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Abstract

We consider the problem of transforming a signal to a remptasien in which
the components are statistically independent. When theakig generated as a
linear transformation of independent Gaussian or non-8ansources, the solu-
tion may be computed using a linear transformation (PCA @, I@spectively).
Here, we consider a complementary case, in which the soarneri-Gaussian
but elliptically symmetric. Such a source cannot be decaaganto indepen-
dent components using a linear transform, but we show thahgles nonlinear
transformation, which we call radial Gaussianization (Ri&pble to remove all
dependencies. We apply this methodology to natural sigdal®onstrating that
the joint distributions of nearby bandpass filter resporfee®oth sounds and im-
ages, are closer to being elliptically symmetric than Iihetansformed factorial
sources. Consistent with this, we demonstrate that thectieauin dependency
achieved by applying RG to either pairs or blocks of bandfiies responses is
significantly greater than that achieved by PCA or ICA.

1 Introduction

Signals may be manipulated, transmitted or stored miciantly if they are transformed to a rep-
resentation in which there is no statistical redundancween the individual components. In the
context of biological sensory systems, #fgcient coding hypothesis[1, 2] proposes that the princi-
ple of reducing redundancies in natural signals can be asexiain various properties of biological
perceptual systems. Given a source model, the problem afitigian appropriate transformation
to remove statistical dependencies, based on the statidtabserved samples, has been studied for
more than a century. The most well-known example is prinadpmponents analysis (PCA), a lin-
ear transformation derived from the second-order sigask$ics (i.e., the covariance structure), that
can fully eliminate dependencies for Gaussian sourcesr thegast two decades, a more general
method, known as independent component analysis (ICA)bbar developed to handle the case
when the signal is sampled from a linearly transformed fé@tsource. ICA and related methods
have shown success in many applications, especially inidgroptimal representations for natural
signals [3, 4, 5, 6].

Although PCA and ICA bases may be computed for nearly anycggtiney are only guaranteed to
eliminate dependencies when the assumed source modetégicoknd even in cases where these
methodologies seems to produce an interesting solutiengdmponents of the resulting represen-
tation may be far from independent. A case in point is thatadfiral images, for which derived ICA
transformations consist of localized oriented basis fionstthat appear similar to the receptive field
descriptions of neurons in mammalian visual cortex [3, 5, Although dependency between the
responses of such linear basis functions is reduced couhpratieat of the original pixels, this reduc-
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Fig. 1. Venn diagram of the relationship between density models.tMo circles represent the linearly
transformed factorial densities as assumed by the ICA ndsthand elliptically symmetric densities
(ESDs). The intersection of these two classes is the set@galssian densities. The factorial densities
form a subset of the linearly transformed factorial deasi@nd the spherically symmetric densities
form a subset of the ESDs.

tion is only slightly more than that achieved with PCA or athandpass filters [7, 8]. Furthermore,
the responses of ICA and related filters still exhibit strikhigher-order dependencies [9, 10, 11].

Here, we consider the dependency elimination problem ferctass of source models known as
elliptically symmetric densities (ESDs) [12]. For ESDs)dar transforms have ndfect on the
dependencies beyond second-order, and thus ICA deconopsgiffer no advantage over PCA. We
introduce an alternative nonlinear procedure, which weérgalial Gaussianization (RG). In RG,
the norms of whitened signal vectors are nonlinearly adfisb ensure that the resulting output
density is a spherical Gaussian, whose components argtistity independent. We first show that
the joint statistics of proximal bandpass filter responses&tural signals (sounds and images) are
better described as an ESD than linearly transformed fattources. Consistent with this, we
demonstrate that the reduction in dependency achievedglyiag RG to such data is significantly
greater than that achieved by PCA or ICA. A preliminary vansof portions of this work was
described in [13].

2 Elliptically Symmetric Densities

The density of a random vectrre RY with zero mean is elliptically symmetric if it is of the form:

1rea
f ( 2x z x), (1)
where X is a positive definite matrixf(-) is the generating function satisfyinf(-) > 0 and
fooo f(-r?/2) r%1 dr < o0, and the normalizing constaatis chosen so that the density integrates
to one [12]. The definitive characteristic of an ESD is thatlével sets of constant probability are
ellipsoids determined by. In the special case whenhis a multiple of the identity matrix, the level
sets ofp(x) are hyper-spheres and the density is known gsherically symmetric density (SSD).
Assumingx has finite second-order statisti®sis a multiple of the covariance matrix, which implies
that any ESD can be transformed into an SSD by a M@#ening operation.

p(x) =

1
|22

When the generating function is an exponential, the regpHiSD is a zero-mean multivariate Gaus-
sian with covariance matriX. In this casex can also be regarded as a linear transformation of a
vectors containing independent unit-variance Gaussian compenastx = X~V/?s, In fact, the
Gaussian is the only density that is both elliptically syntmigeand linearly decomposable into inde-
pendent components [14]. In other words, the Gaussian tiesbrrespond to the intersection of
the class of ESDs and the class assumed by the ICA methodspssil case, a spherical Gaussian
is theonly spherically symmetric density that is also factorial (ifeas independent components).
These relationships are illustrated in a Venn diagram in Eig

Apart from the special case of Gaussian densities, a lin@asformation such as PCA or ICA cannot
completely eliminate dependencies in the ESDs. In pagict#CA and whitening can transform
an ESD variable to a spherically symmetric variablgy, but the resulting density will not be
factorial unless it is Gaussian. And ICA would apply an aidd@l rotation (i.e., an orthogonal
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Fig. 2. Radial Gaussianization procedure for 2D ddgee): 2D joint densities of a spherical Gaussian
and a non-Gaussian SSD, respectively. The plots are adaugé that a spherical Gaussian has equal-
spaced contourgb,f): radial marginal densities of the spherical Gaussian irafa) the SSD in (e),
respectively. Shaded regions correspond to shaded amnfa) iand (e).(c): the nonlinear mapping
that transforms the radii of the source to those of the spake@aussian(d): log marginal densities of
the Gaussian in (a) and the SSD in (e), as red dashed line aad golid line, respectively.

matrix) to transfornk,; to a new set of coordinates maximizing a higher-order cehftaction
(e.g., kurtosis). However, for spherically symmetxig:, p(Xwht) iS invariant to rotation, and thus
undtected by orthogonal transformations.

3 Radial Gaussianization

Given that linear transforms are fifiective in removing dependencies from a spherically symimetr
variablexyn: (and hence the original ESD variabdg we need to consider non-linear mappings. As
described previously, a spherical Gaussian is the only SBDimdependent components. Thus, a
natural solution for eliminating the dependencies in a @aussian spherically symmetsig; is to
transform it to a spherical Gaussian.

Selecting such a non-linear mapping without any furtherst@mt is a highly ill-posed problem.
It is natural to restrict to nonlinear mappings that eadially, preserving the spherical symme-
try. Specifically, one can show that the generating functbp(xyn:) is completely determined

by its radial marginal distributionp,(r) = %f(—rZ/Z), wherer = ||Xwndl, ['(*) is the standard
Gamma function, and is the normalizing constant that ensures that the denditgiates to one.
In the special case of a spherical Gaussian of unit variatheeradial marginal is &hi-density

with d degrees of freedomp,(r) = Zd/%rzdm) exp(r?/2). We define theadial Gaussianization

(RG) transformation ag, = g(||xwht||)%, where nonlinear function(-) is selected to map the
radial marginal density of,; to the chi-density. Solving for a monotonig(:) is a standard one-
dimensional density-mapping problem, and the unique ®olus the composition of the inverse
cumulative density function (CDF) gf, with the CDF ofp,: g(r) = F;lFr(r). A illustration of

the procedure is provided in Fig. 2. In practice, we can e, (r) from a histogram computed
from training data, and use this to construct a numericat@pmation (i.e., a look-up table) of the
continuous functiog(t). Note that the accuracy of the estimated RG transformatitbdepend on

the number of data samples, but is independent of the diimeal#tly of the data vectors.

In summary, a non-Gaussian ESD signal can be radially Ganigsid by first applying PCA and
whitening operations to remove second-order dependeligifyg an SSD), followed by a nonlin-
ear transformation that maps the radial marginal ¢hiadensity.

4 Application to Natural Signals

An understanding of the statistical behaviors of sourcaagyis beneficial for many problems in
signal processing, and can also provide insights into tk@deand functionality of biological sen-
sory systems. Gaussian signal models are widely used, bethey are easily characterized and
often lead to clean andfficient solutions. But many naturally occurring signals bithétriking



non-Gaussian statistics, and much recent literature &scos the problem of characterizing and
exploiting these behaviors. Specifically, ICA methodoésghave been used to derive linear repre-
sentations for natural sound and image signals whos@&cieats are maximally sparse or indepen-
dent [3, 5, 6]. These analyses generally produced basiesetaining bandpass filters resembling
those used to model the early transformations of biologiaditory and visual systems.

Despite the success of ICA methods in providing a fundanhemdéivation for sensory receptive
fields, there are a number of simple observations that itgliceconsistencies in this interpreta-
tion. First, the responses of ICA or other bandpass filtehsbéxstriking dependencies, in which
the variance of one filter response can be predicted fromrti@itade of another nearby filter re-
sponse [10, 15]. This suggests that although the margimaiyeof the bandpass filter responses are
heavy-tailed, their joint density is not consistent witk timearly transformed factorial source model
assumed by ICA. Furthermore, the marginal distributiors wide variety of bandpass filters (even
a “filter” with randomly selected zero-mean weights) alehighly kurtotic [7]. This would not be
expected for the ICA source model: projecting the local dat® a random direction should result
in a density that becomes more Gaussian as the neighbortzeoidsreases, in accordance with a
generalized version of the central limit theorem [16]. Aaetquantitative study [8] further showed
that the oriented bandpass filters obtained through ICAwp#tion on images lead to a surprisingly
small improvement in reducing dependency relative to detation methods such as PCA. Taken
together, all of these observations suggest that the fittetained through ICA optimization repre-
sent a “shallow” optimum, and are perhaps not as uniquetgddior image or sound representation
as initially believed. Consistent with this, recently diexgd models for local image statistics model
local groups of image bandpass filter responses with norssk@uESDs [e.g., 17, 18, 11, 19, 20].
These all suggest that RG might provide an appropriate mefaigninating dependencies in natu-
ral signals. Below, we test this empirically.

4.1 Dependency Reduction in Natural Sounds

We first apply RG to natural sounds. We used sound clips fromneercial CDs, which have a

sampling frequency of 44100 Hz and typical length of-120 seconds, and contents including
animal vocalization and recordings in natural environreefhese sound clips were filtered with a
bandpass gammatone filter, which are commonly used to mloelelripheral auditory system [21].

In our experiments, analysis was based on a filter with cdreéquency of 3078 Hz.

Shown in the top row of column (a) in Fig.3 are contour plotgha joint histograms obtained
from pairs of cofficients of a bandpass-filtered natural sound, separateddifitrent time inter-
vals. Similar to the empirical observations for natural gea[17, 11], the joint densities are non-
Gaussian, and have roughly elliptically symmetric consdiar temporally proximal pairs. Shown
in the top row of column (b) in Fig.3 are the conditional hggtams corresponding to the same pair
of signals. The “bow-tie” shaped conditional distributievhich has been also observed in natural
images [10, 11, 15], indicates that the conditional varamioone signal depends on the value of the
other. This is a highly non-Gaussian behavior, since theitional variances of a jointly Gaussian
density are always constant, independent of the value ofdhéitioning variable. For pairs that
are distant, both the second-order correlation and theshigtder dependency become weaker. As
a result, the corresponding joint histograms show moremb&mnce to the factorial product of two
one-dimensional super-Gaussian densities (bottom rowlafan (a) in Fig.3), and the shape of the
corresponding conditional histograms (column (b)) is mmyestant, all as would be expected for
two independent random variables .

As described in previous sections, the statistical depaeids in an elliptically symmetric random
variable can beféectively removed by a linear whitening operation followsgdabnonlinear radial
Gaussianization, the latter being implemented as histogransform of the radial marginal den-
sity of the whitened signal. Shown in columns (c) and (d) ig.Fiare the joint and conditional
histograms of the transformed data. First, note that whernwo signals are nearby, RG is highly
effective, as suggested by the roughly Gaussian joint deresitya(ly spaced circular contours), and
by the consistent vertical cross-sections of the condifibistogram. However, as the temporal sep-
aration between the two signals increases, thects of RG become weaker (middle row, Fig. 3).
When the two signals are distant (bottom row, Fig.3), theyrerarly independent, and applying RG
can actuallyincrease dependency, as suggested by the irregular shape of thetiooadidensities
(bottom row, column (d)).
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Fig. 3. Radial Gaussianization of natural sounds®): Contour plots of joint histograms of pairs
of band-pass filter responses of a natural sound clip. Eashcaoresponds to pairs with fiiérent
temporal separation, and levels are chosen so that a spl@dassian density will have equally spaced
contours.(c) Joint histograms after whitening and RG transformati@md): Conditional histograms
of the same data shown in (a,c), computed by independentipaiizing each column of the joint
histogram. Histogram intensities are proportional to piulity, except that each column of pixels is
independently rescaled so that the largest probabilityeval displayed as white.

To quantify more precisely the dependency reduction aelidy RG, we measure the statistical
dependency of our multivariate sources usingrtiuti-information (MI) [22], which is defined as
the Kulback-Leibler divergence [23] between the joint dligition and the product of its marginals:
1(x) = De (PO I TTk PO%)) = T4 Hx) — H(x), whereH(x) = [ p(x) log (p(x)) dx is the dif-
ferential entropy ok, and H(xc) denotes the dierential entropy of thé&th component ok. As

a measure of statistical dependency among the elementsMF is non-negative, and is zero if
and only if the components of are mutually independent. Furthermore, Ml is invariant ny a
transformation on individual componentsofe.g., element-wise rescaling).

To compare theféect of diferent dependency reduction methods, we estimated the Miicf pf
bandpass filter responses witlifdrent temporal separations. This is achieved with a noarpetric
“bin-less” method based on the order statistics [24], wlalibviates the strong bias and variance
intrinsic to the more traditional binning (i.e., “plug-ingstimators. It is especiallyffective in this
case, where the data dimensionality is two. We computed tifeach pair of raw signals, as well
as pairs of the PCA, ICA and RG transformed signals. The I@Agformation was obtained using
RADICAL [25], an algorithm that directly optimizes the Ml ing a smoothed grid search over a
non-parametric estimate of entropy.

The results, averaged over all 10 sounds, are plotted indFigirst, we note that PCA produces a
relatively modest reduction in MI: roughly 20% for small segtions, decreasing gradually as the
separation increase. We also see that |@#&rs very little additional reduction over PCA for small
separations. In contrast, the nonlinear RG transformatotmeves an impressive reduction (nearly
100%) in Ml for pairs separated by less thab thsec. This can be understood by considering the
joint and conditional histograms in Fig. 3. Since the joiahdity of nearby pairs is approximately
elliptically symmetric, ICA cannot provide much improveméeyond what is obtained with PCA,
while RG is expected to perform well. On the other hand, tliet jdensities of more distant pairs
(beyond 25 msec) are roughly factorial, as seen in the bottom row of Fidn this case, neither
PCA nor ICA is dfective in further reducing dependency, as is seen in the plofig. 4, but RG
makes the pairmore dependent, as indicated by an increase in M| above that afrigsal pairs
for separation over.83 msec. This is a direct result of the fact that the data do dbeee to the
elliptically symmetric source model assumptions undedythe RG procedure. For intermediate
separations (@ to 2 msec), there is a transition of the joint densities frlptically symmetric

to factorial (second row in Fig. 3), and ICA is seen tfeo a modest improvement over PCA. We
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Fig. 4. Left: Multi-information (in bitgcodficient) for pairs of bandpass filter responses of natural
audio signals, as a function of temporal separation. Shoetha Ml of the raw filter response pairs,
as well as the MI of the pairs transformed with PCA, ICA, and.RR@sults are averaged over 10
natural sound signalsRight: Same analysis for pairs of bandpass filter responses avemge 8
natural images.
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Fig. 5. Reduction of Ml (bitgpixel) achieved with ICA and RG transforms, compared to éthieved
with PCA, for pixel blocks of various sizes. The x-axis capends taAl ... Pluses denotesl,q, and
circles denotedl;,,. Each plotted symbol corresponds to the result from one énragur test set.

found qualitatively similar behaviors (right column in Fi4) when analyzing pairs of bandpass filter
responses of natural images using the data sets descritiezlnext section.

4.2 Dependency Reduction in Natural Images

We have also examined the ability of RG to reduce dependeinignage pixel blocks with lo-
cal mean removed. We examined eight images of natural woddleenes from the van Hateren
database [26]. We extracted the central 182vD24 region from each, computed the log of the in-
tensity values, and then subtracted the local mean [8] byateimg with an isotropic bandpass filter
that captures an annulus of frequencies in the Fourier doraaiging fromw/4 to & radiangpixel.
We denote blocks taken from these bandpass filtered imageg.a3hese blocks were then trans-
formed with PCA (denoteal,cs), ICA (denotedxica) and RG (denoted,g). These block data are
of significantly higher dimension than the filter responsigspaxamined in the previous section.
For this reason, we switched our ICA computations from RABILQo the more #icient FastiCA
algorithm [27], with a contrast functiog(u) = 1 — exp(-u?) and using the symmetric approach for
optimization.

We would like to compare the dependency reduction perfoomarf each of these methods using
multi-information. However, direct estimation of MI becesdificult and less accurate with higher
data dimensionality. Instead, as in [8], we can avoid diestimation of Ml by evaluating and
comparing thdifferencesin Ml of the various transformed blocks relativexg,,. Specifically, we
useAlpca = | (Xraw) — | (Xpca) @s a reference value, and compare this it = | (Xraw) — | (Xica) and
Alrg = 1(Xraw) — 1 (Xrg). Full details of this computation are described in [13].



Shown in Fig.5 are scatter plots &f pca versusAlic, (red circles) andl, g (blue pluses) for various
block sizes. Each point corresponds to Ml computation ol@cks from one of eight bandpass-
filtered test images. As the figure shows, RG achieves signifieduction in MI for most images,
and this holds over a range of block sizes, whereas ICA shasa very small improvement
relative to PCA. We again conclude that ICA does ndfer much advantage over second-order
decorrelation algorithms such as PCA, while R&cs significant improvements. These results may
be attributed to the fact that the joint density for localgdislocks tend to be close to be elliptically
symmetric [17, 11].

5 Conclusion

We have introduced a new signal transformation known asf&Hhussianization (RG), which can
eliminate dependencies of sources with elliptically syrtrinelensities. Empirically, we have shown
that RG transform is highlyfeective at removing dependencies between pairs of samplzenid-
pass filtered sounds and images, and within local blocks rdijbass filtered images.

One important issue underlying our development of this m@dlogy is the intimate relation be-
tween source models and dependency reduction methodsladseot elliptically symmetric densi-
ties represents a generalization of the Gaussian famitygheomplementary to the class of linearly
transformed factorial densities (see Fig. 1). The threeeddpncy reduction methods we have dis-
cussed (PCA, ICA and RG) are each associated with one of thesses, and are each guaranteed
to produce independent responses when applied to sigrealsidrom a density belonging to the
corresponding class. But applying one of these methods tgnalsvith an incompatible source
model may not achieve the expected reduction in dependengy épplying ICA to an ESD), and
in some cases can even increase dependencies (e.g., gdpyito a factorial density).

Several recently published methods are related to RG. Aatite Gaussianization scheme trans-
forms any source model to a spherical Gaussian by altembgtween linear ICA transformations
and nonlinear histogram matching to map marginal dendibi€3aussians [28]. However, in gen-
eral, the overall transformation of iterative Gaussiatidzais an alternating concatenation of many
lineaynonlinear transformations, and results in a substantsbdion of the original source space.
For the special case of ESDs, RG provides a simple one-stegure with minimal distortion.
Another nonlinear transform that has also been shown to leet@lbeduce higher-order dependen-
cies in natural signals is divisive normalization [15]. hetextended version of this paper [13], we
show that there is no ESD source model for whose dependecanidlse completely eliminated by
divisive normalization. On the other hand, divisive norization provides a rough approximation
to RG, which suggests that RG might provide a more principlstification for normalization-like
nonlinear behaviors seen in biological sensory systems.

There are a number of extensions of RG that are worth conisglar the context of signal repre-
sentation. First, we are interested in specific sub-famdfeESD for which the nonlinear mapping
of signal amplitudes in RG may be expressed in closed fornco®% the RG methodology pro-
vides a solution to theficient coding problem for ESD signals in the noise-free casgl, it is
worthwhile to consider how the solution would bezted by the presence of sensor/anghan-
nel noise. Third, we have shown that RG substantially resldependency for nearby samples of
bandpass filtered imaggund, but that performance worsens as thédhaents become more sep-
arated, where their joint densities are closer to factoRacent models of natural images [29, 30]
have used Markov random fields based on local ellipticaligsyetric models, and these are seen to
provide a natural transition of pairwise joint densitiesnfr elliptically symmetric to factorial. We
are currently exploring extensions of the RG methodologyuch global models. And finally, we
are currently examining the statistics of signals afteal®G transformations, with the expectation
that remaining statistical regularities (e.g., oriemtatand phase dependencies in images) can be
studied, modeled and removed with additional transforomati
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