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analytic results for the optimal nonlinearity

a model noisy nonlinear neuron

computing mutual information

(slope of nonlinearity scaled by ratio of input/output noise)

(input SNR)

(Lagrange multipliers for constraint)

(ratio of input pdf to 1‐cdf, also )

(ratio of input/ouput noise)

summary

analysis of retinal ganglion cell dataeffect of noise and input distribution on the 

optimal nonlinearity
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- search over       ,      ,    for nonlinearity and predicted variability that best match input-output   

  pairs (maximize data likelihood under Gaussian noise model)

- also estimate optimal input distribution (generalized Gaussian family:                 ) jointly over 

  all ON cells and jointly over all OFF cells

allow us to ask:
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fitting methods

population analysis

quantitative model comparison
data: in vitro RGC responses (Chichilnisky and Kalmar, 2002)

input: binary white noise stimulus convolved with spatiotemporal STA (generator signal)

output: number of spikes in each time frame (instantaneous firing rate)

response mean and s.d.: computed for 500 (binned) input values

the basic ingredients

 

for abitrary p(x), exact entropy of the posterior can be intractable

we replace the prior with Gaussian q(x) that matches the curvature at 
the mode of the posterior

this yields a Gaussian with input‐dependent variance

and the local estimate for the conditional entropy is

1. input distribution: arbitrary smooth pdf

2. input noise: additive Gaussian*

3. nonlinearity: point‐wise monotonic, smooth 

4. output noise: additive Gaussian*

5. metabolic cost: proportional to output level

maximize information conveyed about the stimulus, subject to a metabolic cost constraint on the output 

assume f is smooth and can be appoximated locally with a 1st order Taylor expansion,

then, if input and output noise are additive Gaussian (and small w.r.t the curvature of f), we can 

compute the conditional entropy for each output ri:

we want to minimize uncertainty about the input for all response levels r, over the input distribution

we derive the optimal nonlinearity in closed form, given

1. known input distribution p(x)

2. additive Gaussian input noise of variance

3. additive Gaussian output noise of variance

4. metabolic cost linear with firing rate

reparameterize quantities of interest and solve the discretized problem:

the solution is parameterized by

and depends on

the optimal nonlinearity is given by the solution to the fourth‐order polynomial

(not pretty, but can be computed in closed form)

we consider a model for efficient coding in a single neuron that includes the primary attributes relevant to 

the biological problem: 1) non‐Gaussian input statistics, 2) input noise, 3) non‐linear neural processing, 4) 

output noise, and 5) a metabolic cost associated with spiking.  what nonlinear transfer function is best for 

information transmission under these conditions?  

to make the problem tractable, we make some assumptions about the smoothness of the nonlinearity and 

the input distribution.  we then derive an analytic form for the optimal nonlinear transfer function, and 

apply this theory to data by testing the optimality of retinal ganglion cell (RGC) responses.  the model yields 

good fits to RGC mean responses, as well as their variability.  the resulting parameters suggest that 

differences between ON and OFF cell nonlinearities (Chichilnisky and Kalmar, 2002) are due to differences in 

both the pre‐processing of their inputs and the metabolic costs of their responses.

(*) additive noise assumption can be relaxed to include Gaussian noise with input‐ or output‐dependent variance

white noise stimulus joint distribution of inputs and outputs
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example ON cell

 

example OFF cell
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how well does the model fit the data?

compare the likelihood under the infomax model (~3 params) to two descriptive models 

1. Linear + Rectify + fixed output Noise

2. empirical (mean and std dev in each bin)

normalized log likelihood

ON cell

OFF cell

retina 2 (n=16)

contributions

we extend previous Infomax results that relied on vanishing noise, and derive the nonlinearity that 

maximizes MI in the presence of non‐neglible input and output noise and metabolic cost (in bits) 

that is proportional to firing rate  

in contrast to the vanishing noise case, hard rectification (i.e. zero mean firing rate for inputs 

below some threshold) is optimal for some parameter settings

the model provides good fits to retinal data; makes predictions about noise levels, metabolic cost 

parameters, and adapted input distributions; optimal input pdf (fit exponent) is nearly Gaussian

future work

‐ theoretical: approximation error when noise is significant; level‐dependent noise)

‐ applications: Bayesian noise estimates; adaptive behavior during stimulus changes 

‐ model extensions: linear filter (nD input); joint encoding by multiple neurons (generalize ICA)
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what nonlinearity maximizes the mutual information beween input and output?

what effect do noise and metabolic cost have on its shape?

what is the optimal output distribution?

parameter    : trades off information gained vs metabolic cost expended

how do we compute the conditional entropy?

nonlinearity for a Gaussian 

input and set noise levels

input and output noise levels affect shape of 

nonlinearity as well as variability of response

the effect of input pdf on nonlinearity

observations

‐ the solution (up to scaling) lives in a 2D space defined by

‐ spike cost and firing rate precision trade off (through    )

‐ data probability density affects solution through        (the cumulative hazard function)

‐ when                 , hard thresholding rectification

‐ high input SNR implies                     , solution is off the constraint boundary,                 , no hard rectification

  this leads to vanishing noise results (Laughlin, 1981; Nadal and Parga, 1994)

‐ we can incorporate level‐dependent input noise using bin‐specific values

‐ level dependent neural noise requires iterative computation of slope variables

 

input‐dependent "constant"

spikes

related theoretical work

long history of nonlinear models that maximize information or reconstruction quality of stimulus

many incorporate elements of current work

metabolic cost (per spike) 

adjusted to keep constant 

mean response
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what is the distribution of inferred parameters?


