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Abstract

Efficient coding provides a powerful principle for explaigiearly sensory cod-
ing. Most attempts to test this principle have been limitedittear, noiseless

models, and when applied to natural images, have yieldedted filters consis-

tent with responses in primary visual cortex. Here we shawah efficient coding

model that incorporates biologically realistic ingredsen input and output noise,
nonlinear response functions, and a metabolic cost on ting fiate — predicts

receptive fields and response nonlinearities similar tedghabserved in the retina.
Specifically, we develop numerical methods for simultarsolearning the linear

filters and response nonlinearities of a population of madekons, so as to max-
imize information transmission subject to metabolic cos¢hen applied to an

ensemble of natural images, the method yields filters tleatamnter-surround and
nonlinearities that are rectifying. The filters are orgadinto two populations,

with On- and Off-centers, which independently tile the aisspace. As observed
in the primate retina, the Off-center neurons are more naogeand have filters
with smaller spatial extent. In the absence of noise, ouhoteteduces to a gen-
eralized version of independent components analysis, avithdapted nonlinear
“contrast” function; in this case, the optimal filters aredtized and oriented.

1 Introduction

Coding efficiency is a well-known objective for the evaloatand design of signal processing sys-
tems, and provides a theoretical framework for understanbliological sensory systems. Attneave
[1] and Barlow [2] proposed that early sensory systems atiengged, subject to the limitations of
their available resources, for representing informatiomtained in naturally occurring stimuli. Al-
though these proposals originated more than 50 years agphtive proven difficult to test. The
optimality of a given sensory representation depends offiatimdy of possible neural transforma-
tions to which it is compared, the costs of building, mainitag, and operating the system, the
distribution of input signals over which the system is eatdudl, and the levels of noise in the input
and output.

A substantial body of work has examined coding efficiency afyevisual representations. For
example, the receptive fields of retinal neurons have beewrsho be consistent with efficient

coding principles [3, 4, 5, 6]. However, these formulatiogly on unrealistic assumptions of linear
response and Gaussian noise, and their predictions arenitpialy constrained. For example, the
observation that band-pass filtering is optimal [4] is ifisi#nt to explain rotationally symmetric

(center-surround) structure of receptive fields in theneeti



The simplest models that attempt to capture both the reeefitid properties and the response non-
linearities are linear-nonlinear (LN) cascades, in whieh incoming sensory stimulus is projected
onto a linear kernel, and this linear response is then paksedgh a memoryless scalar nonlinear
function whose output is used to generate the spiking respofthe neuron. Such approaches have
been used to make predictions about neural coding in gef¥r8], and, when combined with a
constraint on the mean response level, to derive orientsptive fields similar to those found in
primary visual cortex [9, 10]. These models do not genetaltprporate realistic levels of noise.
And while the predictions are intuitively appealing, it Is@somewhat of a mystery that they bypass
the earlier (e.g., retinal) stages of visual processingihith receptive fields are center-surround.

A number of authors have studied coding efficiency of scatarlinear functions in the presence
of noise and compared them to neural responses to varialibsas contrast [11, 12, 13, 14, 15].
Others have verified that thikstributions of neural responses are in accordance with predictions of
coding efficiency [16, 17, 18, 19]. To our knowledge, howewerprevious result has attempted to
jointly optimize the linear receptive field and the nonlinessponse properties in the presence of
realistic levels of input and output noise, and realistiogtcaints on response levels.

Here, we develop methods to optimize a full population aédirnonlinear (LN) model neurons for
transmitting information in natural images. We includerartén the objective function that captures
metabolic costs associated with firing spikes [20, 21, 223. aldo include two sources of noise, in
both input and output stages. We implement an algorithmdiotly optimizing the population of
linear receptive fields and their associated nonlinearitide find that, in the regime of significant
noise, the optimal filters have a center-surround form, aedptimal nonlinearities are rectifying,
consistent with response properties of retinal ganglidis.cé/e also observe asymmetries between
the On- and the Off-center types similar to those measureetinal populations. When both the
input and the output noise are sufficiently small, our leagrlgorithm reduces to a generalized form
of independent component analysis (ICA), yielding optifiledrs that are localized and oriented,
with corresponding smooth nonlinearities.

2 A model for noisy nonlinear efficient coding

We assume a neural model in the form of an LN cascade (Figwtégh has been successfully fit
to neural responses in retina, lateral geniculate nucngsprimary visual cortex of primate visual
systems [e.g., 23, 24, 25]. We develop a numerical methogtion@e both the linear receptive

fields and the corresponding point nonlinearities so as tdmiae the information transmitted about
natural images in the presence of input and output noiseglisss/metabolic constraints on neural
processing.

Consider a vector of inputs of dimensionalityD (e.g. an image wittD pixels), and output vector
r of dimensionality.J (the underlying firing rate off neurons). The response of a neurgns
computed by taking an inner product of the (noise-corruptgalit with a linear filterw ; to obtain
a generator signal; (e.g. membrane voltage), which is then passed through heaméinearity f;
(corresponding to the spike-generating process) and giadwvith additional neural noise,

ri = fi (y;) +nr 1)
Yi = W;T (X + nﬂ?) ’ (2)

(Fig. 1a). Note that we did not constrain the model to be “cleted (the number of neurons can be
smaller or larger than the input dimensionality) and thahezeuron can have a different nonlinear-
ity.

We aim to optimize an objective function that includes thetumbinformation between the input
signal and the population responses, dendtexi; R), as well as an approximate measure of the
metabolic operating cost of the system. It has been estihihst most of the energy expended by
spiking neurons is associated with the cost of generating {acovering from) spikes and that this
cost is roughly proportional to the neural firing rate [22]huE we incorporate a penalty on the
expected output, which gives the following objective fuoet

I(X;R)—Z/\j<7“j>- 3)
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Figure 1:a. Schematic of the model (see text for description). The gotd maximize information
transfer between imagesand the neural responggsubject to metabolic cost of firing spikels.
Information about the stimulus is conveyed both by the ayeament of the filters and the steepness
of the neural nonlinearitiedlop: two neurons encode two stimulus components (e.g. two pofels
an imagey; andzxs) with linear filters (black lines) whose output is passedtigh scalar nonlinear
functions (thick color lines; thin color lines show isoresge contours at evenly spaced output
levels). The steepness of the nonlinearities specifies theigion with which each projection is
represented: regions of steep slope correspond to finetiguairtg of the input space, reducing the
uncertainty about the inpuBottom: joint encoding leads to binning of the input space accorting
the isoresponse lines above. Grayscale shading indi¢egésvel of uncertainty (entropy) in regions
of the input (lighter shades correspond to higher uncestpi&fficient codes optimize this binning,
subject to input distribution, noise levels, and metabaotdists on the outputs.

Parameten; specifies the trade-off between information gained by firmaye spikes, and the cost
of generating them. It is difficult to obtain a biologicallylid estimate for this parameter, and
ultimately, the value of sensory information gained deenwl the behavioral task and its context
[26]. Alternatively, we can usg; as a Lagrange multiplier to enforce the constraint on thermea
output of each neuron.

Our goal is to adjust both the filters and the nonlinearitfeb® neural population so as to maximize
the expectation of (3) under the joint distribution of inp@nd outputsp(x,r). We assume the
filters are unit norm|(w ;|| = 1) to avoid an underdetermined model in which the nonlingaigtles
along its input dimension to compensate for filter amplifwat The nonlinearitieg; are assumed
to be monotonically increasing. We parameterizedstbpe of the nonlinearityy; = df; /dy; using

a weighted sum of Gaussian kernels,

L
9i (W5 lcin, mik, 05) Zcﬂc eXP( e e ks ) ; (4)
J

with coefficientsc;, > 0. The number of kernel& was chosen for sufficiently flexible nonlinearity
(in our experimentg( = 500). We spacedq;; evenly over the range of; and chose; for smooth
overlap of adjacent kernels (kernel centgss apart).

2.1 Computing mutual information

How can we compute the information transmitted by the nealimetwork of neurons? Mutual
information can be expressed as the difference betweentimoges,/ (X; R) = H(X)—H(X|R).
The first term is the entropy of the data, which is constaet ffi.does not depend on the model) and
can therefore be dropped from the objective function. Tlcesé term is the conditional differential
entropy and represents the uncertainty in the input aftegisiing the neural response. Itis computed
by taking the expectation over output valué$X |R) = E, [— [ p(x|r) In p(x|r)dx]. In general,
computing the entropy of an arbitrary high dimensionakibstion is not tractable. We make several
assumptions that allow us to approximate the posteriorpcenits entropy, and maximize mutual
information. The posterior is proportional to the produtcth® likelihood and the priogp(x|r)
p(r|x)p(x); below we describe these two functions in detail.



The likelihood. First, we assume the nonlinearity is smooth enough thahealetvel of the noise
(both input and output)f; can be linearized using first-order Taylor series expansitnis means
that locally, for each input’ and instance of noise,

r'~ G'WT(x' +nl) +nl + £, (5)

whereW is a matrix collecting the neural filter§ is a vector of constants, ar@' is a diagonal

matrix containing the local derivatives of the responsecfiomsg;(y;) at y;(x’). Here we have

usedi to index parameters and random variables that change wéthieput. (Similar approxima-
tions have been used to minimize reconstruction error imalewnlinearities [27] and maximize
information in networks of interacting genes [28].)

Ifinput and output noises are assumed to be constant andsi@aywith covariance€,,, andC,, .,
respectively, we obtain a Gaussian likelihggd|x), with covariance
L. =G'WT'C, WG'+C,, . (6)

r|x

We emphasize that although the likeliholmtally takes the form of a Gaussian distribution, its
covariance is not fixed but depends on the input, leadingfferdit values for the entropy of the
posterior across the input space. Fig. 1b illustrates sakieally how the organization of the filters
and the nonlinearities affects the entropy and thus detersnihe precision with which neurons
encode the inputs.

The prior. We would like to make as few assumptions as possible abouyirtbedistribution of
natural images. As described below, we rely on sampling eegches to approximate this density
when computingH (X|R). Nevertheless, to compute local estimates of the entropyeesl to
combine the prior with the likelihood. For smooth densitié® entropy depends on the curvature
of the prior in the region where likelihood has significantssiaWhen an analytic form for the prior
is available, we can use a second-order expansion of thegyoand the maximum of the posterior
(known as the “Laplace approximation” to the posterior) fattunately, this is difficult to compute
reliably in high dimensions when only samples are availabistead, we use thgiobal curvature
estimate in the form of the covariance matrix of the déta,

Putting these ingredients together, we compute the pos&sia product of two Gaussian distribu-
tions. This gives a Gaussian with covariance
= (CI' + WGHG'WTC,, WG + C,, ) 'G'WT)' @)

xz|r

This provides a measure of uncertainty about each input masaus to express information con-
veyed about the input ensemble by taking the expectationtbeenput and output distributions,

1 )
—H(X|R) = —B | 5 In2medet(CL,) | - )

We obtain Monte Carlo estimates of this conditional entrbpyaveraging the term in the brackets
over a large ensemble of patches drawn from natural imageant/output noise sampled from
assumed noise distributions.

2.2 Numerical optimization

We made updates to model parameters using online gradiegritasn the objective function com-
puted on small batches of data. We omit the gradients herthessare obtained using standard
methods but do not yield easily interpretable update ru@se important special case is derived
when the number of inputs equals the number of outputs, atidrmise levels approach zero. In
this setting, the update rule for the filters reduces to th& l&arning rule [8], with the gradient
updates maximizing the entropy of the output distributidBecause our response constraint effec-
tively limits the mean firing rate and not the maximum, tha-&tgbbian term is different from that
found in standard ICA, and the optimal (maximum entropypoesse distributions are exponential,
rather than uniform. Note also that our method is more génieaa standard ICA: it adaptively
adjusts the nonlinearities to match the input distributiwvhereas standard ICA relies on a fixed
nonlinear “contrast” function.

To ensure all nonlinearities were monotonically incregsithe coefficients:;, were adapted in
log-space. After each step of gradient ascent, we nornufilters so that|w;|| = 1. It was also
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necessary to adjust the sampling of the nonlinearitiesiflon of 1,;,'s) because, as the fixed-norm
filters rotated through input space, the variance of theegt@ns can change drastically. Thus,
whenever data fell outside the range, the range was douteldyhen all data fell inside the central
25%, it was halved.

3 Training the model on natural images

3.1 Methods

Natural image data were obtained by sampling<16 patches randomly from a collection of
grayscale photographs of outdoor scenes [29], whose pitehsities were linear w.r.t. light lumi-
nance levels. Importantly, we did not whiten images. Thg pnéprocessing steps were to subtract
the mean of each large image and rescale the image to attaieaese of 1 for the pixels.

We assumed that the input and output noises were i.i.€C,s6- o2 Ip ande =02 _I;. We chose
8dB for the input §,,,~0.4). Although this is large relative to the variance of a plxs a result of
strong spatial correlations in the input, some projectifriee data (low frequency components) had
SNR over 40dB. Output noise levels were set to -6dB (compaged log,,((r;) /on,.); on,.=2)in
order to match the high variability observed in retinal gamcells (see below). Parameter was
adjusted to attain an average rate of one spike per neurangerimage,r;)=1.

The model consisted of 100 neurons. We found this numbersaffieient to produce homogeneous
sets of receptive fields that spatially tiled the image patohhe retina, the ratio of inputs (cones)
to outputs (retinal ganglion cells) varies greatly, frommakt 1:3 in central fovea to more than 10:1
in the periphery [30]. Our ratio of 256:100 is within the plolegical range, but other factors, such
as eccentricity-dependent sampling, optical blur, andtiplalganglion cell subtypes make exact
comparisons impossible.

We initialized filter weights and nonlinearity coefficiettsrandom Gaussian values. Batch size was
100 patches, resampled after each update of the param&tetsained the model for 100,000 itera-
tions of gradient ascent with fixed step size. Initial coiodis did not affect the learned parameters,
with multiple runs yielding similar results. Unlike algtrims for training generative models, such
as PCA or ICA, itis not possible to synthesize data from thenhdtlel to verify convergence to the
generating parameters.

3.2 Optimal filters and nonlinearities

We found that, in the presence of significant input and outpige, the optimal filters have center-
surround structure, rather than the previously reportéshted shapes (Fig. 2a). Neurons orga-
nize into two populations with On-center and Off-centeefit each independently tiling the visual
space. The population contains fewer On-center neuronsf(4@0) and their filters are spatially
larger (Fig. 2b). These results are consistent with measemés of receptive field structure in retinal
ganglion cells [31] (Fig. 3).

The optimal nonlinear functions show hard rectificatiorthvthresholds near the mode of the input
distribution (Fig. 2c). Measured neural nonlinearities gypically softer, but when rectified noise
is taken into account, a hard-rectified model has been shovire ta good description of neural
variability [32]. The combination of hard-rectifying nonéarities and On/Off filter organization
means that the subspace encoded by model neurons is apptelyirhalf the dimensionality of
the output. For substantial levels of noise, we find that evécomplete” network (in which the
number of outputs equals the number of inputs) does not saimput space and instead encodes
the subspace with highest signal power.

The metabolic cost parametexgthat yielded the target output rate were close to 0.2. Thianse
that increasing the firing rate of each neuron by one spikéenpege leads to an information gain of
20 bits for the entire population. This value is consisteith\previous estimates of 40-70 bits per
second for the optic nerve [33], and an assumption of 2-5ifirat(and thus unique images seen)
per second.

To examine the effect of noise on optimal representatiorstrained the model under different
regimes of noise (Fig. 4). We found that decreasing inpuganigiads to smaller filters and a reduction
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Figure 2: In the presence of biologically realistic level radise, the optimal filters are center-
surround and contain both On-center and Off-center profites optimal nonlinearities are hard-
rectifying functions.a. The set of learned filters for 100 model neurobs.In pixel coordinates,
contours of On-center (Off-center) filters at 50% maximunm{mum) levels.c. The learned non-
linearities for the first four model neurons, superimposedistributions of filter outputs.
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Figure 3:a. A characterization of two retinal ganglion cells obtaineith white noise stimulus
[31]. We plot the estimated linear filters, horizontal sfidhrough the filters, and mean output as
a function of input (black line, shaded area shows one standieviation of response)b. For
comparison, we performed the same analysis on two modebnsuNote that the spatial scales of
model and data filters are different.
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in the number of On-center neurons (bottom left panel). Ia tase, increasing the number of
neurons restored the balance of On- and Off-center filtess fhown). In the case of vanishing
input and output noise, we obtain localized oriented fil{ep left panel), and the nonlinearities are
smoothly accelerating functions that map inputs to an egptial output distribution (not shown).
These results are consistent with previous theoreticat sloowing that optimal nonlinearity in the
low noise regime maximizes the entropy of the output sulifectsponse constraints [11, 7, 17].

How important is the choice of linear filters for efficientammation transmission? We compared
the performance of different filtersets across a range offirates (Fig. 5). For each simulation, we
re-optimized the nonlinearities, adjusting's for desired mean rate, while holding the filters fixed.
As a rough estimate of input entrop¥/( X ), we used an upper bound — a Gaussian distribution with
the covariance of natural images. Our results show that Viilters are mismatched to the noise
levels, performance is significantly degraded. At equivadeitput rate, the “wrong” filters transmit
approximately 10 fewer bits; conversely, it takes about 508&te spikes to encode the same amount
of information.

We also compared the coding efficiency of networks with \d@eaaumber of neurons. First, we
fixed the allotted population spike budget to 100 (per inpiixed the absolute output noise, and
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Figure 4: Each panel shows a subset of filters (20 of 100) mbthiinder different levels of input
and output noise, as well as the nonlinearity for a typicalror in each model.
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Figure 5: Information transmitted as a function of spikerainder noisy conditions (8dB SNR
—6dB SNR,,:). We compare the performance of optimal filteW¥ () to filters obtained under low
noise conditions\V5, 20dB SNR,,, 20dB SNR,,;;) and PCA filters, i.e. the first 100 eigenvectors
of the data covariance matri¥\(s).

varied the number of neurons from 1 (very precise) neurorbtb(fairly noisy) neurons (Fig. 6a).
We estimated the transmitted information as describedabbvthis regime of noise and spiking
budget, the optimal population size was around 100 neurbliext, we repeated the analysis but
used neurons with fixed precision, i.e., the spike budgetsegated with the population to give 1
noisy neuron or 150 equally noisy neurons (Fig. 6b). As theupettion grows, more information is
transmitted, but the rate of increase slows. This suggkatsricorporating an additional penalty,
such as a fixed metabolic cost per neuron, would allow us @igirthe optimal number of canonical
noisy neurons.

4 Discussion

We have described an efficient coding model that incorpsraigredients essential for computa-
tion in sensory systems: non-Gaussian signal distribatiaalistic levels of input and output noise,
metabolic costs, nonlinear responses, and a large poputzitneurons. The resulting optimal solu-
tion mimics neural behaviors observed in the retina: a caatimn of On and Off center-surround
receptive fields, halfwave-rectified nonlinear responagsd, pronounced asymmetries between the
On- and the Off- populations. In the noiseless case, our odgphovides a generalization of ICA
and produces localized, oriented filters.

In order to make the computation of entropy tractable, we enseleral assumptions. First, we
assumed a smooth response nonlinearity, to allow locahiination when computing entropy. Al-
though some of our results produce non-smooth nonlinesritive think it unlikely that this sys-
tematically affected our findings; nevertheless, it migatgmssible to obtain better estimates by
considering higher order terms of local Taylor expansioecdhd, we used the global curvature of
the prior density to estimate the local posterior in Eqn. hefter approximation would be obtained
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Figure 6: Transmitted information (solid line) and totaikgprate (dashed line) as a function of the
number of neurons, assumirg) fixed total spike budget andaj fixed spike budgeaper neuron.

from an adaptive second-order expansion of the prior deastund the maximum of the poste-
rior. This requires the estimation of local density (or mtlits curvature) from samples, which is a
non-trivial problem in a high-dimensional space.

Our results bear some resemblance to previous attemptsit@ detinal properties as optimal so-
lutions. Most notably, optimal linear transforms that ogitie information transmission under a
constraint on total response power have been shown to béstemswith center-surround [4] and
more detailed [34] shapes of retinal receptive fields. Buhdimear models do not provide a unique
solution, nor can they make predictions about nonlineaabielns. An alternative formulation, using
linear basis functions taeconstruct the input signal, has also been shown to exhibit centepaad
shapes [35, 6]. However, this approach makes additionahgstsons about the sparsity of weights
in linear filters, nor does it explicitly maximize the effioiey of the code.

Our results suggest several directions for future effdfisst, noise in our model is a known con-

stant value. In contrast, neural systems must deal withgihgrevels of noise and signal, and must
estimate them based only on their inputs. An interestingtjore, unaddressed in current work, is
how to adapt representations (e.g., synaptic weights anlihearities) to dynamically regulate cod-

ing efficiency. Second, we are interested in extending tludehto make predictions about higher
visual areas. We do not interpret our results in the noisalase (oriented, localized filters) as pre-
dictions for optimal cortical representations. Instead imtend to extend this framework to cortical

representations that must deal with accumulated nonliyeard noise arising from previous stages
of the processing hierarchy.
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