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Abstract

Natural sounds exhibit complex statistical regularitiemaltiple scales. Acous-
tic events underlying speech, for example, are charaetiy precise temporal
and frequency relationships, but they can also vary sutialigraccording to the
pitch, duration, and other high-level properties of spegaduction. Learning
this structure from data while capturing the inherent \ality is an important
first step in building auditory processing systems, as welladerstanding the
mechanisms of auditory perception. Here we develop Hibreat Spike Coding,
a two-layer probabilistic generative model for complex @t structure. The
first layer consists of a sparse spiking representationehedvdes the sound us-
ing kernels positioned precisely in time and frequencytdPas in the positions
of first layer spikes are learned from the data: on a coarde,sstatistical reg-
ularities are encoded by a second-layer spiking reprets@mtavhile fine-scale
structure is captured by recurrent interactions withinftre layer. When fit to
speech data, the second layer acoustic features includehar stacks, sweeps,
frequency modulations, and precise temporal onsets, wddohbe composed to
represent complex acoustic events. Unlike spectrograseebamethods, the model
gives a probability distribution over sound pressure waxres. This allows us to
use the second-layer representation to synthesize soinedfiyd and to perform
model-based denoising, on which we demonstrate a significgumovement over
standard methods.

1 Introduction

Natural sounds, such as speech and animal vocalizationsjst@f complex acoustic events oc-
curring at multiple scales. Precise timing and frequendatienships among these events convey
important information about the sound, while intrinsicigility confounds simple approaches to
sound processing and understanding. Speech, for examplegadescribed as a sequence of words,
which are composed of precisely interrelated phones, lalt eierance may have its own prosody,
with variable duration, loudness, and/or pitch. An auditapresentation that captures the corre-
sponding structure while remaining invariant to this viilisy would provide a useful first step for
many applications in auditory processing.
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Many recent efforts to learn auditory representations iuasupervised setting have focused on
sparse decompositions chosen to capture structure irthareound ensembles. The dictionaries
can be chosen by hand [1, 2] or learned from data. For exar{f#@ et al [3] adapted a set of
time-frequency kernels to represent spectrograms of Bpgigoals and showed that the resulting
kernels were localized and bore resemblance to auditogptee fields. Lee et al [4] trained a
two-layer deep belief network on spectrogram patches aed iti$or several auditory classification
tasks.

These approaches have several limitations. First, thegatgen spectrograms (rather than the origi-
nal sound waveforms), which impose limitations on both tand frequency resolution. In addition,
most models built on spectrograms rely on block-basedtjmanitng of time, and thus are susceptible
to artifacts — precisely-timed acoustic events can appaasa multiple blocks and events can ap-
pear at different temporal offsets relative to the blockkim@ their identification and representation
difficult [5]. The features learned by these models are tiespecific frequencies, and must be repli-
cated at different frequency offsets to accommodate phditsghat occur in natural sounds. Finally,
thelinear generative models underlying most methods are unsuitableohstructing hierarchical
models, since the composition of multiple linear stageg&ralinear.

To address these limitations, we propose a two-layer likieal model that encodes complex acous-
tic events using a representation that is shiftable in biotle and frequency. The first layer is a
“spikegram” representation of the sound pressure wavefasndeveloped in [6, 5]. The prior prob-
abilities for coefficients in the first layer are modulatedtbhg output of the second layer, combined
with a recurrent component that operates within the firstlaywhen trained on speech, the kernels
learned at the second layer encode complex acoustic evaidls,when positioned at specific times
and frequencies, compactly represent the first-layer gpale, which is itself a compact description
of the sound pressure waveform. Despite its very sparseatioti, the second-layer representation
retains much of the acoustic information: sounds sampledrding to the generative model approx-
imate well the original sound. Finally, we demonstrate thatmodel performs well on a denoising
task, particularly when the noise is structured, suggeggtiat the higher-order representation pro-
vides a useful statistical description of speech.

2 Hierarchical spike coding

In the “spikegram” representation [5], a sound is encodedgua linear combination of sparse,
time-shifted kernelg;():

o= Srpos(t—7) +e @
mf

wheree, denotes Gaussian white noise and the coeffici€ptsare mostly zero. As in [5], thes(t)

are gammatone functions with varying center frequencneexed byf. In order to encode the sig-
nal, a sparse set of “spikes” (i.e., nonzero coefficientpatific times and frequencies) is estimated
using an approximate inference method, such as matchirguipyiv]. The resulting spikegram,
shown in Fig. 1b, offers an efficient representation of seUjl that avoids the blocking artifacts
and time-frequency trade-offs associated with more fi@thl spectrogram representations.

We aim to model the statistical regularities present in fhikkegram representations. Spikegrams ex-
hibit clear statistical structure, both at coarse (Figclland at fine temporal scales (Fig. 1e,f). Spikes
placed at precise locations in time and frequency revealdimfeatures, harmonic structures, as
well as slow modulations in the sound envelope. The coaide son-stationarity is likely caused
by higher-order acoustic events, such as phoneme utter#mtespan a much larger time-frequency
range than the individual gammatone kernels. On the othed,hthe fine-scale correlations are
due to some combination of the correlations inherent in ramgatone filterbank and the precise
temporal structure present in speech.

We introduce the hierarchical spike coding (HSC) modalsiilated in Fig. 2, to capture the struc-
ture in the spikegramsS(")) on both coarse and fine scales. We add a second layer of unetise
spikes §(2)), assumed to arise from a Poisson process with constant rateese spikes are con-
volved with a set of time-frequency “rate kernelsK() to yield the logarithm of the firing rate of
the first-layer spikes on a coarse scale. On a fine scale, gfagitlom of the firing rate of first-
layer spikes is modulated using recurrent interactionsgdoyolving the local spike history with
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Figure 1: Coarse (top row) and fine (bottom row) scale stredtuspikegram encodings of speech.
a. The sound pressure waveform of a spoken sentencé.atite corresponding spikegram. Each
spike (dot) has an associated time (abscissa) and cergeefrey (ordinate) as well as an amplitude
(dot size).c. Cross-correlation function for a spikegram ensembleaisveorrelations across large
time/frequency scalesd. Magnification of a portion ofd), with two gammatone kernels (red and
blue), corresponding to the red and blue spike€jné. Magnification of corresponding portion of
(b) , revealing that spike timing exhibits strong regulasta a fine scalef. Histograms of inter-
spike-intervals for two frequency channels correspondintpe colored spikes irg] reveal strong
temporal dependencies.

a set of “coupling kernels”K¢). The amplitudes of the first-layer spikes are also spectiied
erarchically: the logarithm of the amplitudes is assumelemormally distributed, with a mean
specified by the convolution of second-layer spikes withgitade kernels”, £ not shown) with-
out any recurrent contribution, and the variance fixed?atThe model parameters are denoted by

© = (K", K* K°,b",b%) whereb", b are the bias vectors corresponding to the log-rate and log-

amplitude of the first-layer coefficients, respectivelyeThodel specifies a conditional probability
density over first-layer coefficients,

P(S{15®:0) = (1= p)6(S{)) + pN (l0g S{): Avp.0®)  for S) =0, v, f  (2)

INCE
where p = AtAfeRt’f and N (a:; 1, 02) = % 3
R =05+ (K 1 )og + 3 [(K7 5P 4
gy = b5+ (7 S ] (5)

In EqQ. (2),0(.) is the Dirac delta function. In Eq. (3)); and Ay are the time and frequency bin
sizes. In Egs. (4-5) denotes convolution ant, is 1 if = # 0, and0 otherwise.

3 Learning

The joint log-probability of the first and second layer canelipressed as a function of the model
parameter® and the (unobserved) second-layer spikes:

£(0,5%) =log P(SM,52):0,)\) =1log P(SV|5?):0) +log P(5?); \) (6)
1 1) 2 R,
% (R g (onsly - 4)) - Seras, @)
(t,f)es® t,.f

— log (AA¢AS) [[5® o + const
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Figure 2: lllustration of the hierarchical spike coding rebd Second-layer spikeS(?) associ-
ated with 3 features (indicated by color) are sampled in tame frequency according to a Poisson
process, with exponentially-distributed amplitudes iGated by dot size). These are convolved
with corresponding rate kernels” (outlined in colored rectangles), summed together, andguhs
through an exponential nonlinearity to drive the instaatars rate of the first-layer spikes on a
coarse scale. The first-layer spike rate is also modulatesifore scale by a recurrent component
that convolves previous spikes with coupling kerngls At a given time step (vertical line), spikes
S are generated according to a Poisson process whose rateddepe the top-down and the
recurrent terms.

where the equality in Eq. (7) holds in the limk;A; — 0. Maximizing the data likelihood re-
quires integratingC over all possible second-layer representati§fi, which is computationally
intractable. Instead, we choose to approximate the opidray maximizing£ jointly over © and
S 1f S is known, then the model falls within the well-known clasgeheralized linear models
(GLMs) [9], and Eq. (6) is convex i®. Conversely, if© is known then Eq. (6) is convex i)
except for theL, penalty term corresponding to the prior 6. Motivated by these facts, we
adopt a coordinate-descent approach by alternating bettkiedollowing steps:

S®) — arg max £(O, S2)) (8)
S 2

0 — O +7VeL(0,5?) )

wheren is a fixed learning rate. Section 4 describes a method foroappate inference of the
second-layer spikes (solving Eq. (8)). The gradients usétlji (9) are straightforward to compute
and are given by

% = (# 1’ spikes in channel f) — ZeRf’fAtAf (10)
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Figure 3: Example model kernels learned on the TIMIT data Jep: rate kernels (colormaps
individually rescaled). Bottom: Four representative dmgpkernels (scaling indicated by colorbar).

4 |Inference

Inference of the second-layer spikes) (Eg. (8)) involves maximizing the trade-off between the
GLM likelihood term, which we denote bg(©, S(?)) and the last term which penalizes the number
of spikes (S ||). Solving Eq. (8) exactly is NP-hard. We adopt a variant @ tell-known

matching pursuit algorithm [7] to approximate the soluti@irst, S is initialized to0. Then the
following two steps are repeated:

1. Select the coefficient that maximizes a second-ordeoTaylproximation of(@, -) about
the current solutiors):

N2 .
2
(7*,¢*,i*) = arg max — ( ag) ) / 82£ 5 (14)
met \0STe ) ase

2. Perform a line search to determine the step size for thificiznt that maximize£ (0, -).
If the maximal improvement does not outweigh the cedvg(AA;Ay) of adding a spike,

terminate. Otherwise updafé?) using this step and repeat Step 1.

5 Results

Model parameterslearned from speech

We applied the model to the TIMIT speech corpus [10]. Firgt,abtained spikegrams by encoding
sounds to 20dB precision using a set of 200 gammatone filigéncenter frequencies spaced evenly
on a logarithmic scale (see [5] for details). For each audimpe, this gave us a spikegram with
fine time and frequency resolution (6:250~°s and 3.&10~2 octaves, respectively). We trained
a model with 20 rate and 20 amplitude kernels, with frequemeplution equivalent to that of the
spikegram and time resolution of 20ms. These kernels eztboder 400ms 3.8 octaves (spanning
20 time and 100 frequency bins). Coupling kernels were défingependently for each frequency
channel; they extended over 20ms and 2.7 octaves arounch#émmel center frequency with the
same time/frequency resolution as the spikegram. All patara were initialized randomly, and
were learned according to Eqg. (8-9).

Fig. 3 displays the learned rate kernels (top) and couplemgéds (bottom). Among the patterns
learned by the rate kernels are harmonic stacks of diffeterdtions and pitch shifts (e.g., kernels
4,9, 11, 18), ramps in frequency (kernels 1, 7, 15, 16), starporal onsets and offsets (kernels
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Figure 4: Model representation of phone paias r (left) andao+!I (right), as uttered by four speak-
ers (rows: two male, two female). Each row shows inferre@sddayer spikes, the rate kernels
most correlated with the utterance of each phone pair,eghtfb their corresponding spikes’ fre-
guencies (colored on left), and the encoded log firing ratdeced on the phone pair utterance.

7, 13, 19), and acoustic features localized in time and &aqu (kernels 5, 10, 12, 20) (example
sounds synthesized by turning on single features are alaila supplementary materials). The
corresponding amplitude kernels (not shown) contain patteighly correlated with the rate kernels,
suggesting a strong dependence in the spikegram betwelen rgppe and magnitude. For most
frequency channels, the coupling kernels are stronglytivegat times immediately following the

spike and at adjacent frequencies, representing “refnagteriods” observed in the spikegrams.
Positive peaks in the coupling kernels encode preciserakgm of spikes across time and frequency.

Second-layer representation

The learned kernels combine in various ways to represenplesnacoustic events. For example,
Fig. 4 illustrates how features can combine to representdifferent phone pairs. Vowel phones
are approximated by a harmonic stack (outlined in yellowgtber with a ramp in frequency (out-
lined in orange and dark blue). Because the rate kernelscagipetcify the logarithm of the firing
rate, their superposition results in a multiplicative miadgion of the intensities at each level of the
harmonic stack. In addition, the ‘r consonant in the first®le is characterized by a high concen-
tration of energy at the high frequencies and is largely antexd for by the kernel outlined in red.
The ‘I' consonant following ‘ao‘ contains a frequency moahithn captured by the v-shaped feature
(outlined in cyan).

Translating the kernels in log-frequency allows the sam@&Rindamental features to participate
in a range of acoustic events: the same vocalizations a&rdiff pitch are often represented by the
same set of features. In Fig. 4, the same set of kernels isingesimilar configuration across dif-
ferent speakers and genders. It should be noted that thedsémyer representation does not discard
precise time and frequency information (this informatisrcarried in the times and frequencies of
the second-layer spikes). However, the identities of tiatufes that are active remain invariant to
pitch and frequency modulations.

Synthesis

One can further understand the acoustic information thagured by second-layer spikes by
sampling a spikegram according to the generative model.0dle the second-layer encoding of a
single sentence from the TIMIT speech corpus [10] (Fig. 5diggand sampled two spikegrams:
one with only the hierarchical component (left), and oneithguded both hierarchical and coupling
components (right). At a coarse scale the two samples glosstmble the spikegram of the original
sound. However, at the fine time scale, only the spikegranpkshwith coupling contains the
regularities observed in speech data (Fig. 5 bottom rowun8e were also generated from these
spikegram samples by superimposing gammatone kerneld%is Despite the fact that the second-
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Figure 5: Synthesis from inferred second-layer spikes. dididottom: spikegram representation
of the sentence in Fig. 1; Middle top: Inferred second-lagpresentation; Left: first-layer spikes
generated using only the hierarchical model componenthtRifyst-layer spikes generated using
hierarchical and coupling kernels. Synthesized wavefarasncluded in the supplementary mate-
rials.

white noise sparse temporally modulated noise
noise level | Wiener | wav thr | MP HSC Wiener | wavthr | MP HSC
-10dB | -7.00 2.41 2.26 2.50 -10dB | -8.68 -8.73 | -5.12 | -4.37
-5dB | 0.00 4.93 4.79 5.01 -5dB | -3.09 -3.63 | -0.96 | -0.38
0dB | 5.49 7.94 7.71 7.99 0dB 1.90 1.23 297 | 330
5dB | 7.84 11.15 | 11.01 | 11.33 5dB 6.37 6.06 7.11 | 7.40
10dB | 10.31 14.64 14.49 | 14.83 10dB 9.68 11.28 11.58 | 11.88

Table 1: Denoising accuracy (dB SNR) for speech corrupteld white noise (left) or with sparse,
temporally modulated noise (right).

layer representation contains over 15 times fewer spikéedg st-layer spikegrams, the synthesized
sounds are intelligible and the addition of the couplingfétprovides a noticeable improvement
(audio examples in supplementary materials).

Denoising

Although the model parameters have been adapted to thergamble, obtaining an estimate of the
likelihood of the data ensemble under the model is diffiastit requires integrating over unobserved
variables £(2)). Instead, we can use performance on unsupervised signe¢gsing tasks, such
as denoising, to validate the model and compare it to othéhads that explicitly or implicitly
represent data density. In the noiseless case, a spikegrabtained by running matching pursuit
until the decrease in the residual falls below a threshaidhé presence of noise, this encoding
process can be formulated as a denoising operation, tetedimehen the improvement in the log-
likelihood (variance of the residual divided by the variaraf the noise) is less than the cost of
adding a spike (the negative log-probability of spiking)e Wicorporate the HSC model directly
into this denoising algorithm by replacing the fixed proltibof spiking at the first layer with the



rate specified by the second layer. Since neither the firstsexond-layer spike code for the noisy
signal is known, we first infer the first and then the seconédaysing MAP estimation, and then
recompute the first layer given both the data and second. |ayxerdenoised waveform is obtained
by reconstructing from the resulting first-layer spikes.

To the extent that the parameters learned by HSC reflecttitatiproperties of the signal, incorpo-
rating the more sophisticated spikegram prior into a demgialgorithm should allow us to better
distinguish signal from noise. We tested this by denoispegesh waveforms (held out during model
training) that have been corrupted by additive white Gaumsebise. We compared the model’s per-
formance to that of the matching pursuit encoding (spag@asirepresentation without a hierarchi-
cal model), as well as to two standard denoising methodsn&Viéltering and wavelet-threshold
denoising (implemented with MATLAB’swden function, using symlets, SURE estimator for soft
threshold selection; other parameters optimized for perémce on the training data set) [11].

HSC-based denoising is able to outperform standard methedgell as matching pursuit denoising
(Table 1 left). Although the performance gains are modhstfdct that the HSC model, which is not
optimized for the task or trained on noisy data, can matctptrérmance of adaptive algorithms
like wavelet filtering denoising suggests that it has ledimezpresentation that successfully exploits
the statistical regularities present in the data.

To test more rigorously the benefit of a structured prior, walieated denoising performance on
signals corrupted with non-stationary noise whose powepoiselated over time. This is a more
challenging task, but it is also more relevant to real-waybglications, where sources of noise are
often non-stationary. Algorithms that incorporate spedifiut often incorrect) noise models (e.g.,
Wiener filtering) tend to perform poorly in this setting. Wergrated sparse temporally modulated
noise by scaling white Gaussian noise with a temporally $meovelope (given as a convolution of
a Gaussian function with st. dev. of 0.02s with a Poissongs®avith rate 16°1). All methods fare
worse on this task. Again, the hierarchical model outpenfoother methods (Table 1 right), but
here the improvement in performance is larger, especialjgh noise levels where the model prior
plays a greater role. The reconstruction SNR does not fahwey the manner in which different
algorithms handle noise: perceptually, we find that the dewtenoised by the hierarchical model
sound more similar to the original (audio examples in supgletary materials).

6 Discussion

We developed a hierarchical spike code model that captwemlex structure in sounds. Our
work builds on the spikegram representation of [5], thusidiag the limitations arising from
spectrogram-based methods, and makes a number of novebatiohs. Unlike previous work
[3, 4], the learned kernels are shiftable in both tiamel log-frequency, which enables the model to
learn time- and frequency-relative patterns and use a smalber of kernels efficiently to represent
a wide variety of sound features. In addition, the model diees acoustic structure on multiple
scales (via a hierarchical component and a recurrent coemprwhich capture fundamentally dif-
ferent kinds of statistical regularities.

Technical contributions of ths work include methods fortéiag and performing approximate in-
ference in a generalized linear model in which some of thetsare unobserved and sparse (in
this case the second-layer spikes). The computationalefrenrk developed here is general, and
may have other applications in modeling sparse data wittigfigrobserved variables. Because the
model is nonlinear, multi-layer cascades could lead totamiislly more powerful models.

Applying the model to complex natural sounds (speech), weahstrated that it can learn non-
trivial features, and we have shown how these features caroimgposed to form basic acoustic
units. We also showed a simple application to denoising,atestnating improved performance to
wavelet thresholding. The framework provides a generahoulogy for learning higher-order
features of sounds, and we expect that it will prove usefuepresenting other structured sounds
such as music, animal vocalizations, or ambient naturaiéeu
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