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We consider the problem of efficiently encoding a signal by transforming
it to a new representation whose components are statistically indepen-
dent. A widely studied linear solution, known as independent compo-
nent analysis (ICA), exists for the case when the signal is generated as
a linear transformation of independent nongaussian sources. Here, we
examine a complementary case, in which the source is nongaussian and
elliptically symmetric. In this case, no invertible linear transform suf-
fices to decompose the signal into independent components, but we show
that a simple nonlinear transformation, which we call radial gaussian-
ization (RG), is able to remove all dependencies. We then examine this
methodology in the context of natural image statistics. We first show that
distributions of spatially proximal bandpass filter responses are better
described as elliptical than as linearly transformed independent sources.
Consistent with this, we demonstrate that the reduction in dependency
achieved by applying RG to either nearby pairs or blocks of bandpass
filter responses is significantly greater than that achieved by ICA. Fi-
nally, we show that the RG transformation may be closely approximated
by divisive normalization, which has been used to model the nonlinear
response properties of visual neurons.

1 Introduction

Processing of signals is often facilitated by transforming to a representation
in which individual components are statistically independent. In such a
natural coordinate system, the components of the signal may be manip-
ulated, transmitted, or stored more efficiently. It has been proposed that
this principle also plays an important role in the formation of biological
perceptual systems (Attneave, 1954; Barlow, 1961).
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The problem of deriving an appropriate transformation to remove de-
pendencies of a given source, based on the statistics of observed samples,
has been studied for more than a century. The classical solution, principal
components analysis (PCA), is a linear transformation derived from the
second-order signal statistics (i.e., the covariance structure). Although it
may be computed for any source with finite variance, it typically fails to
eliminate dependencies for nongaussian sources. Over the past 20 years, a
more general method, known as independent component analysis (ICA),
has been developed to handle the case when the signal is formed as a linear
transformation of independent nongaussian sources. Again, the solution
is a linear transformation that is derived from statistical properties of the
source. ICA methods have shown success in many applications, especially
in deriving bases for natural signals (Olshausen & Field, 1996; van der
Schaaf & van Hateren, 1996; Bell & Sejnowski, 1997; Lewicki, 2002). As with
PCA, the ICA transformations may be computed for most sources, but they
are guaranteed to eliminate dependencies only when the assumed source
model is correct. And even where the methodology seems to produce a
sensible solution, the components of the resulting representation may be
far from independent. A case in point is that of natural images, for which
derived ICA transformations consist of localized oriented basis functions
that appear similar to the receptive field descriptions of neurons in mam-
malian visual cortex (Olshausen & Field, 1996; Bell & Sejnowski, 1997; van
Hateren & Ruderman, 1998). Although dependency between the responses
of such linear basis functions is reduced compared to that of the original
pixels (Zetzsche & Schönecker, 1987), such reduction is only slightly more
than that achieved with decorrelation methods such as PCA (Bethge, 2006).
Furthermore, ICA coefficients (or the responses of similar oriented filters)
for natural images exhibit striking higher-order dependencies (Wegmann
& Zetzsche, 1990; Zetzsche, Wegmann, & Barth, 1993; Simoncelli, 1997;
Buccigrossi & Simoncelli, 1999).

Here, we consider the dependency elimination problem for the class
of source models known as elliptically symmetric densities (ESDs). For
ESDs, linear transforms have no effect on the dependencies beyond second
order, and thus ICA decompositions offer no advantage over second-order
decorrelation methods such as PCA. We introduce an alternative nonlinear
procedure, which we call radial gaussianization (RG), whereby the norms
of whitened signal vectors are nonlinearly adjusted to ensure that the
resulting output density is a spherical gaussian, whose components are
thus statistically independent. We apply our methodology to natural im-
ages, whose local statistics have been modeled by a variety of different
ESDs (Zetzsche & Krieger, 1999; Wainwright & Simoncelli, 2000; Huang
& Mumford, 1999; Parra, Spence, & Sajda, 2001; Hyvärinen, Hoyer, & Inki,
2001; Srivastava, Liu, & Grenander, 2002; Sendur & Selesnick, 2002; Portilla,
Strela, Wainwright, & Simoncelli, 2003; Teh, Welling, & Osindero, 2003;
Gehler & Welling, 2006). We show that RG produces much more substantial
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reductions in dependency, as measured with multi-information of pairs
or blocks of nearby bandpass filter responses, than does ICA. Finally, we
show that the RG transformation may be closely approximated by divi-
sive normalization (DN), which was developed as a description of the
nonlinear response properties of visual neurons (Heeger, 1992; Geisler &
Albrecht, 1992), and which has been shown empirically to reduce higher-
order dependencies in multiscale image representations (Malo, Navarro,
Epifanio, Ferri, & Artigas, 2000; Schwartz & Simoncelli, 2001; Wainwright,
Schwartz, & Simoncelli, 2002; Valerio & Navarro, 2003; Gluckman, 2006; Lyu
& Simoncelli, 2007). Thus, RG provides a more principled justification of
these previous empirical results in terms of a specific source model. Prelimi-
nary versions of this work have been presented in Lyu and Simoncelli (2009).

2 Eliminating Dependencies with Linear Transforms

We seek a transformation that maps a source signal drawn from a known
density to a new representation whose individual components are statisti-
cally independent. In general, the density transformation problem is highly
underconstrained: an infinite number of transformations can map a random
variable associated with some input density into one associated with a given
target density, and the problem only becomes worse as the dimensionality
of the space increases.

A natural means of handling the nonuniqueness of this problem is to
restrict the transformation to be linear. Linear transforms are particularly
easy to work with and are often able to substantially reduce the complexity
and improve the tractability of optimization problems. However, this comes
at the expense of strong limitations on the set of source models that can be
exactly factorized. In the following sections, we review linear solutions to
the problem of dependency elimination, while emphasizing the underlying
source model assumptions.

2.1 Multi-Information. We quantify the statistical dependency for mul-
tivariate sources using multi-information (MI) (Studeny & Vejnarova, 1998),
which is defined as the Kullback-Leibler divergence (Cover & Thomas, 2006)
between the joint distribution and the product of its marginals:

I ( �x) = DKL

(
p( �x)

∥∥∥∥∥∏
k

p(xk)

)

=
d∑

k=1

H(xk) − H( �x), (2.1)

where H( �x) = ∫
p( �x) log (p( �x)) d �x is the differential entropy of �x, and H(xk)

denotes the differential entropy of the kth component of �x. If the logs are
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computed in base 2, these entropy quantities are expressed in units of
bits. In two dimensions, MI is simply the mutual information between
the two components (Cover & Thomas, 2006).1 As a measure of statistical
dependency among the elements of �x, MI is nonnegative and is zero if and
only if the components of �x are mutually independent. Furthermore, MI is
invariant to any operation performed on individual components of �x (e.g.,
element-wise rescaling) since such operations produce an equal effect on
the two terms in equation 2.1.

When �x has finite second-order statistics, MI may be further decomposed
into two parts, representing second-order and higher-order dependencies
(Cardoso, 2004):

I ( �x) =
d∑

k=1

log(�kk) − log |�|
︸ ︷︷ ︸
second−order dependency

+ DKL(p( �x)‖ G( �x)) −
d∑

k=1

DKL(p(xk)‖ G(xk))

︸ ︷︷ ︸
higher−order dependency

, (2.2)

where � is the covariance matrix of �x, defined as E(( �x − E �x)( �x − E �x)T ), and
G( �x) and G(xk) are gaussian densities with the same mean and covariance
as �x and xk , respectively.2

2.2 Principal Components Analysis and Whitening. For a gaussian
signal �x, PCA provides a complete solution for the dependency elimina-
tion problem (Jolliffe, 2002). Assuming that �x has zero mean, one computes
the covariance matrix, � = E{ �x �xT } and factorizes it as � = U�UT , where
U is an orthonormal matrix containing the eigenvectors of � and � is
a diagonal matrix containing the corresponding eigenvalues. The covari-
ance matrix of the PCA-transformed signal, �xpca = UT �x, is equal to �, and
the second-order terms of the multi-information (defined in equation 2.2)
will cancel, since the determinant of a diagonal matrix is the product of
the diagonal elements. For a gaussian density, the higher-order terms of
equation 2.2 are zero, and thus the PCA transform completely eliminates
the statistical dependencies in �x (i.e., I (�xpca) = 0). PCA may be followed
by a linear “whitening” step in which each component is rescaled by
its standard deviation: �xwht = �−1/2UT �x. A two-dimensional illustration
of this two-step whitening procedure is illustrated in the left column of

1Because of this, multi-information is sometimes casually referred to as mutual infor-
mation.

2The quantity DKL(p( �x)‖ G( �x)) is known as the negentropy.
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Figure 1. If the original signal is gaussian, the whitened signal will be a
spherical gaussian with unit variance for each component. PCA or whiten-
ing may be applied to any nongaussian source with finite second-order
statistics. In such cases, the second-order dependencies will be eliminated,
but the higher-order dependencies in equation 2.1 may remain.

2.3 Independent Component Analysis. Linear transformations are suf-
ficient to remove statistical dependencies in gaussian variables and may
be efficiently computed. A natural question is whether there is a class of
nongaussian densities that can also be factorized with linear transforms.
Consider a source that is formed by linearly transforming a signal with inde-
pendent components, �x = M�s, where M is an invertible square matrix,3 and
the density of �s is factorial: p(�s) = ∏

k p(sk). Clearly, M−1 is a linear transfor-
mation that maps �x into the original independent sources, �s. Given samples
of �x, the general procedure for finding a linear transform that removes or
reduces statistical dependency in �x is known as independent components
analysis (ICA) (Comon, 1994; Bell & Sejnowski, 1997; Cardoso, 1999).

A standard ICA methodology arises from decomposing the linear trans-
form M using the singular value decomposition, M = U�VT . As with PCA,
the matrices U and � may be estimated from the covariance matrix of the
data and used to whiten the data: �xwht = �−1/2UT �x. The matrix V may then
be chosen to minimize the MI of the whitened data �xwht:

I (VT �xwht) =
d∑

k=1

H ([V�xwht]k) − H(V�xwht)

=
d∑

k=1

H ([V�xwht]k) − H(�xwht) − 〈log | det(V)|〉�xwht

=
d∑

k=1

H ([V�xwht]k) − H(�xwht).

Since the second term does not depend on V, the optimization is per-
formed only over the first term, which is the sum of the transformed
marginal entropies. While some ICA algorithms optimize this objective
directly (Learned-Miller & Fisher, 2000), most choose instead to optimize

3For our purposes here, we assume M is square and invertible (i.e., the number of basis
functions is equal to the dimensionality of the input space), as in Olshausen and Field
(1996), Bell and Sejnowski (1997), and van Hateren and Ruderman (1998). A variety of
related methods consider the problem of describing signals as a superposition of a small
subset of an overcomplete dictionary of basis functions (e.g., Coifman & Wickerhauser,
1992; Mallat & Zhang, 1993; Olshausen & Field, 1997; Chen, Donoho, & Saunders, 1998;
Lewicki & Sejnowski, 2000; Donoho & Elad, 2003).
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the expected value of a higher-order contrast function to avoid the diffi-
culties associated with entropy estimation (Comon, 1994; Bell & Sejnowski,
1997; Cardoso, 1999). After the linear ICA transformation has factorized the
source density, one may apply a marginal gaussianization procedure, non-
linearly mapping each component to have a unit-variance gaussian density
using 1D histogram transforms (e.g., Chen & Gopinath, 2000). If the orig-
inal density was a linearly transformed factorial density, the result of ICA
followed by marginal gaussianization will be a spherical gaussian. Similar
to PCA, ICA can be applied to an arbitrary source as long as the covari-
ance and the higher-order contrast function exist. However, the result is
guaranteed to be independent only when the signal actually comes from
a linearly transformed factorial density. A two-dimensional illustration of
the ICA procedure is shown in the middle column of Figure 1.

3 Eliminating Dependencies in Elliptical Symmetric Sources

PCA and ICA have been successfully applied to a wide range of problems
across diverse disciplines. However, if our goal is to remove statistical
dependency from a signal, PCA and ICA are not necessarily the right choices
for sources that are not linearly transformed factorial densities. Here, we
consider dependency elimination methods for the elliptically symmetric
density models.

3.1 Elliptically Symmetric Densities. A d-dimensional random vector
�x has an elliptically symmetric density (ESD) if all surfaces of constant
probability are ellipsoids that are parameterized by a symmetric positive-
definite matrix �. In particular, an ESD with zero mean may be written

p( �x) = 1

α| det �| 1
2

f
(

−1
2

�xT�−1 �x
)

,

Figure 1: Three methods of dependency elimination and their associated
source models, illustrated in two dimensions. Dashed ellipses indicate
covariance structure. Inset graphs are slices through the density along the
indicated (dashed) line. (Left) PCA/whitening a gaussian source. The first
transformation rotates the coordinates to the principal coordinate axes of
the covariance ellipse, and the second rescales each axis by its standard
deviation. The output density is a spherical, unit-variance gaussian. (Middle)
Independent component analysis, applied to a linearly transformed factorial
density. After whitening, an additional rotation aligns the source components
with the Cartesian axes of the space. Last, an optional nonlinear marginal
gaussianization can be applied to each component, resulting in a spherical
gaussian. (Right) Radial gaussianization, applied to an elliptically symmetric
nongaussian density, maps the whitened variable to a spherical gaussian.
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Figure 2: Venn diagram of the relationship between density models. The two
circles represent the two primary density classes considered in this article: lin-
early transformed factorial densities and elliptically symmetric densities (ESDs).
The intersection of these two classes is the set of all gaussian densities. The fac-
torial densities (i.e., joint densities whose components are independent) form a
subset of the linearly transformed factorial densities, and the spherically sym-
metric densities (SSDs) form a subset of the ESDs.

where f (·) is a positive-valued generating function satisfying
∫∞

0 f (−r2/2)
rd−1 dr < ∞ (Fang, Kotz, & Ng, 1990). The normalizing constant α is chosen
so that the density integrates to one. For a given matrix �, p( �x) is completely
determined by the generating function f (·). Note that when �x has finite
second-order statistics, the covariance matrix will be a multiple of �. As a
result, when �x is whitened, the density of �xwht is a spherically symmetric
density (SSD, also known as isotropic density), whose level surfaces are
hyperspheres in the d-dimensional space (see the right column in Figure 1).

When the generating function, f , is an exponential, the resulting ESD is
a multivariate gaussian with zero mean and covariance matrix �. The same
gaussian variable �x can also be regarded as a linear transformation of d
independent gaussian components �s = (s1, . . . , sd )T , each of which has zero
mean and unit variance, as �x = �−1/2�s. In general, gaussians are the only
densities that are both elliptically symmetric and linearly decomposable
into independent components (Nash & Klamkin, 1976). In other words,
the gaussian densities correspond to the intersection of the ESDs and the
linearly transformed factorial densities. Restricting this further, a spherical
gaussian is the only density that is both spherically symmetric and factorial
(i.e., with independent components). The relationships of gaussians, ESDs,
and the linearly transformed factorial densities may be summarized with a
Venn diagram, as shown in Figure 2.
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Besides gaussians, the ESD family also includes a variety of known den-
sities and density families. Some of these have heavier tails than gaussians,
such as the multivariate Laplacian, the multivariate Student’s t, and the
multivariate Cauchy. More general leptokurtotic ESD families include the
α-stable variables (Nolan, 2009) and the gaussian scale mixtures (GSM)
(Kingman, 1963; Yao, 1973; Andrews & Mallows, 1974). The ESDs also
include densities with lighter tails than a gaussian, such as the uniform
density over the volume of a d-dimensional hyperellipsoid.

3.2 Linear Dependency Reduction for ESDs. As described in section 2,
linear transforms can be used to remove statistical dependencies of gaus-
sians, as well as the more general class of linearly transformed factorial
densities. But apart from the special case of the gaussian, they cannot elim-
inate the dependencies found in ESDs. Specifically, if �x has an ESD, we
can remove the second-order dependencies of equation 2.2 with a linear
whitening operation, thereby transforming an elliptically symmetric vari-
able to one that is spherically symmetric. But unlike the ICA case, there is
no orthonormal matrix V that can affect the MI of the spherically symmetric
density of �xwht. The reason is simple: p(�xwht) is isotropic (it is a function only
of the vector length ‖�x‖ =

√
�xT �x), and thus the density and its marginals

are invariant under orthonormal linear transformation:

p(V�xwht) = | det (�)|
α

f (−(V�xwht)T (V�xwht)/2)

= 1
α

f (−�xT
whtV

T V�xwht/2) [as VT V = I ]

= 1
α

f (−�xT
wht�xwht/2) = p(�xwht).

Since the MI given in equation 2.1 is a function of the joint and marginal
densities, we conclude that I (V�xwht) = I (�xwht).

3.3 Radial Gaussianization. Given that linear transforms are ineffective
in removing dependencies from the spherically symmetric �xwht (and hence
the original ESD variable �x), we need to consider nonlinear mappings. As
described previously, the gaussian is the only spherically symmetric den-
sity that is also factorial. Thus, given a nongaussian spherically symmetric
variable �xwht, a natural solution for eliminating dependencies is to map it
to a spherical gaussian using a nonlinear function that acts radially, and
thus preserves spherical symmetry. We henceforth term such a transform a
radial gaussianization.

Specifically, we write the radial marginal distribution of the whitened
source variable, r = ‖�xwht‖, in terms of the ESD generating function, f (·),

pr (r ) = rd−1

β
f (−r2/2),
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where β is the normalizing constant that ensures that the density integrates
to one. As a special case, the radial marginal distribution of a spherical
gaussian density with unit component variance is a chi density with d
degrees of freedom:

pχ (r ) = rd−1

2d/2−1�(d/2)
exp(−r2/2),

where �(·) is the standard gamma function.
The unique monotonic and differentiable function that transforms a ran-

dom variable with distribution pr to one with distribution pχ is the compo-
sition of the inverse cumulative density function of pχ with the cumulative
density function of pr (Casella & Berger, 2001):

g(r ) = F −1
χ Fr (r ).

We define the RG transformation as4 as

�xrg = g(‖�xwht‖)
‖�xwht‖ · �xwht. (3.1)

In practice, the radial marginal of the source density may be estimated
using a binned histogram. An example of the RG procedure is illustrated
in Figure 3, for the case of a spherically symmetric 2D Student’s t variable
(see appendix C for a definition).

3.4 RG for General Signal Models. If �x is not an elliptically symmetric
variable, applying RG may not completely eliminate the higher-order de-
pendencies. We can quantify this by reexamining the decomposition of MI
in equation 2.2, assuming a whitened source where the second-order terms
have been eliminated:

I ( �x) = DKL(p( �x)‖ G( �x)) −
d∑

k=1

DKL(p(xk)‖ G(xk)). (3.2)

4Note that equation 3.1 is not the only transform that maps SSD �xwht to a spherical
gaussian. Any function of the form

g(‖�xwht‖)
‖�xwht‖

· V�xwht,

where V is an orthonormal matrix, can achieve the same result. The solution of equation 3.1
is the one that causes the least distortion in that it minimizes the Euclidean distortion
between �xrg and �xwht.
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Figure 3: Radial gaussianization procedure, illustrated for two-dimensional
variables. Joint densities of (a) a spherical gaussian and (b) a nongaussian SSD
(multivariate Student’s t). Plotted levels are chosen such that a spherical gaus-
sian has equal-spaced contours. (b,f) Radial marginal densities of the joint gaus-
sian and SSD densities in a,e, respectively. Shaded regions correspond to shaded
annuli. (c) Radial map of the RG transform. (d) Log marginal densities of the
joint gaussian (dashed line) and SSD (solid line) densities.

We express �x in generalized polar coordinates as �x = r · �u, where r = ‖�x‖
and �u is a unit vector. For spherically symmetric densities, p( �x) = pr (r )U(�u),
where U(�u) denotes a uniform density on the surface of the d-dimensional
unit hypersphere. The first term of the MI expression of equation 3.2 may
be written in polar form:

DKL(p( �x)‖ N ( �x)) =
∫

�x
p( �x) log

p( �x)
G( �x)

d �x

=
∫

r,�u
p(r, �u) log

p(r, �u)
G(r, �u)

drd�u

=
∫

r
pr (r ) log

pr (r )
pχ (r )

dr +
∫

r,�u
p(r, �u) log

p(�u | r )
U(�u)

drd�u.

Substituting this back into equation 3.2 gives

I ( �x) = DKL(pr (r )‖ pχ (r )) +
〈
log

p(�u | r )
U(�u)

〉
�x

−
d∑

k=1

DKL(p(xk)‖ G(xk)). (3.3)
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The RG operation eliminates the first term in equation 3.3. When p( �x) is
spherically symmetric, the second term is zero since the conditional density
of �u given r is U(�u). Finally, the last term will also be zero for spherical
sources, since RG ensures that the joint density is a spherical gaussian, and
thus that the marginals will be gaussian with unit variance.

For general whitened sources, the second term of equation 3.3 is
typically nonzero but is not affected by a radial transform such as RG. On
the other hand, the RG operation may actually increase the last term. When
the density is close to spherically symmetric, the increase in the last term is
likely to be smaller than the reduction resulting from the elimination of the
first term, and thus RG may still achieve a reduction in multi-information.
But for densities that are close to factorial, RG can result in a net increase
in MI (and thus the statistical dependency) in the transformed variables.

Summarizing, ICA and RG are two different procedures for dependency
elimination, developed for two complementary generalizations of the gaus-
sian source model, as illustrated in Figure 2. Each can be optimized for, and
will be effective in eliminating dependencies of, data drawn from the cor-
responding source model. A natural question then arises: How relevant
is the elliptically symmetric family (and the RG transformation) for real-
world signals? In the next section, we examine this question in the context
of natural images.

4 Local Image Statistics

The characterization of statistical properties of images is of central im-
portance in solving problems in image processing and in understanding
the design and functionality of biological visual systems. The problem has
been studied for more than 50 years (see Ruderman, 1996, or Simoncelli &
Olshausen, 2001, for reviews). Early analysis, developed in the television
engineering community, concentrated on second-order characterization, or
gaussian models, of local pixel statistics. Specifically, if one assumes transla-
tion invariance (stationary), then the Fourier basis diagonalizes the covari-
ance matrix of pixel intensities, and thus provides principal components
for image intensities (see section 2.2). This fact underlies the popularity of
frequency domain analysis in early image statistics research.

Starting in the 1980s, researchers began to notice striking nongaussian
behaviors of bandpass filter responses (Burt & Adelson, 1981; Field, 1987;
Mallat, 1989), and this led to an influential set of results obtained by using
newly developed ICA and related methodologies to exploit these behav-
iors (Olshausen & Field, 1996; van der Schaaf & van Hateren, 1996; Bell &
Sejnowski, 1997). These analyses generally produced basis sets containing
oriented filters of different sizes with frequency bandwidths of roughly 1 oc-
tave. The nature of these results was widely hailed as a confirmation of cen-
tral hypotheses that had become standard in both scientific and engineering
communities. Specifically, the biological vision community had discovered
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neurons in the primary visual cortex of mammals whose primary response
behaviors could be approximated by oriented bandpass filters, and these
were hypothesized to have been developed under evolutionary pressure
as an efficient means of representing the visual environment (Barlow, 1961;
Field, 1987). On the other hand, the computer vision and image processing
communities (partly motivated by the biological observations and partly
by a desire to capture image features such as object boundaries) advocated
the use of banks of oriented bandpass filters for representation and analysis
of image data (Granlund, 1978; Koenderink, 1984; Adelson, Simoncelli, &
Hingorani, 1987; Mallat, 1989).

Despite the success of ICA methods in providing a fundamental moti-
vation for the use of oriented bandpass filters, there are a number of simple
observations that indicate inconsistencies in the interpretation.

� From a biological perspective, it seems odd that the analysis produces
a solution that seems to bypass the retina and the lateral geniculate
nucleus (LGN), two stages of processing that precede visual cortex
and exhibit significant nonlinear behaviors in their own responses.
Linear approximations of the response properties of these neurons
are isotropic (i.e., nonoriented) bandpass filters. If the optimal de-
composition for eliminating dependencies is an oriented bandpass
filter, why do we not see these in retina or LGN?

� The responses of spatially proximal-oriented bandpass filters (includ-
ing ICA filters) exhibit striking dependencies, in which the variance
of one filter response can be predicted from the amplitude of another
nearby filter response (Simoncelli, 1997; Buccigrossi & Simoncelli,
1999). This suggests that although the marginal responses are heavy-
tailed, the joint responses are not consistent with the factorial source
model assumed by ICA.

� A related observation is that the marginal distributions of a wide va-
riety of bandpass filters (even a “filter” with randomly selected zero-
mean weights) are all highly kurtotic (Baddeley, 1996). This would
not be expected for the ICA source model: projecting the local data
onto a random direction should result in a density that becomes more
gaussian as the neighborhood size increases, in accordance with a
generalized version of the central limit theorem (Feller, 1968; see
section 4.1.2).

� Recent quantitative studies (Bethge, 2006) further show that the ori-
ented bandpass filters obtained through ICA optimization lead to
a surprisingly small improvement in terms of reduction in multi-
information (MI) relative to second-order decorrelation methods such
as PCA.

Taken altogether, these observations suggest that the linearly transformed
factorial model underlying ICA is not a good description of local statistics
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of natural images, and thus the ICA decomposition is perhaps not as ideally
suited for image representation as initially believed.

On the other hand, there is substantial empirical evidence (along with
associated modeling efforts) indicating that local joint densities of images
are approximately elliptically symmetric. This was first noted with regard
to pairwise joint statistics of Gabor filters of differing phase (Wegmann
& Zetzsche, 1990), and later extended to filters at nearby positions, ori-
entations and scales (Zetzsche & Krieger, 1999; Wainwright & Simoncelli,
2000). As a result, many recent models of local image statistics are mem-
bers of the elliptically symmetric family (Zetzsche & Krieger, 1999; Huang
& Mumford, 1999; Wainwright & Simoncelli, 2000; Hyvärinen et al., 2001;
Parra et al., 2001; Srivastava et al., 2002; Sendur & Selesnick, 2002; Portilla
et al., 2003; Teh et al., 2003; Gehler & Welling, 2006). This suggests that
radial gaussianization may be an appropriate methodology for eliminating
statistical dependencies in local image regions. In this section, we examine
this hypothesis empirically by first testing the local statistics of bandpass
filter responses for ellipticity and then comparing the reduction in MI that
is obtained using PCA, ICA, and RG.

4.1 Elliptical Symmetry of Local Image Statistics. In order to examine
the elliptical properties of image statistics, we use a calibrated test set of
gray-scale images whose pixel values are linear with light intensity (van
Hateren & Ruderman, 1998). All images are preprocessed by first taking
the log, and then removing the local mean by convolution with a bandpass
filter that subtracts from each pixel the mean value over the surrounding
block, as in Ruderman and Bialek (1994).

4.1.1 Elliptical Symmetry of Pairwise Pixels Densities. We first examine the
statistical properties of pairs of bandpass filter responses with different
spatial separations. The two-dimensional densities of such pairs are easy to
visualize and can serve as an intuitive reference when we later extend to
the pixel blocks.

The top row of Figure 4 shows example contour plots of the joint his-
tograms obtained from a test image. Consistent with previous empirical
observations (Wegmann & Zetzsche, 1990; Wainwright & Simoncelli, 2000),
the joint densities are nongaussian, with roughly elliptical contours for
nearby pairs. For pairs that are distant, both the second-order correlation
and the higher-order dependency become weaker, and the corresponding
joint histograms show more resemblance to the factorial product of two
one-dimensional supergaussian densities, as would be expected for inde-
pendent random variables.

The second row in Figure 4 shows the ICA-transformed pairs. The ICA
transform was computed using the RADICAL algorithm (Learned-Miller
& Fisher, 2000), an implementation that directly optimizes the MI using
a smoothed grid search over a nonparametric estimate of entropy. Note
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Figure 4: Joint histograms of pairs of samples from transformed images, at
three different spatial separations. Lines indicate level sets of constant proba-
bility, chosen such that a gaussian density will have equispaced contours. Data
taken from a single test image. RAW: original bandpass filtered image. ICA:
data after ICA transformation. SPH: sphericalized synthetic data (randomized
directions). FAC: factorialized synthetic data (independently sampled marginal
components). KURT: kurtosis of marginal density, as as function of marginal
direction, for RAW (thin line), SPH (dashed line), and FAC (thick line) data.
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that for adjacent pairs, the transformed density is far from factorial: it has
contours that are approximately circular. It is also not a spherical gaussian,
which can be seen from the irregular spacing of the contours (plots are
drawn such that gaussian contours will be equispaced). Since the spher-
ical gaussian is the only density that is both spherically symmetric and
completely factorized (see section 3.1), we can conclude that ICA has not
succeeded in removing the higher-order dependencies in the pairs. On the
other hand, for pairs that are farther apart, the raw density is closer to
factorial and remains relatively unchanged by the ICA transformation.

Next, we compare the distributions of the ICA-transformed pairs with
those drawn from synthesized data with related spherically symmetric or
complete factorial distributions. Shown in the third row of Figure 4 are
histograms of synthetic 2D samples, generated by assigning a random ori-
entation to each ICA-transformed data pair. The resulting samples are (by
construction) spherically symmetric, with the same radial marginal as the
ICA-transformed pairs. Shown in the fourth row are histograms of synthetic
2D samples, generated by resampling each of the two components indepen-
dently from the component marginals of the ICA-transformed pairs. The re-
sulting density is factorial (again, by construction), with the same marginal
densities as the ICA-transformed pairs. Comparing the histograms in the
second row to those in the third and fourth, we see that the densities of the
ICA-transformed adjacent pairs are much more similar to the spherically
symmetric density than the factorial density. As the separation increases,
the ICA-transformed density becomes less circular and starts to resemble
the factorial density.

The isotropy of the 2D joint densities shown in Figure 4 can be further
illustrated by measuring the sample kurtosis of marginal projections in
different directions.5 The last row of Figure 4 shows the kurtosis of the ICA-
transformed pairs plotted as a function of marginalization direction. For
the spherically symmetric densities of the third row, the marginal sample
kurtosis is constant with respect to marginalization direction, apart from
fluctuations due to estimation errors from finite sampling. In contrast, the
kurtosis of the factorial density shows significantly more variation with
marginalization direction.6 The kurtosis of the ICA-transformed adjacent
pairs is clearly seen to be better approximated by that of the spherically
symmetric density than the factorial density. As the distance increases,
the kurtosis of the ICA-transformed pairs fluctuates more and begins to
resemble that of the factorial density, indicating that the two components
are becoming less dependent.

5We define kurtosis as the ratio between the fourth-order centered moments and the
squared second-order centered moment (i.e., variances): κ(x) = E{(x − E(x))4}/(E{(x −
E(x))2})2. With this definition, a gaussian density has kurtosis of 3.

6Note that the ICA transformation on pairs results in slightly different marginal statis-
tics depending on the separation d, resulting in slightly different kurtosis behavior.
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4.1.2 Elliptical Symmetry of Joint Density of Pixel Blocks. The analysis of
the previous section indicates that pairs of spatially proximal bandpass
coefficients have approximately spherically symmetric joint densities af-
ter whitening. But this does not necessarily guarantee that the densities of
blocks of whitened coefficients are also spherically symmetric. There have
been relatively few experimental explorations of the joint statistics of coef-
ficient blocks, perhaps because the high dimensionality prohibits the direct
visualization that is achievable in the case of pixel pairs. In order to assess
spherical symmetry, we examine the distribution of kurtosis values for a
large set of random projections.7 If the joint density has spherical symmetry,
then the kurtosis (and all other statistics) should be identical for marginals
along any direction, and their distribution over random projections should
be highly concentrated around the mean value, with variance due to with
variability arising only from the computation from finite samples. On the
other hand, for a nongaussian factorial density with identical marginals,
such higher-order statistics will vary depending on how close a randomly
chosen projection direction is to one of the cardinal axes (the independent
components). The distribution of kurtosis over random projections in this
case will be spread more widely. We can thus use such a distribution of
kurtoisis as an indicator of the spherical symmetry of the joint density in
the high-dimensional space.

Shown in Figure 5 are distributions of kurtosis of 105 × b2 random pro-
jections of ICA-transformed b × b blocks of bandpass-filtered images. In
this case, ICA is implemented with the FastICA (Hyvärinen, 1999), which
is more efficient and reliable for data of more than a few dimensions.
Specifically, we used contrast function g(u) = 1 − exp(−u2), and the op-
timization was done using the symmetric approach. The factor of b2 in
the number of sampled projections compensates for the expected increase
in sampling-induced variability that arises as the block size increases. In
each plot, the thin curves correspond to the ICA-transformed bandpass fil-
tered pixel blocks. As in the pairwise case, the dashed curves are computed
on samples from a synthetic sphericalized data set with radial distribution
matching the original data, and the thick curves are computed on a synthetic
factorial data set with marginal distributions matching the original data.

We can use these distributions of kurtosis as an indicator of the spherical
symmetry of the underlying joint density. Specifically, the mean of these
distributions is the average kurtosis over all marginals and can be taken as a
measure of the gaussianity of “typical” projections of the data. The width of
the distributions is determined by differences in the kurtosis of the marginal
projections along different directions, as well as variability that arises from
the estimation of kurtosis from finite samples. This latter component of

7A more sophisticated hypothesis test of elliptical symmetry using higher-order statis-
tics was proposed in Manzotti, Pérez, and Quiroz (2002), but we have chosen to use the
more intuitive approach of comparing kurtosis distributions.
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Figure 5: Histograms of kurtosis values for ICA transformed pixel blocks (thin),
sphericalized synthetic data (dashed), and factorialized synthetic data (thick).
Data are taken from a set of 10 images.

the variability may be seen directly in the distributions corresponding to
the sphericalized data in Figure 5. Since these distributions are spherically
symmetric by construction, all variability is due to sampling.

Consider the distributions corresponding to the factorialized data. For
small block sizes, the kurtosis varies substantially, ranging from roughly
5 to 16. The large values correspond to marginal directions that are well
aligned with one of the cardinal axes. The smaller values correspond to
marginal directions that are poorly aligned with the cardinal axes (e.g.,
the marginal along the direction [1, 1, . . . , 1]/

√
N), and thus are averaging

together the independent marginal variables. These averages tend to be
significantly more gaussian than the distributions along the cardinal axes.8

As the block size grows, alignment with the cardinal axes becomes rarer,
and the distribution becomes more concentrated toward three (the value
one expects for a gaussian).

8This is expected from an extension of the central limit theorem, which states that
random linear combinations of independent random variables tend toward a gaussian
(Feller, 1968). It is also the justification for most ICA algorithms, which search for the most
nongaussian marginals.
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Now consider the distributions of kurtosis for the ICA-transformed pixel
blocks (black dashed curves). For all block sizes, they have a mean that is
similar to that of the data from a spherically symmetric joint density, but
consistently and substantially larger than that of the data from a factorial
density. We also see that the distribution is not quite as concentrated as that
of the corresponding spherically symmetric density. Thus, there is some
variation in kurtosis that cannot be attributed to sampling, implying that
the underlying densities for the pixel blocks are not perfectly spherically
symmetric.

4.2 Dependency Reduction with RG. Empirical results in the previous
section suggest that local joint densities of bandpass filter responses are
closer to elliptical than factorial; thus, RG is likely to be more effective in
reducing their statistical dependencies than linear transforms such as PCA
and ICA. In this section, we test this assertion directly.

In order to implement RG, we estimate the radial marginal density of
the whitened data. From a set of whitened training data { �x1, . . . , �xn}, a
trapezoidal approximation of Fr , F̂ r , is obtained as follows. First, we reorder
the training data into { �xi1 , . . . , �xin}, such that ‖�xi1‖ ≤ · · · ≤ ‖�xin‖. Then F̂ r is
computed as

F̂ r (r ) =




0 r ≤ ∥∥ �xi1

∥∥
k
n

k = argmax j

{
j |∥∥ �xi j

∥∥ ≤ r
}
.

1
∥∥ �xin

∥∥ ≤ r

In practice, if n is sufficiently large, the obtained F̂ r (r ) will be smooth and
a good approximation of Fr (r ). A nonparametric estimation of Fχ (r ), F̂ χ (r )
can be obtained similarly by generating a set of spherical gaussian samples
of the same dimensionality. From F̂ χ (r ) and F̂ r (r ), a lookup table can be
constructed with proper interpolation, as ĝ(r ) = F̂ −1

χ F̂ r (r ), to approximate
the continuous function g(r ). It is also possible, though not necessary, to fit
it with piece-wise smooth functions (e.g., splines).

4.2.1 MI Reduction for Pixel Pairs. We begin by comparing the reduction
of statistical dependency in pairs using each of the methods described
previously. We estimated the MI for �xraw, �xwht, �xica, and �xrg on pairs of
bandpass filter responses separated by distances ranging from 1 to 35
samples. Here, the MI was computed using a recent nonparametric method
based on the order statistics (Kraskov, Stögbauer, & Grassberger, 2004).
This approach belongs to the class of “binless” estimator of entropy and
mutual information, which alleviates the strong bias and variance intrinsic
to the more traditional binning (i.e., “plug-in”) estimators. It is especially
effective in this particular case, where the data dimension is two.
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Figure 6: Multi-information for original bandpass filtered pixel pairs (dashed
line), compared with PCA (top of gray region), ICA (bottom of gray region) and
RG (solid line) transformations. All values are averages over 10 images.

The results, averaged over ten images, are plotted in Figure 6. First, we
note that PCA produces a relatively modest reduction in MI: roughly 20%
for small separations, decreasing gradually for larger separations. More
surprisingly, ICA offers no additional reduction for small separations and
a relatively modest improvement for separations of between 12 and 32
samples. This is consistent with the histograms and kurtosis analysis shown
in Figure 4, which suggest that the joint density of adjacent pairs has roughly
elliptical contours. As such, we should not expect ICA to provide much
improvement beyond what is obtained with a whitening step.

The behavior for distant pairs is also consistent with the results shown in
Figure 4. These densities are roughly factorial and thus require no further
transformation to reduce MI. So ICA again provides a very small reduc-
tion, as is seen in the plots of Figure 6 for separations beyond 32 samples.
The behavior for intermediate separations indicates that in the transition
from spherically symmetric density to more factorial density, there is a range
where ICA can result in a reduction in MI (e.g., middle columns of Figure 4).

In comparison to PCA and ICA, the nonlinear RG transformation
achieves an impressive reduction (nearly 100%) in MI for pairs separated by
fewer than 16 samples. Beyond that distance, the joint densities are closer to
factorial, and RG can actually make the pairs more dependent, as indicated
by an increase in MI.

4.2.2 MI Reduction for Pixel Blocks. In the next set of experiments, we gen-
eralize our analysis to examine the effects of RG in reducing dependencies
within pixel blocks. As with the kurtosis analyses of the previous section,
the generalization from pairs to blocks is more difficult computationally.
Specifically, direct estimation of the MI of pixel blocks becomes increas-
ingly difficult (and less accurate) as the block size grows. This problem may
be partially alleviated by instead evaluating and comparing differences
in MI between different transforms (Bethge, 2006). Details are provided in
appendix B.
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Figure 7: Comparison of reduction of MI achieved by ICA and RG against
that achieved by ICA, for pixel blocks of four different sizes. Each symbol
corresponds to a result from one image in our test set. Pluses denote �Irg , and
circles denote �Iica .

For the sake of comparison, we use �Ipca = I (�xraw) − I (�xpca ) as a ref-
erence value and compare this with �Iica = I (�xraw) − I (�xica ) and �Irg =
I (�xraw) − I (�xrg). Shown in Figure 7 are scatter plots of �Ipca versus �Iica

and �Irg for various block sizes. Each point corresponds to MI computation
over blocks from one of eight bandpass-filtered test images. As previously,
the ICA algorithm was implemented with FastICA.

As shown in Figure 7, for small block sizes (e.g., 3 × 3), RG achieves
a significant reduction in MI, whereas ICA shows only a small improve-
ment over PCA. Since PCA-based whitening is usually used as a prepro-
cessing step for ICA, this suggests that the ICA algorithm does not offer
much advantage over second-order decorrelation algorithms such as PCA,
which may be attributed to the fact that the joint density for local pixel
blocks is roughly elliptical. It also suggests that the amount of higher-order
dependency in these blocks is significant compared to the second-order
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correlations measured by the MI reduction of PCA. Similar results have
been obtained with a slightly different method of removing the mean values
of each block (Bethge, 2006). On the other hand, as the block size increases,
the advantage of RG in reducing statistical dependency fades, consistent
with the fact that the pairwise densities for coefficients become less de-
pendent as their separation increases, and thus the multidimensional joint
density of larger blocks will tend to deviate more from being elliptically
symmetric.

5 Relationship to Divisive Normalization

In recent years, a local gain control model, known as divisive normaliza-
tion (DN), has become popular for modeling biological vision. In DN,
responses of a bandpass filter are divided by a Minkowski combination
of a cluster of neighboring response amplitudes. This type of model has
been used to explain nonlinearities in the responses of mammalian corti-
cal neurons (Heeger, 1992; Geisler & Albrecht, 1992) and nonlinear mask-
ing phenomenon in human visual perception (Foley, 1994; Teo & Heeger,
1994; Watson & Solomon, 1997). Empirically, it has been shown that locally
dividing bandpass-filtered pixels by local standard deviation can produce
approximately gaussian marginal distributions (Ruderman, 1996) and that
a weighted DN nonlinearity can reduce statistical dependencies of oriented
bandpass filter responses (Simoncelli, 1997; Buccigrossi & Simoncelli, 1999;
Schwartz & Simoncelli, 2001; Valerio & Navarro, 2003). Recently, several au-
thors have developed invertible image transformations that incorporate DN
(Malo et al., 2000; Malo, Epifanio, Navarro, & Simoncelli, 2006; Gluckman,
2006; Lyu & Simoncelli, 2007). Since DN provides a nonlinear means of
reducing dependencies in bandpass representations of images, it is natural
to ask how it is related to the RG methodology introduced in this article.

Given decorrelated input variable �x ∈ Rd , we define the DN transform
as (Simoncelli, 1997):

(�xdn)i = xi(
b +∑

j c j x2
j

)1/2 , for i = 1, . . . , d,

where ci and b are the transform parameters.9 When the weights are all
identical (ci = c,∀i), for example, as a result of whitening, DN becomes a

9For biological modeling, the DN transform is sometimes defined with squared nu-
merator and denominator: ( �Xdn)i = sign(xi )�xi �2

b+∑ j c j x2
j

(Schwartz & Simoncelli, 2001). Note that
�Xdn can be mapped to �xdn, and vice versa, using a point-wise operation. As MI is not
affected by point-wise operations, we may choose either for the analysis of dependency
reduction.
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radial transform:

�xdn = gdn(‖�xwht‖)
�xwht

‖�xwht‖ , (5.1)

where

gdn(r ) = r√
b + cr2

, (5.2)

with scalars b and c as transform parameters.
In practice, the transform parameters in the DN transform are learned

from a set of data samples. Previously this parameter learning problem was
formulated to maximize likelihood, where specific marginals were assumed
for �xdn (Schwartz & Simoncelli, 2001; Wainwright et al., 2002). In this work,
we employ an alternative learning scheme that explicitly optimizes the DN
parameters to reduce MI. Specifically, we optimize the difference in MI from
whitened input data �xwht to the DN transformed data �xdn:

�I = I (�xwht) − I (�xdn) =
d∑

i=1

H((�xwht)i ) −
d∑

i=1

H((�xdn)i )

+
〈
log

∣∣∣∣det
(

∂�xdn

∂�xwht

)∣∣∣∣
〉

�xwht

. (5.3)

Note that
∑d

i=1 H((�xwht)i ) is a constant with regard to the DN parameters,
and the Jacobian of DN transform is given as

det
(

∂�xdn

∂�xwht

)
= b

(b + cr2)d/2+1 ,

where r = ‖�xwht‖ (see appendix A), and the optimization is reduced to

argmax
b,c

{
−

d∑
i=1

H((�xdn)i ) + log b − (d/2 + 1)〈log(b + cr2)〉r

}
. (5.4)

We then use a grid search to find the values of {b, c} that maximize equa-
tion 5.4, where the expectation over r is replaced by averaging over train-
ing data and the entropy H((�xdn)i ) is computed using a nonparametric
m-spacing estimator (see section B.1).

Figure 8 shows two comparisons of RG and optimal DN transformations.
The first shows results obtained by optimizing over 105 25-dimensional
multivariate Student’s t samples. The multivariate Student’s t density is a
member of the elliptically symmetric family, and its MI can be computed
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Figure 8: Comparison of radial transforms corresponding to RG (solid line)
and DN (dashed line), each optimized to minimize MI for 105 samples of a
25-dimensional spherical Student’s t density (left), and 5 × 5 pixel blocks taken
from one bandpass-filtered test image (right). Average MI reduction is indicated
for each transform.

in closed form (see appendix C). Note that for relatively small values of r ,
the DN radial map closely approximates the RG radial transform. But we
also see that the DN radial transform saturates at large values, while the RG
radial transform continues to increase. Finally, note that DN eliminates a bit
more than half of the MI, whereas RG eliminates nearly all of it. The right
side of Figure 8 shows a comparison of RG and DN applied to one image
in the van Hateren database. Similar to the case of multivariate Student’s t,
the DN radial transform approximates the RG radial transform and reduces
a substantial fraction of the MI. Nevertheless, it falls significantly short of
the performance of the RG transform.

Finally, we note that the functional form of the DN transform suggests
that it cannot fully remove the dependencies of spherically symmetric den-
sities. Specifically, the radial transform in RG, g(·), must have as its range
the entire half-interval [0,∞) since the support of the target χ-distribution
is [0,∞). On the other hand, the radial DN transform, expressed in equa-
tion 5.2, saturates at a value of 1/

√
c for large values of r .

6 Discussion

We have introduced a new form of nonlinear statistically adaptive signal
transformation, radial gaussianization (RG), which is designed to remove
dependencies in signals drawn from elliptically symmetric densities (ESDs).
The RG methodology is complementary to that of ICA, which is effective in
removing statistical dependencies for linear transformation of independent
sources but ineffective for ESDs. An important aspect of our development of
this methodology is the emphasis on source models. The RG transformation
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may be applied to data from any source, but it is guaranteed to produce
independent responses only when the source is elliptically symmetric, and
it may actually increase dependencies of certain class of source models.

Several other nonlinear methods for dependency elimination may be
found in the literature. In particular, ICA has been generalized to allow
nonlinear transformations (Hyvärinen & Pajunen, 1999), and RG may be
viewed as a special case of this generalization. On the other hand, kernel
PCA (Mika et al., 1999) may be viewed as a nonlinear gaussianization of
a signal (although it not usually formulated in this way), followed by a
PCA step to remove any remaining dependencies. Although the concepts
underlying nonlinear ICA and kernel PCA are quite appealing, success re-
lies on choosing the right nonlinear map or kernel function, which is quite
difficult in practice if one does not know the source model. RG, by com-
parison, is designed for a specific family of source densities, for which it
is guaranteed to work. Chen and Gopinath (2000) proposed an iterative
scheme that alternates between ICA and marginal gaussianization trans-
formations. Although this method is guaranteed to transform any source
density into a spherical gaussian, the overall transformation is a composi-
tion of the iterated alternating sequence of linear transforms and marginal
nonlinearities and is difficult to interpret due to substantial distortion of
the original source space. This would be especially true for the case of el-
liptically symmetric sources, for which RG provides an efficient one-step
procedure.

In the second half of this article, we demonstrated the use of RG on gray-
scale natural image data, where we found it highly effective in removing
dependencies within local blocks of bandpass filtered images. This depen-
dency reduction greatly surpasses that of ICA, which is only slightly more
effective than PCA. These results are complementary to a number of recent
observations in the literature regarding statistical properties of images. As
mentioned previously, the fact that marginal densities of all local zero-mean
filter responses (even random filters) are highly kurtotic (Baddeley, 1996) is
consistent with an ESD description. Several authors have noted that spher-
ical symmetry of local image densities arises naturally from local oriented
image features that occur with arbitrary phases or angles (Zetzsche & Barth,
1990; Kohonen, 1996; Zetzsche & Krieger, 1999; Parra et al., 2001), and these
concepts have been incorporated in some recent approaches for unsuper-
vised learning of local image structures. Specifically, independent subspace
analysis (Hyvärinen & Hoyer, 2000), topographical ICA (Hyvärinen et al.,
2001), and hierarchical ICA models (Karklin & Lewicki, 2005; Shan, Zhang,
& Cottrell, 2007) all assume that image data are generated from linearly
transformed densities that are formed by combining clusters of variables
whose dependency cannot be further reduced by linear transformation. In
all these cases, we expect that the densities of these local clusters are ap-
proximately elliptical, in which case the RG framework should be relevant
for eliminating the dependencies captured by these generative models.
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Finally, we note that similar statistical behaviors have been observed in
sound signals (Schwartz & Simoncelli, 2001; Turner & Sahani, 2008), and
our preliminary investigation indicates that RG is also effective in removing
dependencies in those signals (Lyu & Simoncelli, 2009).

A number of extensions of RG are worth considering in the context of
image representation. First, in the examples shown here, we have estimated
the optimal RG transformation nonparametrically from sample data. It is
worth asking whether there are specific subfamilies of ESD for which this
nonlinear transformation may be expressed in closed form. Second, we
have seen that RG nearly eliminates the multi-information within small
blocks, but that performance worsens as the block size increases. This is ex-
pected. As noted earlier, distant samples are nearly independent, and thus
(since they are marginally nongaussian) are not well described by ESDs.
As such, the RG solution does not provide a global solution for remov-
ing dependencies from images. One possible solution is to assume that the
image density can be partitioned into independent elliptically symmetric
subspaces (Hyvärinen & Hoyer, 2000; Wainwright, Simoncelli, & Willsky,
2001). Alternatively, one could try to develop a more flexible model that
transitions naturally from the ESD to the ICA model. One natural means of
achieving this is to use the local ESD description as a basis for constructing
a Markov random field, which can naturally exhibit local elliptical sym-
metry and (implicitly defined) dependencies that fade with distance (Lyu
& Simoncelli, 2009a). And third, since the RG methodology generates re-
sponses with much less dependency than the input, it provides an approxi-
mate solution to the efficient coding problem in the noise-free case (Barlow,
1961; Dayan & Abbott, 2001; Simoncelli & Olshausen, 2001). A worthwhile
avenue for future investigation is to examine how the solution would be
affected by the incorporation of sensor or channel noise (Zhaoping, 2006).
Although RG is unlikely to remain optimal in the presence of channel noise,
we expect that a globally extended RG transform might still be effective for
image compression. In previous work, we found that divisively normalized
representations can produce improvements in the rate-distortion trade-off
(for MSE and in terms of visual quality) compared with their linear coun-
terparts (Lyu & Simoncelli, 2007).

The results presented in this article may also be interpreted in the context
of biological sensory systems. RG requires an initial whitening transform,
and a natural choice10 results in local center-surround filters. In addition,
we’ve shown that the optimal nonlinear radial transformation is similar to
the gain control operations that have been used to model the response prop-
erties of mammalian visual neurons in retina (Shapley & Enroth-Cugell,

10The whitening transformation is not unique, but it is common to select the one
corresponding to a symmetric matrix transformation, which minimizes the distortion
induced by the transformation (Atick & Redlich, 1990).
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1984), LGN (Mante, Bonin, & Carandini, 2008), and primary visual cortex
(Heeger, 1992; Geisler & Albrecht, 1992). Thus, it seems that the RG transfor-
mation on images is most readily identified with the functional processing
of center-surround cells in the mammalian retina (e.g., the “parasol” cells
in macaque monkey). This is also sensible from a normative perspective:
the axons of these cells (along with other ganglion cell classes) make up the
optic nerve, which is a bottleneck for visual information that is transmitted
to the brain and has presumably been under evolutionary pressure to max-
imize information transmission (Srinivasan, Laughlin, & Dubs, 1982; Atick
& Redlich, 1990), and the solution in the noise-free case should generate
independent responses. The RG methodology may seem at first inconsis-
tent with this interpretation, since RG outputs are (ideally) zero-mean and
gaussian, whereas ganglion cell responses (specifically, firing rates) are pos-
itive and typically heavy-tailed. But note that the RG transformation can
be followed by a nonlinear marginal operation that serves to rectify and
sparsify the responses without altering the dependency reduction.11

Finally, while we have argued that RG is a better methodology for elimi-
nating local dependencies in natural images than ICA and that it provides a
normative explanation for both linear and nonlinear aspects of retinal pro-
cessing, we have lost the best-known benefit arising from ICA (and related
sparse coding methods): an explanation for oriented receptive fields found
in primary visual cortical neurons (e.g., Olshausen & Field, 1996, 1997; Bell
& Sejnowski, 1997; van Hateren & Ruderman, 1998; Hyvärinen & Hoyer,
2000; Hyvärinen, Hurri, & Väyrynen, 2003). It is important to recognize that
despite its effectiveness, RG does not eliminate all dependencies from im-
ages. For example, an RG transformation based on isotropic filters cannot
eliminate local orientation structure in images. Preliminary observations
indicate that the statistics of images that have been processed using local
RG transformations contain higher-order statistical regularities and that
oriented receptive fields can emerge from ICA or sparse coding analyses of
these signals.

Appendix A: Jacobian of Radial Transform

In this appendix, we derive the Jacobian of a radial transform as used
in equation 3.1. Denote �y = g(‖�x‖) �x

‖�x‖ ; we would like to compute det( ∂�y
∂�x ).

11Indeed, a noise-free formulation of efficient coding dictates that the responses, in
addition to being independent, should have marginal distributions that maximize in-
formation transmission subject to response constraints. For example, if one assumes a
metabolically motivated limit on mean firing rate, then the marginal response distribu-
tion should be exponential (Baddeley, 1996; Dayan & Abbott, 2001).
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Defining ( ∂�y
∂�x )i j ≡ ∂yi

∂xj
, we have

∂yi

∂xj
= ∂

∂xj

[
g(‖�x‖)

xi

‖�x‖
]

= δi j
g(‖�x‖)
‖�x‖ + xi

∂‖�x‖
∂xj

[
g′(‖�x‖)

‖�x‖ − g(‖�x‖)
‖�x‖2

]

= δi j
g(‖�x‖)
‖�x‖ + xi xj

‖�x‖
[

g′(‖�x‖)
‖�x‖ − g(‖�x‖)

‖�x‖2

]
,

where δi j is the Kronecker delta function. Rewriting in matrix form and
defining r = ‖�x‖, we have

∂�y
∂�x = g(r )

r
Id +

[
g′(r )
r2 − g(r )

r3

]
�x�xT ,

where Id is a d-dimensional identity matrix. Using the identity det(a Id +
b�x�xT ) = ad−1(a + b�xT �x) (Abadir & Magnus, 2005), we can rewrite the de-
terminant of ∂�y

∂�x as

det
(

∂�y
∂�x
)

=
(

g(r )
r

)d−1 [g(r )
r

+
[

g′(r )
r2 − g(r )

r3

]
�xT �x

]

=
(

g(r )
r

)d−1 [g(r )
r

+
[

g′(r )
r2 − g(r )

r3

]
r2
]

= g′(r )
(

g(r )
r

)d−1

. (A.1)

For the DN radial transform of equation 5.1, in which g has the form of
equation 5.2, a simple substitution of equation A.1 yields equation 5.3.

Appendix B: Computing Differences in Multi-Information

Direct estimation or optimization of multi-information (MI) is problematic
for high-dimensional data. In our experiments, we do not need to compute
the MI directly, only the reduction of MI that is achieved by each transfor-
mation. Therefore, we compute the difference in MI between raw data and
transformed data. For an invertible transform φ : Rd �→ Rd , the change in
MI from �x to �y = φ(�x) is computed as

�I = I (�x) − I (�y)

=
d∑

i=1

H(xi ) − H(�x) −
[

d∑
i=1

H(yi ) − H(�y)

]
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=
d∑

i=1

H(xi ) −
d∑

i=1

H(yi ) −
∫

�y
p(�y) log p(�y)d�y − H(�x)

=
d∑

i=1

H(xi ) −
d∑

i=1

H(yi ) −
∫

�x
p(�x) log

p(�x)∣∣∣det
(

∂�y
∂�x
)∣∣∣d�x − H(�x)

=
d∑

i=1

H(xi ) −
d∑

i=1

H(yi ) +
∫

�x
p(�x) log

∣∣∣∣det
(

∂�y
∂�x
)∣∣∣∣ d�x

=
d∑

i=1

H(xi ) −
d∑

i=1

H(yi ) +
〈
log

∣∣∣∣det
(

∂�y
∂�x
)∣∣∣∣
〉

�x
.

Therefore, the computation of �I can be split into two parts: (1) estimating
marginal entropies for the input and transformed variables, H(xi ) and H(yi ),
and (2) computing the expected log Jacobian 〈log | det( ∂�y

∂�x )|〉�x . We describe
these two steps in the following subsections.

B.1 Marginal Entropy Estimation. To estimate the entropy for the 1D
marginal densities p(xi ) and p(yi ), we employed the nonparametric m-
spacing entropy estimator (Vasicek, 1976). We briefly describe this algorithm
here: a more comprehensive tutorial can be found at Learned-Miller and
Fisher (2000). Assume one is given a set of independent and identically
distributed data samples (x1, . . . , xN). Let z1 ≤ · · · ≤ zN be the sorted data
values. Next, for integer m, the m-spacing entropy estimator is computed as

Ĥ(z1, . . . , zN) = 1
N

N−m∑
i=1

log
(

N
m

[zi+m − zi ]
)

− ψ(m) + log(m),

where ψ(x) = d
dx log �(x) is the digamma function. The m-spacing estimator

is strongly consistent, that is, as m → ∞, and m/N → 0, Ĥ(z1, . . . , zN) →
H(z) with probability 1. For our experiments, we set m = √

N.

B.2 Computing Expected Log Jacobian. For linear transforms, the log
Jacobian, log | det( ∂�y

∂�x )|, is a constant equal to the log determinant of the
transform matrix. Note that when the linear transform is orthonormal, the
log Jacobian is zero.

For the nonlinear RG transform, the log Jacobian can be directly com-
puted from the radial transform, g(r ), as

log
∣∣∣∣det

(
∂�y
∂�x
)∣∣∣∣ = log g′(r ) + (d − 1) log

g(r )
r

,
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where r = ‖�x‖ (see appendix A). Then the expectation over �x of the log
Jacobian in this case is computed as

〈
log

∣∣∣∣det
(

∂�y
∂�x
)∣∣∣∣
〉

�x
= 〈log g′(r )〉r + (d − 1)

〈
log

g(r )
r

〉
r
.

In practice, the differentiation is computed numerically, and the expectation
is implemented by averaging over the training data.

Appendix C: Multivariate Student’s t Density

The d-dimensional Student’s t density is the multivariate extension of the
Student’s t distribution (Casella & Berger, 2001), and its density is defined
as

p(�x | �,α, β) = α
1
2 �
(
β + d

2

)
(2π )

d
2 | det(�)| 1

2 �(β)

(
1 + α

2
�xT�−1�x

)−β− d
2
,

where α, β, and � are model parameters. It can be shown that its multi-
information is computed as

I (�x) = 1
2

(∑
i

log σi − log | det(�)|
)

+ (d − 1) log �(β) + log �

(
β + d

2

)

+ d
(

β + 1
2

)
�

(
β + 1

2

)
−
(

β + d
2

)
�

(
β + d

2

)

− (d − 1)�(β) − d log �

(
β + 1

2

)
,

where ψ(x) = d
dx log �(x) is the digamma function.
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