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Abstract

In this paper, we describe a nonlinear image represen-
tation based on divisive normalization that is designed to
match the statistical properties of photographic images, as
well as the perceptual sensitivity of biological visual sys-
tems. We decompose an image using a multi-scale oriented
representation, and use Student’s t as a model of the de-
pendencies within local clusters of coefficients. We then
show that normalization of each coefficient by the square
root of a linear combination of the amplitudes of the coef-
ficients in the cluster reduces statistical dependencies. We
further show that the resulting divisive normalization trans-
form is invertible and provide an efficient iterative inversion
algorithm. Finally, we probe the statistical and perceptual
advantages of this image representation by examining its
robustness to added noise, and using it to enhance image
contrast.

1. Introduction

Choosing a good representation is of fundamental impor-
tance to image processing and computer vision applications.
Most recent efforts in finding image representations focus
on linear transforms optimized to minimize statistical de-
pendencies. The basis functions obtained using these meth-
ods are localized oriented filters at different spatial scales,
which are loosely referred as “wavelets”. Such transforms
have been used as an effective substrate for a wide variety
of applications in computer vision and image processing.
Nevertheless, linear transforms do not completely eliminate
higher-order statistical dependencies in photographic im-
ages [20, 2]. It is thus natural to develop invertible nonlinear
transforms that can reduce such higher-order statistical de-
pendencies.

Several recent image representations [25, 16, 15, 10] in-
clude spatially varying divisive normalization (DN ) as sim-
ple nonlinear map, where each component in a cluster of

coefficients is divided by the square root of a linear combi-
nation of the squared amplitudes of its neighbors. Divisive
Normalization was originally motivated by observed prop-
erties of biological vision, where it was used to explain non-
linearities in the responses of cortical neurons [e.g., 12, 9],
nonlinear masking phenomenon in visual perception [e.g.,
8, 27, 24], and has also been empirically shown to reduce
statistical dependencies of the original linear representation
[e.g.,20, 4, 19].

In this paper, we provide a more flexible form of the
DN representation. We first justify the Student’s t model as
a good description of some observed statistical properties of
photographic images in the wavelet domain. We then show
that DN transform is an approximation to remove higher-
order dependencies from the Student’s t model. Extending
the divisive normalization transform to images of arbitrary
sizes, we show an efficient iterative inversion algorithm that
is guaranteed to converge. We probe the statistical and per-
ceptual advantages of this image representation by demon-
strating that it is more robust to additive noise than conven-
tional linear transforms. We also apply a simple method
of adaptive contrast enhancement to the DN representation,
demonstrating that the resulting images are nearly artifact-
free compared to the results of applying such enhancement
in a linear representation.

2. Photographic Image Wavelet Statistics

Photographic images exhibit highly non-Gaussian statis-
tical behaviors. When decomposed in a multi-scale oriented
decomposition, the coefficients tend to have highly kurtotic
marginal distributions [5, 7]. More importantly, there are
higher-order statical dependencies between coefficients at
nearby locations, orientations and scales [28, 4] that cannot
be modeled by Gaussian models. Such non-Gaussian statis-
tical properties of photographic image wavelets can be more
clearly illustrated by examining the conditional distribution
of adjacent pairs of wavelet coefficients. Consider (x1, x2)
representing two coefficients at adjacent spatial locations,
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Fig. 1. Conditional histogram of two adjacent wavelet co-
efficients. Grayscale intensities are proportional to prob-
ability, with larger values corresponding to brighter pix-
els. Each column is normalized to fill the full range of in-
tensities. Red solid and dashed lines indicate conditional
mean and standard deviation, respectively. Blue solid and
dashed lines are best-fitting linear models for the condi-
tional mean and standard deviation.

within the same subband of a wavelet decomposition1. We
examine the conditional histogram of this pair of coeffi-
cients, gathered over the whole subband as in [20]. Fig.1
shows this conditional histogram, which illustrates several
important aspects of the relationship between the two coef-
ficients. First, the conditional mean and variance of x1 ex-
hibit strong dependency on the value of x2. In this case, the
conditional mean can be approximated with a linear func-
tion of x2 (shown as a solid blue line). The conditional
variance can also be fit with a linear function of the mean-
corrected square of x2 (shown as a blue dashed line).

3. Student’s t Model

The behavior of multi-scale decomposition coefficients
as described in previous section can be captured with a Stu-
dent’s t model of a cluster of coefficients. Formally, a D-
dimensional Student’s t variable x with zero mean has den-
sity:

p(x|Σ, α, β) ∝
(

1 +
α

2
xT Σ−1x

)−β−D

2

(1)

where Γ(·) is the Gamma function, Σ is a positive definite
matrix, and α, β are two model parameters. Previously, Stu-
dent’s t has been proposed as an image model mainly for its
convenience in computation [23, 18, 29]. We show that for
a Student’s t variable x, the conditional mean and variance
of its ith component given the rest,

E(xi|xj , j 6= i) = µi and var(xi|xj , j 6= i) = σ2

i , (2)

1In this work, we use steerable pyramid [21], which a particular type
of overcomplete wavelet transform. However, the observed regularities are
fairly robust across different multi-scale decompositions.

can be expressed as:

µi =
∑

j 6=i

ajxj and σ2

i = b +
∑

j 6=i

cj(xj − µj)
2. (3)

That is, the conditional mean of one wavelet coefficient is a
linear function of the neighboring coefficients, and the con-
ditional variance is a linear combination of mean-corrected
squares of neighboring coefficients, plus a constant. When
D = 2, this gives the exact dependency as shown in Fig.1.

4. Divisive Normalization

Student’s t is a special case of the more general density
family of Gaussian scale mixtures [1]. As such, it has been
shown that a Student’s t variable x can be equivalently ex-
pressed as the product of two independent random variables
as

x = u
√

z, (4)

where u is a D-dimensional zero-mean Gaussian variable
with covariance matrix Σ, and z is a positive-valued vari-
able with an inverse Gamma density of parameters (α, β),
as:

pz(z|α, β) =
1

αβΓ(β)
z−β−1 exp

(

− 1

αz

)

. (5)

Note that the Gaussian scale mixtures formulation of a Stu-
dent’s t variable provides a separation of the statistical de-
pendencies in x: the Gaussian component u carries only
second-order dependencies, while the latent variable z cre-
ates higher-order dependencies by correlating all the Gaus-
sian components through a common scaling factor. If we
use a decorrelation transform (e.g., PCA) to diagonalize the
covariance matrix Σ first, the Gaussian component u then
has zero dependency, i.e., all components in u are mutually
independent. We can then remove any additional higher-
order dependencies by dividing x by

√
z. According to

Eq.(4), such an operation results in the independent Gaus-
sian variable u.

However, as z is a latent variable, its value is not observ-
able. Since we only have access to variable x, one natural
approximation to the division of z is to first obtain an es-
timate of z from x, ẑ, and then use x/

√
ẑ to approximate

x/
√

z. In particular, we can consider the maximum a poste-
rior (MAP) estimate ẑMAP = arg maxz p(z|x), or the the
minimum mean squared error (MMSE) estimate, computed
as ẑMAP = E(z|x). In the case of Student’s t model, how-
ever, both estimators take the following form

∝
√

b +
∑

j

cjx2

j , (6)

where b = 1

α
and cjs correspond to the diagonals of the di-

agonalized covariance matrix Σ. Due to space limitations,



we cannot provide the proof here. Combining with the
front-end decorrelation transform, we can approximately
remove statistical dependencies in the Student’s t variable
by the following transform:

ri =
xi −

∑

j ajxj(i)
√

b +
∑

j cj(xj −
∑

k akxj)2
, (7)

where parameters ak are computed from the eigen-vectors
of matrix Σ.

The transform described in Eq.(7) coincides with the di-
visive normalization transform as described in [19], which
has been shown to empirically reduce statistical depen-
dencies of multi-scale decomposition coefficients of photo-
graphic images. The parameters in the divisive normaliza-
tion transform, {b, ck, ak} can be obtained by maximizing
the likelihood of blocks of multi-scale decomposition coef-
ficients under the model [23]. Shown in Fig.2(a) is a sub-
band of a photographic image, and in (c) is the DNT of this
subband. Compared to the original subband, the DNT coef-
ficients are more homogeneous with similar statistics across
different locations. Furthermore, as shown in Fig.2(b) and
(d), the DNT representation has a marginal distribution
much closer to a Gaussian than the original subband.

5. Iterative Inversion of DNT

The divisive normalization transform, Eq.(7), is nonlin-
ear. Nevertheless it can be inverted [15], and here we de-
velop a more efficient iterative procedure for doing so. To
describe the inversion procedure, we first rewrite the for-
ward DN transform in matrix and vector form. First denote
x = (x1, · · · , xD)T as the vectorized multi-scale oriented
representation of an image, including coefficients in all sub-
bands, r = (r1, · · · , rD)T as its corresponding DN trans-
form coefficients, and 1 is a D dimensional vector with
all component being one. Furthermore, let A and C be
the matrices formed by weights ais and cis, respectively.
Note that these matrices, though may be huge in size due to
their dimensionality of D × D, have sparse block-Toeplitz
(convolutional) [11] structures determined by the neighbor-
hood configuration and the spatial homogeneity assump-
tions. With these notations and introducing intermediate
variables, the DN transform is equivalent to the following
sequence of operations:

y = (ID − A)x (8)

z = (y2

1
, · · · , y2

D)T (9)

u = z � (b1 + Cz) (10)

r = (sign(y1)
√

u1, · · · , sign(yD)
√

uD)T (11)

where y, z and u are all D dimensional vectors, ID is the
D × D identity matrix, and � denotes the element-wise
division operator.

The inversion of the DN transformation is thus com-
posed of reversing the steps in Eq.(8) - (11), as

u = (r2

1
, · · · , r2

D)T (12)

z = b(ID −D(u)C)−1u (13)

y = (sign(r1)
√

z1, · · · , sign(rD)
√

zD)T (14)

x = (ID − A)−1y. (15)

where ⊗ denotes element-wise multiplication, and D(·) is
the operator that takes a vector and turns it into the diagonal
of a diagonal matrix. All steps are straightforward, except
(13), which requires some explanation. First we make use
of the fact that for two vectors u and v, u ⊗ v = D(u)v.
So from Eq.(10) we have,

z = u ⊗ (b1 + Cz)

⇒ z = bu + D(u)Cz

⇒ (ID −D(u)C)z = bu.

Inverting the matrix then gives Eq.(13).
Most of the computational cost in inverting the DN trans-

form is spent on the two matrix inversions, of Eq.(13) and
(15). For small D such as image patches, these steps may
be computed directly. For large D (typically the case for
multi-scale oriented representation of a whole image) it is
computationally inhibitive to perform matrix inversion di-
rectly. On the other hand, note that inversion of the two big
matrices are not necessary as we really need just to solve
the two corresponding linear equations

(ID −D(u)C)z = bu

(ID − A)x = y.

The matrices on the left hand of these two linear equations,
though potentially very large, are highly structured. Analo-
gous to the Landweber algorithm for solving the Fredholm
integral equation of the first type [13], our problem is equiv-
alent to solving these two linear equations:

(ID−D(u)C)T (u ⊗ b) = (ID−D(u)C)T (ID−D(u)C)z

(ID − A)T y= (ID − A)T (ID − A)x. (16)

The advantage of re-expressing the problem this way is that
the right-hand sides of these equations are symmetric pos-
itive definite matrices, and thus they can be solved using
conjugate gradient descent [17], with a guarantee of conver-
gence to the correct solution. In computing the gradients,
we take advantage of the fact that the matrix-vector prod-
uct between a block-Toeplitz matrix and a vector is equiva-
lent to a convolution [11], which may be efficiently imple-
mented with fast Fourier transform.



(a) (b) (c) (d)
Fig. 2. (a) A subband of the steerable pyramid decomposition of a photographic image. (b) Log histogram of subband coefficients
shown in (a) (blue solid line). (c) The DNT transformation of the subband in (a). (d) Log histogram of DNT subband coefficients
shown in (c) (blue solid line). In both (b) and (d) a Gaussian with the same mean and variance (red dashed line) is shown for
comparison.

(a) Original (b) SSIM = 0.51 (c) SSIM = 0.71

(d) SSIM = 0.62 (e) SSIM = 0.66 (f) SSIM = 0.75
Fig. 3. (a) A photographic image. (b)-(f) Perturbations of the image shown in (a) resulting from adding white Gaussian noise
to coefficients of different image representations. All perturbed images have PSNR of 25dB in the pixel domain, and are shown
along with SSIM scores. (b) Raw pixel, (c) Fourier domain, (d) wavelet domain, (e) steerable pyramid, (f) DNT domain.

6. Perceptual Relevance

We have described a DNT representation from the sta-
tistical viewpoint. A substantial body of work in the per-
ception literature has shown that the divisive normaliza-
tion operation can effectively explain masking phenom-
ena, in which the presence of large coefficients reduces the
visibility of errors in coefficients that are nearby in loca-
tion, orientation, or scale [e.g., 8, 27, 24]. In this section,

we demonstrate the perceptual relevance of the represen-
tation by testing its resilience to noise contamination. A
perceptually-matched representation should have the prop-
erty that equal-size distortions in the representation should
correspond to equally visible distortions in the image do-
main. Thus, adding white noise to the representation should
generate equally visible distortions at all locations within
the image. On the other hand, adding white noise in a non-



perceptual representation (e.g., the pixel domain) will pro-
duce distortions of unequal visibility throughout the image,
depending on the local image context.

We compare the DNT representation with four other lin-
ear representations: raw pixels, Fourier transform, orthogo-
nal wavelet and steerable pyramid. The DNT representation
used a steerable pyramid as the front-end linear representa-
tion, and a neighborhood including a 5 × 5 spatial neigh-
bor block and 3 × 3 neighbor blocks in two adjacent orien-
tations and upper scales. We perturb an image by adding
white Gaussian noise to the coefficients of each representa-
tion, and adjusting the strength of this noise so that distorted
images have the same mean square error relative to the orig-
inal image. For the Fourier, wavelet, and steerable pyramid
representations, the noise amplitude is matched to a given
fraction of the standard deviation for each frequency band
or subband to reduce visibility.

Shown in Fig 3 is the result of this procedure on a par-
ticular photographic image, with the fixed output PSNR set
to 25dB. The perceptual quality of the images is drasti-
cally different. For linear representations, the noise affects
the entire image uniformly, while in the DNT domain, large
perturbations are confined to the vicinity of high contrast
image features (e.g., edges), where they are less visible be-
cause of masking effects.

To quantify the perceptual difference between these im-
ages as a function of image PSNR, we used a recent per-
ceptual image quality metric, the structural similarity im-
age metric (SSIM) [26]. Numerically, SSIM index ranges
between 0 and 1, with larger values indicating better image
perceptual quality. We repeated this experiment on a set of
four images, and over a wide range of image PSNRs (15dB
to 30dB). For each representation and noise level, we gen-
erated 10 example images and computed the average SSIM
over these. Shown in Fig.4 are the plots of SSIM for each
image representation as a function of the output PSNR. The
plot indicates that the images for which noise was added in
DNT domain are predicted by SSIM to appear less distorted
than all other images, and across all noise levels.

7. Contrast Enhancement

Representing images in the divisive normalized domain
reflects certain aspects of human visual perception. In this
section, we make use of this in enhancing the visual ap-
pearance of low contrast regions of photographic images.
In general, contrast varies widely across a typical photo-
graphic image. The goal of contrast enhancement is to boost
contrast in those regions where it is low or moderate, while
leaving it unchanged where it is high. This requires that the
contrast enhancement be adapted to the local image content.
All of this must be done without generating artifacts.

Many recent contrast adjustment methods are based on
representing images in the wavelet domain [e.g., 6, 22, 8,
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Fig. 4. Effects of noise perturbation for different image
representations. See text for details.

14, 3]. A common theme is to use a point-wise non-linear
mapping (typically a power function with exponent less
than 1, also called “gamma correction”) to adjust coefficient
values image so that small values are boosted substantially,
but large values are boosted only slightly or left alone. Such
methods have been shown able to effectively improve the
global appearance of the image. However, the independent
adjustment of the transform coefficients often introduces ar-
tifacts such as ripples and halos around high-contrast fea-
tures, and these need to be eliminated in a post-processing
step [6, 14, 3].

7.1. Method

We first transform the steerable pyramid coefficients of
the image into the DNT domain, using a DNT transform us-
ing a generalized neighborhood system a 5×5 spatial neigh-
borhood, a 3×3 neighborhood for two adjacent orientations
subbands and a 3×3 neighborhood for upper scale subband,
and optimally estimated parameters. In the DNT domain,
each coefficient is individually boosted by a gamma correc-
tion type non-linear map:

g(x) = x

[

(1 − ε)
|x|
τ

+ ε

]γ−1

(17)

where ε,τ and γ are adjustable parameters. The parame-
ter γ ∈ [0, 1) determines the strength of the enhancement
effect (small γ produces a large effect, and γ = 1 has no
effect). Parameter ε (set to 0.01) prevents amplification of
noise in low signal areas, and parameter τ represents a value
that is unmodified by the mapping (typically, this is set to
the maximum value of a subband). The modified DNT co-
efficients are then transformed back to the wavelet domain,
from which the contrast enhanced image is reconstructed.
Although there is no guarantee that the nonlinearly mod-



ified DNT representation will be invertible (see [15]), we
have not encountered any failures in practice.

7.2. Experiments

To illustrate the efficacy of image contrast enhancement
with DNT representation, we first test it on an artificial im-
age containing vertical edges. In Fig.5(a), we show a hor-
izontal scan line from the test image, and mark the ampli-
tudes of the edges at four different locations (point A, B, C
and D), covering a range of different strengths.

We compared contrast enhancement with DNT represen-
tation with two other methods using linear image represen-
tations. Fig.5(b) shows the contrast enhancement result of
a widely used global “unsharp masking” operation, which
corresponds to convolution with a filter that boosts high
frequency content. The image is first decomposed with a
two-band steerable pyramid, then coefficients in each sub-
band are multiplied by a scalar whose value is larger for
higher frequency band. Note that the overall image contrast
is boosted by this simple procedure, but the large jumps and
low jumps in intensities are increased by an equal factor.
Fig.5(c) shows the result of using a more elaborate con-
trast enhancement method, using a gamma correction in the
wavelet domain [6, 14, 3]. With a two-band steerable pyra-
mid decomposition of the image, the coefficient magnitudes
were transformed with a gamma correction-like non-linear
function (similar to Eq.(17), but the |x| is replaced by the
local standard deviation of coefficients). The contrast en-
hanced image is then obtained by inverting the pyramid de-
composition. As shown in Fig.5(c), this method alleviates
some of the problems of the global high-pass filtering, as
high intensity jumps are boosted only a small amount. On
the other hand, artifacts are introduced in the smooth re-
gions around edges. In Fig.5 (d), contrast enhancement re-
sulting from a global gamma correction in the DNT domain
is shown. Compared to the two methods based on linear
representations, the low contrasts in the images are greatly
boosted while the large jumps are only slightly changed.
This is achieved with only a minimal introduction of arti-
facts.

Fig.6 shows contrast enhancement results of four natural
photographic images2 with divisive normalized representa-
tion. In processing the RGB color images, we first convert
them into the L*a*b* color space, contrast enhancing the
L* channel, and transformed the resulting image back to
the RGB space. The γ values are chosen for each individ-
ual image to produce visually acceptable results. Note that
across all images, the overall contrast is boosted, and de-
tails in the low contrast regions (e.g., the upper left corner
in the first image showing the windows of a building) have
become significantly more visible.

2Images courtesy of N. Bonnier and P. Greenspun.

8. Conclusion

In this paper, we start with a justification of the Student’s
t model for images in the wavelet domain. We then showed
that this naturally leads to a non-linear image representation
based on a local divisive normalization transform. We de-
veloped methods for estimating the model parameters, and
for inverting the divisive normalization transform. We then
demonstrated the statistical and perceptual relevance of this
image representation, and showed a simple application to
contrast enhancement.

We expect this representation to benefit a number of ap-
plications in image processing and machine vision. An ob-
vious candidate is compression: a previous normalization
representation based on a block-DCT decomposition exhib-
ited substantial improvements in perceptual appearance of
compressed images [15]. In addition, this representation
seems promising as a substrate for applications which re-
quire nonlinear image manipulation, as in the contrast en-
hancement example. For example, blending of images or
inpainting to remove artifacts could benefit from this type
of representation.

We believe the model may be significantly extended by
directly incorporating local orientation and phase properties
into the local predictions of mean and variance, and we are
currently working in this direction.
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