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Non-Linear Image Representation for Efficient
Perceptual Coding

J. Malo, I. Epifanio, R. Navarro, E.P. Simoncelli

Abstract— Image compression systems commonly operate by
transforming the input signal into a new representation whose
elements are independently quantized. The success of such a
system depends on two properties of the representation. First, the
coding rate is minimized only if the elements of the representa-
tion are statistically independent. Second, the perceived coding
distortion is minimized only if the errors in a reconstructed
image arising from quantization of the different elements of the
representation areperceptuallyindependent. We argue that linear
transforms cannot achieve either of these goals, and propose
instead an adaptive non-linear image representation in which
each coefficient of a linear transform is divided by a weighted
sum of coefficient amplitudes in a generalized neighborhood. We
then show that the divisive operation greatly reduces both the
statistical and the perceptual redundancy amongst representation
elements. We develop an efficient method of inverting this
transformation, and we demonstrate through simulations that
the dual reduction in dependency can greatly improve the visual
quality of compressed images.

Index Terms— Transform Coding. JPEG. Independent Compo-
nents. Statistical Independence. Perceptual Independence. Scalar
Quantization. Non-linear Response. Perceptual Metric.

I. I NTRODUCTION

EFFICIENT encoding of signals relies on an understanding
of two fundamental quantities, commonly known asrate

and distortion. The rate expresses the cost of the encoding
(typically in bits) and the distortion expresses how closely
the decoded signal approximates the original. A large body of
literature has shown that the problem can be made much more
tractable by transforming the image from an array of pixels
into a new representation in which rate or distortion are more
easily quantified and controlled. Such transforms are typically
linear and in recent years are almost always based on basis
functions that provide a local representation of orientation and
spatial frequency.

In this paper, we examine a non-linear transformation,
motivated by both the statistical properties of typical pho-
tographic images and the known properties of the human
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visual system. The transformation is formed as a cascade of
a linear transform and a divisive normalization procedure,
in which each transform coefficient is divided by a signal
computed from the magnitudes of coefficients of similar
spatial position, orientation and frequency. We argue that this
representation provides an effective representation for simul-
taneous optimization of both rate and perceptual distortion
in compression of visual images. We begin by reviewing the
literature about image statistics and perception leading to the
idea of divisive normalization (section II). Section III provides
a technical definition of the normalization, explains a particular
way to obtain its parameters and illustrates its statistical and
perceptual benefits for image coding1. In section IV we discuss
in detail the problem of inverting a divisive normalization
transformation: first we describe a numerical alternative to the
analytical inversion, then we derive the general condition for
the normalization to be invertible, and finally we check the
invertibility of the particular proposed normalization according
to this general condition when the coefficients are quantized.
In section V we show through simulations that the quality of
images reconstructed from the quantized normalization repre-
sentation can significantly exceed that of images reconstructed
from the quantized linear representation.

II. BACKGROUND: STATISTICAL AND PERCEPTUAL

DEPENDENCE

Traditional transform coding solutions emphasize rate op-
timization, by attempting to represent the image in a domain
where the statistical dependence between coefficients is elim-
inated. Under this condition, each coefficient may be encoded
independently. More specifically, statistical independence of
the coefficients justifies the use of scalar quantization and
zero-order entropy coding [2, 3]. The classical solution to the
problem of transform design is derived by considering only
the second-order statistics of the input signal. In this case,
the linear transformation that minimizes the correlation of the
coefficients may be computed using Principal Components
Analysis (PCA). If one assumes spatial stationarity, the Fourier
transform achieves this optimum. But this solution is not
unique and only considers second-order relations. In recent
years a variety of approaches, known collectively as “Inde-
pendent Components Analysis” (ICA), have been developed
to exploit higher-order statistics for the purpose of achieving a

1It is important to stress that the statistical benefits of using this advanced
perceptual model are not limited to its application in coding: see [1] for an
application in image restoration.
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unique linear solution [4]. The basis functions obtained when
these methods are applied to images are spatially localized,
and selective for orientation and spatial frequency (scale) [5,
6], and are thus similar to basis functions of multi-scale
wavelet representations.

Despite its name, ICA doesnotactually produce statistically
independent coefficients when applied to photographic images.
Intuitively, independence would seem unlikely, since images
are not formed from linear superpositions of independent
patterns: the typical combination rule for the elements of an
image isocclusion. This suggests that achieving independence
requires the introduction of non-linearities in the transform.
Empirically, the coefficients of orthonormal wavelet decompo-
sitions of visual images are found to be fairly well decorrelated
(i.e., their covariance is almost zero). But the amplitudes
of coefficients at nearby spatial positions, orientations, and
scales are highly correlated [7]. These relationships have
been exploited, both implicitly [8, 9] and explicitly [10] in
compression systems.

The dependencies between responses of linear filters may
be substantially reduced by a non-linear operation known as
divisive normalization, in which each coefficient is divided by
a Minkowski combination of neighboring coefficient ampli-
tudes [7, 10, 11]. This empirical observation is consistent with
a hidden Markov model in which the amplitude of groups of
coefficients is modulated by a hidden scaling variable [12–16].

The second fundamental ingredient of the transform coding
problem is distortion. When coding visual images, distortion
should be measured perceptually. Ideally, we would like to
be able to express the overall perceived image distortion
as an additive combination of the distortions arising from
each of the transformed elements, as assumed in the standard
theory [2, 3]. This requirement implies that the transformed
elements should be perceptually independent: the visibility of
the distortion in the image introduced by altering one element
should not depend on the values of the other elements. Thus,
we should seek a transformation that eliminates perceptual
redundancies [11, 17].

The most standard measure of distortion is mean squared
error (MSE), computed by averaging the squared intensity
differences of distorted and reference image pixels, along
with the related quantity of peak signal-to-noise ratio (PSNR).
These are appealing because they are simple to calculate, have
clear physical meanings, and are mathematically convenient in
the context of optimization. But it is well-known that they do
not provide a good description of perceived distortion [18–
21]. In particular, the visibility of error in one pixel clearly
depends on the values of surrounding pixels.

A simple and widely used improvement comes from incor-
porating the known sensitivity of human vision to different
spatial frequencies. Specifically, within the Fourier domain,
distortion is measured by summing the squared errors in
each frequency, weighting each term by the sensitivity to its
corresponding frequency. The most widely known image and
video coding standards (JPEG and MPEG) use a block-DCT
decomposition to decorrelate the coefficients, and a frequency-
dependent quantizer based on the human Contrast Sensitiv-
ity Function (CSF) [22, 23]. Similar methods are applied to

wavelet image representations such as in JPEG2000 [24]. Note
that in all these situations, the perceptual factors are taken into
account only after the selection of the representation (e.g., in
the quantizer).

It is well known that the perception of errors in coefficients
of local frequency or wavelet representations is not indepen-
dent, a phenomenon known in the perceptual literature as
masking[25]. Specifically, the presence of large coefficients
can reduce the visibility of errors in coefficients that are
nearby in position, orientation and scale. The linear coeffi-
cients may be modified so as to more accurately represent
perceptual distances bynormalizing(dividing) each coefficient
by a gain signal obtained from a combination of adjacent
coefficients [11, 17, 18, 25, 26]. This is consistent with recent
models of neurons in visual cortex, in which primarily linear
neural responses are modulated by a gain signal computed
from a combination of other neural responses [27–29].

One can see from this brief description that there has been
a remarkable parallel development of transformations that re-
duce either statistical or perceptual redundancy, beginning with
global frequency-based representations, to local frequency
or wavelet-based representations, to most recent solution of
divisively normalized representations. Perhaps this is not so
surprising given that the human visual system is hypothesized
to have been shaped, through processes of evolution and de-
velopment, by the statistical properties of the visual world (for
review, see [30]). Although both the statistical and perceptual
observations that lead to normalized representations have been
exploited in image coding, they have been used indirectly [10,
17]. The fact that normalized representations appear to be the
current best choice for reduction of both statistical and per-
ceptual dependencies suggest that one should explicitly encode
the normalized local frequency coefficients. In the following
sections, we propose an invertible psychophysically-inspired
divisive normalization scheme, whose elements are (pairwise)
perceptually independent with low statistical dependence. In
order to do this, we need to develop an invertible normalization
transformation, and must ensure that this inversion process
may be used to obtain the decoded image from a set of
quantized coefficients.

III. T HE DIVISIVE NORMALIZATION MODEL

We define a general divisive normalization as a cascade of
two transformation stages:

{ai}
T−→ {ci}

R−→ {ri}, (1)

where the image pixels,{ai}, are first analyzed using a
linear transformT , followed by a non-linear transform,R,
of the linear coefficients [25–29]. The linear transform should
be a local-frequency representation as is commonly used in
transform coding (e.g., block-DCT or a wavelet filterbank).
The divisive normalization stage describes the gain control
mechanisms normalizing the energy of each linear coefficient
by a linear combination of its neighbors in space, orientation
and scale:

ri =
sgn(ci) |ci|γ

βi +
∑

j hij |cj |γ
. (2)
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Each coefficientci is first rectified and exponentiated. Each
of the resulting values are then divided by a weighted sum
of the others, wherehij is the set of weights that specify the
interactions between all the coefficients of the vectorc and
coefficientci. The sign (or phase, in the case of a complex-
valued transform) of each normalized coefficient, is inherited
from the sign of the corresponding linear coefficient,sgn(ci).

A. Model parameters

For this paper, we use a16 × 16-point block DCT for the
transformationT , in order to facilitate comparisons with the
JPEG standard and related literature [17, 22, 23, 31–35]. The
main results are general, and would apply to wavelet-style
filterbank representations as well, where they are likely to yield
better compression results2.

There are three basic sources from which one can obtain
the normalization parameters: psychophysics [25, 26, 37], elec-
trophysiology [29] and image statistics [10, 38, 39]. In the
psychophysically-inspired divisive normalization proposed in
this paper, the parameters are chosen by fitting data from
human vision experiments, using a method similar to that
of [25, 37]. As in [25], we augment the standard DCT with an
additional scalar weighting parameter,α, accounting for the
global sensitivity to the frequency range represented by each
basis function (the CSF [40]). Thus, the transform coefficients,
ci, are given by:

ci = αi ·
N2∑
j=1

Tij aj ,

where Tij are the basis functions of the linear transform
that analyzes the imageaj . The amplitudes of the DCT are
expressed as contrast values, by dividing the coefficients by
the local luminance. Similar contrast measures have been
proposed in the literature in the context of pyramidal decom-
positions [41, 42].

The parameters of the normalization are determined by
fitting the slopes of the normalization function in Eq. (2)
to the inverses of the psychophysically measured contrast
incremental thresholds for gratings [25, 37]. The values of
α, β and h that fit the experimental responses of isolated
sinusoidal gratings [43] are shown in Fig. 1. In the same way,
the exponent was found to beγ = 0.98.

Given an image,a, of size N × N , if T corresponds to
a non-redundant basis, the size of the vectorsc, r, α, β is
N2. The size of the matrix,hij , is N2 × N2. For redundant
bases the dimensions will be bigger. Considering these sizes,
an arbitrary interaction pattern in the matrixh would imply an
explicit (expensive) computation of the products

∑
j hij |cj |γ .

As shown in Fig. 1, the nature of the interactions between the
coefficients islocal [25, 44], which means thath need only
describe relationships between coefficients of similar spatial
frequency and orientation. This fact induces a sparse structure
in h and allows a very efficient computation of

∑
j hij |cj |γ as

a convolution. Since our experimental data don’t constrain the

2Preliminary comparisons of the proposed method with JPEG2000 show
that this is the case [36].

shape of the interaction function, we follow [25] and assume
that each row of the matrixh has a two-dimensional circular
Gaussian form in the Fourier domain. Specifically, we set the
kernelshij as,

hij = exp(−|fi − fj |2/σ2
fi

), (3)

σfi =
1
6
|fi|+ 0.05, (4)

wherefi andfj are two-dimensional frequency vectors (with
components in cycles per degree) of theith and jth basis
functions, respectively.

For other bases of interest such as wavelets, the perceptual
normalization model can be extended by introducing spatial
interactions in the Gaussian kernels. Previous work indicates
that the spatial extent of the interactions should be about twice
the size of the impulse response of the CSF [25, 44]. See [36,
39] for examples of this kind of kernels in wavelets and ICA.

B. Perceptual and statistical independence

In this section we describe the perceptual and statistical
dependence problems of linear local frequency representations
and demonstrate that normalization reduces these problems.
First, consider the perceptual dependence. As stated in sec-
tion II, the coefficients of a representation are perceptually
independent if the visibility of the distortion introduced by al-
tering one coefficient doesn’t depend on the values of the other
coefficients. A quantitative measure of this can be defined
using theperceptual metric matrixof the representation [17].
Specifically, we write a second-order approximation of the
perceptual difference between an image,a0, and a distorted
version,a0 + ∆a as:

d(a0, a0 + ∆a)2 = ∆aT ·Wa(a0) ·∆a =∑
i

Wa(a0)ii∆a2
i + 2

∑
i 6=j

Wa(a0)ij∆ai∆aj . (5)

We refer toWa(a0) as the perceptual metric matrix in the
spatial domain at the point (image)a0. In general, the diagonal
elements of such a perceptual metric matrix represent the
independent contribution of the deviations in each element to
the perceptual distortion, whereas the off-diagonal elements
represent the distortion resulting from perceptual interactions
between elements. As such, perceptual independence of a
representation is equivalent to diagonality of the perceptual
metric of that representation.

The perceptual metric for any representation can be com-
puted from that of another representation by transforming
according to the rules of Riemannian geometry [45]. If we
assume that the normalized domain is perceptually inde-
pendent (i.e., the matrix is diagonal), as is common for
psychophysically-defined normalization models [25, 37] and
as suggested by the success of a number of recent image
distortion measures [18, 19, 44, 46, 47], then the metric matrix
for any linear representationcannotbe diagonal. To see this,
note that in any linear representation,c′, defined byc′ =
T ′−1 ·c, the perceptual metric at the point,c′0, is given by [17],

Wc′(c′0) = T ′T · ∇R(c0)T ·D · ∇R(c0) · T ′, (6)
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Fig. 1. Parametersα, β and three interaction kernels (rows ofh) that fit the contrast incremental threshold data for the DCT case. The different line styles
represent different frequencies: 4 cpd (solid), 8 cpd (dashed) and 16 cpd (dash-dot). The bottom right figure shows some examples of the normalized response
as a function of coefficient amplitude, on a zero background. Note that the parameters are slightly different from those reported in [1] because we are using
here a local DCT instead of a local Fourier transform and a slightly different model. However, the final behavior (bottom right panel) is the same.

wherec0 = T ′ ·c′0, D is the diagonal metric in the normalized
domain, and the Jacobian of the transformation is

∇R(c)ij =
∂R(c)i

∂cj
=

sgn(ci)γ

(
|ci|γ−1δij

βi +
∑

j hij |cj |γ
− |ci|γ |cj |γ−1hij

(βi +
∑

j hij |cj |γ)2

)
.(7)

Assuming the Jacobian is non-diagonal because of the masking
interactions (hij 6= 0), and input dependent, no linear repre-
sentation,c′, can achieve the desired perceptual independence.

As described in section II, despite the (second-order) decor-
relation power of linear local frequency transforms, their
coefficients still exhibit intriguing statistical relationships. A
reason for this is that, in general, natural images do not come
from a linear combination of signals drawn from independent
sources (the central assumption in ICA theory). This means
that although the linear representations used in transform
coding (the analogue to transformT in the model of Eq. (1))
constitute an appropriate step in the right direction, additional
processing is needed to remove (or reduce) the higher-order
relations.

As a quantitative measure of the higher-order statistical
dependencies, we first use both the cross-correlation and the
covariance between theamplitudes(absolute values) of the
coefficients of the local-DCT representation of a set of images.
Second order relationships between the amplitudes (or analo-
gously the energies) correspond to higher-order relationships
between the original coefficients. And even in the case of
a local frequency transform that is designed to remove the
second order correlations in the original signal (e.g. local-
PCA and its fixed basis approximation, the local-DCT [2,
48]), the coefficient amplitudes (or energies) may still exhibit

strong correlations [7, 10, 11]. Thus, we can use a simple
(second order) analysis of the amplitudes of the coefficients
as an indicator of independence (or lack of independence) in
a broader sense than second-order decorrelation.

First in Fig. 2 we analyze the cross-correlation between the
amplitudes of the coefficients of the local DCT transform.
As local-DCT spectrum of natural images is not stationary,
a direct comparison between coefficients at very different
frequencies is biased. Natural images exhibit1

f amplitude
spectrum, then, the comparison of a high frequency coef-
ficient with a low frequency coefficient is biased by the
high amplitude of the latter. Therefore, instead of a direct
comparison, we first divide each coefficient by the average
amplitude of that frequency (gathered across all DCT blocks).
In that way, a unit mean process is obtained and a fair
computation of the cross-correlation can be done. Figure 2
shows cross-correlation contours for amplitudes of nine par-
ticular coefficients of increasing frequency in the vertical,
horizontal and the diagonal directions. For each of the nine
chosen coefficients, the cross-correlation function is maximal
at the frequency coordinates of that coefficient, and decreases
monotonically as one moves away from those coordinates.
This observation is consistent with those reported in other local
frequency transform domains [1, 7, 10, 14, 38].

This means that even though local-frequency transforms
do remove second order relations, the absolute value of the
coefficients is still highly correlated with its neighbors, with an
interaction neighborhood that increases in size with frequency.
This suggests that dividing the energy of each coefficient by
an estimate from its neighborhood (Eq. (2)) may reduce the
relations between the samples of the result. Note that the
psychophysically-inspired neighborhood (bottom-left subplot
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in Fig. 1, or Eqs. (3) and (4)) also increases with frequency
as the statistical interaction neighborhood in Fig. 2.

In order to quantify the problems of linear representations
and the potential advantages of the proposed normalized repre-
sentation, we compared four representations (raw pixels, local
DCT, local PCA, and the proposed normalized DCT) using
four different measures of dependency (standard covariance,
amplitude covariance, mutual information, and perceptual cor-
relation). The results are given in table I. These measures were
estimated from a training set consisting of 57344 blocks of
size 16 × 16 taken from the Van Hateren database of cali-
brated natural images [49]. Each of the correlation measures
(whether statistical or perceptual) are computed for all pairs
of coefficients, thus forming a generic dependency matrix,M
(covariance, amplitude covariance and perceptual metric). The
scalar measures shown in table I are computed by comparing
the magnitude of the off-diagonal elements with the magnitude
of the diagonal elements [2],

η =

∑
i 6=j |Mij |∑

i |Mii|
. (8)

The results in table I are consistent with our hypothesis
regarding normalization. The first row of the table shows the
interaction measure on the standard covariance,ηs. For this
measure, the local-PCA representation, which is chosen to
diagonalize the covariance matrix, achieves the best result.
The local-DCT is known to provide a good fixed-basis ap-
proximation of local-PCA [2, 48], and performs quite well in
comparison to the pixel basis. Surprisingly, the normalized
representation is seen to be better than the local-DCT basis.

The second row of table I showsη|s|, the interaction
measure for higher-order statistics, as represented by covari-
ance of coefficient amplitudes. This measure clearly indicates
that the linear transforms do not succeed in removing these
interactions, and thus do not lead to statistical independence.
On the other hand, we see that the normalization representation
greatly reduces these higher-order interactions.

The third row of table I provides a mutual information
measure of the statistical independence of the coefficient
amplitudes. The mutual information of a set of variables,
c1, · · · , cn, is defined as the Kullback-Leibler distance between
their joint PDF and the product of their marginals, and it can
be computed from the marginal entropies,H(ci), and joint
entropy,H(c1, · · · , cn), of the variables [50]:

I(c1, · · · , cn) =
n∑

i=1

H(ci)−H(c1, · · · , cn). (9)

I(c1, · · · , cn) can be interpreted as the average number of bits
that are lost when encoding the variables assuming they are
independent. As the entropy of the coefficients,H(ci), may
be quite different in each domain, we compute the relative
mutual information, i.e., theproportion of bits that are lost
when using a coder that assumes independence:

Ir(c1, · · · , cn) =
1

(n−1)I(c1, · · · , cn)
1
n

∑n
i=1 H(ci)

. (10)

Note that Ir = 1 when the ci are fully redundant (e.g.,
identical) andIr = 0 when they are independent.

TABLE I

STATISTICAL AND PERCEPTUAL INTERACTION MEASURES FOR DIFFERENT

REPRESENTATIONS.

pixels local-DCT local-PCA normalized-DCT

ηs 158.3 7.2 0.0 0.8
η|s| 158.3 21.8 16.9 1.2
ηp 47.6 1.4 12.1 0.0
Ir 0.69 0.28 0.29 0.06

Because the estimation of information requires substantially
more data than estimation of correlations, we restrict our
relative mutual information calculation to a set of five coeffi-
cient amplitudes in each of the representations. In the spatial
domain we considered the central coefficient and four neigh-
bors around it (two horizontal and two vertical). In the PCA
domain we took the first five coefficients after the first one
(which approximately accounts for the average luminance).
In the DCT and the DCT-normalized domains we considered
the five AC coefficients of lower frequency. Histograms of
10 bins per dimension in the range[0,max(|ci|)] were used
to estimate the PDFs of the coefficient amplitudes. TheIr

results shown in table I are consistent with the reductions of
the mutual information using divisive normalization reported
elsewhere [10, 39, 51] and confirm the statistical benefits of
the proposed representation.

Finally, the last row table I shows a perceptual interaction
measure,ηp, computed from the perceptual metric matrix
derived using Eq. (6) and assuming that the normalized domain
is perceptually independent. Surprisingly, the local-PCA rep-
resentation performs significantly worse than the local-DCT,
even though it is optimized for second-order statistical inde-
pendence. The results provide a quantitative measure of the
claim made earlier in this section, that linear representations
must necessarily have sub-optimal perceptual behavior.

Overall, we conclude that the superior statistical and per-
ceptual properties of the divisive normalization representation,
as compared with common linear representations, provide a
justification for its use in transform coding.

IV. I NVERTING THE DIVISIVE NORMALIZATION

TRANSFORM

In order to use a normalized representation directly in a
transform coding application, we need to be able to invert the
transformation. in this section, we study theanalytic inversion
problem and develop an efficient algorithm based onseries
expansion. A more general numerical inversion method (the
differential method) was originally proposed in [11], and the
advantages of this method were analyzed in [52]. However,
the series expansion method proposed here is roughly three
orders of magnitude faster than the differential method, and
thus represents a better choice in practice. We also derive a
general condition for the normalization to be invertible and
verify that the psychophysically-derived normalization scheme
used in this paper fulfills this condition.

Let Dr andDβ be diagonal matrices with the absolute value
of the elements ofr andβ in the diagonal, then from Eq. (2)
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Fig. 2. Contour plots of the cross correlation of nine different local-DCT coefficient amplitudes with those at other frequencies and orientations. The nine
representative coefficients were selected at three different frequencies (columns) and three orientations (rows). These interactions were measured in 57344
blocks of size16× 16 taken from the Van Hateren database of calibrated natural images [49].

it follows:

c = sgn(r)
(
(I −Dr · h)−1 ·Dβ · |r|

)1/γ
. (11)

where, as in Eq. (2), the sign functionsgn(·), the absolute
value | · |, and the exponent1/γ are applied in a element-by-
element basis.

However, this analytic solution is not practical due to the
computational cost of computing the inverse(I −Dr · h)−1.
While computing the normalization transformation is efficient
because the interactions between the coefficients ofc are local
(h is sparse), the inverse transformation suffers from global
interactions between the coefficients ofr (i.e., the matrix(I−
Dr · h)−1 is dense). Thus, direct calculation of Eq. (11) is
costly even for moderate-sized images.

A. Series expansion inversion

The particular form of the normalization model and the
corresponding inverse allows us to propose an alternative
solution that doesn’t involve matrix inversion or computation
with dense matrices. The idea is using a series expansion of

the inverse matrix in Eq. (11):

(I −Dr · h)−1 =
∞∑

k=0

(Dr · h)k.

In that way we can compute the inverse up to a certain degree
of approximation,n, taking a finite number of steps in the
series:

|c|γ(1)=Dβ · |r|+ (Dr · h) ·Dβ · |r|
|c|γ(2)=Dβ · |r|+ (Dr · h) ·Dβ · |r|+ (Dr · h)2 ·Dβ · |r|
|c|γ(3)=Dβ · |r|+ (Dr · h) ·Dβ · |r|+ (Dr · h)2 ·Dβ · |r|+

(Dr · h)3 ·Dβ · |r|
...

A naive implementation would imply computing powers of
Dr · h which is also a problem. However, it is possible to
write the series approximation in a recursive fashion that only
involves vector additions and matrix-on-vector multiplications:

|c|γ(0) = Dβ · |r|
|c|γ(n) = Dβ · |r|+ Dr · h · |c|γ(n−1), (12)
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Note that the matrices in Eq. (12) are sparse and thus the series
may be computed efficiently.

B. General invertibility condition

Despite the differences between the proposed inversion
procedures (analytic and series expansion), the same condition
has to hold to ensure the existence of the solution. This
condition also applies for the previously reported differential
method (see [52] for details).

Let V and λ be the eigenvector and eigenvalue matrix
decomposition ofDr · h:

Dr · h = V · λ · V T .

As we show below, the invertibility condition turns out to be:

λmax = max (λi) < 1. (13)

In the analytic case the matrix(I − Dr · h) has to be
invertible, i.e.det(I−Dr·h) 6= 0. However if some eigenvalue,
λi, is equal to one, thendet(λiI −Dr · h) = 0. In theory, it
would be enough to ensure thatλi 6= 1, but in practice, as the
spectrum ofDr · h is almost continuous (see the examples in
section IV-C), the matrix is likely to be ill-conditioned if the
condition (13) doesn’t hold.

In the series expansion method, the convergence of the se-
ries has to be guaranteed. Using the eigenvalue decomposition
of Dr · h in the expansion, we find:

∞∑
k=0

(Dr · h)k = V ·

( ∞∑
k=0

λk

)
· V T ,

which clearly converges only if the maximum eigenvalue is
smaller than one.

C. Invertibility of psychophysically-inspired normalization

We have empirically checked the invertibility of the nor-
malization that uses psychophysically-inspired parameters for
the local-DCT by computing the maximum eigenvalue of
Dr · h over 25600 blocks randomly taken from the Van
Hateren natural image data set [49]. Figure 3a shows the
average eigenvalues spectrum and Fig. 3b the PDF of the
maximum eigenvalue. In this experiment on a large natural
data base the maximum eigenvalues are always far enough
from 1. These results suggest that the normalization with
these parameters will be invertible (see section IV-D), and it
will remain invertible even if the responsesr undergo small
distortions such as quantization (see section V-B).

D. Convergence rates

In this section we analyze the convergence of the proposed
inversion procedure. In the experiments shown here, we used
the psychophysically-inspired parameters of section III and
the local-DCT. Of course, such a simple (small size) trans-
form does not really require iterative techniques because the
analytical inverse is generally affordable.

It is possible to derive an analytic description for the
convergence of the series expansion method. It turns out that

the convergence is faster for a smallerλmax . Consider that the
error vector at the stepn of the approximation,

e(n) = |c|γ − |c|γ(n),

is just the last part of the series, and using the eigenvalue
decomposition ofDr · h, we have:

e(n)=
∞∑

k=n+1

(Dr · h)k ·Dβ · r =
∞∑

k=0

(Dr · h)(n+k+1) ·Dβ · r =

V ·

( ∞∑
k=0

λ(n+k+1)

)
· V T ·Dβ · r.

Then, taking the| · |∞ norm as a measure of the error, we
have that the error at each step is:

ε(n) = |e(n)|∞ = max (e(n) i) ∝
∞∑

k=0

λmax
(n+k+1) = λn

max ·
(

λmax

1− λmax

)
. (14)

Figure 4 confirms this convergence rule: it shows the
evolution of the error measure as a function of the number
of terms in the series for three images (blocks) with different
λmax . From Eq. (14) it follows that for a big enough number
of terms it holdslog(ε(n)) ∝ log(λmax ) · n, as shown in the
figure. The experiment in Fig. 4 shows the result of local-
DCT blocks, but the same behavior is obtained in the wavelet
case [36].

V. I MAGE CODING APPLICATION

Given the inversion results of the previous section, we can
now consider the development of an image compression proce-
dure based on a divisive normalization representation. Specif-
ically, we propose to encode images using scalar quantization
and entropy coding of a set of normalized local-frequency
coefficients. The decoding procedure is then the natural one:
first recover the quantized coefficients from the entropy-coded
bitstream, then invert the normalization procedure, and finally
invert the linear transform. In order to do this, we must first
describe the quantizer design, and then verify the robustness
of the invertibility condition in the presence of quantization
errors and progressive coding.

0 25 50 75 100 125 150 175 200

10
−10

10
−5

10
0

n

ε (n
)

λ
m

=0.13

λ
m

=0.47

λ
m

=0.86

Fig. 4. Error of the series expansion method as a function of the number
of terms in the series. The different lines represent the error obtained when
inverting different images with different values ofλmax .
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Fig. 3. Behavior ofDr · h for a set of 25600 blocks taken from the Van Hateren data base [49]. (a) Average eigenvalues spectrum. Dashed lines represent
the standard deviation. (b) PDF ofλmax

A. Quantizer design

The nature of the quantization noise depends on the quan-
tizer design. The quantizers based on the minimization of
the MSE end with non-uniform quantization solutions based
on the marginal PDFs [3, 53] or some modification of them
including the perceptual metric [17, 33–35]. However, it has
been suggested that constraining the Maximum Perceptual Er-
ror (MPE) may be better than minimizing its average [33–35,
54]. This is because the important issue is not minimizing the
average error across the regions but minimizing the annoyance
in every quantized region.

Constraining the MPE is equivalent to a uniform quan-
tization in a perceptually uniform domain. Therefore, once
in the perceptually Euclidean domain the quantizer design is
extremely simple:uniform scalar quantization anduniform bit
allocation. Of course, the expression of this quantizer turns out
to be non-uniform in the linear transform domain (local-DCT
or wavelets).

The difference between the approaches that implicitly fol-
lowed the MPE idea [17, 22, 23, 31–35] is the accuracy of the
perception model which is used to propose the perceptually
Euclidean domain before the uniform quantization:

• JPEG [22] (and MPEG [23]) assume the linear CSF
model [40]. This implies a fixed diagonal metric matrix
in the DCT domain. This equivalence has been shown
in [33–35].

• The algorithms of Daly [31], Watson [32] or Malo et
al. [33–35], assume a point-wise non-linear model [37,
55]. This implies an input-dependent diagonal metric in
the DCT domain.

• The algorithm of Epifanio et al. [17] uses the current
non-linear model [25, 29, 38], i.e. it uses a non-diagonal
metric. However, they use an average (input-independent)
metric in the linear domain in order to avoid the inversion
problem and to allow a linear simultaneous diagonaliza-
tion of Γ andW . It has to be stressed that this algorithm
explicitly takes into account the image statistics using a
local-PCA instead of a local-DCT.

• The proposed approach uses the current non-linear
model [25, 29, 38] in the proper way: i.e. using the non-

linear normalized representation and inverting it after the
quantization. This means assuming an input-dependent
and non-diagonal perceptual metric in the linear domain.

B. Robustness of the invertibility under quantization

Figure 5 shows the effect of the quantization step (number
of bits per coefficient) onλmax . These results capture the
evolution of the maximum eigenvalue of 100 256×256 images
(25600 blocks) from the Van Hateren data base [49] when
compressing them in the range[0.02, 1.2] bits/pixel. For higher
bit rates (over 1.5 bits/pix) the maximum eigenvalue remains
stable and equal to its value in the original signal. For lower
bit rates (as shown in the figure)λmax oscillates, but (for
every block of these 100 representative images) always lies in
the region that allows invertibility. At extremely low bit rates
λmax tends to zero because the quantization step is so coarse
that most of the coefficients in the quantized vectorr̂ are set
to zero, inducing a reduction in the eigenvalues ofDr̂ ·h. This
result suggests that the proposed normalized representation is
invertible regardless of the bit rate. Thus, the coarseness of
the quantization may be freely chosen to satisfy a distortion
requirement.

Once we have shown that the quantization does not critically
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Fig. 5. Effect of quantization onλmax . The thick line represents the average
of λmax over the blocks of each image. The thin line shows the behavior of
the maximumλmax in each image (worst case blocks).
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affect the invertibility condition, another practical issue is
robustness to progressive transmission, which is a convenient
feature in any encoding scheme. Progressive coding refers
to the ability to reconstruct different (approximated) versions
of a fully decoded image from a subset of the bits of the
compressed image. The proposed representation will be useful
for progressive coding if taking a subset of the coefficients of
an encoded image reduces the correspondingλmax .

Figure 6 shows a representative example that illustrates
the effect of progressive coding onλmax . Figure 6 shows
the evolution of the values ofλmax for the blocks of the
image Barbara as different proportions of coefficients are
received by the decoder. In this example the original image
was represented in the proposed domain and compressed to
0.58 bits/pix. Then, different reconstructions of the image are
obtained when 4, 8, 12, 16 and 32 quantized coefficients (of
increasing frequency) per block are received at the decoder.
The values ofλmax for the different subsets of coefficients
are compared in each case with the values ofλmax for the
whole set of quantized coefficients. The trend illustrated by
this example was also found in all the analyzed images. Using
a small subset of coefficients substantially reducesλmax . From
this situation (coarse approximation), as more coefficients
are sent to the decoder, the corresponding values ofλmax

progressively increase and tend to the values obtained using
the whole set of coefficients. As the maximum eigenvalues
of the incomplete signals are always below the corresponding
values for the complete signal, the approximate image can
always be reconstructed from the incomplete and quantized
normalized representation.

C. Coding results

In this section we compare the results of different MPE
transform coding schemes described above: JPEG [22], the
algorithm of Malo et al. [33–35] (which is similar to the
algorithms of Daly [31] and Watson [32]), the algorithm of
Epifanio et al. [17], and the proposed algorithm.

Figure 7 shows the average rate-distortion performance
of the algorithms when coding five standard images in the
range[0.18− 0.58] bits/pixel (Barbara, Boats, Lena, Einstein
and Peppers). The distortion was computed using a standard
objective distortion measure: the Peak-to-peak Signal-to-Noise
Ratio (PSNR), defined as10 log10(2552/σ2

e), with σ2
e the error

variance. The rate was computed using a standard zero-order
entropy coding of the quantized coefficients.

The subjective performance of the algorithms can be seen
in Figs. 8 and 9. They show some representative examples
of the results: Barbara and Boats at 0.18 bits/pix. Note that
these bit rates are substantially smaller than the usual bit rate
recommended in the JPEG standard (between 0.5 and 1.0
bits/pix for achromatic images). These choices were made to
ensure that the compression artifacts are substantially larger
than those introduced by the journal printing process, thus
allowing the reader to easily compare the visual quality of the
algorithms. In the laboratory, we find that visual comparison
of images at higher bit rates leads to analogous results. A
sampling frequency of 64 samples/degree was assumed in the

computations, so the viewing distance should be adjusted so
that the angular extent of the (256×256) images is 4 degrees.

The JPEG results (Figs. 8b and 9b) exhibit over-smoothed
areas because the width of the bit allocation function (the
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Fig. 6. Example of the evolution ofλmax , the reconstructed image and the
PSNR in progressive coding.
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Fig. 7. Rate-distortion performance of the algorithms over 5 standard images
(Barbara, Boats, Lena, Einstein and Peppers). JPEG [22] MPE quantizer with
fixed diagonal metric (stars, dotted line), MPE quantizer using a point-wise
non-linearity, i.e. adaptive diagonal metric [33–35] (diamonds, dash-dot line),
MPE quantizer using a fixed non-diagonal metric [17] (squares, dashed line),
the proposed approach: MPE quantizer in a normalized domain, i.e. adaptive
non-diagonal metric (circles, solid line).

CSF) is too narrow. Therefore, high frequency textures are lost
in the decoded images. As reported in the literature [32–34]
the use of a point-wise non-linearity certainly preserves more
high frequency details giving a better performance than JPEG
at bit rates higher than 0.4 bits/pix (see the rate-distortion
curves in Fig. 7). However, for very low bit rates the blocking
effect is noticeably increased (Figs. 8c and 9c). The use of
a simultaneously decorrelated linear domain (fixed but non-
diagonal perceptual metric) improves the results but still adds
high-frequency noise that is especially visible in the smooth
regions (Figs. 8d and 9d). This effect comes from the PCA part
of the linear decorrelating transform. The uniform quantization
in the proposed normalized domain (Figs. 8e and 9e, and solid
line in Fig. 7) gives rise to the best subjective results at every
compression ratio in the analyzed range.

On the other hand, the intrinsic statistical power of the
normalized representation is confirmed by the quality of the
numerical (PSNR) results, as illustrated in Fig. 7. Note that
the proposed representation increases the compression ratio by
a factor of three or more with regard to the JPEG standard at
the same PSNR level.

VI. CONCLUSIONS

We have proposed the direct use of divisive normalization
in transform coding. This nonlinear augmentation of a tradi-
tional linear transform leads to a substantial reduction in the
both the perceptual and statistical dependencies between the
coefficients of the representation. The combination of these
two improvements implies that subsequent scalar processing
and encoding of the coefficients can be nearly optimal in terms
of both bitrate and perceptual distortion

We have studied the analytic invertibility of the divisive
normalization representation, and proposed an efficient al-
gorithm based on series expansion. When using a moderate
size block-transform the analytical inversion is computation-
ally affordable, but when using a wavelet basis, the series

expansion inversion is the better choice. We also derived the
general condition for the normalization to be invertible and
showed that the proposed psychophysically-derived normal-
ization is invertible. The empirical results on a large natural
image collection suggest that quantization does not generally
interfere with invertibility. However, it is still possible that
inversion could fail on some particular images at some levels
of quantization. In these cases the invertibility condition is a
practical tool to detect this problem and solve it by slightly
adjusting the bit rate.

Finally, image coding results suggest that a straightforward
uniform quantization of the normalized coefficients using the
psychophysically-inspired parameters is a simple and promis-
ing alternative to the current transform coding techniques that
use perceptual information in the image representation and
quantizer design. These results show that removing or reducing
the (statistical and perceptual) dependence in linear transforms
makes a big difference in the quality (or bit rate) of the
reconstructed images.

The ability of the proposed representation to reduce the
statistical dependence among the coefficients may alleviate
the need for more sophisticated methods to extract any
residual statistical relationships amongst the linear transform
coefficients. Nevertheless, the results reported here could be
improved by trying to exploit the statistical relations that may
remain in the non-linear representation. However, it has to
be stressed that the current techniques that exploit the redun-
dancies in transform domains [8–10] should be substantially
changed as the statistical nature of the signal in the non-linear
representation is different [39].

Future work should consider alternative methods of estimat-
ing the parameters of the normalization (e.g., the statistical
approach in [38]) which may improve the statistical benefits
of the representation while retaining its perceptual properties.
This effort is related to the development of more accurate
statistical models for natural images. Finally, the properties of
the proposed normalized representation may be useful in other
image processing problems (e.g. denoising or texture analysis
and synthesis) where both the perceptual and statistical prop-
erties of the coefficients are of fundamental importance.
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a)

b) c)

d) e)

Fig. 8. Coding results (0.18 bits/pix). a) Original. b) JPEG [22] MPE quantizer with fixed diagonal metric (PSNR=23.7). c) MPE quantizer using a point-
wise non-linearity (adaptive diagonal metric) [33–35] (PSNR=23.0). d) MPE quantizer using a fixed non-diagonal metric [17] (PSNR=24.3). e) The proposed
approach: MPE quantizer in a normalized domain (adaptive non-diagonal metric) PSNR=26.5.
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a)

b) c)

d) e)

Fig. 9. Coding results (0.18 bits/pix). a) Original. b) JPEG [22] MPE quantizer with fixed diagonal metric (PSNR=24.3). c) MPE quantizer using a point-
wise non-linearity (adaptive diagonal metric) [33–35] (PSNR=23.7). d) MPE quantizer using a fixed non-diagonal metric [17] (PSNR=25.7). e) The proposed
approach: MPE quantizer in a normalized domain (adaptive non-diagonal metric), PSNR=26.1.
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1999 she joined the Computer Science Department,
Universitat de Valencia. In October 2000, she joined
the Department of Mathematics, Universitat Jaume
I, Castello, Spain, where she is an Assistant Profes-
sor. Currently her research interests are focused on
texture analysis and image compression.

Rafael Navarro received the MS and PhD de-
grees in Physics from the University of Zaragoza,
Spain in 1979 and 1984, respectively. From 1985
to 1986 he was an optical and image processing
engineer at the Instituto de Astrofı́sica de Canarias.
In 1987 he joined the Instituto déOptica ”Daza
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