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Non-Linear Image Representation for Efficient
Perceptual Coding

J. Malo, I. Epifanio, R. Navarro, E.P. Simoncelli

Abstract—Image compression systems commonly operate by visual system. The transformation is formed as a cascade of
transforming the input signal into a new representation whose g linear transform and a divisive normalization procedure,
elements are independently quantized. The success of such 31 which each transform coefficient is divided by a signal

system depends on two properties of the representation. First, the ted f th itud f fficient f simil
coding rate is minimized only if the elements of the representa- compu e ) _rom _e mggnl udes or coemicients or simi ar_
tion are statistically independent. Second, the perceived coding SPatial position, orientation and frequency. We argue that this

distortion is minimized only if the errors in a reconstructed representation provides an effective representation for simul-
image arising from quantization of the different elements of the taneous optimization of both rate and perceptual distortion
representation areperceptuallyindependent. We argue that linear in compression of visual images. We begin by reviewing the

transforms cannot achieve either of these goals, and Propose .. bout i tatisti d tion leading to th
instead an adaptive non-linear image representation in which !'€raturé about image statistics and perception leading 1o the
each coefficient of a linear transform is divided by a weighted idea of divisive normalization (section Il). Section Il provides

sum of coefficient amplitudes in a generalized neighborhood. We a technical definition of the normalization, explains a particular
then show that the divisive operation greatly reduces both the way to obtain its parameters and illustrates its statistical and
statistical and the perceptual redundancy amongst representation perceptual benefits for image Cod?ngW section IV we discuss

elements. We develop an efficient method of inverting this : detail th bl fi i divisi lizati
transformation, and we demonstrate through simulations that in aetal _e P“? eém o |nv_er|ng a 'V'_S'VG norma_lza Ion
the dual reduction in dependency can greatly improve the visual transformation: first we describe a numerical alternative to the

quality of compressed images. analytical inversion, then we derive the general condition for
Index Terms— Transform Coding. JPEG. Independent Compo- .the n'or.malization to .be invertible, and fina!ly We check j[he
nents. Statistical Independence. Perceptual Independence. Scalarinvertibility of the particular proposed normalization according
Quantization. Non-linear Response. Perceptual Metric. to this general condition when the coefficients are quantized.
In section V we show through simulations that the quality of
images reconstructed from the quantized normalization repre-
. INTRODUCTION . L .
sentation can significantly exceed that of images reconstructed
FFICIENT encoding of signals relies on an understandirfgom the quantized linear representation.
of two fundamental quantities, commonly knownrage
and_distor'_cion_The rate expresses the cost of the encoding ll. BACKGROUND: STATISTICAL AND PERCEPTUAL
(typically in bits) and the distortion expresses how closely DEPENDENCE
the decoded signal approximates the original. A large body of
literature has shown that the problem can be made much mordraditional transform coding solutions emphasize rate op-
tractable by transforming the image from an array of pixef§nization, by attempting to represent the image in a domain
into a new representation in which rate or distortion are moyéhere the statistical dependence between coefficients is elim-
easily quantified and controlled. Such transforms are typicalfjated. Under this condition, each coefficient may be encoded
linear and in recent years are almost always based on badfependently. More specifically, statistical independence of

functions that provide a local representation of orientation afi#e coefficients justifies the use of scalar quantization and
spatial frequency. zero-order entropy coding [2, 3]. The classical solution to the

In this paper, we examine a non-linear transformatioRroblem of transform design is derived by considering only

motivated by both the statistical properties of typ|ca| phdhe second-order statistics of the input Signal. In this case,

tographic images and the known properties of the humi linear transformation that minimizes the correlation of the
coefficients may be computed using Principal Components
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unique linear solution [4]. The basis functions obtained whemavelet image representations such as in JPEG2000 [24]. Note
these methods are applied to images are spatially localizétht in all these situations, the perceptual factors are taken into
and selective for orientation and spatial frequency (scale) ficcount only after the selection of the representation (e.g., in
6], and are thus similar to basis functions of multi-scalthe quantizer).
wavelet representations. It is well known that the perception of errors in coefficients
Despite its name, ICA doemtactually produce statistically of local frequency or wavelet representations is not indepen-
independent coefficients when applied to photographic imagdent, a phenomenon known in the perceptual literature as
Intuitively, independence would seem unlikely, since imagesasking[25]. Specifically, the presence of large coefficients
are not formed from linear superpositions of independeoan reduce the visibility of errors in coefficients that are
patterns: the typical combination rule for the elements of arearby in position, orientation and scale. The linear coeffi-
image isocclusion This suggests that achieving independenagents may be modified so as to more accurately represent
requires the introduction of non-linearities in the transfornperceptual distances mprmalizing(dividing) each coefficient
Empirically, the coefficients of orthonormal wavelet decompdsy a gain signal obtained from a combination of adjacent
sitions of visual images are found to be fairly well decorrelatarbefficients [11, 17, 18, 25, 26]. This is consistent with recent
(i.e., their covariance is almost zero). But the amplitudemodels of neurons in visual cortex, in which primarily linear
of coefficients at nearby spatial positions, orientations, améural responses are modulated by a gain signal computed
scales are highly correlated [7]. These relationships hafrem a combination of other neural responses [27-29].
been exploited, both implicitly [8,9] and explicitly [10] in One can see from this brief description that there has been
compression systems. a remarkable parallel development of transformations that re-
The dependencies between responses of linear filters nafce either statistical or perceptual redundancy, beginning with
be substantially reduced by a non-linear operation known glebal frequency-based representations, to local frequency
divisive normalizationin which each coefficient is divided by or wavelet-based representations, to most recent solution of
a Minkowski combination of neighboring coefficient ampli-divisively normalized representations. Perhaps this is not so
tudes [7, 10, 11]. This empirical observation is consistent wiurprising given that the human visual system is hypothesized
a hidden Markov model in which the amplitude of groups ab have been shaped, through processes of evolution and de-
coefficients is modulated by a hidden scaling variable [12—-1&klopment, by the statistical properties of the visual world (for
The second fundamental ingredient of the transform codingview, see [30]). Although both the statistical and perceptual
problem is distortion. When coding visual images, distortionbservations that lead to normalized representations have been
should be measured perceptually. Ideally, we would like ®xploited in image coding, they have been used indirectly [10,
be able to express the overall perceived image distortia@]. The fact that normalized representations appear to be the
as an additive combination of the distortions arising frorourrent best choice for reduction of both statistical and per-
each of the transformed elements, as assumed in the standamtual dependencies suggest that one should explicitly encode
theory [2,3]. This requirement implies that the transformetthe normalized local frequency coefficients. In the following
elements should be perceptually independent: the visibility séctions, we propose an invertible psychophysically-inspired
the distortion in the image introduced by altering one elemedivisive normalization scheme, whose elements are (pairwise)
should not depend on the values of the other elements. Thpisrceptually independent with low statistical dependence. In
we should seek a transformation that eliminates percepteatier to do this, we need to develop an invertible normalization
redundancies [11, 17]. transformation, and must ensure that this inversion process
The most standard measure of distortion is mean squarady be used to obtain the decoded image from a set of
error (MSE), computed by averaging the squared intensiyiantized coefficients.
differences of distorted and reference image pixels, along
with the related quantity of peak signal-to-noise ratio (PSNR). l1l. THE DIVISIVE NORMALIZATION MODEL
These are appealing because they are simple to calculate, have ] o o
clear physical meanings, and are mathematically convenient in/Vé define a general divisive normalization as a cascade of
the context of optimization. But it is well-known that they ddWe transformation stages:
not provide a good description of perceived distortion [18— T R
21]. In particular, the visibility of error in one pixel clearly {ai} = Ae} = {ni}, (1)
depends on the values of surrounding pixels. where the image pixels{a;}, are first analyzed using a
A simple and widely used improvement comes from incofinear transformT’, followed by a non-linear transformg,
porating the known sensitivity of human vision to differengf the linear coefficients [25-29]. The linear transform should
spatial frequencies. Specifically, within the Fourier domaime a local-frequency representation as is commonly used in
distortion is measured by summing the squared errors tiansform coding (e.g., block-DCT or a wavelet filterbank).
each frequency, weighting each term by the sensitivity to ifthe divisive normalization stage describes the gain control
corresponding frequency. The most widely known image amgechanisms normalizing the energy of each linear coefficient
video coding standards (JPEG and MPEG) use a block-D®Y a linear combination of its neighbors in space, orientation
decomposition to decorrelate the coefficients, and a frequengyd scale:
dependent quantizer based on the human Contrast Sensitiv- R sgn(c;) |eil? )
ity Function (CSF) [22,23]. Similar methods are applied to B+ > hijlei|r
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Each coefficient; is first rectified and exponentiated. Eaclshape of the interaction function, we follow [25] and assume
of the resulting values are then divided by a weighted suthat each row of the matrik has a two-dimensional circular
of the others, wheré;; is the set of weights that specify theGaussian form in the Fourier domain. Specifically, we set the
interactions between all the coefficients of the vectoand kernelsh;; as,

coefficiente;. The sign (or phase, in the case of a complex-

_ Y P 2
valued transform) of each normalized coefficient, is inherited hij = exp(=|fi = f;I"/o%,), ©)
from the sign of the corresponding linear coefficiesa(c;). o = é|fi| +0.05, (4)
A. Model parameters where f; and f; are two-dimensional frequency vectors (with

. . components in cycles per degree) of tith and jth basis
For this paper, we use B x 16-point block DCT for the funcgons respect)i/vely P gree) J

transformation?’, in order to fgcilitate comparisons with the For other bases of interest such as wavelets, the perceptual
‘]PI.EG standard and related literature [17, 22,23, 31-35]. Ttl{'(?rmalization model can be extended by introducing spatial
main results are general, and would apply to wavelet-styﬁl

filterbank ot Il wh th likelv 1o Vi l eractions in the Gaussian kernels. Previous work indicates
terbank representations as wetl, where they are ikely 1o Yi€ifiat the spatial extent of the interactions should be about twice
better compression resufts

the size of the impulse response of the CSF [25, 44]. See [36,

There are t_hree basic sources from WhiCh one can Obt%@] for examples of this kind of kernels in wavelets and ICA.
the normalization parameters: psychophysics [25, 26, 37], elec-

trophysiology [29] and image statistics [10, 38,39]. In the

psychophysically-inspired divisive normalization proposed iB. Perceptual and statistical independence

this paper, the parameters are chosen by fitting data fromp this section we describe the perceptual and statistical

human vision experiments, using a method similar to thgbpendence problems of linear local frequency representations
of [25,37]. As in [25], we augment the standard DCT with agnd demonstrate that normalization reduces these problems.
additional scalar weighting parameter, accounting for the First, consider the perceptual dependence. As stated in sec-
global sensitivity to the frequency range represented by eagdh |1, the coefficients of a representation are perceptually

basis function (the CSF [40]). Thus, the transform coefficientgdependent if the visibility of the distortion introduced by al-

c;, are given by: tering one coefficient doesn’t depend on the values of the other
N2 coefficients. A quantitative measure of this can be defined
ci = ay - ZTZ‘J' aj, using theperceptual metric matrixof the representation [17].
= Specifically, we write a second-order approximation of the

erceptual difference between an imagg, and a distorted

where T;; are the basis functions of the linear transforr&arsion'a0 1 Ag as:

that analyzes the image;. The amplitudes of the DCT are

expressed as contrast values, by dividing the coefficients by d(ag, ag + Aa)? = Aa” - W, (ag) - Aa =
the local luminance. Similar contrast measures have been 2

. . . > Walao)iuAa; + 2 Walao)iiAa;Aa;. 5
proposed in the literature in the context of pyramidal decom- ZZ: (ao) ; (a0)sg / ®)

positions [41,42].
The parameters of the normalization are determined Mye refer toW,(ao) as the perceptual metric matrix in the
fitting the slopes of the normalization function in Eq. (2pPatial domain at the point (imagey. In general, the diagonal
to the inverses of the psychophysically measured contr&gments of such a perceptual metric matrix represent the
incremental thresholds for gratings [25,37]. The values #fdependent contribution of the deviations in each element to
o, 3 and h that fit the experimental responses of isolatefie perceptual distortion, whereas the off-diagonal elements
sinusoidal gratings [43] are shown in Fig. 1. In the same wagpresent the distortion resulting from perceptual interactions
the exponent was found to be= 0.98. between elements. As such, perceptual independence of a
Given an imagegq, of size N x N, if T corresponds to representation is equivalent to diagonality of the perceptual
a non-redundant basis, the size of the vectgrs, o, 3 is Mmetric of that representation.
N2. The size of the matrixh;, is N2 x N2. For redundant The perceptual metric for any representation can be com-
bases the dimensions will be bigger. Considering these sizegted from that of another representation by transforming
an arbitrary interaction pattern in the matfixwould imply an according to the rules of Riemannian geometry [45]. If we
explicit (expensive) computation of the produdt, h,;|c;[”. ~assume that the normalized domain is perceptually inde-
As shown in Fig. 1, the nature of the interactions between thendent (i.e., the matrix is diagonal), as is common for
coefficients islocal [25, 44], which means that need only Psychophysically-defined normalization models [25,37] and
describe relationships between coefficients of similar spatR§ suggested by the success of a number of recent image
frequency and orientation. This fact induces a sparse structgdigtortion measures [18, 19, 44, 46, 47], then the metric matrix
in . and allows a very efficient computation Bt hi;|c;|" as for any linear representatiorannotbe diagonal. To see this,

a convolution. Since our experimental data don’t constrain thete that in any linear representatior, defined byc’ =
T'~1!.c, the perceptual metric at the poin, is given by [17],

2preliminary comparisons of the proposed method with JPEG2000 show , T T ,
that this is the case [36]. Wer(eg) =T" - VR(co)" -D-VR(co) T, (6)



4 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. Y, MONTH Z 2004

0.04

0.015
0.01
B
0.005
% 10 20 30 % 10 20 30
i (frequency in cpd) i (frequency in cpd)
1F
0.9
0.8r
h. 06f 1 r 06
ij i
0.4f
0.3
0.2
0 L
0 30 % 4 05

10 20 0.1 0.2 03 0.
i (frequency in cpd) |c.| (amplitude, in contrast)
Fig. 1. Parameters, 8 and three interaction kernels (rows bf that fit the contrast incremental threshold data for the DCT case. The different line styles
represent different frequencies: 4 cpd (solid), 8 cpd (dashed) and 16 cpd (dash-dot). The bottom right figure shows some examples of the normalized response
as a function of coefficient amplitude, on a zero background. Note that the parameters are slightly different from those reported in [1] because we are using
here a local DCT instead of a local Fourier transform and a slightly different model. However, the final behavior (bottom right panel) is the same.

wherecy = T - ¢, D is the diagonal metric in the normalizedstrong correlations [7,10,11]. Thus, we can use a simple

domain, and the Jacobian of the transformation is (second order) analysis of the amplitudes of the coefficients
AR(c); as an indicator of independence (or lack of independence) in
VR(c)ij = e a broader sense than second-order decorrelation.
]|c'|7*15~ il |es [~ Fir;t in Fig. 2 we analy;e the cross-correlation between the
Sgn(CiW( i g il 1 ij 2) (7) amplitudes of the coefficients of the local DCT transform.
Pi + Zj hijles[ (Bi + Zj hijle;[7) As local-DCT spectrum of natural images is not stationary,

Assuming the Jacobian is non-diagonal because of the maskidliréct comparison between coefficients at very different

interactions k;; # 0), and input dependent, no linear repref_requencies is biased. Natural images exhi%itamplitude

sentation¢/, can achieve the desired perceptual independengB&Ctrum, then, the comparison of a high frequency coef-

As described in section II, despite the (second-order) decffient with a low frequency coefficient is biased by the
relation power of linear local frequency transforms, theffidh amplitude of the latter. Therefore, instead of a direct
coefficients still exhibit intriguing statistical relationships. Acomparison, we first divide each coefficient by the average
reason for this is that, in general, natural images do not cof@@Pplitude of that frequency (gathered across all DCT blocks).
from a linear combination of signals drawn from independem that way, a unit mean process is obtained and a fair

sources (the central assumption in ICA theory). This meafR@MPutation of the cross-correlation can be done. Figure 2

that although the linear representations used in transfopCWs cross-correlation contours for amplitudes of nine par-

coding (the analogue to transforin the model of Eq. (1)) tlcu_lar coefficients o_f increasi_ng f_requency in the verticgl,
constitute an appropriate step in the right direction, additionprizontal and the diagonal directions. For each of the nine
processing is needed to remove (or reduce) the higher-orﬁgpse” coefficients, thg cross-correlatlon_fgnctmn is maximal
relations. at the frequency coordinates of that coefficient, and decreases
As a quantitative measure of the higher-order statisticglonotonically as one moves away from those coordinates.
dependencies, we first use both the cross-correlation and '{ﬁ‘g_s observation is conS|st§nt with those reported in other local
covariance between thamplitudes(absolute values) of the equency transform domains [1,7,10, 14, 38].
coefficients of the local-DCT representation of a set of images.This means that even though local-frequency transforms
Second order relationships between the amplitudes (or analo- remove second order relations, the absolute value of the
gously the energies) correspond to higher-order relationshigmefficients is still highly correlated with its neighbors, with an
between the original coefficients. And even in the case biteraction neighborhood that increases in size with frequency.
a local frequency transform that is designed to remove thdis suggests that dividing the energy of each coefficient by
second order correlations in the original signal (e.g. locadn estimate from its neighborhood (Eq. (2)) may reduce the
PCA and its fixed basis approximation, the local-DCT [Zglations between the samples of the result. Note that the
48]), the coefficient amplitudes (or energies) may still exhibfisychophysically-inspired neighborhood (bottom-left subplot
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- : , TABLE |
in Flg 1, o.r Eqs (3) an.d (4)) .also Increas.es Wlth frequen%ATlSTlCAL AND PERCEPTUAL INTERACTION MEASURES FOR DIFFERENT
as the statistical interaction neighborhood in Fig. 2.

. . . REPRESENTATIONS
In order to quantify the problems of linear representations

and the potential advantages of the proposed normalized repre- | pixels | local-DCT | local-PCA | normalized-DCT |
sentation, we compared four representations (raw pixels, local 5, [ 158.3 7.2 0.0 0.8
DCT, local PCA, and the proposed normalized DCT) using _"sl 1457863 211;18 ig-i é-g
four different measures of dependency (standard covariance, —; 069 028 029 0.06

amplitude covariance, mutual information, and perceptual cor-
relation). The results are given in table I. These measures were
estimated from a training set consisting of 57344 blocks of
size 16 x 16 taken from the Van Hateren database of cali- Because the estimation of information requires substantially
brated natural images [49]. Each of the correlation measuresre data than estimation of correlations, we restrict our
(whether statistical or perceptual) are computed for all paifglative mutual information calculation to a set of five coeffi-
of coefficients, thus forming a generic dependency matfvix, cient amplitudes in each of the representations. In the spatial
(covariance, amplitude covariance and perceptual metric). Temain we considered the central coefficient and four neigh-
scalar measures shown in table | are computed by compartrgys around it (two horizontal and two vertical). In the PCA
the magnitude of the off-diagonal elements with the magnitug@main we took the first five coefficients after the first one

of the diagonal elements [2], (which approximately accounts for the average luminance).
S| M| In the DCT and the DCT-normalized domains we considered
) it Y (8) the five AC coefficients of lower frequency. Histograms of

2 [ M| 10 bins per dimension in the rand@ max(|c;|)] were used

The results in table | are consistent with our hypothesis estimate the PDFs of the coefficient amplitudes. The
regarding normalization. The first row of the table shows thesults shown in table | are consistent with the reductions of
interaction measure on the standard covariamgeFor this the mutual information using divisive normalization reported
measure, the local-PCA representation, which is chosend@ewhere [10,39,51] and confirm the statistical benefits of
diagonalize the covariance matrix, achieves the best resulie proposed representation.

The local-DCT is known to provide a good fixed-basis ap- Finally, the last row table | shows a perceptual interaction
proximation of local-PCA [2,48], and performs quite well inmeasure,n,, computed from the perceptual metric matrix

comparison to the pixel basis. Surprisingly, the normalizegkrived using Eq. (6) and assuming that the normalized domain
representation is seen to be better than the local-DCT basis. perceptually independent. Surprisingly, the local-PCA rep-

The second row of table I shows,, the interaction resentation performs significantly worse than the local-DCT,
measure for higher-order statistics, as represented by covaiien though it is optimized for second-order statistical inde-
ance of coefficient amplitudes. This measure clearly indicatggndence. The results provide a quantitative measure of the
that the linear transforms do not succeed in removing theggim made earlier in this section, that linear representations
interactions, and thus do not lead to statistical independengfyst necessarily have sub-optimal perceptual behavior.

On the other hand, we see that the normalization representatiopyyerall, we conclude that the superior statistical and per-
greatly reduces these higher-order interactions. ceptual properties of the divisive normalization representation,

The third row of table | provides a mutual informationys compared with common linear representations, provide a
measure of the statistical independence of the coefficigpstification for its use in transform coding.

amplitudes. The mutual information of a set of variables,

c1,,Cn, IS defined as the Kullback-Leibler distance between
their joint PDF and the product of their marginals, and it can  !V- INVERTING THE DIVISIVE NORMALIZATION
be computed from the marginal entropig$(c;), and joint TRANSFORM
entropy, H(c1, - -, ¢,), of the variables [50]: In order to use a normalized representation directly in a
n transform coding application, we need to be able to invert the
I(er, - cn) =Y H(c;) = Hcr, -+ ). (9) transformation. in this section, we study taealyticinversion
i=1 problem and develop an efficient algorithm basedsenies
I(c1,---,cy) can be interpreted as the average number of begpansion A more general numerical inversion method (the

that are lost when encoding the variables assuming they differential methodl was originally proposed in [11], and the
independent. As the entropy of the coefficientc;), may advantages of this method were analyzed in [52]. However,
be quite different in each domain, we compute the relatithe series expansion method proposed here is roughly three
mutual information, i.e., theroportion of bitsthat are lost orders of magnitude faster than the differential method, and
when using a coder that assumes independence: thus represents a better choice in practice. We also derive a
general condition for the normalization to be invertible and
— (10) verify that the psychophysically-derived normalization scheme
7 2im1 H(ci) used in this paper fulfills this condition.
Note that/, = 1 when thec; are fully redundant (e.g., LetD, andDg be diagonal matrices with the absolute value
identical) andl,, = 0 when they are independent. of the elements of andg in the diagonal, then from Eq. (2)

#I(Clw",cn)
Ir(cla o '7Cn) = (n—1)
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Fig. 2. Contour plots of the cross correlation of nine different local-DCT coefficient amplitudes with those at other frequencies and orientations. The nine
representative coefficients were selected at three different frequencies (columns) and three orientations (rows). These interactions were measured in 5734«
blocks of sizel6 x 16 taken from the Van Hateren database of calibrated natural images [49].

it follows: the inverse matrix in Eq. (11):

e=sgn(r) (I-D,-m)~"-Dys- ). @D (- D, 1) =3 (D, - ).
=0

where, as in Eq. (2), the sign functiogn(-), the absolute In that e the | ind
value| - |, and the exponent/~ are applied in a element-by- n tha way we can compute Ine inverse up toa Ce”a'ﬂ egree
of approximation,n, taking a finite number of steps in the

element basis. ceries:
However, this analytic solution is not practical due to the 1€s:

computational cost of computing the inverse— D, - h) L. e (1y=Dg - |r| + (Dy - h) - Dg - |r|

While computing the normalization transformation is efficient 4 9

because the interactions between the coefficientsaé local € @=Ds |1l + (Dr-h) - D - [r[ + (Dy - h)- D - |7
(h is sparse), the inverse transformation suffers from globbd|”(3):Dg |r| + (Dy-h)-Dg-|r| + (D, -h)? - Dg - |r| +

interactions between the coefficientsrofi.e., the matrix(7 — (D, - h)®- Dy -
D, - h)~! is dense). Thus, direct calculation of Eq. (11) is
costly even for moderate-sized images.

A naive implementation would imply computing powers of
D, - h which is also a problem. However, it is possible to
write the series approximation in a recursive fashion that only
The particular form of the normalization model and thé#volves vector additions and matrix-on-vector multiplications:
corresponding inverse allows us to propose an alternative
solution that doesn’t involve matrix inversion or computation
with dense matrices. The idea is using a series expansion of |c|7(n)

A. Series expansion inversion

‘CP(O) = Dg-|r|
Dg - |r|

T + Dr * h * |C|’Y(’n71)7 (12)



MALO et al. NON-LINEAR IMAGE REPRESENTATION FOR EFFICIENT PERCEPTUAL CODING 7

Note that the matrices in Eq. (12) are sparse and thus the setiesconvergence is faster for a smalkgr,... Consider that the
may be computed efficiently. error vector at the step of the approximation,

o ~ em) = le|” = lel ()
B. General invertibility condition

. . . is_just the last part of the series, and using the eigenvalue
Despite the differences between the proposed 'nvers'agcomposition ofD. - h. we have:
T L] .

procedures (analytic and series expansion), the same condition
has to hold to ensure the existence of the solution. This K B (ntht1) B
condition also applies for the previously reported differenti&l™) = Z (Dr-h)* - Dg -1 = Z(D’“ h) Dg-r=
method (see [52] for details). ’“:”“OO k=0
Let V and A be the eigenvector and eigenvalue matrix |, (Z /\(n+k+1)> VT .Ds .
k=0

oo

decomposition ofD,. - h:

Dy -h=V XV Then, taking the - |, norm as a measure of the error, we

As we show below, the invertibility condition turns out to bebave that the error at each step is:

Amaz = maz();) < 1. (13) €m) = lewmloe = maz(em)i) o
[e.e]
Amaz
n+k n max
In the analytic case the matrikl — D, - h) has to be > Amar "D = A7 (1 Y ) (14)
invertible, i.e.det(I—D,-h) # 0. However if some eigenvalue, k=0 e

i, is equal to one, thedet(\;I — D, - h) = 0. In theory, it Figure 4 confirms this convergence rule: it shows the
would be enough to ensure that # 1, but in practice, as the evolution of the error measure as a function of the number
spectrum ofD,. - h is almost continuous (see the examples iaf terms in the series for three images (blocks) with different
section IV-C), the matrix is likely to be ill-conditioned if the \,,,... From Eq. (14) it follows that for a big enough number
condition (13) doesn't hold. of terms it holdslog(e(,,)) o< log(Amaz) - 7, @s shown in the

In the series expansion method, the convergence of the igure. The experiment in Fig. 4 shows the result of local-
ries has to be guaranteed. Using the eigenvalue decomposifif®iT blocks, but the same behavior is obtained in the wavelet

of D, - h in the expansion, we find: case [36].
oo oo
Z(DT =V <Z )\k> VT, V. IMAGE CODING APPLICATION
k=0 k=0 Given the inversion results of the previous section, we can

which clearly converges only if the maximum eigenvalue 80w consider the development of an image compression proce-
smaller than one. dure based on a divisive normalization representation. Specif-
ically, we propose to encode images using scalar quantization
and entropy coding of a set of normalized local-frequency
coefficients. The decoding procedure is then the natural one:
We have empirically checked the invertibility of the norfirst recover the quantized coefficients from the entropy-coded
malization that uses psychophysically-inspired parameters ffstream, then invert the normalization procedure, and finally
the local-DCT by computing the maximum eigenvalue gfyert the linear transform. In order to do this, we must first
D, - h over 25600 blocks randomly taken from the Vagjescribe the quantizer design, and then verify the robustness

Hateren natural image data set [49]. Figure 3a shows tethe invertibility condition in the presence of quantization
average eigenvalues spectrum and Fig. 3b the PDF of &@ors and progressive coding.

maximum eigenvalue. In this experiment on a large natural

data base the maximum eigenvalues are always far enough 10°
from 1. These results suggest that the normalization with v
these parameters will be invertible (see section IV-D), and it -
will remain invertible even if the responsesundergo small \
distortions such as quantization (see section V-B). 10

C. Invertibility of psychophysically-inspired normalization

D. Convergence rates

In this section we analyze the convergence of the proposed
inversion procedure. In the experiments shown here, we used
the psychophysically-inspired parameters of section Il and
the local-DCT. Of course, such a simple (small size) trans-
form O,'OGS, not rea,”y require iterative techniques because ‘HS 4. Error of the series expansionn method as a function of the number
analytical inverse is generally affordable. of terms in the series. The different lines represent the error obtained when

It is possible to derive an analytic description for théverting different images with different values afyq..
convergence of the series expansion method. It turns out that

25 50 75 100 125 150 175 200
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Fig. 3. Behavior ofD,. - h for a set of 25600 blocks taken from the Van Hateren data base [49]. (a) Average eigenvalues spectrum. Dashed lines represent
the standard deviation. (b) PDF af,ax

A. Quantizer design linear normalized representation and inverting it after the

The nature of the quantization noise depends on the quan- guantization. This means assuming an input-dependent
tizer design. The quantizers based on the minimization of @nd non-diagonal perceptual metric in the linear domain.
the MSE end with non-uniform quantization solutions based
on the marginal PDFs [3,53] or some modification of them. Robustness of the invertibility under quantization
::cludmg the perceptual me'_m_c [17'33_35]' However, it has Figure 5 shows the effect of the quantization step (number

een suggested that constrammg Fh‘? l_\/lax_lmum Perceptual 5’bits per coefficient) on\,,... These results capture the
ror (MPE) may be better than minimizing its average [33-3 v

. . . . 2 olution of the maximum eigenvalue of 100 256866 images
54]. This is because the |mp.ortant |ssu.e_|s.n.ot minimizing t 85600 blocks) from the Van Hateren data base [49] when
average error across the regions but minimizing the annoya %(?npressing them in the rangie02, 1.2] bits/pixel. For higher
in every quantized region. ’

- . . . bit rates (over 1.5 bits/pix) the maximum eigenvalue remains
Constraining the MPE is equivalent to a uniform quan: ( Pix) 9

T . : stable and equal to its value in the original signal. For lower
tization in a perceptually uniform domain. Therefore, on q g J

it rates (as shown in the figur oscillates, but (for
in the perceptually Euclidean domain the quantizer design 1S ( QU ’ (

i . - ) - 2" 'eVery block of these 100 representative images) always lies in
extremely simpleuniform scalar quantization anghiform bit Y b ges) Y

; . ) . the region that allows invertibility. At extremely low bit rates
allocation. Of course, the expression of this quantizer turns ?l\.lt g9 y y

. . . . maz t€NAS to zero because the quantization step is so coarse
Lor sz\?é)lz;lsj)mform in the linear transform domain (local-DC hat most of the coefficients in the quantized vectare set

: L 0 zero, inducing a reduction in the eigenvaluedXgf h. This
Iov-\ll—gg tﬂfe,\;liné ? dgztﬁiegzthzegagfi%%(]:?:s{ht:ztcl;muF;gltlszfjﬁesun suggests that the proposed normalized representation is
o, y iﬁ ertible regardless of the bit rate. Thus, the coarseness of

. e Vi
perc_eptlon modgl which is used_ to propose th_e perceptuath/e guantization may be freely chosen to satisfy a distortion
Euclidean domain before the uniform quantization: requirement

« JPEG [22] (and MPEG [23]) assume the linear CSF 5,6 \ve have shown that the quantization does not critically
model [40]. This implies a fixed diagonal metric matrix

in the DCT domain. This equivalence has been shown

in [33-35]. 1
o The algorithms of Daly [31], Watson [32] or Malo et
al. [33-35], assume a point-wise non-linear model [37, 0.8t
55]. This implies an input-dependent diagonal metric in
the DCT domain. 06
« The algorithm of Epifanio et al. [17] uses the current g
non-linear model [25, 29, 38], i.e. it uses a non-diagonal = 04
metric. However, they use an average (input-independent)
metric in the linear domain in order to avoid the inversion
problem and to allow a linear simultaneous diagonaliza- 02
tion of I' andW. It has to be stressed that this algorithm
explicitly takes into account the image statistics using a % 02 04 08 08 1 12
local-PCA instead of a local-DCT. Entropy (Bits/coeff)

« The proposed ap_pmaCh uses the . Curre_nt non'lm%. 5. Effect of quantization on,,q;. The thick line represents the average
model [25, 29, 38] in the proper way: i.e. using the Norof A,,.. over the blocks of each image. The thin line shows the behavior of
the maximumM,,q; in each image (worst case blocks).
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affect the invertibility condition, another practical issue isomputations, so the viewing distance should be adjusted so
robustness to progressive transmission, which is a convenithdt the angular extent of the (25856) images is 4 degrees.

feature in any encoding scheme. Progressive coding referfhe JPEG results (Figs. 8b and 9b) exhibit over-smoothed
to the ability to reconstruct different (approximated) versiorsreas because the width of the bit allocation function (the

of a fully decoded image from a subset of the bits of the

compressed image. The proposed representation will be useful 1
for progressive coding if taking a subset of the coefficients of
an encoded image reduces the corresponding..

Figure 6 shows a representative example that |Ilustrate$ 06
the effect of progressive coding oW,.,. Figure 6 shows g
the evolution of the values oh,,,, for the blocks of the g 0.4
image Barbara as different proportions of coefficients are
received by the decoder. In this example the original image

0.8

0.2

PSNR =20.9

was represented in the proposed domain and compressed to
0.58 bits/pix. Then, different reconstructions of the image are °

0.4 0.6 0.8
A ay (256 cOeff.)

obtained when 4, 8, 12, 16 and 32 quantized coefficients (of 1
increasing frequency) per block are received at the decoder.
The values of),,., for the different subsets of coefficients
are compared in each case with the values\gf,, for the
whole set of quantized coefficients. The trend illustrated byg
this example was also found in all the analyzed images. Usmgém
a small subset of coefficients substantially reducgs,. From

this situation (coarse approximation), as more coefficients
are sent to the decoder, the corresponding values,qf, 0

0.8

coeff.)

0.6

PSNR =22.6

progressively increase and tend to the values obtained using

0.4 0.6 0.8
A ay (256 coeff.)

the whole set of coefficients. As the maximum eigenvalues 1
of the incomplete signals are always below the corresponding
values for the complete signal, the approximate image can
always be reconstructed from the incomplete and quanUze&
normalized representation.

(12 co

A

C. Coding results 02
In this section we compare the results of different MPE

PSNR =23.2

transform coding schemes described above: JPEG [22], the °

0.2 0.4 0.6 0.8
A__ (256 coeff.)
max

algorithm of Malo et al. [33-35] (which is similar to the 1
algorithms of Daly [31] and Watson [32]), the algorithm of
Epifanio et al. [17], and the proposed algorithm. 08

Figure 7 shows the average rate-distortion performance
of the algorithms when coding five standard images in theg
range[0.18 — 0.58] bits/pixel (Barbara, Boats, Lena, Einstein S04
and Peppers). The distortion was computed using a standal
objective distortion measure: the Peak-to-peak Signal-to-Noise °2

PSNR =23.7

Ratio (PSNR), defined a$) log, (2552 /02), with o2 the error .
variance. The rate was computed using a standard zero-order °
entropy coding of the quantized coefficients. i

0.2 0.4 0.6 0.8
Ay (256 coeff.)

The subjective performance of the algorithms can be seen
in Figs. 8 and 9. They show some representative examples °#8
of the results: Barbara and Boats at 0.18 bits/pix. Note thag
these bit rates are substantially smaller than the usual bit ratgé
recommended in the JPEG standard (between 0.5 and 18 04
bits/pix for achromatic images). These choices were made to
ensure that the compression artifacts are substantially larger °2
than those introduced by the journal printing process, thus

PSNR = 24.6

allowing the reader to easily compare the visual quality of the K]
algorithms. In the laboratory, we find that visual comparison
of images at higher bit rates leads to analogous results.rg. 6.

0.2 0.4 0.6 0.8
A__ (256 coeff.)
max

Example of the evolution of,,.q., the reconstructed image and the

sampling frequency of 64 samples/degree was assumed inRRBR in progressive coding.
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81f expansion inversion is the better choice. We also derived the

general condition for the normalization to be invertible and
showed that the proposed psychophysically-derived normal-
ization is invertible. The empirical results on a large natural
image collection suggest that quantization does not generally
interfere with invertibility. However, it is still possible that
inversion could fail on some particular images at some levels
| of quantization. In these cases the invertibility condition is a
. * JPEG as in [21] practical tool to detect this problem and solve it by slightly
& Mrethoc in Egl‘ 34 adjusting the bit rate.
230 o ‘ o Proposed method | Finally, image coding results suggest that a straightforward
0.2 03 o (bit%;:)ix) 05 0.6 uniform qua_ntizati_on (_)f the normalized_ coef_ficients using th_e
psychophysically-inspired parameters is a simple and promis-
. o _ ~ing alternative to the current transform coding techniques that
s e B ot mamiar e berceptual information in the image representation and
fixed diagonal metric (stars, dotted line), MPE quantizer using a point-wi§ilantizer design. These results show that removing or reducing
non-linearity, i.e. adaptive diagonal metric [33-35] (diamonds, dash-dot lin¢he (statistical and perceptual) dependence in linear transforms

MPE quantizer using a fixed non-diagonal metric [17] (squares, dashed lin akes a big difference in the quality (OI’ bit rate) of the
the proposed approach: MPE quantizer in a normalized domain, i.e. adaptive

non-diagonal metric (circles, solid line). reconstructed images.
The ability of the proposed representation to reduce the
statistical dependence among the coefficients may alleviate
CSF) is too narrow. Therefore, high frequency textures are Idbe need for more sophisticated methods to extract any
in the decoded images. As reported in the literature [32—-3dsidual statistical relationships amongst the linear transform
the use of a point-wise non-linearity certainly preserves moteefficients. Nevertheless, the results reported here could be
high frequency details giving a better performance than JPE@proved by trying to exploit the statistical relations that may
at bit rates higher than 0.4 bits/pix (see the rate-distortisa@main in the non-linear representation. However, it has to
curves in Fig. 7). However, for very low bit rates the blockindpe stressed that the current techniques that exploit the redun-
effect is noticeably increased (Figs. 8c and 9c). The use ddincies in transform domains [8-10] should be substantially
a simultaneously decorrelated linear domain (fixed but noohanged as the statistical nature of the signal in the non-linear
diagonal perceptual metric) improves the results but still adtgpresentation is different [39].
high-frequency noise that is especially visible in the smooth Future work should consider alternative methods of estimat-
regions (Figs. 8d and 9d). This effect comes from the PCA paing the parameters of the normalization (e.g., the statistical
of the linear decorrelating transform. The uniform quantizaticapproach in [38]) which may improve the statistical benefits
in the proposed normalized domain (Figs. 8e and 9e, and salifdthe representation while retaining its perceptual properties.
line in Fig. 7) gives rise to the best subjective results at evethis effort is related to the development of more accurate
compression ratio in the analyzed range. statistical models for natural images. Finally, the properties of
On the other hand, the intrinsic statistical power of ththe proposed normalized representation may be useful in other
normalized representation is confirmed by the quality of thimage processing problems (e.g. denoising or texture analysis
numerical (PSNR) results, as illustrated in Fig. 7. Note thand synthesis) where both the perceptual and statistical prop-
the proposed representation increases the compression ratietigs of the coefficients are of fundamental importance.
a factor of three or more with regard to the JPEG standard at
the same PSNR level.
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Fig. 8. Coding results (0.18 bhits/pix). a) Original. b) JPEG [22] MPE quantizer with fixed diagonal metric (PSNR=23.7). c) MPE quantizer using a point-
wise non-linearity (adaptive diagonal metric) [33—35] (PSNR=23.0). d) MPE quantizer using a fixed non-diagonal metric [17] (PSNR=24.3). e) The proposed
approach: MPE quantizer in a normalized domain (adaptive non-diagonal metric) PSNR=26.5.
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d) e)

Fig. 9. Caoding results (0.18 bhits/pix). a) Original. b) JPEG [22] MPE quantizer with fixed diagonal metric (PSNR=24.3). c) MPE quantizer using a point-
wise non-linearity (adaptive diagonal metric) [33—35] (PSNR=23.7). d) MPE quantizer using a fixed non-diagonal metric [17] (PSNR=25.7). e) The proposed
approach: MPE quantizer in a normalized domain (adaptive non-diagonal metric), PSNR=26.1.
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