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Abstract

Natural sounds exhibit complex statistical regularities at multiple scales. Acous-
tic events underlying speech, for example, are characterized by precise temporal
and frequency relationships, but they can also vary substantially according to the
pitch, duration, and other high-level properties of speechproduction. Learning
this structure from data while capturing the inherent variability is an important
first step in building auditory processing systems, as well as understanding the
mechanisms of auditory perception. Here we develop Hierarchical Spike Coding,
a two-layer probabilistic generative model for complex acoustic structure. The
first layer consists of a sparse spiking representation thatencodes the sound us-
ing kernels positioned precisely in time and frequency. Patterns in the positions
of first layer spikes are learned from the data: on a coarse scale, statistical reg-
ularities are encoded by a second-layer spiking representation, while fine-scale
structure is captured by recurrent interactions within thefirst layer. When fit to
speech data, the second layer acoustic features include harmonic stacks, sweeps,
frequency modulations, and precise temporal onsets, whichcan be composed to
represent complex acoustic events. Unlike spectrogram-based methods, the model
gives a probability distribution over sound pressure waveforms. This allows us to
use the second-layer representation to synthesize sounds directly, and to perform
model-based denoising, on which we demonstrate a significant improvement over
standard methods.

1 Introduction

Natural sounds, such as speech and animal vocalizations, consist of complex acoustic events oc-
curring at multiple scales. Precise timing and frequency relationships among these events convey
important information about the sound, while intrinsic variability confounds simple approaches to
sound processing and understanding. Speech, for example, can be described as a sequence of words,
which are composed of precisely interrelated phones, but each utterance may have its own prosody,
with variable duration, loudness, and/or pitch. An auditory representation that captures the corre-
sponding structure while remaining invariant to this variability would provide a useful first step for
many applications in auditory processing.
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Many recent efforts to learn auditory representations in anunsupervised setting have focused on
sparse decompositions chosen to capture structure inherent in sound ensembles. The dictionaries
can be chosen by hand [1, 2] or learned from data. For example,Klein et al [3] adapted a set of
time-frequency kernels to represent spectrograms of speech signals and showed that the resulting
kernels were localized and bore resemblance to auditory receptive fields. Lee et al [4] trained a
two-layer deep belief network on spectrogram patches and used it for several auditory classification
tasks.

These approaches have several limitations. First, they operate on spectrograms (rather than the origi-
nal sound waveforms), which impose limitations on both timeand frequency resolution. In addition,
most models built on spectrograms rely on block-based partitioning of time, and thus are susceptible
to artifacts – precisely-timed acoustic events can appear across multiple blocks and events can ap-
pear at different temporal offsets relative to the block, making their identification and representation
difficult [5]. The features learned by these models are tied to specific frequencies, and must be repli-
cated at different frequency offsets to accommodate pitch shifts that occur in natural sounds. Finally,
the linear generative models underlying most methods are unsuitable for constructing hierarchical
models, since the composition of multiple linear stages is again linear.

To address these limitations, we propose a two-layer hierarchical model that encodes complex acous-
tic events using a representation that is shiftable in both time and frequency. The first layer is a
“spikegram” representation of the sound pressure waveform, as developed in [6, 5]. The prior prob-
abilities for coefficients in the first layer are modulated bythe output of the second layer, combined
with a recurrent component that operates within the first layer. When trained on speech, the kernels
learned at the second layer encode complex acoustic events which, when positioned at specific times
and frequencies, compactly represent the first-layer spikegram, which is itself a compact description
of the sound pressure waveform. Despite its very sparse activation, the second-layer representation
retains much of the acoustic information: sounds sampled according to the generative model approx-
imate well the original sound. Finally, we demonstrate thatthe model performs well on a denoising
task, particularly when the noise is structured, suggesting that the higher-order representation pro-
vides a useful statistical description of speech.

2 Hierarchical spike coding

In the “spikegram” representation [5], a sound is encoded using a linear combination of sparse,
time-shifted kernelsφf (t):

xt =
∑

τ,f

Sτ,fφf (t − τ) + ǫt (1)

whereǫt denotes Gaussian white noise and the coefficientsSτ,f are mostly zero. As in [5], theφf (t)
are gammatone functions with varying center frequencies, indexed byf . In order to encode the sig-
nal, a sparse set of “spikes” (i.e., nonzero coefficients at specific times and frequencies) is estimated
using an approximate inference method, such as matching pursuit [7]. The resulting spikegram,
shown in Fig. 1b, offers an efficient representation of sounds [8] that avoids the blocking artifacts
and time-frequency trade-offs associated with more traditional spectrogram representations.

We aim to model the statistical regularities present in the spikegram representations. Spikegrams ex-
hibit clear statistical structure, both at coarse (Fig. 1b,c) and at fine temporal scales (Fig. 1e,f). Spikes
placed at precise locations in time and frequency reveal acoustic features, harmonic structures, as
well as slow modulations in the sound envelope. The coarse scale non-stationarity is likely caused
by higher-order acoustic events, such as phoneme utterances that span a much larger time-frequency
range than the individual gammatone kernels. On the other hand, the fine-scale correlations are
due to some combination of the correlations inherent in the gammatone filterbank and the precise
temporal structure present in speech.

We introduce the hierarchical spike coding (HSC) model, illustrated in Fig. 2, to capture the struc-
ture in the spikegrams (S(1)) on both coarse and fine scales. We add a second layer of unobserved
spikes (S(2)), assumed to arise from a Poisson process with constant rateλ. These spikes are con-
volved with a set of time-frequency “rate kernels” (Kr) to yield the logarithm of the firing rate of
the first-layer spikes on a coarse scale. On a fine scale, the logarithm of the firing rate of first-
layer spikes is modulated using recurrent interactions, byconvolving the local spike history with
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Figure 1: Coarse (top row) and fine (bottom row) scale structure in spikegram encodings of speech.
a. The sound pressure waveform of a spoken sentence andb. the corresponding spikegram. Each
spike (dot) has an associated time (abscissa) and center frequency (ordinate) as well as an amplitude
(dot size).c. Cross-correlation function for a spikegram ensemble reveals correlations across large
time/frequency scales.d. Magnification of a portion of (a), with two gammatone kernels (red and
blue), corresponding to the red and blue spikes in (e). e. Magnification of corresponding portion of
(b) , revealing that spike timing exhibits strong regularities at a fine scale.f. Histograms of inter-
spike-intervals for two frequency channels correspondingto the colored spikes in (e) reveal strong
temporal dependencies.

a set of “coupling kernels” (Kc). The amplitudes of the first-layer spikes are also specifiedhi-
erarchically: the logarithm of the amplitudes is assumed tobe normally distributed, with a mean
specified by the convolution of second-layer spikes with “amplitude kernels”, (Ka not shown) with-
out any recurrent contribution, and the variance fixed atσ2. The model parameters are denoted by

Θ =
(

Kr,Ka,Kc,~br,~ba
)

where~br,~ba are the bias vectors corresponding to the log-rate and log-

amplitude of the first-layer coefficients, respectively. The model specifies a conditional probability
density over first-layer coefficients,

P (S
(1)
t,f |S(2); Θ) = (1 − p) δ(S

(1)
t,f ) + pN

(

log S
(1)
t,f ;At,f , σ2

)

for S
(1)
t,f ≥ 0, ∀t, f (2)

where p = ∆t∆feRt,f and N
(

x;µ, σ2
)

=
e−

(x−µ)2

2σ2

√
2πσ2

(3)

Rt,f = br
f + (Kc ∗ 1S(1))t,f +

∑

i

[

(Kr
i ∗ S

(2)
i )t,f

]

(4)

At,f = ba
f +

∑

i

[

(Ka
i ∗ S

(2)
i )t,f

]

(5)

In Eq. (2),δ(.) is the Dirac delta function. In Eq. (3),∆t and∆f are the time and frequency bin
sizes. In Eqs. (4-5),∗ denotes convolution and1x is 1 if x 6= 0, and0 otherwise.

3 Learning

The joint log-probability of the first and second layer can beexpressed as a function of the model
parametersΘ and the (unobserved) second-layer spikesS(2):

L(Θ, S(2)) = log P (S(1), S(2); Θ, λ) = log P (S(1)|S(2); Θ) + log P (S(2);λ) (6)

=
∑

(t,f)∈S(1)

(

Rt,f − 1

2σ2

(

log S
(1)
t,f − At,f

)2
)

−
∑

t,f

eRt,f ∆t∆f (7)

− log (λ∆t∆f ) ‖S(2)‖0 + const
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Figure 2: Illustration of the hierarchical spike coding model. Second-layer spikesS(2) associ-
ated with 3 features (indicated by color) are sampled in timeand frequency according to a Poisson
process, with exponentially-distributed amplitudes (indicated by dot size). These are convolved
with corresponding rate kernelsKr (outlined in colored rectangles), summed together, and passed
through an exponential nonlinearity to drive the instantaneous rate of the first-layer spikes on a
coarse scale. The first-layer spike rate is also modulated ona fine scale by a recurrent component
that convolves previous spikes with coupling kernelsKc. At a given time step (vertical line), spikes
S(1) are generated according to a Poisson process whose rate depends on the top-down and the
recurrent terms.

where the equality in Eq. (7) holds in the limit∆t∆f → 0. Maximizing the data likelihood re-
quires integratingL over all possible second-layer representationsS(2), which is computationally
intractable. Instead, we choose to approximate the optimalΘ by maximizingL jointly over Θ and
S(2). If S(2) is known, then the model falls within the well-known class ofgeneralized linear models
(GLMs) [9], and Eq. (6) is convex inΘ. Conversely, ifΘ is known then Eq. (6) is convex inS(2)

except for theL0 penalty term corresponding to the prior onS(2). Motivated by these facts, we
adopt a coordinate-descent approach by alternating between the following steps:

S(2) ← arg max
S(2)

L(Θ, S(2)) (8)

Θ ← Θ + η∇ΘL(Θ, S(2)) (9)

whereη is a fixed learning rate. Section 4 describes a method for approximate inference of the
second-layer spikes (solving Eq. (8)). The gradients used in Eq. (9) are straightforward to compute
and are given by

∂L
∂br

f

= (# 1′ spikes in channel f) −
∑

t

eRt,f ∆t∆f (10)

∂L
∂ba

f

=
1

σ2

∑

t

(

log S
(1)
t,f − At,f

)

(11)

∂L
∂Kr

τ,ζ,i

=
∑

(t,f)∈S(1)

S
(2)
i (t − τ, f − ζ) −

∑

t,f

eRt,f S
(2)
t−τ,f−ζ,i∆t∆f (12)

∂L
∂Kc

τ,f,f ′

=
∑

t∈S
(1)
f

1
S

(1)

t−τ,f′

−
∑

t

eRt,f 1
S

(1)

t−τ,f′

∆t∆f (13)
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Figure 3: Example model kernels learned on the TIMIT data set. Top: rate kernels (colormaps
individually rescaled). Bottom: Four representative coupling kernels (scaling indicated by colorbar).

4 Inference

Inference of the second-layer spikesS(2) (Eq. (8)) involves maximizing the trade-off between the
GLM likelihood term, which we denote bỹL(Θ, S(2)) and the last term which penalizes the number
of spikes (‖S(2)‖0). Solving Eq. (8) exactly is NP-hard. We adopt a variant of the well-known
matching pursuit algorithm [7] to approximate the solution. First,S(2) is initialized to~0. Then the
following two steps are repeated:

1. Select the coefficient that maximizes a second-order Taylor approximation of̃L(Θ, ·) about
the current solutionS(2):

(τ∗, ζ∗, i∗) = arg max
τ,ζ,i

−
(

∂L̃
∂S

(2)
τ,ζ,i

)2

/
∂2L̃

∂S
(2)
τ,ζ,i

2 (14)

2. Perform a line search to determine the step size for this coefficient that maximizes̃L(Θ, ·).
If the maximal improvement does not outweigh the cost− log(λ∆t∆f ) of adding a spike,
terminate. Otherwise updateS(2) using this step and repeat Step 1.

5 Results

Model parameters learned from speech

We applied the model to the TIMIT speech corpus [10]. First, we obtained spikegrams by encoding
sounds to 20dB precision using a set of 200 gammatone filters with center frequencies spaced evenly
on a logarithmic scale (see [5] for details). For each audio sample, this gave us a spikegram with
fine time and frequency resolution (6.25×10−5s and 3.8×10−2 octaves, respectively). We trained
a model with 20 rate and 20 amplitude kernels, with frequencyresolution equivalent to that of the
spikegram and time resolution of 20ms. These kernels extended over 400ms×3.8 octaves (spanning
20 time and 100 frequency bins). Coupling kernels were defined independently for each frequency
channel; they extended over 20ms and 2.7 octaves around the channel center frequency with the
same time/frequency resolution as the spikegram. All parameters were initialized randomly, and
were learned according to Eq. (8-9).

Fig. 3 displays the learned rate kernels (top) and coupling kernels (bottom). Among the patterns
learned by the rate kernels are harmonic stacks of differentdurations and pitch shifts (e.g., kernels
4, 9, 11, 18), ramps in frequency (kernels 1, 7, 15, 16), sharptemporal onsets and offsets (kernels
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Figure 4: Model representation of phone pairsaa+r (left) andao+l (right), as uttered by four speak-
ers (rows: two male, two female). Each row shows inferred second-layer spikes, the rate kernels
most correlated with the utterance of each phone pair, shifted to their corresponding spikes’ fre-
quencies (colored on left), and the encoded log firing rate centered on the phone pair utterance.

7, 13, 19), and acoustic features localized in time and frequency (kernels 5, 10, 12, 20) (example
sounds synthesized by turning on single features are available in supplementary materials). The
corresponding amplitude kernels (not shown) contain patterns highly correlated with the rate kernels,
suggesting a strong dependence in the spikegram between spike rate and magnitude. For most
frequency channels, the coupling kernels are strongly negative at times immediately following the
spike and at adjacent frequencies, representing “refractory periods” observed in the spikegrams.
Positive peaks in the coupling kernels encode precise alignment of spikes across time and frequency.

Second-layer representation

The learned kernels combine in various ways to represent complex acoustic events. For example,
Fig. 4 illustrates how features can combine to represent twodifferent phone pairs. Vowel phones
are approximated by a harmonic stack (outlined in yellow) together with a ramp in frequency (out-
lined in orange and dark blue). Because the rate kernels add to specify the logarithm of the firing
rate, their superposition results in a multiplicative modulation of the intensities at each level of the
harmonic stack. In addition, the ‘r‘ consonant in the first example is characterized by a high concen-
tration of energy at the high frequencies and is largely accounted for by the kernel outlined in red.
The ‘l‘ consonant following ‘ao‘ contains a frequency modulation captured by the v-shaped feature
(outlined in cyan).

Translating the kernels in log-frequency allows the same set of fundamental features to participate
in a range of acoustic events: the same vocalizations at different pitch are often represented by the
same set of features. In Fig. 4, the same set of kernels is usedin a similar configuration across dif-
ferent speakers and genders. It should be noted that the second-layer representation does not discard
precise time and frequency information (this information is carried in the times and frequencies of
the second-layer spikes). However, the identities of the features that are active remain invariant to
pitch and frequency modulations.

Synthesis

One can further understand the acoustic information that iscaptured by second-layer spikes by
sampling a spikegram according to the generative model. We took the second-layer encoding of a
single sentence from the TIMIT speech corpus [10] (Fig. 5 middle) and sampled two spikegrams:
one with only the hierarchical component (left), and one that included both hierarchical and coupling
components (right). At a coarse scale the two samples closely resemble the spikegram of the original
sound. However, at the fine time scale, only the spikegram sampled with coupling contains the
regularities observed in speech data (Fig. 5 bottom row). Sounds were also generated from these
spikegram samples by superimposing gammatone kernels as in[5]. Despite the fact that the second-
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Figure 5: Synthesis from inferred second-layer spikes. Middle bottom: spikegram representation
of the sentence in Fig. 1; Middle top: Inferred second-layerrepresentation; Left: first-layer spikes
generated using only the hierarchical model component; Right: first-layer spikes generated using
hierarchical and coupling kernels. Synthesized waveformsare included in the supplementary mate-
rials.

white noise
noise level Wiener wav thr MP HSC

-10dB -7.00 2.41 2.26 2.50
-5dB 0.00 4.93 4.79 5.01
0dB 5.49 7.94 7.71 7.99
5dB 7.84 11.15 11.01 11.33

10dB 10.31 14.64 14.49 14.83

sparse temporally modulated noise
Wiener wav thr MP HSC

-10dB -8.68 -8.73 -5.12 -4.37
-5dB -3.09 -3.63 -0.96 -0.38
0dB 1.90 1.23 2.97 3.30
5dB 6.37 6.06 7.11 7.40

10dB 9.68 11.28 11.58 11.88

Table 1: Denoising accuracy (dB SNR) for speech corrupted with white noise (left) or with sparse,
temporally modulated noise (right).

layer representation contains over 15 times fewer spikes asthe first-layer spikegrams, the synthesized
sounds are intelligible and the addition of the coupling filters provides a noticeable improvement
(audio examples in supplementary materials).

Denoising

Although the model parameters have been adapted to the data ensemble, obtaining an estimate of the
likelihood of the data ensemble under the model is difficult,as it requires integrating over unobserved
variables (S(2)). Instead, we can use performance on unsupervised signal processing tasks, such
as denoising, to validate the model and compare it to other methods that explicitly or implicitly
represent data density. In the noiseless case, a spikegram is obtained by running matching pursuit
until the decrease in the residual falls below a threshold; in the presence of noise, this encoding
process can be formulated as a denoising operation, terminated when the improvement in the log-
likelihood (variance of the residual divided by the variance of the noise) is less than the cost of
adding a spike (the negative log-probability of spiking). We incorporate the HSC model directly
into this denoising algorithm by replacing the fixed probability of spiking at the first layer with the
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rate specified by the second layer. Since neither the first- nor second-layer spike code for the noisy
signal is known, we first infer the first and then the second layer using MAP estimation, and then
recompute the first layer given both the data and second layer. The denoised waveform is obtained
by reconstructing from the resulting first-layer spikes.

To the extent that the parameters learned by HSC reflect statistical properties of the signal, incorpo-
rating the more sophisticated spikegram prior into a denoising algorithm should allow us to better
distinguish signal from noise. We tested this by denoising speech waveforms (held out during model
training) that have been corrupted by additive white Gaussian noise. We compared the model’s per-
formance to that of the matching pursuit encoding (sparse signal representation without a hierarchi-
cal model), as well as to two standard denoising methods, Wiener filtering and wavelet-threshold
denoising (implemented with MATLAB’swden function, using symlets, SURE estimator for soft
threshold selection; other parameters optimized for performance on the training data set) [11].

HSC-based denoising is able to outperform standard methods, as well as matching pursuit denoising
(Table 1 left). Although the performance gains are modest, the fact that the HSC model, which is not
optimized for the task or trained on noisy data, can match theperformance of adaptive algorithms
like wavelet filtering denoising suggests that it has learned a representation that successfully exploits
the statistical regularities present in the data.

To test more rigorously the benefit of a structured prior, we evaluated denoising performance on
signals corrupted with non-stationary noise whose power iscorrelated over time. This is a more
challenging task, but it is also more relevant to real-worldapplications, where sources of noise are
often non-stationary. Algorithms that incorporate specific (but often incorrect) noise models (e.g.,
Wiener filtering) tend to perform poorly in this setting. We generated sparse temporally modulated
noise by scaling white Gaussian noise with a temporally smooth envelope (given as a convolution of
a Gaussian function with st. dev. of 0.02s with a Poisson process with rate 16s−1). All methods fare
worse on this task. Again, the hierarchical model outperforms other methods (Table 1 right), but
here the improvement in performance is larger, especially at high noise levels where the model prior
plays a greater role. The reconstruction SNR does not fully convey the manner in which different
algorithms handle noise: perceptually, we find that the sounds denoised by the hierarchical model
sound more similar to the original (audio examples in supplementary materials).

6 Discussion

We developed a hierarchical spike code model that captures complex structure in sounds. Our
work builds on the spikegram representation of [5], thus avoiding the limitations arising from
spectrogram-based methods, and makes a number of novel contributions. Unlike previous work
[3, 4], the learned kernels are shiftable in both timeand log-frequency, which enables the model to
learn time- and frequency-relative patterns and use a smallnumber of kernels efficiently to represent
a wide variety of sound features. In addition, the model describes acoustic structure on multiple
scales (via a hierarchical component and a recurrent component), which capture fundamentally dif-
ferent kinds of statistical regularities.

Technical contributions of ths work include methods for learning and performing approximate in-
ference in a generalized linear model in which some of the inputs are unobserved and sparse (in
this case the second-layer spikes). The computational framework developed here is general, and
may have other applications in modeling sparse data with partially observed variables. Because the
model is nonlinear, multi-layer cascades could lead to substantially more powerful models.

Applying the model to complex natural sounds (speech), we demonstrated that it can learn non-
trivial features, and we have shown how these features can becomposed to form basic acoustic
units. We also showed a simple application to denoising, demonstrating improved performance to
wavelet thresholding. The framework provides a general methodology for learning higher-order
features of sounds, and we expect that it will prove useful inrepresenting other structured sounds
such as music, animal vocalizations, or ambient natural sounds.
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