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Abstract

We consider the problem of transforming a signal to a representation in which
the components are statistically independent. When the signal is generated as a
linear transformation of independent Gaussian or non-Gaussian sources, the solu-
tion may be computed using a linear transformation (PCA or ICA, respectively).
Here, we consider a complementary case, in which the source is non-Gaussian
but elliptically symmetric. Such a source cannot be decomposed into indepen-
dent components using a linear transform, but we show that a simple nonlinear
transformation, which we call radial Gaussianization (RG), is able to remove all
dependencies. We apply this methodology to natural signals, demonstrating that
the joint distributions of nearby bandpass filter responses, for both sounds and im-
ages, are closer to being elliptically symmetric than linearly transformed factorial
sources. Consistent with this, we demonstrate that the reduction in dependency
achieved by applying RG to either pairs or blocks of bandpassfilter responses is
significantly greater than that achieved by PCA or ICA.

1 Introduction

Signals may be manipulated, transmitted or stored more efficiently if they are transformed to a rep-
resentation in which there is no statistical redundancy between the individual components. In the
context of biological sensory systems, theefficient coding hypothesis [1, 2] proposes that the princi-
ple of reducing redundancies in natural signals can be used to explain various properties of biological
perceptual systems. Given a source model, the problem of deriving an appropriate transformation
to remove statistical dependencies, based on the statistics of observed samples, has been studied for
more than a century. The most well-known example is principal components analysis (PCA), a lin-
ear transformation derived from the second-order signal statistics (i.e., the covariance structure), that
can fully eliminate dependencies for Gaussian sources. Over the past two decades, a more general
method, known as independent component analysis (ICA), hasbeen developed to handle the case
when the signal is sampled from a linearly transformed factorial source. ICA and related methods
have shown success in many applications, especially in deriving optimal representations for natural
signals [3, 4, 5, 6].

Although PCA and ICA bases may be computed for nearly any source, they are only guaranteed to
eliminate dependencies when the assumed source model is correct. And even in cases where these
methodologies seems to produce an interesting solution, the components of the resulting represen-
tation may be far from independent. A case in point is that of natural images, for which derived ICA
transformations consist of localized oriented basis functions that appear similar to the receptive field
descriptions of neurons in mammalian visual cortex [3, 5, 4]. Although dependency between the
responses of such linear basis functions is reduced compared to that of the original pixels, this reduc-
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Fig. 1. Venn diagram of the relationship between density models. The two circles represent the linearly
transformed factorial densities as assumed by the ICA methods, and elliptically symmetric densities
(ESDs). The intersection of these two classes is the set of all Gaussian densities. The factorial densities
form a subset of the linearly transformed factorial densities and the spherically symmetric densities
form a subset of the ESDs.

tion is only slightly more than that achieved with PCA or other bandpass filters [7, 8]. Furthermore,
the responses of ICA and related filters still exhibit striking higher-order dependencies [9, 10, 11].

Here, we consider the dependency elimination problem for the class of source models known as
elliptically symmetric densities (ESDs) [12]. For ESDs, linear transforms have no effect on the
dependencies beyond second-order, and thus ICA decompositions offer no advantage over PCA. We
introduce an alternative nonlinear procedure, which we call radial Gaussianization (RG). In RG,
the norms of whitened signal vectors are nonlinearly adjusted to ensure that the resulting output
density is a spherical Gaussian, whose components are statistically independent. We first show that
the joint statistics of proximal bandpass filter responses for natural signals (sounds and images) are
better described as an ESD than linearly transformed factorial sources. Consistent with this, we
demonstrate that the reduction in dependency achieved by applying RG to such data is significantly
greater than that achieved by PCA or ICA. A preliminary version of portions of this work was
described in [13].

2 Elliptically Symmetric Densities

The density of a random vectorx ∈ Rd with zero mean is elliptically symmetric if it is of the form:

p(x) =
1

α|Σ|
1
2

f

(

−
1
2

xTΣ−1x
)

, (1)

whereΣ is a positive definite matrix,f (·) is the generating function satisfyingf (·) ≥ 0 and
∫ ∞

0
f (−r2/2) rd−1 dr < ∞, and the normalizing constantα is chosen so that the density integrates

to one [12]. The definitive characteristic of an ESD is that the level sets of constant probability are
ellipsoids determined byΣ. In the special case whenΣ is a multiple of the identity matrix, the level
sets ofp(x) are hyper-spheres and the density is known as aspherically symmetric density (SSD).
Assumingx has finite second-order statistics,Σ is a multiple of the covariance matrix, which implies
that any ESD can be transformed into an SSD by a PCA/whitening operation.

When the generating function is an exponential, the resulting ESD is a zero-mean multivariate Gaus-
sian with covariance matrixΣ. In this case,x can also be regarded as a linear transformation of a
vectors containing independent unit-variance Gaussian components, as:x = Σ−1/2s. In fact, the
Gaussian is the only density that is both elliptically symmetric and linearly decomposable into inde-
pendent components [14]. In other words, the Gaussian densities correspond to the intersection of
the class of ESDs and the class assumed by the ICA methods. As aspecial case, a spherical Gaussian
is theonly spherically symmetric density that is also factorial (i.e., has independent components).
These relationships are illustrated in a Venn diagram in Fig. 1.

Apart from the special case of Gaussian densities, a linear transformation such as PCA or ICA cannot
completely eliminate dependencies in the ESDs. In particular, PCA and whitening can transform
an ESD variable to a spherically symmetric variable,xwht, but the resulting density will not be
factorial unless it is Gaussian. And ICA would apply an additional rotation (i.e., an orthogonal
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Fig. 2. Radial Gaussianization procedure for 2D data.(a,e): 2D joint densities of a spherical Gaussian
and a non-Gaussian SSD, respectively. The plots are arranged such that a spherical Gaussian has equal-
spaced contours.(b,f): radial marginal densities of the spherical Gaussian in (a)and the SSD in (e),
respectively. Shaded regions correspond to shaded annuli in (a) and (e).(c): the nonlinear mapping
that transforms the radii of the source to those of the spherical Gaussian.(d): log marginal densities of
the Gaussian in (a) and the SSD in (e), as red dashed line and green solid line, respectively.

matrix) to transformxwht to a new set of coordinates maximizing a higher-order contrast function
(e.g., kurtosis). However, for spherically symmetricxwht, p(xwht) is invariant to rotation, and thus
unaffected by orthogonal transformations.

3 Radial Gaussianization

Given that linear transforms are ineffective in removing dependencies from a spherically symmetric
variablexwht (and hence the original ESD variablex), we need to consider non-linear mappings. As
described previously, a spherical Gaussian is the only SSD with independent components. Thus, a
natural solution for eliminating the dependencies in a non-Gaussian spherically symmetricxwht is to
transform it to a spherical Gaussian.

Selecting such a non-linear mapping without any further constraint is a highly ill-posed problem.
It is natural to restrict to nonlinear mappings that actradially, preserving the spherical symme-
try. Specifically, one can show that the generating functionof p(xwht) is completely determined
by its radial marginal distribution:pr(r) = rd−1

β
f (−r2/2), wherer = ‖xwht‖, Γ(·) is the standard

Gamma function, andβ is the normalizing constant that ensures that the density integrates to one.
In the special case of a spherical Gaussian of unit variance,the radial marginal is achi-density
with d degrees of freedom:pχ(r) = rd−1

2d/2−1Γ(d/2) exp(−r2/2). We define theradial Gaussianization
(RG) transformation asxrg = g(‖xwht‖)

xwht
‖xwht‖

, where nonlinear functiong(·) is selected to map the
radial marginal density ofxwht to thechi-density. Solving for a monotonicg(·) is a standard one-
dimensional density-mapping problem, and the unique solution is the composition of the inverse
cumulative density function (CDF) ofpχ with the CDF ofpr: g(r) = F−1

χ Fr(r). A illustration of
the procedure is provided in Fig. 2. In practice, we can estimateFr(r) from a histogram computed
from training data, and use this to construct a numerical approximation (i.e., a look-up table) of the
continuous function ˆg(r). Note that the accuracy of the estimated RG transformationwill depend on
the number of data samples, but is independent of the dimensionality of the data vectors.

In summary, a non-Gaussian ESD signal can be radially Gaussianized by first applying PCA and
whitening operations to remove second-order dependency (yielding an SSD), followed by a nonlin-
ear transformation that maps the radial marginal to achi-density.

4 Application to Natural Signals

An understanding of the statistical behaviors of source signals is beneficial for many problems in
signal processing, and can also provide insights into the design and functionality of biological sen-
sory systems. Gaussian signal models are widely used, because they are easily characterized and
often lead to clean and efficient solutions. But many naturally occurring signals exhibit striking
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non-Gaussian statistics, and much recent literature focuses on the problem of characterizing and
exploiting these behaviors. Specifically, ICA methodologies have been used to derive linear repre-
sentations for natural sound and image signals whose coefficients are maximally sparse or indepen-
dent [3, 5, 6]. These analyses generally produced basis setscontaining bandpass filters resembling
those used to model the early transformations of biologicalauditory and visual systems.

Despite the success of ICA methods in providing a fundamental motivation for sensory receptive
fields, there are a number of simple observations that indicate inconsistencies in this interpreta-
tion. First, the responses of ICA or other bandpass filters exhibit striking dependencies, in which
the variance of one filter response can be predicted from the amplitude of another nearby filter re-
sponse [10, 15]. This suggests that although the marginal density of the bandpass filter responses are
heavy-tailed, their joint density is not consistent with the linearly transformed factorial source model
assumed by ICA. Furthermore, the marginal distributions ofa wide variety of bandpass filters (even
a “filter” with randomly selected zero-mean weights) areall highly kurtotic [7]. This would not be
expected for the ICA source model: projecting the local dataonto a random direction should result
in a density that becomes more Gaussian as the neighborhood size increases, in accordance with a
generalized version of the central limit theorem [16]. A recent quantitative study [8] further showed
that the oriented bandpass filters obtained through ICA optimization on images lead to a surprisingly
small improvement in reducing dependency relative to decorrelation methods such as PCA. Taken
together, all of these observations suggest that the filtersobtained through ICA optimization repre-
sent a “shallow” optimum, and are perhaps not as uniquely suited for image or sound representation
as initially believed. Consistent with this, recently developed models for local image statistics model
local groups of image bandpass filter responses with non-Gaussian ESDs [e.g., 17, 18, 11, 19, 20].
These all suggest that RG might provide an appropriate meansof eliminating dependencies in natu-
ral signals. Below, we test this empirically.

4.1 Dependency Reduction in Natural Sounds

We first apply RG to natural sounds. We used sound clips from commercial CDs, which have a
sampling frequency of 44100 Hz and typical length of 15− 20 seconds, and contents including
animal vocalization and recordings in natural environments. These sound clips were filtered with a
bandpass gammatone filter, which are commonly used to model the peripheral auditory system [21].
In our experiments, analysis was based on a filter with centerfrequency of 3078 Hz.

Shown in the top row of column (a) in Fig.3 are contour plots ofthe joint histograms obtained
from pairs of coefficients of a bandpass-filtered natural sound, separated withdifferent time inter-
vals. Similar to the empirical observations for natural images [17, 11], the joint densities are non-
Gaussian, and have roughly elliptically symmetric contours for temporally proximal pairs. Shown
in the top row of column (b) in Fig.3 are the conditional histograms corresponding to the same pair
of signals. The “bow-tie” shaped conditional distribution, which has been also observed in natural
images [10, 11, 15], indicates that the conditional variance of one signal depends on the value of the
other. This is a highly non-Gaussian behavior, since the conditional variances of a jointly Gaussian
density are always constant, independent of the value of theconditioning variable. For pairs that
are distant, both the second-order correlation and the higher-order dependency become weaker. As
a result, the corresponding joint histograms show more resemblance to the factorial product of two
one-dimensional super-Gaussian densities (bottom row of column (a) in Fig.3), and the shape of the
corresponding conditional histograms (column (b)) is moreconstant, all as would be expected for
two independent random variables .

As described in previous sections, the statistical dependencies in an elliptically symmetric random
variable can be effectively removed by a linear whitening operation followed by a nonlinear radial
Gaussianization, the latter being implemented as histogram transform of the radial marginal den-
sity of the whitened signal. Shown in columns (c) and (d) in Fig.3 are the joint and conditional
histograms of the transformed data. First, note that when the two signals are nearby, RG is highly
effective, as suggested by the roughly Gaussian joint density (equally spaced circular contours), and
by the consistent vertical cross-sections of the conditional histogram. However, as the temporal sep-
aration between the two signals increases, the effects of RG become weaker (middle row, Fig. 3).
When the two signals are distant (bottom row, Fig.3), they are nearly independent, and applying RG
can actuallyincrease dependency, as suggested by the irregular shape of the conditional densities
(bottom row, column (d)).

4



(a) (b) (c) (d)

0.1 msec
(4 samples)

1.5 msec
(63 samples)

3.5 msec
(154 samples)

Fig. 3. Radial Gaussianization of natural sounds.(a): Contour plots of joint histograms of pairs
of band-pass filter responses of a natural sound clip. Each row corresponds to pairs with different
temporal separation, and levels are chosen so that a spherical Gaussian density will have equally spaced
contours.(c) Joint histograms after whitening and RG transformation.(b,d): Conditional histograms
of the same data shown in (a,c), computed by independently normalizing each column of the joint
histogram. Histogram intensities are proportional to probability, except that each column of pixels is
independently rescaled so that the largest probability value is displayed as white.

To quantify more precisely the dependency reduction achieved by RG, we measure the statistical
dependency of our multivariate sources using themulti-information (MI) [22], which is defined as
the Kulback-Leibler divergence [23] between the joint distribution and the product of its marginals:
I(x) = DKL

(

p(x) ‖
∏

k p(xk)
)

=
∑d

k=1 H(xk) − H(x), whereH(x) =
∫

p(x) log (p(x)) dx is the dif-
ferential entropy ofx, andH(xk) denotes the differential entropy of thekth component ofx. As
a measure of statistical dependency among the elements ofx, MI is non-negative, and is zero if
and only if the components ofx are mutually independent. Furthermore, MI is invariant to any
transformation on individual components ofx (e.g., element-wise rescaling).

To compare the effect of different dependency reduction methods, we estimated the MI of pairs of
bandpass filter responses with different temporal separations. This is achieved with a non-parametric
“bin-less” method based on the order statistics [24], whichalleviates the strong bias and variance
intrinsic to the more traditional binning (i.e., “plug-in”) estimators. It is especially effective in this
case, where the data dimensionality is two. We computed the MI for each pair of raw signals, as well
as pairs of the PCA, ICA and RG transformed signals. The ICA transformation was obtained using
RADICAL [25], an algorithm that directly optimizes the MI using a smoothed grid search over a
non-parametric estimate of entropy.

The results, averaged over all 10 sounds, are plotted in Fig.4. First, we note that PCA produces a
relatively modest reduction in MI: roughly 20% for small separations, decreasing gradually as the
separation increase. We also see that ICA offers very little additional reduction over PCA for small
separations. In contrast, the nonlinear RG transformationachieves an impressive reduction (nearly
100%) in MI for pairs separated by less than 0.5 msec. This can be understood by considering the
joint and conditional histograms in Fig. 3. Since the joint density of nearby pairs is approximately
elliptically symmetric, ICA cannot provide much improvement beyond what is obtained with PCA,
while RG is expected to perform well. On the other hand, the joint densities of more distant pairs
(beyond 2.5 msec) are roughly factorial, as seen in the bottom row of Fig. 3. In this case, neither
PCA nor ICA is effective in further reducing dependency, as is seen in the plots of Fig. 4, but RG
makes the pairsmore dependent, as indicated by an increase in MI above that of theoriginal pairs
for separation over 2.5 msec. This is a direct result of the fact that the data do not adhere to the
elliptically symmetric source model assumptions underlying the RG procedure. For intermediate
separations (0.2 to 2 msec), there is a transition of the joint densities fromelliptically symmetric
to factorial (second row in Fig. 3), and ICA is seen to offer a modest improvement over PCA. We
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Fig. 4. Left: Multi-information (in bits/coefficient) for pairs of bandpass filter responses of natural
audio signals, as a function of temporal separation. Shown are the MI of the raw filter response pairs,
as well as the MI of the pairs transformed with PCA, ICA, and RG. Results are averaged over 10
natural sound signals.Right: Same analysis for pairs of bandpass filter responses averaged over 8
natural images.
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Fig. 5. Reduction of MI (bits/pixel) achieved with ICA and RG transforms, compared to thatachieved
with PCA, for pixel blocks of various sizes. The x-axis corresponds to∆Ipca. Pluses denotes∆Irg, and
circles denotes∆Iica. Each plotted symbol corresponds to the result from one image in our test set.

found qualitatively similar behaviors (right column in Fig. 4) when analyzing pairs of bandpass filter
responses of natural images using the data sets described inthe next section.

4.2 Dependency Reduction in Natural Images

We have also examined the ability of RG to reduce dependencies of image pixel blocks with lo-
cal mean removed. We examined eight images of natural woodland scenes from the van Hateren
database [26]. We extracted the central 1024× 1024 region from each, computed the log of the in-
tensity values, and then subtracted the local mean [8] by convolving with an isotropic bandpass filter
that captures an annulus of frequencies in the Fourier domain ranging fromπ/4 to π radians/pixel.
We denote blocks taken from these bandpass filtered images asxraw. These blocks were then trans-
formed with PCA (denotedxpca), ICA (denotedxica) and RG (denotedxrg). These block data are
of significantly higher dimension than the filter response pairs examined in the previous section.
For this reason, we switched our ICA computations from RADICAL to the more efficient FastICA
algorithm [27], with a contrast functiong(u) = 1− exp(−u2) and using the symmetric approach for
optimization.

We would like to compare the dependency reduction performance of each of these methods using
multi-information. However, direct estimation of MI becomes difficult and less accurate with higher
data dimensionality. Instead, as in [8], we can avoid directestimation of MI by evaluating and
comparing thedifferences in MI of the various transformed blocks relative toxraw. Specifically, we
use∆Ipca = I(xraw)− I(xpca) as a reference value, and compare this with∆Iica = I(xraw)− I(xica) and
∆Irg = I(xraw) − I(xrg). Full details of this computation are described in [13].
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Shown in Fig.5 are scatter plots of∆Ipca versus∆Iica (red circles) and∆Irg (blue pluses) for various
block sizes. Each point corresponds to MI computation over blocks from one of eight bandpass-
filtered test images. As the figure shows, RG achieves significant reduction in MI for most images,
and this holds over a range of block sizes, whereas ICA shows only a very small improvement
relative to PCA1. We again conclude that ICA does not offer much advantage over second-order
decorrelation algorithms such as PCA, while RG offers significant improvements. These results may
be attributed to the fact that the joint density for local pixel blocks tend to be close to be elliptically
symmetric [17, 11].

5 Conclusion

We have introduced a new signal transformation known as radial Gaussianization (RG), which can
eliminate dependencies of sources with elliptically symmetric densities. Empirically, we have shown
that RG transform is highly effective at removing dependencies between pairs of samples inband-
pass filtered sounds and images, and within local blocks of bandpass filtered images.

One important issue underlying our development of this methodology is the intimate relation be-
tween source models and dependency reduction methods. The class of elliptically symmetric densi-
ties represents a generalization of the Gaussian family that is complementary to the class of linearly
transformed factorial densities (see Fig. 1). The three dependency reduction methods we have dis-
cussed (PCA, ICA and RG) are each associated with one of theseclasses, and are each guaranteed
to produce independent responses when applied to signals drawn from a density belonging to the
corresponding class. But applying one of these methods to a signal with an incompatible source
model may not achieve the expected reduction in dependency (e.g., applying ICA to an ESD), and
in some cases can even increase dependencies (e.g., applying RG to a factorial density).

Several recently published methods are related to RG. An iterative Gaussianization scheme trans-
forms any source model to a spherical Gaussian by alternating between linear ICA transformations
and nonlinear histogram matching to map marginal densitiesto Gaussians [28]. However, in gen-
eral, the overall transformation of iterative Gaussianization is an alternating concatenation of many
linear/nonlinear transformations, and results in a substantial distortion of the original source space.
For the special case of ESDs, RG provides a simple one-step procedure with minimal distortion.
Another nonlinear transform that has also been shown to be able to reduce higher-order dependen-
cies in natural signals is divisive normalization [15]. In the extended version of this paper [13], we
show that there is no ESD source model for whose dependenciescan be completely eliminated by
divisive normalization. On the other hand, divisive normalization provides a rough approximation
to RG, which suggests that RG might provide a more principledjustification for normalization-like
nonlinear behaviors seen in biological sensory systems.

There are a number of extensions of RG that are worth considering in the context of signal repre-
sentation. First, we are interested in specific sub-families of ESD for which the nonlinear mapping
of signal amplitudes in RG may be expressed in closed form. Second, the RG methodology pro-
vides a solution to the efficient coding problem for ESD signals in the noise-free case,and it is
worthwhile to consider how the solution would be affected by the presence of sensor and/or chan-
nel noise. Third, we have shown that RG substantially reduces dependency for nearby samples of
bandpass filtered image/sound, but that performance worsens as the coefficients become more sep-
arated, where their joint densities are closer to factorial. Recent models of natural images [29, 30]
have used Markov random fields based on local elliptically symmetric models, and these are seen to
provide a natural transition of pairwise joint densities from elliptically symmetric to factorial. We
are currently exploring extensions of the RG methodology tosuch global models. And finally, we
are currently examining the statistics of signals after local RG transformations, with the expectation
that remaining statistical regularities (e.g., orientation and phase dependencies in images) can be
studied, modeled and removed with additional transformations.
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