coordinates. This observation is consistent with those reported
in other local frequency transform domains [1], [7], [10], [14],
[38].

This means that even though local-frequency transforms
do remove second order relations, the absolute value of the
coefficients is still highly correlated with its neighbors, with an
interaction neighborhood that increases in size with frequency.
This suggests that dividing the energy of each coefficient by an
estimate from its neighborhood (2) may reduce the relations
between the samples of the result. Note that the psychophysically
inspired neighborhood [bottom-left subplot in Fig. 1, or (3) and
(4)] also increases with frequency as the statistical interaction
neighborhood in Fig. 2.
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Fig. 2. Contour plots of the cross correlation of nine different local-DCT coefficient amplitudes with those at other frequencies and orientations. The nine
representative coefficients were selected at three different frequencies (columns) and three orientations (rows). These interactions were measured in 57 344 blocks
of size 16 X 16 taken from the Van Hateren database of calibrated natural images [49].

In order to quantify the problems of linear representations
and the potential advantages of the proposed normalized repre-
sentation, we compared four representations (raw pixels, local
DCT, local PCA, and the proposed normalized DCT) using
four different measures of dependency (standard covariance,
amplitude covariance, mutual information, and perceptual cor-
relation). The results are given in Table I. These measures
were estimated from a training set consisting of 57 344 blocks
of size 16 X 16 taken from the Van Hateren database of cal-
ibrated natural images [49]. Each of the correlation measures
(whether statistical or perceptual) are computed for all pairs
of coefficients, thus forming a generic dependency matrix M
(covariance, amplitude covariance and perceptual metric). The
scalar measures shown in Table I are computed by comparing
the magnitude of the off-diagonal elements with the magnitude
of the diagonal elements [2]

N Zi;ﬁj |Mij| (8)
TS Ml

The results in Table I are consistent with our hypothesis
regarding normalization. The first row of the table shows the
interaction measure on the standard covariance 7). For this
measure, the local-PCA representation, which is chosen to
diagonalize the covariance matrix, achieves the best result.

TABLE 1
STATISTICAL AND PERCEPTUAL INTERACTION MEASURES
FOR DIFFERENT REPRESENTATIONS

| pixels | local-DCT | local-PCA | normalized-DCT |

Ns 158.3 7.2 0.0 0.8
s | 1583 21.8 16.9 1.2
Np 47.6 1.4 12.1 0.0
I 0.69 0.28 0.29 0.06

The local-DCT is known to provide a good fixed-basis ap-
proximation of local-PCA [2], [48], and performs quite well
in comparison to the pixel basis. Surprisingly, the normalized
representation is seen to be better than the local-DCT basis.

The second row of Table I shows 7, the interaction mea-
sure for higher order statistics, as represented by covariance of
coefficient amplitudes. This measure clearly indicates that the
linear transforms do not succeed in removing these interactions
and, thus, do not lead to statistical independence. On the other
hand, we see that the normalization representation greatly re-
duces these higher order interactions.

The third row of Table I provides a mutual information mea-
sure of the statistical independence of the coefficient ampli-
tudes. The mutual information of a set of variables, cq,- - -, ¢y,
is defined as the Kullback—Leibler distance between their joint
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PDF and the product of their marginals, and it can be com-
puted from the marginal entropies, H(c¢;), and joint entropy,

H(cy, -+, cp), of the variables [50]
I(ey, -+ cn) = H(ci) = H(er,-,c0). 9
i=1
I(c1,- -+, cpn) can be interpreted as the average number of bits

that are lost when encoding the variables assuming they are in-
dependent. As the entropy of the coefficients H (¢; ) may be quite
different in each domain, we compute the relative mutual infor-
mation, i.e., the proportion of bits that are lost when using a
coder that assumes independence

; PR
Ii(e1, -+ cn) = (n11§§£6h}1(’;")
n i=1 C;

Note that I,, = 1 when the ¢; are fully redundant (e.g., identical)
and /. = 0 when they are independent.

Because the estimation of information requires substantially
more data than estimation of correlations, we restrict our rela-
tive mutual information calculation to a set of five coefficient
amplitudes in each of the representations. In the spatial domain,
we considered the central coefficient and four neighbors around
it (two horizontal and two vertical). In the PCA domain, we
took the first five coefficients after the first one (which approx-
imately accounts for the average luminance). In the DCT and
the DCT-normalized domains, we considered the five AC coef-
ficients of lower frequency. Histograms of ten bins per dimen-
sion in the range [0, max(|c;|)] were used to estimate the PDFs
of the coefficient amplitudes. The I,. results shown in Table I are
consistent with the reductions of the mutual information using
divisive normalization reported elsewhere [10], [39], [51] and
confirm the statistical benefits of the proposed representation.

Finally, the last row of Table I shows a perceptual interac-
tion measure 1), computed from the perceptual metric matrix
derived using (6) and assuming that the normalized DCT coeffi-
cients are perceptually independent. The results provide a quan-
titative measure of the claim made earlier in this section, that
linear representations must necessarily have suboptimal percep-
tual behavior.

Overall, we conclude that the superior statistical and percep-
tual properties of the divisive normalization representation, as
compared with common linear representations, provide a justi-
fication for its use in transform coding.

(10)

IV. INVERTING THE DIVISIVE NORMALIZATION TRANSFORM

In order to use a normalized representation directly in a
transform coding application, we need to be able to invert the
transformation. In this section, we study the analytic inversion
problem and develop an efficient algorithm based on series
expansion. A more general numerical inversion method (the
differential method) was originally proposed in [11], and the
advantages of this method were analyzed in [52]. However, the
series expansion method proposed here is roughly three orders
of magnitude faster than the differential method and, thus,
represents a better choice in practice. We also derive a general
condition for the normalization to be invertible and verify that

the psychophysically derived normalization scheme used in
this paper fulfills this condition.

Let D, and Dg be diagonal matrices with the absolute value
of the elements of r and [ in the diagonal, then, from (2), it
follows:
oA
where, as in (2), the sign function sgn(-), the absolute value | - |,
and the exponent 1/ are applied in a element-by-element basis.

However, this analytic solution is not practical due to the com-
putational cost of computing the inverse (I — D,. - h)~*. While
computing the normalization transformation is efficient because
the interactions between the coefficients of ¢ are local (h is
sparse), the inverse transformation suffers from global interac-
tions between the coefficients of 7 (i.e., the matrix (I — D,.-h) ™!
is dense). Thus, direct calculation of (11) is costly even for mod-
erate-sized images.

c=sgu(r) (I =D, -h)™"-Dg-|r|)

A. Series Expansion Inversion

The particular form of the normalization model and the cor-
responding inverse allows us to propose an alternative solu-
tion that does not involve matrix inversion or computation with
dense matrices. The idea is using a series expansion of the in-
verse matrix in (11)

(I-D, h)'= i(DT -h)k.

0
In that way, we can compute the inverse up to a certain degree
of approximation n, taking a finite number of steps in the series
elfyy = D - Irl + (Dy - 1) - Dy - Ir|
lelay = Dp - Ir| + (Dr - h) - Dy - [r| + (D - h)* - D - |
el = Ds - Ir| + (D, - h) - D - |r| + (D - h)* - Dy - |r|
+(Dy - h)* Dy - |r]

A naive implementation would imply computing powers of
D,. - h, which is also a problem. However, it is possible to write
the series approximation in a recursive fashion that only in-
volves vector additions and matrix-on-vector multiplications

[clig) =D - I

|cl(ny = Dp - Ir[+ Do b= el gy (12)

Note that the matrices in (12) are sparse and, thus, the series
may be computed efficiently.

B. General Invertibility Condition

Despite the differences between the proposed inversion pro-
cedures (analytic and series expansion), the same condition has
to hold to ensure the existence of the solution. This condition
also applies for the previously reported differential method (see
[52] for details).

Let V and A be the eigenvector and eigenvalue matrix de-
composition of D,. - h

D, -h=V-A-VT.
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As we show below, the invertibility condition turns out to be

Amax = max(\;) < 1. (13)

In the analytic case, the matrix (I — D,.-h) has to be invertible,
ie., det(I — D, - h) # 0. However, if some eigenvalue J\; is
equal to one, then det(A\; I — D,. - h) = 0. In theory, it would be
enough to ensure that \; # 1, but in practice, as the spectrum of
D, - h is almost continuous (see the examples in Section IV-C),
the matrix is likely to be ill conditioned if the condition (13)
does not hold.

In the series expansion method, the convergence of the series
has to be guaranteed. Using the eigenvalue decomposition of
D, - h in the expansion, we find

i(Dr~h)k =V. i/\k VT
k=0

:—0

which clearly converges only if the maximum eigenvalue is
smaller than one.

C. Invertibility of Psychophysically Inspired Normalization

We have empirically checked the invertibility of the normal-
ization that uses psychophysically inspired parameters for the
local-DCT by computing the maximum eigenvalue of D, - h
over 25600 blocks randomly taken from the Van Hateren nat-
ural image data set [49]. Fig. 3(a) shows the average eigenvalues
spectrum and Fig. 3(b) the PDF of the maximum eigenvalue.
In this experiment on a large natural data base the maximum
eigenvalues are always far enough from 1. These results suggest
that the normalization with these parameters will be invertible
(see Section IV-D), and it will remain invertible even if the re-
sponses 7 undergo small distortions such as quantization (see
Section V-B).

D. Convergence Rates

In this section, we analyze the convergence of the proposed
inversion procedure. In the experiments shown here, we used
the psychophysically inspired parameters of Section III and the
local-DCT. Of course, such a simple (small size) transform does
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Behavior of D,. - h for a set of 25600 blocks taken from the Van Hateren data base [49]. (a) Average eigenvalues spectrum. Dashed lines represent the

not really require iterative techniques because the analytical in-
verse is generally affordable.

It is possible to derive an analytic description for the con-
vergence of the series expansion method. It turns out that the
convergence is faster for a smaller Ay, ,x. Consider that the error
vector at the step n of the approximation

em) = le[” = |C|Zn)

is just the last part of the series, and using the eigenvalue de-
composition of D,. - h, we have

> (Dr-h)F-Dg-r

n+1

€n) =
k

(D, - h)(n+k+1) -Dg-r

M

?r
Il

0
00

=V. ZA(n+k+1) VT, Dg -r.
k=0
Then, taking the | - |, norm as a measure of the error, we have
that the error at each step is

€y = lem)| o
=max (e<n)i) o Z /\5;};"*1)
k=0

— n
- )‘max

)\max

. <1 - Amax) . (14)

Fig. 4 confirms this convergence rule: It shows the evolution
of the error measure as a function of the number of terms in the
series for three images (blocks) with different A,,«. From (14),
it follows that for a large enough number of terms log(e(,,)) o
log(Amax) - 1, as shown in the figure. The experiment in Fig. 4
shows the result for local-DCT blocks, but the same behavior is
obtained in the wavelet case [36].

V. IMAGE CODING APPLICATION

Given the inversion results of the previous section, we can
now consider the development of an image compression proce-
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Fig. 4. Error of the series expansion method as a function of the number
of terms in the series. The different lines represent the error obtained when
inverting different images with different values of A, ax.

dure based on a divisive normalization representation. Specif-
ically, we propose to encode images using scalar quantization
and entropy coding of a set of normalized local-frequency coef-
ficients. The decoding procedure is then the natural one. First,
recover the quantized coefficients from the entropy-coded bit-
stream, then invert the normalization procedure, and, finally, in-
vert the linear transform. In order to do this, we must first de-
scribe the quantizer design, and then verify the robustness of the
invertibility condition in the presence of quantization errors and
progressive coding.

A. Quantizer Design

The nature of the quantization noise depends on the quan-
tizer design. Quantizers based on MSE minimization result in
nonuniform quantization that is determined by the marginal dis-
tribution of coefficients [3], [53] or a version of this distribution
modified to accomodate a perceptual metric. However, it has
been suggested that constraining the maximum perceptual error
(MPE) may be better than minimizing its average [33]-[35],
[54]. This is because the important issue is not minimizing the
average error across the regions but minimizing the visibility of
errors in every quantized region.

Constraining the MPE is equivalent to a uniform quanti-
zation in a perceptually uniform domain. Therefore, once in
the perceptually Euclidean domain the quantizer design is
extremely simple: uniform scalar quantization and uniform bit
allocation. Of course, the expression of this quantizer turns out
to be nonuniform in the linear transform domain (local-DCT or
wavelets).

The difference between the approaches that implicitly fol-
lowed the MPE idea [17], [22], [23], [31]-[35] is the accuracy
of the perceptual model that is used to map the coefficients to
a perceptually Euclidean domain in which they are uniformly
quantized.

e JPEG [22] (and MPEG [23]) assume the linear CSF
model [40]. This implies a fixed diagonal metric matrix
in the DCT domain. This equivalence has been shown in
[33]-[35].

e The algorithms of Daly [31], Watson [32], or Malo et
al. [33]-[35] assume a point-wise nonlinear model [37],

0.8f

0.6
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0.4

0.2

0 0.2 0.4 0.6 0.8 1 1.2
Entropy (Bits/coeff)

Fig. 5. Effect of quantization on A,,.x. The thick line represents the average
of Amax over the blocks of each image. The thin line shows the behavior of the
maximum ., in each image (worst case blocks).

[55]. This implies an input-dependent diagonal metric in
the DCT domain.

* The algorithm of Epifanio et al. [17] uses the current
nonlinear model [25], [29], [38], i.e., it uses a nondiag-
onal metric. However, they use an average (input-inde-
pendent) metric in the linear domain in order to avoid the
inversion problem and to allow a linear simultaneous di-
agonalization of I' and W. It has to be stressed that this
algorithm explicitly takes into account the image statis-
tics using a local PCA instead of a local DCT.

*  The proposed approach uses the current nonlinear model
[25], [29], [38] in the proper way, i.e., using the nonlinear
normalized representation and inverting it after the quan-
tization. This means assuming an input dependent and
nondiagonal perceptual metric in the linear domain.

B. Robustness of the Invertibility Under Quantization

Fig. 5 shows the effect of the quantization step (number of
bits per coefficient) on A, . These results capture the evolution
of the maximum eigenvalue of 100 256 x 256 images (25600
blocks) from the Van Hateren data base [49] when compressing
them in the range [0.02, 1.2] bits/pixel. For higher bit rates
(over 1.5 bits/pixel), the maximum eigenvalue remains stable
and equal to its value in the original signal. For lower bit rates
(as shown in the figure), A, Oscillates, but (for every block of
these 100 representative images) always lies in the region that
allows invertibility. At extremely low bit rates, A, ax tends to
zero because the quantization step is so coarse that most of the
coefficients in the quantized vector 7 are set to zero, inducing a
reduction in the eigenvalues of D;. - h. This result suggests that
the proposed normalized representation is invertible regardless
of the bit rate. Thus, the coarseness of the quantization may be
freely chosen to satisfy a distortion requirement.

Once we have shown that the quantization does not criti-
cally affect the invertibility condition, another practical issue is
robustness to progressive transmission, which is a convenient
feature in any encoding scheme. Progressive coding refers to
the ability to reconstruct different (approximated) versions of a
fully decoded image from a subset of the bits of the compressed
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Fig. 6. Example of the evolution of A,,.x, the reconstructed image and the
PSNR in progressive coding.

image. The proposed representation may be used for progres-
sive coding if subsets of the coefficients of an encoded image
do not lead to an increase in the corresponding A ax.

Fig. 6 shows a representative example that illustrates the
effect of progressive coding on Ap,,x. Fig. 6 shows the evolution
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Fig. 7. Rate-distortion performance of the algorithms over five standard
images (Barbara, Boats, Lena, Einstein, and Peppers). JPEG [22] MPE
quantizer with fixed diagonal metric (stars, dotted line), MPE quantizer using
a point-wise nonlinearity, i.e., adaptive diagonal metric [33]-[35] (diamonds,
dash-dot line), MPE quantizer using a fixed nondiagonal metric [17] (squares,
dashed line), the proposed approach: MPE quantizer in a normalized domain,
i.e., adaptive nondiagonal metric (circles, solid line).

of the values of A.x for the blocks of the image Barbara
as different proportions of coefficients are received by the
decoder. In this example the original image was represented in
the proposed domain and compressed to 0.58 bits/pixel. Then,
different reconstructions of the image are obtained when 4, 8,
12, 16, and 32 quantized coefficients (of increasing frequency)
per block are received at the decoder. The values of Apax
for the different subsets of coefficients are compared in each
case with the values of Ap.x for the whole set of quantized
coefficients. The trend illustrated by this example was also
found in all the analyzed images. Using a small subset of
coefficients substantially reduces Ay ,x. From this situation
(coarse approximation), as more coefficients are sent to the
decoder, the corresponding values of A, progressively increase
and tend to the values obtained using the whole set of coefficients.
As the maximum eigenvalues of the incomplete signals are
always below the corresponding values for the complete signal,
the approximate image can always be reconstructed from the
incomplete and quantized normalized representation.

C. Coding Results

In this section, we compare the results of different MPE trans-
form coding schemes described above: JPEG [22], the algorithm
of Malo et al. [33]-[35] (which is similar to the algorithms of
Daly [31] and Watson [32]), the algorithm of Epifanio et al. [17],
and the proposed algorithm.

Fig. 7 shows the average rate-distortion performance of the
algorithms when coding five standard images in the range
[0.18-0.58] bits/pixel (Barbara, Boats, Lena, Einstein, and
Peppers). The distortion was computed using a standard ob-
jective distortion measure: the peak-to-peak SNR, defined as
101log, (2552 /a2), with 2 the error variance. The rate was
computed using a standard zero-order entropy coding of the
quantized coefficients.

The subjective performance of the algorithms can be seen in
Figs. 8 and 9. Note that these bit rates are substantially smaller
than the usual bit rate recommended in the JPEG standard
(between 0.5 and 1.0 bits/pixel for achromatic images). These
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Fig.8. Codingresults (0.18 bits/pixel). a) Original. b) JPEG [22] MPE quantizer with fixed diagonal metric (PSNR = 23.7). ¢c) MPE quantizer using a point-wise
nonlinearity (adaptive diagonal metric) [33]1-[35] (PSNR = 23.0). d) MPE quantizer using a fixed nondiagonal metric [17] (PSNR = 24.3). ¢) The proposed
approach: MPE quantizer in a normalized domain (adaptive nondiagonal metric) PSNR = 26.5.

choices were made to ensure that the compression artifacts
are substantially larger than those introduced by the journal
printing process, thus allowing the reader to easily compare
the visual quality of the algorithms. In the laboratory, we find
that visual comparison of images at higher bit rates leads to
analogous results. A sampling frequency of 64 samples/degree
was assumed in the computations, so the viewing distance
should be adjusted so that the angular extent of the (256 x 256)
images is 4°.

The JPEG results [Figs. 8(b) and 9(b)] exhibit over-smoothed
areas because the width of the bit allocation function (the CSF)
is too narrow. Therefore, high-frequency textures are lost in the
decoded images. As reported in the literature [32]-[34], the use

of a point-wise nonlinearity certainly preserves more high-fre-
quency details giving a better performance than JPEG at bit
rates higher than 0.4 bits/pixel (see the rate-distortion curves in
Fig. 7). However, for very low bit rates, the blocking effect is no-
ticeably increased [Figs. 8(c) and 9(c)]. The use of a simultane-
ously decorrelated linear domain (fixed but nondiagonal percep-
tual metric) improves the results but still adds high-frequency
noise that is especially visible in the smooth regions [Figs. 8(d)
and 9(d)]. This effect comes from the PCA part of the linear
decorrelating transform. The uniform quantization in the pro-
posed normalized domain [Figs. 8(e) and 9(e), and solid line in
Fig. 7] gives rise to the best subjective results at every compres-
sion ratio in the analyzed range.
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d)

e)

Fig.9. Coding results (0.18 bits/pixel). a) Original. b) JPEG [22] MPE quantizer with fixed diagonal metric (PSNR = 24.3). ¢) MPE quantizer using a point-wise
nonlinearity (adaptive diagonal metric) [33]-[35] (PSNR = 23.7). d) MPE quantizer using a fixed nondiagonal metric [17] (PSNR = 25.7). ¢) The proposed
approach: MPE quantizer in a normalized domain (adaptive nondiagonal metric), PSNR = 26.1.

On the other hand, the intrinsic statistical power of the nor-
malized representation is confirmed by the quality of the numer-
ical (PSNR) results, as illustrated in Fig. 7. Note that the pro-
posed representation increases the compression ratio by a factor
of three or more with regard to the JPEG standard at the same
PSNR level.

VI. CONCLUSION

We have proposed the direct use of divisive normalization in
transform coding. This nonlinear augmentation of a traditional
linear transform leads to a substantial reduction in the both the
perceptual and statistical dependencies between the coefficients

of the representation. The combination of these two improve-
ments implies that subsequent scalar processing and encoding
of the coefficients can be nearly optimal in terms of both bitrate
and perceptual distortion.

We have studied the analytic invertibility of the divisive nor-
malization representation, and proposed an efficient algorithm
based on series expansion. When using a moderate size block-
transform the analytical inversion is computationally affordable,
but when using a wavelet basis, the series expansion inversion is
the better choice. We also derived the general condition for the
normalization to be invertible and showed that the proposed psy-
chophysically derived normalization is invertible. The empirical
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results on a large natural image collection suggest that quantiza-
tion does not generally interfere with invertibility. However, it is
still possible that inversion could fail on some particular images
at some levels of quantization. In these cases, the invertibility
condition is a practical tool to detect this problem and solve it
by slightly adjusting the bit rate.

Finally, image coding results suggest that a straightforward
uniform quantization of the normalized coefficients using the
psychophysically inspired parameters is a simple and promising
alternative to the current transform coding techniques that use
perceptual information in the image representation and quan-
tizer design. These results show that removing or reducing the
(statistical and perceptual) dependence in linear transforms
makes a big difference in the quality (or bit rate) of the recon-
structed images.

The ability of the proposed representation to reduce the statis-
tical dependence among the coefficients may alleviate the need
for more sophisticated methods to extract any residual statistical
relationships amongst the linear transform coefficients. Never-
theless, the results reported here could be improved by trying to
exploit the statistical relations that may remain in the nonlinear
representation. However, it has to be stressed that the current
techniques that exploit the redundancies in transform domains
[8]-[10] should be substantially changed as the statistical nature
of the signal in the nonlinear representation is different [39].

Future work should consider alternative methods of esti-
mating the parameters of the normalization (e.g., the statistical
approach in [38]) which may improve the statistical benefits
of the representation while retaining its perceptual properties.
This effort is related to the development of more accurate
statistical models for natural images. Finally, the properties
of the proposed normalized representation may be useful in
other image processing problems (e.g., denoising or texture
analysis and synthesis) where both the perceptual and statistical
properties of the coefficients are of fundamental importance.
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