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Abstract

This thesis investigates a technique known as “coring” which can be used to

reduce noise in two-dimensional video images. Coring passes the high spatial

frequency components of a noisy image through a non-linear “coring function.”

This function operates on each pixel and is a function of pixel intensity. This

thesis provides a theoretical justification for the success of coring in noise

reduction. Coring functions are generated using the theoretical results and then

tested on a set of images. Finally, this thesis develops an algorithm for noise

reduction given a statistical characterization of the noise.
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Chapter 1

Introduction

Noise in video images often detracts from the viewing enjoyment of pictures and

frequently can obliterate the pictures entirely. Typically, transmission of pictures

introduces noise into the image. The noise that this thesis deals with is that of

uncorrelated additive white noise. There are other types of noise, such as pink

noise (noise with some spatial correlation), speckle noise or multiplicative noise,

quantization errors, and coding/decoding errors. These types of noise will not be

dealt with in this thesis.

A tradeoff must be made when removing noise. It would be simple to remove

all the noise in an image, if one were to also remove all of the desired un-noisy

(signal) image as well. This may be an exaggerated example but it does illustrate

the basic tradeoff of noise reduction and image fidelity. Some solutions remove

the high spatial frequency components of a noisy image. This does eliminate

much of the noise, but it also tends to blur the image. It also leaves low frequency

noise. Thus, noise reduction comes at the cost of blurring.

Several techniques have been developed for noise reduction. They range in

complexity, generally achieving better results with added complexity. They also

make different assumptions about the nature of the noise and the signal.

Sometimes these assumptions prove to constrictive for wide practical use. Two

schemes, noise smoothing, and Wiener filtering demand some attention. The basic

principles, advantages and disadvantages will be discussed in this thesis. It is

important to note that both perform  some sort of high frequency elimination, pro-
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ducing blurring.

Coring solves some of the problem inherent in linear filtering techniques.

Coring employs a non-linear mapping to reduce the noise. Coring anticipates that

the high frequency component of signal power is somewhat larger that the noise

power. Given this assumption, it makes sense that low intensity pixels in a high-

passed filtered image will be noise. Whereas high intensity pixels will most likely

be signal. It then makes sense to severely attenuate low intensity pixels and leave

high intensity pixels unchanged. This is the essence of coring. When coring is

performed on high frequency components of a set of directionally filtered images

the benefits increase. Since uncorrelated noise power spreads evenly in all

directions and edges tend to align themselves directionally, edges need not be

attenuated as much in order to achieve the same overall noise reduction.

Quadrature Mirror Filter (QMF) Pyramids prove useful for this purpose. Since

uncorrelated noise power spreads evenly in all directions and edges tend to align

themselves directionally, edges need not be attenuated as much in order to

achieve the same overall noise reduction.

Previously, coring functions were chosen intuitively, realizing that low

intensities must be attenuated and high intensities should be left unchanged. No

theoretical justification for any particular coring function had been developed.

This thesis develops a theory for selecting the coring function that generates a

cleaned image with mean square error minimal high frequency subbands. The

theory is then tested in a set of test cases. Possible improvements in the details of

the coring process are also examined. A procedure to clean a noisy image given

only a characterization of the noise is also presented.
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Chapter 2

Related Work

When reviewing introductory material on image restoration, a reader normally

comes across two techniques for noise reduction, image smoothing and Wiener

filtering. Image smoothing is a spatial domain technique providing an extremely

simple and efficient algorithm to reduce the noise. Unfortunately, smoothing

inherently produces blurry results. Another algorithm is Wiener filtering. Among

linear filtering techniques, Wiener filtering promises the minimal mean square error

in the restored image. Unfortunately, the assumptions necessary for Wiener

filtering are rarely satisfied.

2.1    Image Smoothing

Image smoothing was first developed by R.E. Graham in 1962 as a technique to

remove uncorrelated additive noise, also termed “snow” [7]. Smoothing

essentially performs a low-pass filter operation. Because images tend to exhibit

local correlations, much of the signal energy is located in the low frequency

spectrum. Thus when white noise (flat frequency energy spectrum) is added, the

low frequency signal to noise ratio (SNR) is greater than the high frequency

signal to noise ratio [10]. Image smoothing attempts to increase the overall SNR

by attenuating the high frequency portion. This generally improves overall SNR

at the expense of high frequency signal information such as edges and significant

blurring results. The amount of blurring can be reduced depending on the

implementation chosen.
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2.2    Wiener Filtering

Another technique frequently discussed in literature on noise reduction is Wiener

filtering. Wiener filtering was applied to image restoration by Helstrom [7].

Among linear transformations, it promises mean square error minimal restoration

provided a number of conditions are satisfied. For a proof of this the reader is

referred to [6] and [7]. These conditions demand that the signal and noise be

stationary processes. The stationarity assumption is questionable in many

applications. The Wiener filter is often expressed as a frequency domain transfer

function given by

ˆ( , )
( , )

( , ) / ( , )
F u v

G u v

S u v S u vn f

=
+1

,                                            (2.1)

where F(u,v) is the two-dimensional Fourier transform of the cleaned image, G(u,v)

is the 2-D Fourier transform of the original noisy image, Sn(u,v) is the Fourier

transform of the noise correlation image (noise energy spectrum), and Sf(u,v) iS the

Fourier transform of the original image correlation image (signal energy spectrum).

The drawback of Wiener filtering is that it requires a knowledge of the signal and

noise energies at each frequency. This is a weighty amount of information, most

of which is generally not available.
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Chapter 3

Pyramid Filtering

Recent years have seen the development of multi-scale linear image transforms for

use in image data compression, motion analysis, texture segmentation and edge

detection. These transforms are represented as recursive structures known as

pyramids. Pyramids are formed by taking the original image, filtering the high

frequency information out and storing it, subsampling the low frequency

information by a factor of two and repeating the process. Filtering the high

frequency information and storing it, generates an image that has a low entropy.

Subsampling the low frequency portion reduces the amount of information to

store. Thus, pyramid structures efficiently use storage space and are useful for

image compression. Furthermore, multi-scale structures maintain some uniformity

of representation over the range of scales, hence the statistics of the images are

similar from scale to scale.

3.1    Laplacian Pyramids

Much early work in multi-scale transforms revolved around the Laplacian

pyramid [1,5]. The Laplacian pyramid is generated by first low-pass filtering the

original image using a Gaussian filter. The difference between the original and the

lowpass image are taken. This creates the first level high frequency portion of the

pyramid. The process is repeated recursively on each successive low-pass image

(each time having a lower cut-off frequency on the low-pass filter), thereby

generating a pyramid structure.
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The Laplacian pyramid has a number of benefits. It is a complete description of

the original image, that is, there are no losses of information in the storage of the

pyramid (excepting quantization errors). The sub-levels of the pyramid are

upsampled, filtered and summed back to the original image. The Laplacian

pyramid is computationally efficient, requiring few multiplications and additions.

The failures of the Laplacian pyramid are its lack of orientation selectivity and its

over-completeness (storing of redundant information).

The Laplacian pyramid works fine for application such as image compression.

However, it lacks any orientation selectivity in the high-pass portions of the

pyramid. This is a drawback for applications such as motion analysis, texture

segmentation, edge detection, and coring. As a result, Quadrature Mirror Filter

pyramids are becoming favored for image processing applications.

3.2    Quadrature Mirror Filter Pyramids

Quadrature Mirror Filter (QMF) pyramids [2, 3, 12, 13, 14] achieve spatial

localization while trading off some advantages with the Laplacian pyramid. QMF

pyramids for two-dimensional images can be formed using separable low-pass and

high-pass kernels. A two-level QMF pyramid of the Lenna image is shown in

Figures 3-2 through 3-9. The original Lenna image is shown in Figure 3-1. Note

the transformed subbands were not subsampled. On each level of the pyramid,

four filtered subbands are generated: the low-pass, the horizontal, the vertical and

the diagonal. Each band is named by the orientation of edges within the

subband. The low-pass band can be recursively filtered to generate a pyramid

structure.

The second level of the pyramid shows similar spatial information to the first.

The second levelof the pyramid (again not subsampled) is shown in Figures 3-6-

39. This similarity from scale to scale is a property of the QMF transform. This has

repercussions on this thesis’ work on coring. Because of this property, all levels

of the pyramid exhibit similar intensity distributions (more commonly referred to

as “histograms”).  Thus it becomes possible to reliably  generate a two  parameter
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Figure 3-1: The original Lenna image.

model of the subband histograms (See Chapter 7).

The orientation selectivity of the QMF pyramids proves beneficial in many

applications as mentioned above. This improvement comes with the tradeoff of

increased information storage and decreased computational efficiency. Relative

to coring, the orientation selectivity accentuates image features relative to noise

[11,4]. This enhances the effectiveness of coring.
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Figure 3-2:  The low-pass subband of Lenna.

Figure 3-3:  The vertical subband of Lenna.
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Figure 3-4:  The horizontal subband of Lenna.

Figure 3-5:  The diagonal subband of Lenna.
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Figure 3-6:  The second level low-pass subband of Lena.

Figure 3-7:  The second level vertical subband of Lena.
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Figure 3-8:  The second level horizontal subband of Lenna.

Figure 3-9:  The second level diagonal subband of Lenna.
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Chapter 4

An Overview of Coring

The foundations of coring originate with a paper by Bryce E. Bayer and Philip G.

Powell [11]. In that paper, the idea of attenuating low intensities values of high-

pass images is developed. Indeed, Bayer and Powell indicate the path followed in

this thesis, which they had considered intractable. Bayer and Powell's research

was followed by a number of unpublished papers on the subject. A paper by

Adelson and Ogden [4] extended coring research by implementing the coring

algorithm on oriented pyramids. Adelson and Ogden also introduced a

continuous coring function, as opposed to Bayer and Powell's discontinuous

function. W. Anthony Lee [9] furthered the work of Adelson and Ogden by

implementing coring on QMF pyramids. Before delving into previous work, a

brief glimpse of the coring procedure is given.

4.1    The Coring Procedure

The coring procedure starts with a noisy image (see Figure 4-1) as its input, and

follows the procedure detailed below and shown in Figure 4-2. First the noisy

image is broken down into subbands: low-pass (Figure 4-3), horizontal (Figure 4-

4), vertical (Figure 4-5), and diagonal (Figure 4-6). At this point a decision is made

whether or not to core to two levels. If the decision is made to go a second level,

the low-pass subband is then broken down into subbands. This process can be

repeated recursively. Typically when using QMF pyramid structures, the

subbands  are  subsampled.  This  maintains the  orthogonality  of  the QMF trans-   
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form. For this research, the subband images were not subsampled (the filters were

padded with zeros though, to maintain the octave dividing characteristic of the

QMF transform). By not subsampling, the subband is over-complete, meaning it

coutains redundant information.

After the subband images are generated, the high-pass subbands are operated

on by the coring function, pixel by pixel. The coring function maps pixels

intensities of the subband to new intensities. A set of coring functions are shown

in Figures 4-7 through 4-9 along with their respective cored images in Figures 4-

10 through 4-12.

After coring, the images are convolved with the inverting QMF transforms and

added back together, leaving the resulting image shown in Figure 4-13. This can

be compared with the original noise-free image shown in Figure 4-14.

4.2    Bayer and Powell's Work

Bayer and Powell [11] propose a discontinuous coring function that operates on

the high frequency portions of a Laplacian-type pyramid. Their coring function is

defined as

I
I

if I T

otherwseout
in

in=
<




0
                                                    (4.1)

where Iout is the cored output intensity, Iin is the input intensity and T is the

threshold which varies with the standard deviation of the noise. Bayer and

Powell do not give any algorithm for selecting the threshold level, T. Their work

suggests the approach, taken in this thesis, of making an estimate of the most

probable decomposition of noisy image into noise and signal. They also suggest

the use of histogram models for the noise and signal to perform calculations.

These two suggestions are the driving force behind this thesis' work on coring.

Bayer and Powell also suggest the use of oriented filtered images. They

propose that an oriented pyramid structure would emphasize image features

relative to noise, thereby making coring of low intensity noise more effective.

When Bayer and Powell wrote their paper, QMF pyramids had not yet been

developed.  What they proposed  corresponds reasonably well  with what is  now
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known as QMF pyramids.

4.3    Adelson and Ogden's Work

Adelson and Ogden [4] extend Bayer and Powell's work to pyramid structures, in

particular oriented pyramid structures. Their paper starts with an analysis of

coring on a non-oriented Laplacian pyramid. Later in the paper they discuss

results with an oriented version of the Burt pyramid. They find that oriented

coring does much better than non-oriented coring.

Adelson and Ogden also experimented with filter shapes. In an attempt to

avoid edge distortion caused by the threshold coring of Bayer and Powell, they

developed a parameterized coring function

I e Iout
m I

in
kin

p

= − −( )( | |)1                                                (4.2)

where Iout is the coring output intensity, Iin is the input intensity, and m, k and p are

parameters. The parameter m controls the amount of coring (the coring width), p

controls the attenuation in the coring region, and k controls the amplification

outside the coring region. Adelson and Ogden find that this coring function

reduced edge distortions created by coring. They state that the shape of the

coring function defines the restoration quality as much as the coring width does,

yet offer no solutions to the optimal coring shape. This thesis presents a

formulation for the optimal coring shape.

4.4    Lee's Work

W. Anthony Lee further advanced the development of coring when he

implemented coring on QMF pyramids [9]. He detailed the implementation of the

filtering process described in Section 4.1.
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Figure 4-1:  A noisy version of the Lenna image.
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Figure 4-2:  Information flow in coring (one level).

Figure 4-3:  The low-pass band of the noisy Lenna image.



26

Figure 4-4:  The horizontal subband of the noisy Lenna image.

Figure 4-5:  The vertical subband of the noisy Lenna image.
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Figure 4-6:  The diagonal subband of the noisy Lenna image.

Figure 4-7:  The coring function for the horizontal subband.
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Figure 4-8:  The coring function for the vertical subband.

Figure 4-9:  The coring function for the diagonal subband.
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Figure 4-10:  The cored horizontal subband of the noisy Lenna image.

Figure 4-11:  The cored vertical subband of the noisy Lenna image.
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Figure 4-12:  The cored diagonal subband of the noisy Lenna image.



31

Figure 4-13:  A restored version of the noisy Lenna image (one level coring).
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Figure 4-14:  The noise-free Lenna image.
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Chapter 5

Coring Theory

Typically, image information is low frequency information and white noise is flat

band information. Thus in high pass filtered images, the Signal to Noise Ratio

(SNR) is lower than in the original image. It makes sense then to attenuate the

high frequency information. This can be done in several ways. Image smoothing

low pass filters noisy information. Wiener filtering is a frequency domain

technique which makes a linear estimate of the signal image given the noisy

image.

Coring is a non-linear technique that has developed in response to many

techniques that indiscriminately eliminate high frequency information in order to

remove additive noise. It is possible to throw out only the portion of the noisy

information that is believed to be noise. This is the principle behind coring. While

coring has been in use for about five years now, a theoretical justification for its

success has never been proferred. The following material develops a formulization

for generating coring functions. These coring functions produce mean square

error minimal images in each high-pass subband, provided the assumptions of this

formulation are satisfied. When the restored subband images are reconstructed,

the resulting image is significantly cleaned of noise.
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5.1    Assumptions

Few assumptions are placed on the the theory to be developed in this chapter.

The first is that the noise process is assumed to be an additive process. The noise

is composed of an array of random variables, which represent pixel intensities.

The random variables are given by a zero mean process and are independent from

the signal. The second assumption is that the transform be lossless (or nearly

lossless). There are other considerations while choosing a specific transform

though. While the reason for coring's success depends on the reduced SNR in the

high-pass band relative to the low-pass band, coring does better as the SNR in

the high-pass band increases. Hence, the transform which maximizes the high-

pass SNR should be selected for coring. This is also the reason why oriented

transforms, such as the QMF, do better than non-oriented transforms.

5.2    Derivation of the Coring Function

Using the suggestion of Bayer and Powell [11], a Bayesian estimate of the optimal

coring function in each subband is developed. Assume that in a subband, the

noisy image Y is composed of the sum of the noise N and the original image

signal X. Mathematically,

Y = X + N

where Y, X and N are arrays of random variables. Since Y, X and N are random

variables at each pixel, they can be described by probability distribution

functions (pdf's) Py(y), Px(x) and Pn(n). Because the noise process is additive.

Py(y) = Px(y) ∗  Pn(y)

where the ∗  represents convolution. Writing out the convolution,

P y P x P y x dxy x n( ) ( ) ( )= −
−∞

∞

∫ .
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Assuming an additive noise process, the equation

Py|x(x,y) = Pn(n) = Pn(y – x)

relates the pdf of the conditional probability of y given x to the pdf for the noise.

Bayer and Powell's idea is to develop a Bayesian estimate for x given y.

Bayesian analysis attempts to estimate the original intensity of a pixel given its

noisy value. The first step is to apply Bayes' Law,

Px(x)Py|x(x,y) = Py(y)Px|y(x,y),

which relates the conditional probabilities of uncorrelated random events.

Rewriting for Px|y(x,y), the probability of x happening if y happens,

P x y
P x P x y

P yx y
x y x

y
|

|( , )
( ) ( , )

( )
= .

Substituting in for Py(y) and Py|x(x,y) from above,

P x y
P x P y x

P y P yx y
x n

x n
| ( , )

( ) ( )

( ) ( )
=

−
∗

.

The next step is to find the expected value of x given y using the relation

ˆ( ) ( , )|x y xP x y dxx y=
−∞

∞

∫
which makes a minimal mean square error estimate for x. Substituting in for

Px|y(x,y) one arrives at the coring function,

ˆ( )
( ) ( )

( ) ( )
x y

xP x P y x dx

P x P y x dx

x n

x n

=
−

−
−∞

∞

−∞

∞
∫
∫

,                                         (5.1)

where x̂ (y) is a function of y. It yields the expected intensity value of x given a

particular y.

The  coring  function is  computed  for each  subband of  a  transformed  noisy
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image and is then applied to the each noisy subband image. The cored subbands

are then used in the reconstruction process.
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Chapter 6

Results

Using the theory of Chapter 5, a test experiment was conducted to check the

validity of the theory. A fixed noise image was added to six test images. The

images were transformed using a nine tap QMF transform, then cored, and a clean

image was reconstructed. Signal to Noise Ratio data is then collected. A

comparative study was also done between Wiener filtering, Bayer-Powell coring,

Adelson-Ogden coring and this research. Next, the dependence of coring

performance on signal characterization was examined. Finally, the effect of filter

kernel length on coring performance was examined.

6.1    Testing the Theory

In order to test the theory, a fixed noise source was added to a set of test images,

which were subsequently cored. The noise was chosen to be Gaussian noise of

variance σ2 = 64. This level of noise was sufficient to test noise removal. It

provided enough graininess to the noisy image to be visually bothersome, while

at the same time did not obliterate edge information.

The test images were chosen to be "Lenna", "Einstein", "Kate", "Paolina",

"Mandril" and "Bench." They were selected for their variety in textures as well as

the general quality of the image.

The  following  procedure was  developed  to  test coring.  It follows  closely a
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procedure developed by Adelson and Ogden [4]. The outline is as follows:

1. Add fixed noise image to the test image. Compute the Signal to Noise

Ratio(SNR) of the noisy image using the formula

SNR dB
signal

noise

( ) log= 





10
2

2

σ
σ

,

where σ2
signal and σ2

noise are the variances of the signal and noise respectively.

2. Transform image, noise, and noisy image into subbands (not subsampled

however). Use a two level pyramid structure.

3. Compute histograms for the noise image and original image subbands these

are the effective pdf’s for use in the coring formula.

4. For each high-pass subband, compute the coring function from Equation 5.1.

5. For each high-pass subband, apply the coring function to the noisy image

subband.

6. Reconstruct two images: one that is cored on two levels, one that is cored on

one level.

7. Measure the mean square error between the cored images and the original

image. Compute the SNR gain.

To assist in visualization of the process, various images are shown in the

following pages. Figure 6-1 shows the Lenna image with the fixed noise added.

Figure 6-2 shows the diagonal subband of the noise image and Figure 6-3 shows

the diagonal subband of the noisy image. Figure 6-4, Figure 6-5, and Figure 6-6

show the original image diagonal subband histogram, the noise image diagonal

subband histogram and the noisy image diagonal subband histogram

respectively. Figure 6-7 shows the coring function calculated from the image and

noise histograms of the diagonal subband and Figure 6-9 shows the cored

diagonal subband and Figure 6-8 shows the histogram for the cored diagonal

subband.  This histogram  can  be compared  with  Figure 6-4 and  Figure 6-6,  the
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Table 6.1: Results of coring on image plus fixed noise over a set of six
images. Coring was done to one and two levels.

coring functions for the original and noisy diagonal subbands, to see the effects

of coring. Figure 6-10 and Figure 6-11 show the resultant cored images after one

and two level respectively. The results of this study are shown in Table 6.1. The

results show that the coring functions do a satisfactory job. The results also

demonstrate that multilevel coring does a better job than single-level coring,

which was previously known.

6.2    Comparison with Wiener Filtering

Among linear filters, Wiener filtering is the mean square error minimal linear filter.

In this section, the Bayesian estimated coring function is compared with an

approximation of the Wiener filter. An approximation of the Wiener filter is made

in each subband instead of using a tranfer function that is continuous with

respect to frequency. The signal and noise energies in each band are measured

and the appropriate linear transformations are calculated using Equation 2.1.

This comparison is done only on the Lenna image to one and two levels. The

results demonstrate that the non-linear coring function does considerably better

in terms SNR gain. The numerical results of this experiment are shown in Table

6.2.

Image SNR Cored Cored SNR SNR
SNR SNR Gain Gain

(pre-core) (1 level) (2 levels) (1 level) (2 levels)
Lenna 37.508 47.895 49.767 10.387 12.259
Einstein 30.985 38.722 40.149 7.737 9.164
Kate 36.247 45.377 46.248 9.130 10.001
Paolina 31.871 41.379 43.549 9.508 11.678
Mendril 31.043 34.951 35.195 3.908 4.152
Bench 42.429 46.954 47.379 4.525 4.950
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Table 6.2: Results of different noise reduction strategies on a noisy Lenna
image.

6.3    Comparison to Bayer and Powell's Coring

The Bayesian estimated coring functions are also compared with the Bayer-

Powell coring functions given by Equation 4.1. The threshold level T is set to

2σnoise in each band. Coring is done to one and two levels. The Bayer-Powell

coring functions generate reasonable results, yet the Bayesian estimated coring

functions have approximately 2dB more SNR gain when using the Lenna image.

The exact SNR gains are shown in Table 6.2.

6.4    Comparison with Adelson and Ogden's Coring

In order to get a sense of the extent to which the coring formulization developed

in this thesis works, a comparison was made with Adelson and Ogden's work.

Using the parameterized coring function

I e Iout
m I

in
kin

P

= − −( )( | |1 ,

the same noisy images were cored (to one and two levels). The pararneterization

for the function was selected by minimizing the mean square error of the restored

image  as  compared  with the original.  The same coring function  was used  on all

Technique SNR Cored Cored SNR SNR
SNR SNR Gain Gain

(pre-core) (1 level) (2 levels) (1 level) (2 levels)
Bayesian 37.508 47.895 49.767 10.387 12.259
Adelson- 37.508 48.297 50.593 10.789 13.085
Ogden
Bayer- 37.508 45.880 47.632 8.372 10.124
Powell
Wiener 37.508 42.442 42.089 4.934 4.581
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Image Coring SNR Cored Cored SNR SNR
Function SNR SNR Gain Gain

(one level) (two level) (one-level) (two-level)
Lenna Lenna 37.508 47.895 49.767 10.387 12.259
Lenna Einstein 37.508 47.063 48.850 9.555 11.342
Einstein Einstein 30.985 38.722 40.149 7.737 9.164
Einstein Lenna 30.985 38.587 39.385 7.602 8.400

Table 6.3: Results of coring when the coring functions are swapped.

subbands of the pyramid. Because of the availability of the original image, the

coring done with the parameterized coring function should yield a somewhat

cleaner image than the Bayesian estimated coring function which only uses

histogram information. This was found to be the case. This study did show that

the coring done using the theory, does almost as well as a system that takes

advantage of much more information. The SNR improvements for each technique

are listed in Table 6.2.

6.5    Dependence of Coring on Signal Model

In order to determine the dependence of coring effectiveness on the signal

statistics the following experiment was undertaken. Coring functions were

generated separately for the Lenna and the Einstein images. Instead of applying

the Lenna coring functions to Lenna, they were applied to Einstein, and

viceversa. The purpose of this experiment was to see how dependent the success

of coring is on the model of the signal histograms (in this case, the actual

histograms were taken to be the models). The results showed a diminished

success, yet they indicate that reasonably accurate approximations to the signal

histograms will work well. The results are shown in Table 6.3.

6.6    Effect of Different Transforms

Another issue that needed to be addressed is the selection of the best transform.

A study of 5, 7, 9 and 11 tap QMF filters was conducted to examine if one filter

performs better than the others. Using the six test images and a fixed noise source
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Table 6.4: Results of coring as filter length varies

of variance σ2 = 64, the number of taps in the QMF transforms were varied. The

coring functions were calculated for each subband image generated and the

coring was performed on one and two levels. The cored subbands were then

reconstructed. The results of this study show little difference between filter

selection and noise reduction. Table 6.4 shows the mean square error of the cored

images as filter lengths are varied.

Image Level 5 Tap 7 Tap 9 Tap 11 Tap
MSE MSE MSE MSE

Lenna 1 22.234 22.018 22.566 21.803
Lenna 2 19.254 18.706 18.830 18.081
Einstein 1 27.639 27.734 29.117 28.506
Einstein 2 24.549 24.448 25.857 24.648
Kate 1 24.596 24.491 25.211 24.548
Kate 2 23.265 22.892 22.968 22.447
Paolina 1 23.068 23.097 24.081 23.820
Paolina 2 19.360 19.101 19.339 19.184
Mandril 1 42.552 42.464 42.037 42.194
Mandril 2 42.021 41.773 41.021 41.137
Bench 1 39.370 39.096 40.002 39.252
Bench 2 38.410 37.696 39.202 37.504
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Figure 6-1:  The noisy Lenna image. Fixed noise added to Lenna.
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Figure 6-2:  The second level diagonal band of the fixed noise image.
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Figure 6-3:  The second level diagonal band of the noisy Lenna image.
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Figure 6-4:  A histogram for the second level diagonal band of the Lenna image.

Figure 6-5:  A histogram for the second level diagonal band of the noise image.
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Figure 6-6:  A histogram for the second level diagonal band of the noisy image.

Figure 6-7:  A coring function for the second level diagonal band.
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Figure 6-8:  A histogram for the second level cored diagonal band.
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Figure 6-9:  A second level diagonal band after coring.
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Figure 6-10:  A restored image (one level coring).
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Figure 6-11:  A restored image (two level coring).
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Chapter 7

A Semi-Automatic Noise

Reduction System

Once the theory was satisfactorily demonstrated, image subband histogram

models were constructed and tested for success. Eventually, a two-parameter

model was selected for its simplicity and effective results in coring. Using this

model, a semiautomatic procedure for noise reduction was developed. This

procedure assumes the noise is Gaussian and it assumes that the standard

deviation is given.

7.1    Image Subband Histogram Models

If enough subband histograms are viewed, it becomes apparent that they all have

a characteristic shape that looks something like a laplacian pdf. The idea was

developed that if it were possible to construct a model of the clean image

subband histograms given only the noisy image, an automatic procedure for

removing noise could be developed. This procedure would utilize the theory

developed in this thesis to generate a nearly optimal noise reduced image.

Although an extremely good two parameter model was developed, it appears that

the probabilistic nature of the problem prevents fully automatic estimation of the

model parameters, thereby preventing automatic noise reduction. However, if a

characterization of the noise is developed, it becomes relatively simple to

calculate the model parameters and do a semi-automatic noise reduction.
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Table 7.1: Results of coring when the model error is minimized with respect to
the numerator or the denominator of the coring function expression.

Before discussing the various attempts at forming a model for the subband

pdf's, it is necessary to elucidate an important point about how to select a model.

Typically when fitting a model to a pdf, it would be intuitive to perform a mean

square error fit to the pdf. However, in the context of the coring problem this

does not provide optimal results. Early on in the model fitting process,

disappointing results were achieved relative the Adelson-Ogden coring function.

At that time, model pdf's were being fit to the histogram pdf's of the original image

and then coring functions were generated using these models. Minimizing the

MSE difference of the model pdf with the original pdf essentially minimizes the

error in the denominator of the coring function expression. It turns out, that it is

more critical to minimize the error in the numerator portion of the expression.

Table 7.1 gives noise reduction results when the model is fit to the histogram and

when the model is fit to the histogram multiplied by the intensity. The table

includes only the data for a two level coring process. The data for one level

coring manifest the same result. The data demonstrates that fitting the numerator

expression does better than fitting the denominator. This is equivalent to fitting a

model to xPx(x) where x is the intensity and Px(x) is the histogram for the subband

image. A mathematical justification for this discovery has not yet been derived.

Three  coring function  parameterizations were developed.  The first model is a

Image SNR Cored Cored SNR SNR
SNR SNR Gain Gain

(pre-core) (denominator) (numerator) (denominator) (numerator)
Lenna 37.508 48.125 50.019 10.616 12.510
Einstein 30.985 38.760 40.217 7.775 9.233
Kate 36.247 45.967 46.352 9.721 10.105
Paolina 31.871 42.249 43.253 10.378 11.382
Mendril 31.043 35.162 35.125 4.120 4.083
Bench 42.429 47.562 47.115 5.133 4.686
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two parameters model of the form

P X
p

eX
X p

1
1
2

1

2 1
( )

( / )
| / |= −

τ
τ

Γ

where Γ is the gamma function. This is the model that was eventually selected for

its simplicity and effectiveness. Another model that was attempted was a sum of

two exponentials of the form above. A weighting constant A is necessary,

resulting in a five parameter model
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e
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X Xp p

2
1
2
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1

2 1
1

1
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( / )
| / | | / |= + −− −

τ τ
τ τ

Γ Γ

The third model is of the form

P X C AeX
X p

3 ( ) | / |= + − τ

where A is a normalization factor and not a free parameter of the model. All

models were fit to minimize the numerator of the coring function expression.

The set of six test images used earlier was used for this test. Coring was done

to one and two levels. The models above were fit to the original image histograms

(normalized) and a smooth approximation to a Gaussian of variance σ2 = 64 was

constructed. Using these models of the subband images and noise, the coring

functions were computed. All models performed roughly equivalently in a mean

square error sense, all of them achieving noise reduction on par with the original

image statistics (see Table 7.2). The third model however tended to give visually

unpleasing results, with thin lines of uncored noise. The other two models

performed equally well relative to visual inspection. Because the first model

involved only two parameters, and the second five, the first model was chosen to

represent the subband histograms. This model also lends itself to simple

calculations of its central moments. This property is beneficial for a semi-automatic

noise reduction system.
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Table 7.2: A comparison of various models' SNR Gain.

7.2    The Noise Reduction System

With the image model chosen in the previous section, it becomes possible to

calculate, given a statistical characterization of the noise, the model parameters for

each subband histogram. Examining the contributions to the central moments of

the noisy image, it is possible to back-calculate the central moments of the image

histogram. Assuming the noise and the signal are uncorrelated,

σ2
noisy = σ2

noise + σ2
signal

and

µ4
noisy = µ4

noise + µ4
signal

where σ2 is the variance and µ4 is the fourth central moment. For the two-

parameter model chosen in the previous section, the relationships σsignal, µsignal, τ,

and p are straightforward.

σ τsignal

p

p
2 2 3

1
= Γ

Γ
( / )

( / )

and

µ τsignal

p

p
4 4 5

1
= Γ

Γ
( / )

( / )

where Γ is the gamma function. These equations can be solved for τ and p, given

the  noisy  image  and  a  characterization of  the  central moments of the noise.  A

Image SNR SNR SNR SNR
Gain Gain Gain

(Model 1) (Model 2) (Model 3)
Lenna 37.508 12.510 12.412 11.984
Einstein 30.985 9.233 9.227 9.226
Kate 36.247 10.105 10.158 10.183
Paolina 31.871 11.382 11.674 11.462
Mandril 31.043 4.083 4.146 3.369
Bench 42.429 4.686 5.058 5.140
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Table 7.3: A comparison of results when using the original image histograms,
a two parameter fit model, and the semi-automatic method.

recursive method such as Newton's method can be used. Code was written in

OBVIUS [8], the Object Based Vision and Image Understanding System, to

calculate the model parameters, calculate the coring functions, core the noisy

image and reconstruct it. The code achieved results on par with those achieved

by using the original image statistics. The results are shown in Table 7.3. A sample

result using the Lenna image is shown in Figure 7-1.

Image SNR SNR SNR SNR
Gain Gain Gain

(Histograms) (Model) (Semi-automatic)
Lenna 37.508 12.259 12.510 12.244
Einstein 30.985 9.164 9.233 9.274
Kate 36.247 10.001 10.105 10.508
Paolina 31.871 11.678 11.382 11.845
Mandril 31.043 4.152 4.083 4.371
Bench 42.429 4.950 4.686 4.992
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Figure 7-1:  A restored image using the semi-automatic procedure (two level coring).
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Chapter 8

Conclusion

The technique of coring to achieve noise reduction has recently developed. It has

been found in previous research that coring with oriented transforms improve

noise reduction with relatively less loss of edge information. This thesis uses QMF

transforms as an oriented transform. Most importantly, this thesis proposes a

mathematical formulation for the construction of a coring function. The formula is

verified to assure that it works. Studies are undertaken to test the dependence of

successful coring on accuracy in modeling of the subband histograms. It is

demonstrated that the dependence is slight, and that it would be worthwhile to

construct a model of the histograms and see how well it works. Three models are

then attempted and they are found to produce nearly equal results in mean square

error. A three parameter model produces slighly less pleasing visual results.

Because of its simplicity, a two parameter model is selected. A technique is then

developed to semi-automatically clean a noisy image. This technique depends on

having a characterization of the noise.

The research done in this paper opens the doors to many other paths of

invest;gation. It would be worthwhile to analyze precisely what properties are

desirable for the transform to be used. Clearly an oriented transform is best, yet no

mathematical formulation of this empirical result has been developed. It would be

worthwhile to try other QMF structures such as hexagonal QMFs [13, 12, 3, 14]

Another area to further study is the possibility to perform a blind noise

reduction. Although theoretically possible using the models developed in this
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paper, the practical issues of dealing with probabilities impedes this. There are two

possible alternatives to the method of matching moments. A noisy image can be

subdivided into small patches and the variance for each patch can be measured.

Take the minimum variance out of the set of patches. Assuming some part of the

original image has a smooth texture, this should yield a reasonable approximation

of the noise variance. Another possibility is to examine the high frequency

spectrum. Typically image energy is distributed in a 1/f fashion. White noise has a

flat frequency spectrum. Thus, at high frequency it can be assumed that all the

energy is noise energy, and this energy should be proportional to the variance of

the noise. It may be possible to use this idea to guess the noise statistics. Being

able to automatically clean noise out of a noisy image is a desirable goal.

A third and final area of research to pursue is the possibility of extending the

formulation given for coring to such issues as blurring. Initial attempts at so doing

have been made, but have not yet been successful. There is an important

theoretical consideration for de-blurring that differs from noise reduction. The

success of coring depends on the extent to which the noisy image subbands are

uncorrelated. However, in blurring they will be strongly correlated. Thus the

simple analysis done in this thesis may or may not be applicable.

This thesis presents an application of Bayesian analysis to the specific problem

of noise reduction. A Bayesian estimate was made for coring functions, which

performed well in noise reduction. Based on this success of this research, it seems

likely that other problems could be addressed using a Bayesian approach.
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Appendix A

Appendix

A.1 QMF Transform Tap Values

QMF transform tap values are symmetric around the center tap. Included in this

appendix are the low-pass and high-pass kernels.
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Tap Values
Number of Taps

Kernel 5 7 9 11 13
-0.01456

3.96839E-4 0.02165
0.01995 0.01726 0.03905

-0.005251 -0.04271 -0.03947 -0.09800
-0.05381 -0.051776 -0.05224 -0.05178 -0.05783
0.25000 0.255251 0.29271 0.28907 0.42995

Low-Pass 0.60762 0.603553 0.56458 0.56904 0.77371
0.25000 0.255251 0.29271 0.28907 0.42995
-0.05381 -0.0511776 -0.05224 -0.05178 -0.05783

-0.005251 -0.04271 -0.03947 -0.09800
0.01995 0.01726 0.03905

3.96839E-4 0.02165
-0.01456
-0.01456

3.96839E-4 -0.02165
0.01995 -0.01726 0.03905

-0.005251 0.04271 -0.03947 0.09800
-0.05381 0.051776 -0.05224 0.05178 -0.05783
-0.25000 0.255251 -0.29271 0.28907 -0.42995

High-Pass 0.60762 -0.603553 0.56458 -0.56904 0.77371
-0.25000 0.255251 -0.29271 0.28907 -0.42995
-0.05381 0.0511776 -0.05224 0.05178 -0.05783

-0.005251 0.04271 -0.03947 0.09800
0.01995 -0.01726 0.03905

3.96839E-4 -0.02165
-0.01456

Table A.1:  Tap Values used for Construction of QMF Pyramids.
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