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Abstract

Many problems in image processing and computer vision rely, explicitly or implicitly, on

statistical density models. Describing the full density of natural images, 𝑝 (𝑥), is a daunting

problem given the dimensionality of the signal space. Traditionally, models have been developed

by combining assumed symmetry properties, with simple parametric forms, often within pre-

specified transformed coordinate systems. While these models have led to steady advances in

problems such as denoising, they are too simplistic to generate complex features that occur in our

visual world.

Deep neural networks have provided state-of-the-art solutions for problems such as denoising,

which implicitly rely on a prior probability model of natural images. Here, we first develop a

robust and general methodology for extracting the prior. We rely on a statistical result due to

Tweedie (1956) and Miyasawa (1961), who showed that the least-squares solution for removing

additive Gaussian noise can be written directly in terms of the gradient of the log of the noisy

signal density. We use this fact to develop a stochastic coarse-to-fine gradient ascent procedure

for drawing high-probability samples from the implicit prior embedded within a neural network

trained to perform blind (i.e., unknown noise level) least-squares denoising. This algorithm is

similar to score-based diffusion framework, yet different in several ways.

Unlike the classical framework, we do not have direct access to the learned density, which

gives rise to a crucial question: what is the prior? The rest of the thesis focuses on understanding

and using this prior.
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At the core of our coarse-to-fine gradient ascent sampling algorithm is a deep neural network

(DNN) denoiser. Despite their success, we lack an understanding of the DNN denoiser mechanisms

and more importantly what priors are being learned by these models. In order to make the DNN

denoiser interpretable, we remove all network biases (i.e. additive constants), to enforce the

denoising mapping to become locally linear. This architecture lends itself to local linear algebraic

analysis through the Jacobian of the denoising map, which provides a high level interpretability. A

desired side effect of locally linear models is that they generalize automatically across noise levels.

Next, we study the continuity of the implicit image prior. We design an experiment to

investigate whether the prior interpolates between the training examples or consists of a discrete

set of delta functions corresponding to a memorized set of training examples. We find that for

small datasets, the latter is the case. But with large enough datasets, the network generalizes

beyond training examples, evidenced by high quality novel generated samples. Surprisingly, we

observe that, for large enough datasets, two models trained on non-overlapping subsets of a

dataset learn nearly the same density. We analyze the learned denoising functions and show

that the inductive biases give rise to a shrinkage operation in a basis adapted to the underlying

image. Examination of these bases reveals oscillating harmonic structures along contours and

in homogeneous regions. We demonstrate that trained denoisers are inductively biased towards

these geometry-adaptive harmonic bases.

Having established that a DNN denoiser can generalize, we employ the learned image density

to study the question of low-dimensionality of image priors. The goal is to exploit image properties

to factorize the density into low dimensional densities, thereby reducing the number of parameters

and training examples. To this end, we develop a low-dimensional probability model for images

decomposed into multi-scale wavelet sub-bands. The image probability distribution is factorized

as a product of conditional probabilities of its wavelet coefficients conditioned by coarser scale

coefficients. We assume that these conditional probabilities are local and stationary, and hence can

be captured with low-dimensional Markov models. Each conditional score can thus be estimated
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with a conditional CNN (cCNN) with a small receptive field (RF). The effective size of Markov

neighborhoods (i.e. the size w.r.t to the grid size) grows from fine to coarser scales. The score of

the coarse-scale low-pass band (a low-resolution version of the image) is modeled using a CNN

with a global RF, enabling representation of large-scale image structures and organization. We

evaluate our model and show that locality and stationarity assumptions hold for conditional RF

sizes as small as 9 × 9 without harming performance. Thus, high-dimensional score estimation for

images can be reduced to low-dimensional Markov conditional models, alleviating the curse of

dimensionality.

Finally, we put the denoiser prior into use. A generalization of the coarse-to-fine gradient

ascent sampling algorithm to constrained sampling provides a method for using the implicit prior

to solve any linear inverse problem, with no additional training. We demonstrate the generality

of the algorithm by using it to produce high-quality solutions in multiple applications, such as

deblurring, colorization, compressive sensing, and super resolution.
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1 | Introduction

Digital images live in a high-dimensional space. We can associate with this space a probability

model that assigns high probability to natural images and low probability to distorted images

or random pixel configurations. Many problems in image processing and computer vision rely,

explicitly or implicitly, on image density models. Hence, image density models are of fundamental

importance. But for high-dimensional signals, such as photographic images, density estimation is

notoriously difficult due to "the curse of dimensionality": The number of data points needed to

estimate a probability distribution from data, in a brute force manner, grows linearly with volume,

so exponentially with dimensionality. For example, for 8-bit images of size 64 × 64, we need

enough data to approximate a histogram with 2566400 bins. This is far larger than any feasible

set of training examples. Certainly way larger than all photographs taken since the invention of

camera.

Traditionally, image density estimation is made tractable by factorizing the joint density

into a product of low-dimensional parametric models. Although images are high-dimensional,

they inhabit a low-dimensional portion of the space thanks to their highly structured nature.

Classical models take advantage of such implicit low-dimensionality, which makes natural signals

compressible, hence the density factorization possible.

Over a hundred years of steady progress in image density estimation was driven by the inter-

play between discovering more intricate image statistical structures and engineering better image

processing solutions. Through empirical observations, we formed intuitions about properties

1



of image densities, incorporated them into our parametric density models using mathematical

formalization, and then tested them by using them to solve various inverse problems, which

generally refer to recovering the image from a partial measurement. This process of scientific

experimentation was the bedrock for developing more sophisticated models: understanding struc-

tural properties of images led to improved engineering, which in turn solidified our understanding

of the properties of the natural visual world.

1.1 Classical image density models

1.1.1 Gaussian prior

One of the earliest density models assumed over images was Gaussian. An important property

of images is their invariance to global translation, i.e. a shifted version of an image is still an

image. This implies that the density is stationary and the covariance matrix of the Gaussian

prior is convolutional, therefore diagonalizable in the Fourier basis. Additionally, the energy of

natural images is highly concentrated in their low-frequency components, due to the prevalence

of smooth regions. This observation led to a Gaussian prior in Fourier domain, in which variance

falls inversely with spatial frequency. This is commonly referred to as the 1/𝑓 spectral prior,

where 𝑓 is the spatial frequency.

Although convenient to use, the Gaussian prior results in poor performance in practice. To

utilize a prior density in practice, one can obtain a posterior distribution by combining the prior

with the likelihood that instantiates some measurement procedure. Then given the measurements,

an expected loss is minimized over the posterior to solve an inverse problem. Here, we refer

to inverse problems in the broadest sense to include nonlinear and stochastic measurement

procedures. Under the Gaussian 1/𝑓 prior, the optimal estimator for a noisy signal in terms of

minimum mean squared error (MMSE) is the Wiener filter (Wiener, 1950). It operates by mapping
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the noisy image to the frequency domain, shrinking the amplitude of all components, and mapping

back to the signal domain. Due to the 1/𝑓 prior, the high-frequency components are shrunk

more aggressively than the lower-frequency components. The outcome of Wiener filtering is an

over-smoothed image, with blurred edges and lost fine-scale details. The poor performance of

the Wiener filter is an indication that the Gaussian 1/𝑓 density model is not sufficient to capture

the underlying image distribution. More specifically, since it only asserts a prior on the marginal

distribution of frequency amplitudes, it falls short of capturing important higher order amplitude

dependencies as well as phase dependencies. Since the Fourier basis consists of global sinusoidal

functions, this prior does not preserve enough information about the local relationships between

pixels in an image.

1.1.2 Sparse prior

In the late twentieth century, an important breakthrough in developing better image density

models emerged by the invention of multi-scale wavelet representations (Burt and Adelson, 1983;

Mallat, 1989). To alleviate the loss of spatial dependencies, wavelet representations compromise

between capturing spatial and frequency information. The finer scale coefficients represent a

wide band of high frequencies with higher spatial precision. On the other hand, coarser scale

coefficients include a narrow band of low frequencies at the expense of spatial information. This

trade-off is depicted in Figure 1.1. Since wavelet coefficients retain some spatial information,

their marginal distributions are sparser compared to the Fourier coefficients (Burt and Adelson,

1983; Field, 1987). That is, it is easier to capture the inherent low dimensional nature of images

in the wavelet domain. Marginal distributions of wavelet coefficients are typically modeled by a

generalized Laplacian distribution 𝑒−|𝑥/𝑠 |
𝜌 , which is a sparse heavy-tailed density (Mallat, 1989).

When used in practice to solve inverse problems, the sparse prior leads to improved perfor-

mance over the Gaussian prior, which is a direct consequence of the more compactness represen-

tation. For example, for the Laplacian prior with 𝜌 = 1 the MMSE estimator of a noisy image is
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Figure 1.1: Position-frequency partitions of different representations. All rectangular regions have the
same area.

achieved by a soft thresholding operator (Mallat, 1989). For the Laplacian prior with 𝜌 < 1 the

MMSE estimator is a nonlinear smooth function space(Simoncelli and Adelson, 1996) which can

be approximated with a hard thresholding function (Donoho, 1995), where wavelet coefficients

above a certain threshold are preserved and everything below that threshold is suppressed.

Although a significant improvement over the Gaussian prior, modeling image densities solely

based on marginal distributions of the wavelet coefficients is still overly simplistic. Coefficients

within and across subbands as well as coefficients across scales are not independent (Buccigrossi

and Simoncelli, 1997). On the contrary, there are important higher order dependencies which are

entirely lost in marginal wavelet density models. But capturing these important structural proper-

ties requires modeling conditional densities which leads to an explosion of model dimensionality.

A well-known methodology for capturing conditional dependencies while avoiding the curse of

dimensionality is to assume a Markov property.

1.1.3 Markov Priors

Assuming Markov structure is a classic method for capturing global dependencies using chains

of low-dimensional local models. Markov random fields (MRF) assume localized conditional

dependencies, which guarantee that the density can be factorized into terms acting on local,

typically overlapping neighborhoods (Clifford and Hammersley, 1971). Global dependencies
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arise through the cascaded effects of these local interactions. The idea of using MRF for image

pixel modeling goes back to 1970s (Besag, 1974), but it was a paper by Geman and Geman (1984)

that popularized the Markov models. Many variants of Markov models were proposed in the

subsequent three decades, resulting in steady improvement of image density models.

When MRF models are defined in pixel domain, low dimensional densities over local neighbor-

hoods usually express some smoothness property among neighboring pixels. A common feature

shared across all of these models is their hierarchical nature (Bouman and Shapiro, 1994; Freeman

and Liu, 2011; Geman and Geman, 1984). Hierarchies facilitate handling larger structures by giving

the model the chance to break the smoothness enforced by simple local densities whenever needed,

for example around edges. More sophisticated MRF models were later defined on wavelet lattices,

in a muti-scale (hierarchical) fashion (e.g., (Buccigrossi and Simoncelli, 1999a;b; Chambolle et al.,

1998; Crouse et al., 1998; Şendur and Selesnick, 2002; Cui and Wang, 2005; Lyu and Simoncelli,

2009; Malfait and Roose, 1997; Mihçak et al., 1999; Paget and Longstaff, 1998; Portilla et al., 2003a;

Wainwright et al., 2001)). Interestingly, in these models, neighborhoods were reconfigured to in-

clude closest coefficients across scale, which resulted in considerable improvement in performance.

This change was inspired by the empirical observation that the correlation between the amplitude

of a given coefficient and its parent is quite significant (Buccigrossi and Simoncelli, 1999a).

Similarly to marginal models, to test the quality of the density parameterized by an MRF,

the model can be used for inference problems, such as restoration, segmentation and synthesis.

Since these tasks critically depend on the underlying density of images, a good density model will

lead to good performance. Generally, these models have been very effective in modeling texture

distributions where stationarity over local neighborhoods is a reasonable assumption (Paget and

Longstaff, 1998). Beyond textures, however, the chaining of short-range dependencies has been

insufficient to capture the complexity of long-range geometrical structures. An obvious way to

address this problem is to increase the size of the neighborhoods over which the local density

models are defined. Increasing the size of the neighborhood allows for potentially more complex
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densities, but it comes with a huge computational cost. As a result, it degrades the capability of

MRFs in resolving the curse of dimensionality.

Almost three decades of research on MRFs, which led to a steady and slow progress in

probabilistic image modeling, was eclipsed by the advent of deep learning. In chapter 4, we will

come back to the fundamental concepts underlying MRF models —specifically stationarity, locality

and multi-scale conditioning— and will ask if they are still relevant in the era of deep neural

network.

1.2 Image density models in the era of deep learning

1.2.1 A paradigm shift

As highlighted in the brief review of classical density models, the interplay between under-

standing image properties and engineering advancements was a critical and recurring theme in

designing image priors. In the era of deep learning, this paradigm has shifted. Increasingly, we

have access to unprecedented computational resources and tools to directly solve individual image

processing and computer vision problems, without mention of an image prior.

Generally, the goal is to find a non-linear function, parameterized by a deep neural network,

which maps a distorted image to a reconstructed image (in image processing tasks) or a clean

image to a characteristic of an image, such as a label (in computer vision tasks). Solving for the

parameters is a nonlinear regression problems. One minimizes a loss function over the space of

parameters of the deep network usually through backpropagation. Deep net architectures along

with stochastic gradient descent optimization procedures have proven to be remarkably powerful

for approximating these non-linear functions, as evidenced by their performance across a large

variety of tasks. Does this impressive success in learning deep net mappings make the study of

image densities irrelevant?
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1.2.1.1 Generalization failures

Despite its phenomenal achievements, this approach suffers from a major drawbacks: general-

ization failures. A prior density encapsulates our knowledge about common structures of images

and acts as an umbrella that links together the individual tasks. In theory, a good image prior

can be used universally to solve any inverse problem. On the contrary, in a regression-based

approach, each task is viewed as a separate problem to be solved by finding a new set of optimal

parameters, which is computationally costly. So, the impressive empirical performance comes at

the price of specializing and overfitting the model to a particular task. Research areas like transfer

learning (Weiss et al., 2016) and meta learning (Lemke et al., 2015) emerged to address the issue of

generalization failure across tasks.

In addition to the inter-task generalization failures, deep net models trained to solve the same

problem are prone to overfit to the particular settings of the problem. This issue arises from

hyper-parameter tuning due to the high expressivity of deep neural networks. Techniques like

ensemble methods (Ganaie et al., 2022) and domain adaptations (Farahani et al., 2021) aim to

resolve overfitting to datasets and hyper-parameters within a given task.

1.2.1.2 Shallow understanding of deep models

Failure of generalization is tightly connected to our lack of scientific understanding of why and

how deep neural nets work. In the classical approach, we incorporated our hypotheses into priors,

which were then used to solve engineering problems. As a result, performance improvements

were directly linked to our understanding of the visual world, and served to confirm or falsify our

hypotheses in the form of prior models. Today, our engineering advancements do not necessarily

translate to deeper understanding of our models. Superior performance is usually achieved through

a huge number of trial-and-error iterations, resulting in complicated oversized models with many

pieces whose contributions are not immediately obvious.
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This is not only intellectually unsatisfying, but also leaves us blind to potential flaws of our

models. For example, Szegedy et al (Szegedy et al., 2013) showed that deep net classifiers, despite

their excellent performance on the test set, are not robust to imperceptible perturbations of input

images (known as adversarial examples). In another study, Geirhos et al (Geirhos et al., 2018)

showed that these classification networks use features inessential to the identity of the objects,

such as texture as opposed to shape. Along the same lines (Beery et al., 2018; Geirhos et al., 2020;

Rosenfeld et al., 2018; Zech et al., 2018), it has been shown that object detector networks can

miss relevant objects in the scene due to their reliance on spurious correlations. For example, the

network fails to identify a camel on a green background because it relies on the yellow sandy

background usually accompanying a camel in the training set examples. So, as these failure cases

highlight, not only do we fail to generalize outside of the training regime (slightly perturbed

images, shapes with unusual textures, or objects on unlikely backgrounds), but also we fail to

predict when these failures occur. Unlike the classical approach, the superior performance of

deep nets does not come with guarantees for success and it is not clear which pieces are essential

to build on. Techniques like ablation studies (Meyes et al., 2019) and sub-fields like mechanistic

interpretability (Bereska and Gavves, 2024) emerged to address these shortcomings, but so far our

understanding of deep models remains shallow.

1.2.2 Extracting an image prior from a deep net denoiser

Robust generalization and interpretability are valuable implications of using image priors in

the classical framework. The existing prior models, however, have proven to be subpar compared

to the state-of-the-art deep net models in virtually every sub-field of computer vision and image

processing. So, is it possible to revisit the study and use of image densities and leverage the

unprecedented power of deep learning for image densities estimation? The short answer is yes,

and it involves reversing the order of steps in the classical framework. Rather than explicitly

defining a parametric image prior to solve inverse problems, we solve an inverse problem by
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learning a deep network model from data and then we extract the prior implicit in this learned

network.

For this purpose, we choose the task of denoising. In recent years, deep neural network de-

noisers have exhibited phenomenal performance (Ilesanmi and Ilesanmi, 2021; Zhang et al., 2017a).

Although these denoisers do not explicitly rely on an image prior, their incredible performance

shows they can differentiate between image and noise, implying they have some "knowledge"

of what is structure and what is randomness. In other words, they implicitly embed an image

prior. Gaussian denoising is particularly suitable for our purpose because the connection between

denoising mapping and implicit prior is clear due to a classical statistics result, attributed to

Tweedie and Miyasawa (Miyasawa, 1961; Robbins, 1956a). It shows that a denoiser optimized to

minimize squared error is in fact computing the gradient of the log of the density of noisy images

(also known as the score). This result provides a direct relationship between least-squares optimal

denoising and the embedded prior (Raphan and Simoncelli, 2011), which allows the extraction of a

prior from a deep net denoiser. We developed (Kadkhodaie and Simoncelli, 2021a; 2020) an Iterative

Score Ascent (ISA) algorithm by using this denoiser-estimated gradient to draw high-probability

samples from the embedded prior. In Chapter 2, we discuss our sampling method extensively.

Additionally, we flesh out similarities and differences between our method and two closely related

generative models, namely score-based generative model (Song and Ermon, 2019a) which inspired

our work, and diffusion models (Ho et al., 2020) which have become the most popular score-based

sampling method.

1.2.2.1 What is the implicit prior?

The last few years have witnessed an explosion of research on score-based image generative

models, under the umbrella term of "diffusion models". The quality of samples generated by these

models is usually superior to any classical density model, which lends them a lot of traction. But,

unlike the classical framework, we only observe individual images sampled from the prior, without
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having direct access to the density. As a result, the nature of these powerful priors remains a

mystery. This gives rise to a crucial question: what is the prior? The rest of this thesis explores

this question. In our studies, we use the scientific method to understand, improve and utilize the

implicit prior. We form hypotheses based on empirical observations and then design controlled

experiments to verify or falsify them. In all of these experiments, we look for improvements in

generalization, in some sense of the word, as our measure of success.

We start by proposing an architectural modification in the network in order to make the

denoiser algebraically homogeneous. This idea is based on a simple intuition that the embedded

image prior should be invariant to global intensity changes. The intensity invariance property is

implemented by removing all the additive constant terms from the architecture which renders the

model locally linear. As a result, the Deep Neural Network (DNN) denoiser generalizes far beyond

the training noise variance range, which has important implications for the sampling algorithm.

Additionally, locally linear networks can be analysed by linear algebraic tools. In the second half

of Chapter 2 we present these results and show that the denoising operation can be interpreted

as an approximate projection onto an adaptive image subspace whose dimensionality falls with

noise variance.

Next, we study the continuity of the implicit image prior. Simple thought experiments suggest

that images are concentrated on or near low-dimensional continuous manifolds whose local

coordinates represent deformations and intensity variations. For a given photograph, applying

local continuous deformations (e.g., translations, rotations, dilations, intensity changes) yields a

low-dimensional family of natural-appearing images, that trace out a low-dimensional, highly

curved, manifold in the space of pixels. Does the learning procedure succeed in approximating a

continuous prior by interpolating between the training examples? Or is it doomed by the curse of

dimensionality to only arrive at a discrete set of delta functions corresponding to a memorized set

of training examples? To answer this question, we design an experiment to study the behavior of

the model as a function of the training set size. We find that the learned prior is in fact a discrete
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set of delta functions when the training set is small, but it quickly enters a transition phase as

the training set size grows. With large enough datasets, the network generalizes by interpolating

between the training examples, evidenced by high quality novel generated samples. Surprisingly,

we observe that, when the number of training images is large enough, two models trained on

non-overlapping subsets of a dataset learn nearly the same density.

This strong generalization result, combined with the high visual quality of the sampled images,

suggests that the learned prior is a good approximation of the underlying density. But how do

these models achieve this approximation despite the "curse of dimensionality"? Answering this

question requires understanding the alignment between the "true" density and the inductive biases

of the network. Using linear algebraic tools mentioned before, we analyze the learned denoising

functions and show that, consistent with the classical description of denoising, the inductive biases

give rise to a shrinkage operation in a basis adapted to the underlying image. Examination of

these bases reveals oscillating harmonic structures along contours and in homogeneous regions.

We demonstrate that trained denoisers are inductively biased towards these geometry-adaptive

harmonic bases since they arise not only when the network is trained on photographic images,

but also when it is trained on image classes supported on low-dimensional manifolds for which

the harmonic basis is suboptimal. Chapter 3 is dedicated to describing these results.

Having established that a DNN denoiser can generalize beyond memorizing the training set,

we now use this framework to return to and study the question of low-dimensionality of image

densities. A critical feature for the success of DNNs in the diffusion framework is their global

receptive fields (RF). Large RF allows for capturing long range dependencies in the image through

modeling the joint density directly. Naturally, this yields to a large number of parameters, currently

on the order of hundreds of millions for the state-of-the-art diffusion models. Can we exploit

image properties to factorize the joint density into low dimensional densities, thereby reducing

the number of parameters and training examples?

Before the emergence of deep learning, random field models aimed at capturing the low

11



dimensional structure of image densities by assuming the Markov property. But, MRFs have

not succeeded in modeling image densities beyond textures. In Chapter 4, we leverage the

expressivity of DNN to build a powerful image density model assuming a multi-scale Markov

property. We develop a low-dimensional probability model for images decomposed into multi-scale

wavelet sub-bands. The image density is factorized as a product of conditional probabilities of its

wavelet coefficients conditioned by coarser scale coefficients. We assume that these conditional

probabilities are local and stationary, and hence can be captured with low-dimensional Markov

models. Each conditional density can then be estimated with a conditional CNN (cCNN) with a

small receptive field (RF). But unlike classical MRFs, we are not computationally constrained to

3 × 3 Markov neighborhoods or to simple parametric forms for the local interaction potentials,

which allows for a more sophisticated density.

An important feature of this model is its "foveated" nature. The effective size of the neighbor-

hood grows with scale, from small in fine scales to large in coarser scales, reaching a global RF

at the coarsest scale, enabling representation of large-scale image structures and organization.

We test this model on a dataset of face images, which present a challenging example because

of their global geometric structure. We then evaluate this low-dimensional density model by

using it for denoising, super-resolution, and synthesis. We show that locality and stationarity

assumptions hold for conditional RF sizes as small as 9× 9 without harming performance. This can

be viewed as a powerful alternative path for improving score-based density estimation instead of

increasing the size of the model and training set. MRFs in conjunction with the rich expressivity

of DNNs alleviate the curse of dimensionality by learning low-dimensional approximations of

high-dimensional image probabilities.

Finally, in Chapter 5, we put the denoiser prior into use in solving linear inverse problems.

We describe a generalization of our sampling algorithm to constrained sampling, which provides

a method for using the implicit prior to solve any linear inverse problem, with no additional

training, thus extending the power of supervised learning for denoising to a much broader set of
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problems. The algorithm relies on minimal assumptions and exhibits robust convergence over a

wide range of parameter choices. To demonstrate the generality of our method, we use it to obtain

state-of-the-art levels of unsupervised performance for inpainting, deblurring, super-resolution,

compressive sensing, and colorization. The method described in Chapter 5 was the first algorithm

to use the prior embedded in a denoiser for solving inverse problems in a stochastic fashion.

Deep learning has equipped us with tools and techniques for solving problems which used to

be deemed infeasible or impossible. Learning image densities is one of those problems. This thesis

is focused on methods to not only learn but also examine, interpret and utilize these powerful

image priors. In the discussion section, I describe some ongoing work and a few future directions

among numerous possibilities that have emerged in the era of deep learning.
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2 | Learning image densities from data

using a denoiser

2.1 Image prior implicit in a denoiser

Nearly all problems in image processing and computer vision have been revolutionalized in

recent years by the use of deep Convolutional Neural Networks (CNNs). These networks are

generally optimized in supervised fashion to obtain a direct input-output mapping for a specific

task. This approach does not explicitly rely on a known prior, and offers performance far superior

to classical prior-based methods. The superior performance of CNNs suggests that they embed,

implicitly, sophisticated prior knowledge of images. These implicit priors arise from a combination

of the distribution of the training data, the architecture of the network (Ulyanov et al., 2020),

regularization terms included in the optimization objective, and the optimization algorithm.

Here, our goal is to extract the implicit prior from a network trained for denoising. We

choose denoising not because it is of particular importance or interest, but because we can make

the relationship between mapping of a denoiser and a prior explicit. We start with a result

Section 2.1 to section 2.2 were presented in an arXiv paper (Kadkhodaie and Simoncelli, 2020), and later published
in (Kadkhodaie and Simoncelli, 2021a). An implementation of the algorithm for sampling and code for generating
results are available at https://github.com/LabForComputationalVision/universal_inverse_problem.
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from classical statistics (Miyasawa, 1961; Robbins, 1956b) that states that a denoiser that aims

to minimize squared error of images corrupted by additive Gaussian noise may be interpreted

as computing the gradient of the log of the density of noisy images. This result is related to

Score Matching (Hyvärinen and Dayan, 2005), but provides a more direct relationship between

least-squares optimal denoising and the embedded prior (Raphan and Simoncelli, 2011; Reehorst

and Schniter, 2019). We develop a Stochastic Iterative Score Ascent algorithm (SISA) that uses this

denoiser-estimated gradient of log probability (aka score) to draw high-probability samples from

the embedded prior. Importantly, we use a blind denoiser that can handle noise contamination of

unknown amplitude, which provides a means of adaptively controlling the gradient step sizes and

the amplitude of injected noise, enabling robust and efficient convergence.

2.1.1 Image priors, manifolds, and noisy observations

Digital photographic images lie in a high-dimensional space (R𝑁 , where 𝑁 is the number

of pixels), and simple thought experiments suggest that they are concentrated on or near low-

dimensional manifolds whose local coordinates represent continuous deformations and intensity

variations. In contrast, images generated with random pixels are almost always feature and

content free, and thus not considered to be part of this manifold. We can associate with this

manifold a prior probability model, 𝑝 (𝑥), by assuming that images within the manifold have

constant or slowly-varying probability, while unnatural or distorted images (which lie off the

manifold) have low or zero probability. Suppose we make a noisy observation of an image,𝑦 = 𝑥+𝑧,

where 𝑥 ∈ 𝑅𝑁 is the original image drawn from 𝑝 (𝑥), and 𝑧 ∼ N(0, 𝜎2𝐼𝑁 ) is a sample of Gaussian

white noise. The observation density 𝑝 (𝑦) is related to the prior 𝑝 (𝑥) via marginalization:

𝑝 (𝑦) =
∫

𝑝 (𝑦 |𝑥)𝑝 (𝑥)𝑑𝑥 =

∫
𝑔(𝑦 − 𝑥)𝑝 (𝑥)𝑑𝑥, (2.1)
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where 𝑔(𝑧) is the Gaussian noise distribution. Equation (2.1) is in the form of a convolution, and

thus 𝑝 (𝑦) is a Gaussian-blurred version of the signal prior, 𝑝 (𝑥). Moreover, the family of observa-

tion densities over different noise variances, 𝑝𝜎 (𝑦), forms a Gaussian scale-space representation of

the prior (Koenderink, 1984; Lindeberg, 1994), analogous to the temporal evolution of a diffusion

process.

2.1.2 Least sqares denoising and CNNs

Given a noisy observation, 𝑦, the minimum mean squared error (MMSE) estimate of the true

signal is well known to be the conditional mean of the posterior density:

𝑥 (𝑦) =
∫

𝑥𝑝 (𝑥 |𝑦)𝑑𝑥 =

∫
𝑥
𝑝 (𝑦 |𝑥)𝑝 (𝑥)

𝑝 (𝑦) 𝑑𝑥 (2.2)

The structure of the equation mirrors the traditional approach to the problem: one chooses

a prior probability model, 𝑝 (𝑥), combines it with a likelihood function describing the noisy

measurement process, 𝑝 (𝑦 |𝑥), and solves. Modern denoising solutions, on the other hand, are

often based on supervised learning of a direct mapping from noisy to denoised images. One

expresses the estimation function (as opposed to the prior) in parametric form, and sets the

parameters by minimizing the denoising MSE over a large training set of example signals and

their noise-corrupted counterparts (Burger et al., 2012; Elad and Aharon, 2006; Hel-Or and Shaked,

2008; Jain and Seung, 2009). Current state-of-the-art denoising results using CNNs obtained with

this supervised approach are far superior to results of previous methods (Chen and Pock, 2017;

Huang et al., 2017; Zhang et al., 2017a). These architectures can be simplified by removing all

additive bias terms, with no loss of performance (Mohan* et al., 2020). The resulting bias-free

networks offer two important advantages. First, they automatically generalize to all noise levels,

even when trained on a narrow range of noise. A network trained on images with barely noticeable

levels of noise can produce high quality results when applied to images corrupted by noise of
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any amplitude. Second, they may be analyzed as adaptive linear systems, which reveals that they

perform an approximate projection onto a low-dimensional subspace. In our context, we interpret

this subspace as a tangent hyperplane of the image manifold. Moreover, the dimensionality of

these subspaces falls inversely with 𝜎 , and for a given noise sample, the subspaces associated with

different noise amplitude are nested, with high-noise subspaces lying within their lower-noise

counterparts. In the limit as the noise variance goes to zero, the subspace dimensionality grows to

match that of the manifold at that particular point. We take a more in-depth look at the properties

and analysis of these denoisers in section 2.3.

2.1.3 Exposing the implicit prior through Empirical Bayes estimation

Trained CNN denoisers contain detailed prior knowledge of image structure, but Eq. (2.2)

suggests that it is embedded within a high-dimensional integral. How can we make use of this

implicit prior? Recent results have derived relationships between Score Matching density estimates

and denoising, and have used these relationships to make use of implicit prior information (Bengio

et al., 2013; Li et al., 2019; Saremi and Hyvarinen, 2019; Song and Ermon, 2019a). Here, we exploit

a more direct but less-known result from the literature on Empirical Bayesian estimation. The idea

was introduced in (Robbins, 1956a), extended to the case of Gaussian additive noise in (Miyasawa,

1961), and generalized to many other measurement models (Raphan and Simoncelli, 2011). In the

case of additive Gaussian noise, one can rewrite the estimator of Eq. (2.2) as:

𝑥 (𝑦) = 𝑦 + 𝜎2∇𝑦 log𝑝 (𝑦). (2.3)

The proof is relatively straightforward. The gradient of the observation density of Eq. (2.1) is:

∇𝑦 𝑝 (𝑦) =
1
𝜎2

∫
(𝑥 − 𝑦)𝑔(𝑦 − 𝑥)𝑝 (𝑥)𝑑𝑥 =

1
𝜎2

∫
(𝑥 − 𝑦)𝑝 (𝑦, 𝑥)𝑑𝑥.
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Multiplying both sides by 𝜎2/𝑝 (𝑦) and separating the right side into two terms gives:

𝜎2∇𝑦 𝑝 (𝑦)
𝑝 (𝑦) =

∫
𝑥𝑝 (𝑥 |𝑦)𝑑𝑥 −

∫
𝑦𝑝 (𝑥 |𝑦)𝑑𝑥 = 𝑥 (𝑦) − 𝑦.

Rearranging terms and using the chain rule to compute the gradient of the log gives Eq. (2.3). This

remarkable result re-expresses the integral over the prior and likelihood of Eq. (2.2) in terms of a

gradient. Note that 1) the relevant density is not the prior, 𝑝 (𝑥), but the noisy observation density,

𝑝 (𝑦); 2) the gradient is computed on the log density (the associated “energy function”); and 3) the

gradient adjustment is not iterative - the estimate is achieved in a single step, and holds for any

noise level, 𝜎 .

2.2 Drawing high-probability samples from the implicit

prior

Suppose we wish to draw a sample from the prior implicit in a denoiser. Equation (2.3) allows us

to generate an image proportional to the gradient of log𝑝 (𝑦) by computing the denoiser residual,

𝑓 (𝑦) = 𝑥 (𝑦) − 𝑦. Song and Ermon (Song and Ermon, 2019a) developed a Markov chain Monte

Carlo (MCMC) scheme, combining gradient steps derived from Score Matching and injected noise

in a Langevin sampling algorithm to draw samples from a sequence of densities 𝑝𝜎 (𝑦), while

reducing 𝜎 in a sequence of discrete steps, each associated with an appropriately trained denoiser.

In contrast, starting from a random initialization, 𝑦0, we aim to find a high-probability image (i.e.,

an image from the manifold) using a more direct and efficient stochastic gradient ascent procedure.

2.2.1 Unconstrained sampling algorithm

We compute gradients using the residual of a universal blind CNN denoiser, which automat-

ically estimates and adapts to each noise level. On each iteration, the algorithm takes a small
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step in the direction specified by the denoiser, moving toward the image manifold and thereby

reducing the amplitude of the effective noise. Under the interpretation that the denoiser performs

a projection onto the current approximation of the image manifold, this noise reduction occurs

in the subspace orthogonal to that manifold, and noise components parallel to the manifold are

retained. As the effective noise decreases, the observable dimensionality of the image manifold

increases (Mohan* et al., 2020), enabling the synthesis of detailed image content. Since the family

of observation densities, 𝑝𝜎 (𝑦) forms a scale-space representation of 𝑝 (𝑥), the algorithm may be

viewed as a form of coarse-to-fine optimization (Blake and Zisserman, 1987; Geman and Geman,

1984; Kirkpatrick et al., 1983; Lucas and Kanade, 1981). Assuming the step sizes are adequately

controlled, the procedure will converge to a local optimum of the implicit prior - i.e., a point on

the manifold. Figure 2.1 provides a visualization of this process in two dimensions.

Figure 2.1: Two-dimensional simulation/visualization of the sampler. Forty example signals 𝑥 are sampled
from a uniform prior on a manifold (green curve). First three panels show, for three different levels of noise,
the noise-corrupted measurements of the signals (red points), the associated noisy signal distribution 𝑝 (𝑦)
(indicated with underlying grayscale intensities), and the least-squares optimal denoising solution 𝑥 (𝑦)
for each (end of red line segments), as defined by Eq. (2.2), or equivalently, Eq. (2.3). Right panel shows
trajectory of our SISA algorithm (Algorithm 1), starting from the same initial values 𝑦 (red points) of the
first panel. Algorithm parameters were ℎ0 = 0.05 and 𝛽 = 1 (i.e., no injected noise). Note that, unlike the
single-step least-squares solutions, the iterative trajectories are curved, and always arrive at solutions on
the signal manifold.

Each iteration operates by taking a deterministic step in the direction of the gradient (as

obtained from the denoising function) and injecting some additional noise:

𝑦𝑡 = 𝑦𝑡−1 + ℎ𝑡 𝑓 (𝑦𝑡−1) + 𝛾𝑡𝑧𝑡 , (2.4)
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where 𝑓 (𝑦) = 𝑥 (𝑦) − 𝑦 is the residual of the denoising function, which is proportional to the

gradient of log𝑝 (𝑦), from Eq. (2.3). The parameter ℎ𝑡 ∈ [0, 1] controls the fraction of the denoising

correction that is taken, and 𝛾𝑡 controls the amplitude of a sample of white Gaussian noise,

𝑧𝑡 ∼ N(0, 𝐼 ). The purpose of injecting noise is two-fold. First, from an optimization perspective, it

allows the method to avoid getting stuck in local maxima. Second, it allows stochastic exploration

of the manifold, yielding a more diverse (higher entropy) family of solutions. The effective noise

variance of image 𝑦𝑡 is:

𝜎2
𝑡 = (1 − ℎ𝑡 )2𝜎2

𝑡−1 + 𝛾2
𝑡 , (2.5)

where the first term is the variance of the noise remaining after the denoiser correction (assuming

the denoiser is perfect), and the second term is the variance arising from the injected noise. The

assumption of perfect denoising is an idealization, but we show empirically (Fig. 2.2) that SISA

algorithm converges reliably, with error levels falling as predicted by Eq. (2.5) or faster, across

different settings of 𝛽 and ℎ0.

To ensure convergence, we require the effective noise variance on each time step to be reduced,

despite the injection of additional noise. For this purpose, we introduce a parameter 𝛽 ∈ [0, 1] to

control the proportion of injected noise (𝛽 = 1 indicates no noise), and enforce the convergence

by requiring that:

𝜎2
𝑡 = (1 − 𝛽ℎ𝑡 )2𝜎2

𝑡−1. (2.6)

Combining this with Eq. (2.5) yields an expression for 𝛾𝑡 in terms of ℎ𝑡 :

𝛾2
𝑡 =

[
(1 − 𝛽ℎ𝑡 )2 − (1 − ℎ𝑡 )2

]
𝜎2
𝑡−1 =

[
(1 − 𝛽ℎ𝑡 )2 − (1 − ℎ𝑡 )2

]
∥ 𝑓 (𝑦𝑡−1)∥2 /𝑁,

where the second equation assumes that the magnitude of the denoising residual provides a good

estimate of the effective noise standard deviation, as was found in (Mohan* et al., 2020). This allows

the denoiser to adaptively control the score ascent step sizes, reducing them as the 𝑦𝑡 approaches
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the manifold (see Fig. 2.1). This automatic adjustment results in efficient and reliable convergence,

as demonstrated empirically in Fig. 2.2. Our initial implementation with a small constant fractional

step size ℎ𝑡 = ℎ0 produced high quality results, but required many iterations. Intuitively, step sizes

that are a fixed proportion of the distance to the manifold lead to exponential decay - a form of

Zeno’s paradox. To accelerate convergence, we introduced a schedule for increasing the step size

proportion, starting from ℎ0 ∈ [0, 1]. The sampling process is summarized in Algorithm 1.

Algorithm 1: Stochastic Iterative Score Ascent (SISA) method for sampling from the
implicit prior of a denoiser, using denoiser residual 𝑓 (𝑦) = 𝑥 (𝑦) − 𝑦.
parameters: 𝜎0, 𝜎𝐿 , ℎ0, 𝛽
initialization: 𝑡 = 1, draw 𝑦0 ∼ N(0.5, 𝜎2

0 𝐼 )
while 𝜎𝑡−1 ≥ 𝜎𝐿 do

ℎ𝑡 =
ℎ0𝑡

1+ℎ0 (𝑡−1) ;
𝑑𝑡 = 𝑓 (𝑦𝑡−1);
𝜎2
𝑡 =

| |𝑑𝑡 | |2
𝑁

;
𝛾2
𝑡 =

(
(1 − 𝛽ℎ𝑡 )2 − (1 − ℎ𝑡 )2

)
𝜎2
𝑡 ;

Draw 𝑧𝑡 ∼ N(0, 𝐼 );
𝑦𝑡 ← 𝑦𝑡−1 + ℎ𝑡𝑑𝑡 + 𝛾𝑡𝑧𝑡 ;
𝑡 ← 𝑡 + 1

end

2.2.2 Image synthesis examples

For the denoiser, we used BF-CNN (Mohan* et al., 2020), a bias-free variant of DnCNN (Zhang

et al., 2017a). We obtained similar results (not shown) using other CNN architectures described in

(Mohan* et al., 2020), including Recurrent-CNN, Dense-Net, and truncated U-Net. We trained this

network on three different datasets: 40× 40 patches cropped from Berkeley segmentation training

set (Martin et al., 2001), in color and grayscale, and MNIST dataset (LeCun and Cortes, 2010) (see

section 2.3 for further details). We chose parameters 𝜎0 = 1, 𝜎𝐿 = 0.01, and ℎ0 = 0.01. Figures 2.3,

2.4, and 2.5 provide visualization of example trajectories. Additional visual examples, obtained

with different levels of 𝛽 , are shown in Figure 2.6 and Figure 2.7.
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Figure 2.2: Convergence of SISA sampling algorithm, quantified in terms of the effective noise standard
deviation 𝜎 =

| |𝑑𝑡 | |√
𝑁

for three different values of 𝛽 and two values of ℎ0. Left. Convergence of single
examples (solid curves) is well-behaved and efficient in all cases. Dashed curves indicate the convergence
predicted from the formulation of SISA algorithm: 𝜎𝑡 = (1 − 𝛽ℎ𝑡 )𝜎𝑡−1. For 𝛽 = 1 (no injected noise), the
empirical convergence closely approximates the prediction. For larger amounts of injected noise (smaller
𝛽), convergence is naturally slower, but faster than predicted. This is because, for small noise levels, the
magnitude of the denoising residual is an underestimate of the input noise level, which means that 𝛾 is the
upper bound on the injected noise. Conceptually, this effect is related to the dimensionality of the image
subspace tangent to the manifold. The injected noise has non-zero amplitude in all directions, including
directions parallel to the tangent subspace. These directions do not contribute to the effective noise
variance because they contain image content. The number of these directions increases with reduction
of noise (Mohan* et al., 2020) resulting in increasing overestimation of noise variance in the predicted
curves. Right. Distribution of number of iterations before convergence to a criterion level of 𝜎 = 0.01 for
50 images. Red symbols indicate average values for each 𝛽 and ℎ0.

2.2.3 Connection and comparison to related work

2.2.3.1 Denoising score matching

Our method is closely related to recent work that uses Score Matching (Hyvärinen and Dayan,

2005) to draw samples from an implicit prior. This line of work is rooted in the connection between
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Figure 2.3: Visualization of sampling SISA algorithm trajectories. Each row shows a sequence of images,
𝑦𝑡 , 𝑡 = 1, 9, 17, 25, . . ., from the iterative sampling procedure, with different initializations, 𝑦0, and no added
noise (𝛽 = 1), demonstrating the way that SISA algorithm amplifies and "hallucinates" structure found in
the initial (noise) images. Convergence is typically achieved in less than 40 iterations with stochasticity
disabled.

Figure 2.4: Visualization of SISA sampling algorithm trajectories for color images. Sampling from the
implicit prior embedded in a BF-CNN denoiser trained on color Berkeley segmentation dataset.

Denoising Autoencoders and Score Matching, first described in (Vincent, 2011a). Denoising

autoencoders learn the gradient of log density, and their connection to an underlying data manifold

has been explored in (Alain and Bengio, 2014; Bengio et al., 2013; Vincent et al., 2008). More

recently, Refs. (Saremi and Hyvarinen, 2019; Saremi et al., 2018) trained a neural network to

directly estimate energy (the negative log prior) and interpreted its gradient as the Score of the

data. Finally, in a breakthrough paper that partially inspired our approach, Song and Ermon

(Song and Ermon, 2019a) trained a sequence of denoisers with decreasing levels of noise and used

Langevin dynamics to sample from the underlying probability distributions in succession. Our

work differs from these in several important ways:

Figure 2.5: Visualization of SISA sampling algorithm trajectories for MNIST. Sampling from the implicit
prior embedded in a BF-CNN denoiser trained on MNIST dataset.
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Figure 2.6: The effect of hyper-parameter 𝛽 on generated samples of natural patches. Left. Samples
drawn with different initializations 𝑦0, using a moderate level of injected noise (𝛽 = 0.5). Images contain
natural-looking features, with sharp contours, junctions, shading, and in some cases, detailed texture
regions. Right. Samples drawn with more substantial injected noise (𝛽 = 0.1). The additional noise helps
to avoid local maxima, and arrives at images that are smoother and higher probability, but still containing
sharp boundaries.

Figure 2.7: The effect of hyper-parameter 𝛽 on generated samples on MNIST digits. Training BF-CNN on
the MNIST dataset of handwritten digits (LeCun et al., 2010) results in a different implicit prior (compare
to Figure 2.6). Each panel shows 16 samples drawn from the implicit prior, with different levels of injected
noise (increasing from left to right, 𝛽 ∈ {1.0, 0.3, 0.01}).

(1) Direct derivation. Our method is based on Miyasawa’s explicit relationship between the

denoiser mapping and implicit density (Miyasawa, 1961), which can be proven with a few lines of

math (Section 2.1.3). The relationship of this result to Score Matching (Raphan and Simoncelli,

2011; Reehorst and Schniter, 2019), and the relationship between Score Matching and Denoising

Autoencoders (Vincent, 2011a) are both significantly more nuanced and complex.

(2) Simplicity and parsimony. Our method (SISA) describes a coarse-to-fine gradient ascent

algorithm, which aims to converge to a local maximum of 𝑝 (𝑥) in the deterministic case (𝛽 = 1)
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and a high probability point on 𝑝 (𝑥) in the stochastic case (𝛽 < 1), similarly to the general gradient-

based framework of optimization in deep learning. The gradient provided by the denoiser is not

used for sampling, but for removing a fraction of the noise at each step. Our formulation relies on a

single universal blind denoiser which implicitly embeds an infinite family of distributions of noisy

images, corresponding to a continuous range of noise levels. In contrast, the algorithm presented

in (Song and Ermon, 2019a) uses a discrete sequence of denoisers (precisely 10 denoisers), each

trained for a single noise level, and embedding a distribution of noisy images with that specific

noise level. Langevin dynamics are used to sample from each of these distributions in succession,

with each stage initialized from the sample generated by the previous stage. This procedure is

repeated until the noise is sufficiently small (annealed Langevin dynamics). Langevin sampling

guarantees (asymptotically) convergence to each successive distribution, although convergence to

intermediate distributions is not necessary and the samples drawn from them are redundant.

(3) Efficiency through step-size adaptivity. Our SISA algorithm is based on a universal, blind

denoiser which estimates the noise level automatically. After each step, the denoiser adapts to

the updated implicit noisy density, both in terms of gradient direction and magnitude. Hence the

step size is automatically adjusted based on the denoiser’s estimate of distance to the manifold.

As a result, the number of steps required for convergence is not constant, but is adjusted to the

distribution complexity and the specific image under synthesis, as shown in Figure 2.2. In contrast,

the algorithm presented in (Song and Ermon, 2019a) assumes a discrete sequence of denoisers

trained for a pre-specified sequence of noise levels. This method requires choices of the schedule

of noise levels (standard deviations, and number of iterations used at each level). The continuous

maximization of probability combined with automatic step size adjustment result in substantial

gains in efficiency. For comparison, Song&Ermon (Song and Ermon, 2019a) report 1000 iteration

to synthesize a 32 × 32 image, whereas we synthesize 40 × 40 images in roughly 35 iteration (for

𝛽 = 1).

(4) Flexible stochasticity of synthesis. We use the residual magnitude as an estimate of the
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implicit noise level as described in equation 2.6, and this is used to control the amplitude of injected

noise. So SISA algorithm can go from entirely deterministic beyond the initialization (𝛽 = 1) to

increasing levels of stochastic with smaller 𝛽 . Note that this differs markedly from the control of

noise injection in the Langevin method, which is of constant magnitude in each stage.

This is similar to score-based diffusion algorithms (Ho et al., 2020; Song and Ermon, 2019b;

Song et al., 2021b), but the timestep hyper-parameters require essentially no tuning, since stepsizes

are automatically obtained from the magnitude of the estimated score.

2.2.3.2 Denoising diffusion probabilistic models

Denoising diffusion probabilistic models (DDPM) (Ho et al., 2020) were introduced shortly after

we developed SISA algorithm. DDPM has become the most popular and well-known denoising

or score based generative model. DDPM gets rid of sequencing, so SISA algorithm is similar to

DDPM in using a denoiser trained on a wide range of noise and employing it iteratively to draw

samples from the density. Our work is different from this model in the following ways:

(1) Convergence to true vs. learned density. DDPM is based on a variational inference description

first proposed in (Sohl-Dickstein et al., 2015). A continuous diffusion process is applied to a target

density of clean images, assuming it converges to a Gaussian distribution in infinite time. Then a

reverse process is applied to the Gaussian distribution to take it to the initial target distribution.

The assumption is that for an infinitesimal change in time, which is tied to change in noise variance,

the conditional or transition distributions are the same. This is a sufficient (but not necessary)

detailed balance condition that guarantees convergence.

In practice however, one must assume a discrete noise schedule that introduces an error

to convergence. For image densities in particular, any discretization causes error, because the

forward and backward conditional are very different for image densities. The conditional density

in the forward pass describes the distribution of a noisy image given a less noisy image which

is simply a Gaussian. However, distribution of less noisy images given more noisy image in the
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reverse process is very non-Gaussian and complex. This conditional can be approximated with a

Gaussian only in the limit of very small noise steps. On the contrary, SISA algorithm is proposed

as a discrete gradient ascent algorithm which converges to the learned density embedded in the

denoiser (as opposed to a true density). We believe this description is not only simpler and more

direct, but also more consistent with practical constraints. The true image density is not known

and it is far too complex and high dimensional to be described explicitly, hence it is not clear how

meaningful the convergence bound guarantees are. On the other hand, the density we have access

to and converge to is the learned density embedded in the denoiser. This description leads us

to investigate a parallel set of questions involving understanding the properties of the learned

density.

(2) Noise variance estimation error DDMP models take the noise variance as an input. This

value is used to set the step size throughout the synthesis trajectory. This is another source of

error since it is not guaranteed that the noise variance is reduced to the expected level to achieve

the intended noise variance in the next step. In contrast, SISA algorithm relies on a blind denoiser

which estimates the noise level automatically and adjust the step size to the estimated noise level

(as opposed to the true noise level remained on the image).

(3) Initialization error Another source of error in DDPM is initialization error. Since the network

is not blind and universal, in order to approximate the score correctly, it should be trained on all

noise levels. This is not possible, so the network does not embed the score for all noise levels. This

is particularly problematic for the score at initialization. On the other hand, SISA algorithm is

based on a blind and universal denoiser which extrapolates to large noise levels without training

(see next section).
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2.3 Deep Neural Network Denoisers

At the core of SISA sampling algorithm is a deep neural network denoiser, so we dedicate this

section to studying DNN denoisers.

In the past decade, purely data-driven models based on convolutional neural networks (Le-

Cun et al., 2015) have come to dominate all previous methods in terms of performance. These

models consist of cascades of convolutional filters, rectifying nonlinearities, skip connections

and sometimes down-sampling which are capable of representing a diverse and powerful set of

functions. Training such architectures to minimize mean square error over large databases of

noisy natural-images achieves current state-of-the-art results (Chen and Pock, 2017; Herbreteau

et al., 2024; Huang et al., 2017; Ronneberger et al., 2015a; Zhang et al., 2017a; 2018a).

An important advantage of deep-learning techniques over traditional methodology is that a

single neural network can be trained to perform denoising at a wide range of noise levels. This

is often achieved by simulating the whole range of noise levels during training (Zhang et al.,

2017a). Here, we show that this is not necessary. Neural networks can be made to generalize

automatically across noise levels through a simple modification in the architecture: removing all

additive constants. We find this holds for a variety of network architectures proposed in previous

literature. We provide extensive empirical evidence that denoising architectures systematically

overfit to the noise levels in the training set, and that this is due to the presence of a net bias.

Suppressing this bias makes it possible to attain state-of-the-art performance while training

over a very limited range of noise levels. This result has significant implications regarding the

initialization assumption in SISA sampling algorithm discussed earlier.

Geometrically, locally linear mapping is motivated by the invariance of the image prior to

Section 2.3 is published (Mohan* et al., 2020) in collaboration with Carlos Fernandez-Granda and Sreyas Mohan.
The code for generating results is available at https://github.com/LabForComputationalVision/bias_free_
denoising.
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intensity changes. For a natural image on the image manifold, its different variants with different

intensity are high probability images lying on the manifold. This implies that the image manifold

consists of linear facets going through the origin, giving rise to a generalized conic structure, as

shown by a low dimensional illustration in Figure 2.8.

A desired outcome of locally linear models is interpretability. Despite their success, these

deep neural net denoisers are mysterious: we lack both intuition and formal understanding of

the mechanisms they implement and most importantly what priors are being learned by these

models. The proposed bias-free architecture lends itself to local linear algebraic analysis through

the Jacobian of the denoising map, which provides high level interpretability. The analysis reveals

locally adaptive properties of the learned models, akin to existing nonlinear filtering algorithms.

In addition, we show that the deep networks implicitly perform a projection onto an adaptively-

selected low-dimensional subspace capturing features of natural images.

Figure 2.8: Generalized conic manifold

2.3.1 Network Bias Impairs Generalization

We assume a measurement model in which images are corrupted by additive noise: 𝑦 = 𝑥 + 𝑛,

where 𝑥 ∈ R𝑁 is the original image, containing 𝑁 pixels, 𝑛 is an image of i.i.d. samples of Gaussian

noise with variance 𝜎2, and 𝑦 is the noisy observation. The denoising problem consists of finding

a function 𝑓 : R𝑁 → R𝑁 , that provides a good estimate of the original image, 𝑥 . Commonly,

one minimizes the mean squared error : 𝑓 = arg min𝑔 𝐸 | |𝑥 − 𝑔(𝑦) | |2, where the expectation is
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taken over some distribution over images, 𝑥 , as well as over the distribution of noise realizations.

In deep learning, the denoising function 𝑔 is parameterized by the weights of the network, so

the optimization is over these parameters. If the noise standard deviation, 𝜎 , is unknown, the

expectation must also be taken over a distribution of 𝜎 . This problem is often called blind denoising

in the literature. Here, we study the generalization performance of CNNs across noise levels 𝜎 , i.e.

when they are tested on noise levels not included in the training set.

Feedforward neural networks with rectified linear units (ReLUs) are piecewise affine: for

a given activation pattern of the ReLUs, the effect of the network on the input is a cascade of

linear transformations (convolutional or fully connected layers,𝑊𝑘 ), additive constants (𝑏𝑘 ), and

pointwise multiplications by a binary mask corresponding to the fixed activation pattern (𝑅). Since

each of these is affine, the entire cascade implements a single affine transformation. For a fixed

noisy input image 𝑦 ∈ R𝑁 with 𝑁 pixels, the function 𝑓 : R𝑁 → R𝑁 computed by a denoising

neural network may be written

𝑓 (𝑦) =𝑊𝐿𝑅(𝑊𝐿−1...𝑅(𝑊1𝑦 + 𝑏1) + ...𝑏𝐿−1) + 𝑏𝐿 = 𝐴𝑦𝑦 + 𝑏𝑦, (2.7)

where 𝐴𝑦 ∈ R𝑁×𝑁 is the Jacobian of 𝑓 (·) evaluated at input 𝑦, and 𝑏𝑦 ∈ R𝑁 represents the net bias.

The subscripts on 𝐴𝑦 and 𝑏𝑦 serve as a reminder that both depend on the ReLU activation patterns,

which in turn depend on the input vector 𝑦.

Based on equation 2.7 we can perform a first-order decomposition of the error or residual of

the neural network for a specific input: 𝑦 − 𝑓 (𝑦) = (𝐼 −𝐴𝑦)𝑦 −𝑏𝑦 . Figure 2.9 shows the magnitude

of the residual and the constant, which is equal to the net bias 𝑏𝑦 , for a range of noise levels. Over

the training range, the net bias is small, implying that the linear term is responsible for most of the

denoising (see Figures 2.9 for a visualization of both components). However, when the network is

evaluated at noise levels outside of the training range, the norm of the bias increases dramatically,

and the residual is significantly smaller than the noise, suggesting a form of overfitting. Indeed,
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network performance generalizes very poorly to noise levels outside the training range. This is

illustrated for an example image in Figure 2.10, and demonstrated through extensive experiments

in Section 2.3.3.
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Figure 2.9: Bias component of the locally affine denoising mapping. First-order analysis of the residual
of a denoising convolutional neural network as a function of noise level. The plots show the norms of
the residual and the net bias averaged over 100 20 × 20 natural-image patches for networks trained over
different training ranges. The range of noises used for training is highlighted in blue. (a)When the network
is trained over the full range of noise levels (𝜎 ∈ [0, 100]) the net bias is small, growing slightly as the noise
increases. (b-c) When the network is trained over the a smaller range (𝜎 ∈ [0, 55] and 𝜎 ∈ [0, 30]), the net
bias grows explosively for noise levels beyond the training range. This coincides with a dramatic drop in
performance, reflected in the difference between the magnitudes of the residual and the true noise. The
CNN used for this example is DnCNN (Zhang et al., 2017a); using alternative architectures yields similar
results as shown in Figure A.1.

Noisy training image,
𝜎 = 10 (max level)

Noisy test image,
𝜎 = 90

Test image, denoised
by CNN

Test image, denoised
by BF-CNN

Figure 2.10: Effect of net bias on generalization for an example image. Denoising of an example natural
image by a CNN and its bias-free counterpart (BF-CNN), both trained over noise levels in the range
𝜎 ∈ [0, 10] (image intensities are in the range [0, 255]). The CNN performs poorly at high noise levels
(𝜎 = 90, far beyond the training range), whereas BF-CNN performs at state-of-the-art levels. The CNN
used for this example is DnCNN (Zhang et al., 2017a); using alternative architectures yields similar results
(see Section 2.3.3).
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Figure 2.11: Effect of net bias on generalization for a test dataset. Comparison of the performance of a
CNN and a BF-CNN with the same architecture for the experimental design described in Section 2.3.3.
The performance is quantified by the PSNR of the denoised image as a function of the input PSNR. Both
networks are trained over a fixed ranges of noise levels indicated by a blue background. In all cases, the
performance of BF-CNN generalizes robustly beyond the training range, while that of the CNN degrades
significantly. The CNN used for this example is DnCNN (Zhang et al., 2017a); using alternative architectures
yields similar results (see Figures A.2 and A.3).

2.3.2 Introducing Bias-Free Networks

We showed that CNNs overfit to the noise levels present in the training set, and that this is

associated with wild fluctuations of the net bias 𝑏𝑦 . This suggests that the overfitting might be

ameliorated by removing additive (bias) terms from every stage of the network, resulting in a

bias-free CNN (BF-CNN). Note that bias terms are also removed from the batch-normalization

used during training. This simple change in the architecture has an interesting consequence. If the

CNN has ReLU activations the denoising map is locally homogeneous, and consequently invariant

to scaling: rescaling the input by a constant value simply rescales the output by the same amount,

just as it would for a linear system.

Lemma 2.1. Let 𝑓BF : R𝑁 → R𝑁 be a feedforward neural network with ReLU activation functions

and no additive constant terms in any layer. For any input 𝑦 ∈ R and any nonnegative constant 𝛼 ,

𝑓BF(𝛼𝑦) = 𝛼 𝑓BF(𝑦). (2.8)

Proof. We can write the action of a bias-free neural network with 𝐿 layers in terms of the weight
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matrix𝑊𝑖 , 1 ≤ 𝑖 ≤ 𝐿, of each layer and a rectifying operator R, which sets to zero any negative

entries in its input. Multiplying by a nonnegative constant does not change the sign of the entries

of a vector, so for any 𝑧 with the right dimension and any 𝛼 > 0 R(𝛼𝑧) = 𝛼R(𝑧), which implies

𝑓BF(𝛼𝑦) =𝑊𝐿R(𝑊𝐿−1 · · · R(𝑊1𝛼𝑦)) = 𝛼𝑊𝐿R(𝑊𝐿−1 · · · R(𝑊1𝑦)) = 𝛼 𝑓BF(𝑦). (2.9)

□

Note that networks with nonzero net bias are not scaling invariant because scaling the input

may change the activation pattern of the ReLUs. Scaling invariance is intuitively desireable

for a denoising method operating on natural images; a rescaled natural image is still a natural

image. Note that Lemma 2.1 holds for networks with skip connections where the feature maps are

concatenated or added, because both of these operations are linear.

In the following sections we demonstrate that removing all additive terms in CNN architectures

has two important consequences: (1) the networks gain the ability to generalize to noise levels

not encountered during training (as illustrated by Figure 2.10 the improvement is striking), and (2)

the denoising mechanism can be analyzed locally via linear-algebraic tools that reveal intriguing

ties to more traditional denoising methodology such as nonlinear filtering and sparsity-based

techniques.

2.3.3 Bias-free Networks Generalize Across Noise Levels

In order to evaluate the effect of removing the net bias in denoising CNNs, we compare

several popular architectures to their bias-free counterparts, which are exactly the same except

for the absence of any additive constants within the networks (note that this includes the batch-

normalization additive parameter). These architectures include popular features of existing

neural-network techniques in image processing: convolutional filters, downsampling, and skip

connections. More specifically, we examine the following models (see Section A.1 for additional
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details):

• DnCNN (Zhang et al., 2017a): A feedforward CNN with 20 convolutional layers, each

consisting of 3× 3 filters, 64 channels, batch normalization (Ioffe and Szegedy, 2015), a ReLU

nonlinearity, and a skip connection from the initial layer to the final layer.

• Recurrent CNN: A recurrent architecture inspired by (Zhang et al., 2018a) where the basic

module is a CNN with 5 layers, 3 × 3 filters and 64 channels in the intermediate layers. The

order of the recurrence is 4.

• UNet (Ronneberger et al., 2015a): A multiscale architecture with 9 convolutional layers and

skip connections between the different scales.

• Simplified DenseNet: CNN with skip connections inspired by the DenseNet architec-

ture (Huang et al., 2017; Zhang et al., 2018b).

We train each network to denoise images corrupted by i.i.d. Gaussian noise over a range

of standard deviations (the training range of the network). We then evaluate the network for

noise levels that are both within and beyond the training range. Our experiments are carried

out on 180 × 180 natural images from the Berkeley Segmentation Dataset (Martin et al., 2001) to

be consistent with previous results (Chen and Pock, 2017; Schmidt and Roth, 2014; Zhang et al.,

2017a). Additional details about the dataset and training procedure are provided in Section A.2.

Figures 2.11 and A.2 show our results. For a wide range of different training ranges, and

for all architectures, we observe the same phenomenon: the performance of CNNs is good

over the training range, but degrades dramatically at new noise levels; in stark contrast, the

corresponding BF-CNNs provide strong denoising performance over noise levels outside the

training range. Figure 2.10 shows an example image, demonstrating visually the striking difference

in generalization performance between a CNN and its corresponding BF-CNN. Our results provide

strong evidence that removing net bias in CNN architectures results in effective generalization to

noise levels out of the training range.
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Figure 2.12: Visualization of the linear weighting functions (rows of 𝐴𝑦 in equation 2.10) of a BF-CNN
for three example pixels of an input image, and three levels of noise. The images in the three rightmost
columns show the weighting functions used to compute each of the indicated pixels (red squares). All
weighting functions sum to one, and thus compute a local average (note that some weights are negative,
indicated in red). Their shapes vary substantially, and are adapted to the underlying image content. As
the noise level 𝜎 increases, the spatial extent of the weight functions increases in order to average out the
noise, while respecting boundaries between different regions in the image, which results in dramatically
different functions for each pixel. The CNN used for this example is DnCNN (Zhang et al., 2017a).
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2.3.4 Revealing the Denoising Mechanisms Learned by BF-CNNs

In this section we perform a local analysis of BF-CNN networks, which reveals the underlying

denoising mechanisms learned from the data. A bias-free network is strictly linear, and its net

action can be expressed as

𝑓BF(𝑦) =𝑊𝐿𝑅(𝑊𝐿−1...𝑅(𝑊1𝑦)) = 𝐴𝑦𝑦, (2.10)

where 𝐴𝑦 is the Jacobian of 𝑓BF(·) evaluated at 𝑦. The Jacobian at a fixed input provides a local

characterization of the denoising map. In order to study the map we perform a linear-algebraic

analysis of the Jacobian. Our approach is similar in spirit to visualization approaches– proposed

in the context of image classification– that differentiate neural-network functions with respect to

their input (e.g. (Montavon et al., 2017; Simonyan et al., 2013)).

2.3.4.1 Nonlinear adaptive filtering

The linear representation of the denoising map given by equation 2.10 implies that the 𝑖th

pixel of the output image is computed as an inner product between the 𝑖th row of 𝐴𝑦 , denoted

𝑎𝑦 (𝑖), and the input image:

𝑓BF(𝑦) (𝑖) =
𝑁∑︁
𝑗=1

𝐴𝑦 (𝑖, 𝑗)𝑦 ( 𝑗) = 𝑎𝑦 (𝑖)𝑇𝑦. (2.11)

The vectors 𝑎𝑦 (𝑖) can be interpreted as adaptive filters that produce an estimate of the denoised

pixel via a weighted average of noisy pixels. Examination of these filters reveals their diversity,

and their relationship to the underlying image content: they are adapted to the local features of

the noisy image, averaging over homogeneous regions of the image without blurring across edges.

This is shown for two separate examples and a range of noise levels in Figures 2.12. We observe

that the equivalent filters of all architectures adapt to image structure.
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Figure 2.13: Analysis of the SVD of the Jacobian of a BF-CNN for ten natural images, corrupted by noise
of standard deviation 𝜎 = 50. (a) Singular value distributions. For all images, a large proportion of the
values are near zero, indicating (approximately) a projection onto a subspace (the signal subspace). (b)
Histogram of dot products (cosine of angle) between the left and right singular vectors that lie within
the signal subspaces. (c) Effective dimensionality of the signal subspaces (computed as sum of squared
singular values) as a function of noise level. For comparison, the total dimensionality of the space is 1600
(40 × 40 pixels). Average dimensionality (red curve) falls approximately as the inverse of 𝜎 (dashed curve).
The CNN used for this example is DnCNN (Zhang et al., 2017a); using alternative architectures yields
similar results (see Figure A.5).

Classical Wiener filtering (Wiener, 1950) denoises images by computing a local average de-

pendent on the noise level. As the noise level increases, the averaging is carried out over a larger

region. As illustrated by Figures 2.12, the equivalent filters of BF-CNNs also display this behavior.

The crucial difference is that the filters are adaptive. The BF-CNNs learn such filters implicitly

from the data, in the spirit of modern nonlinear spatially-varying filtering techniques designed to

preserve fine-scale details such as edges (e.g. (Tomasi and Manduchi, 1998), see also (Milanfar,

2012a) for a comprehensive review, and (Choi et al., 2018) for a recent learning-based approach).

2.3.5 Projection onto adaptive low-dimensional subspaces

The local linear structure of a BF-CNN facilitates analysis of its functional capabilities via the

singular value decomposition (SVD). For a given input 𝑦, we compute the SVD of the Jacobian

matrix: 𝐴𝑦 = 𝑈𝑆𝑉𝑇 , with𝑈 and𝑉 orthogonal matrices, and 𝑆 a diagonal matrix. We can decompose
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the effect of the network on its input in terms of the left singular vectors {𝑈1,𝑈2 . . . ,𝑈𝑁 } (columns

of 𝑈 ), the singular values {𝑠1, 𝑠2 . . . , 𝑠𝑁 } (diagonal elements of 𝑆), and the right singular vectors

{𝑉1,𝑉2, . . .𝑉𝑁 } (columns of 𝑉 ):

𝑓BF(𝑦) = 𝐴𝑦𝑦 = 𝑈𝑆𝑉𝑇𝑦 =

𝑁∑︁
𝑖=1

𝑠𝑖 (𝑉𝑇
𝑖 𝑦)𝑈𝑖 . (2.12)

The output is a linear combination of the left singular vectors, each weighted by the projection of

the input onto the corresponding right singular vector, and scaled by the corresponding singular

value.

Figure 2.14: Visualization of left singular vectors of the Jacobian of a BF-CNN, evaluated on two different
images (top and bottom rows), corrupted by noise with standard deviation 𝜎 = 50. The left column shows
original (clean) images. The next three columns show singular vectors corresponding to non-negligible
singular values. The vectors capture features from the clean image. The last three columns on the right
show singular vectors corresponding to singular values that are almost equal to zero. These vectors are
noisy and unstructured. The CNN used for this example is DnCNN (Zhang et al., 2017a); using alternative
architectures yields similar results (see Figure A.4).

Analyzing the SVD of a BF-CNN on a set of ten natural images reveals that most singular values

are very close to zero (Figure 2.13a). The network is thus discarding all but a very low-dimensional

portion of the input image. We also observe that the left and right singular vectors corresponding

to the singular values with non-negligible amplitudes are approximately the same (Figure 2.13b).

This means that the Jacobian is (approximately) symmetric, and we can interpret the action of the

network as projecting the noisy signal onto a low-dimensional subspace. This is confirmed by

visualizing the singular vectors as images (Figure 2.14). The singular vectors corresponding to
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non-negligible singular values are seen to capture features of the input image; those corresponding

to near-zero singular values are unstructured. The BF-CNN therefore implements an approximate

projection onto an adaptive signal subspace that preserves image structure, while suppressing the

noise.

This is similar to wavelet thresholding schemes. From a linear-algebraic perspective, these

algorithms operate by projecting the noisy input onto a lower-dimensional subspace that contains

plausible signal content. The projection eliminates the orthogonal complement of the subspace,

whichmostly contains noise. The advantage of data-driven deep-learningmodels is that in addition

to the thresholding values, the image subspace is also adaptive to the underlying image.

We can define an "effective dimensionality" of the signal subspace as 𝑑 :=
∑𝑁

𝑖=1 𝑠
2
𝑖 , the amount

of variance captured by applying the linear map to an 𝑁 -dimensional Gaussian noise vector with

variance 𝜎2, normalized by the noise variance. The remaining variance equals

𝐸𝑛 | |𝐴𝑦𝑛 | |2 = 𝐸𝑛 | |𝑈𝑦𝑆𝑦𝑉
𝑇
𝑦 𝑛 | |2 = 𝐸𝑛 | |𝑆𝑦𝑛 | |2 = 𝐸𝑛

𝑁∑︁
𝑖=1

𝑠2
𝑖 𝑛

2
𝑖 =

𝑁∑︁
𝑖=1

𝑠2
𝑖 𝐸𝑛 (𝑛2

𝑖 ) ≈ 𝜎2
𝑁∑︁
𝑖=1

𝑠2
𝑖 ,

where 𝐸𝑛 indicates expectation over noise 𝑛, so that 𝑑 = 𝐸𝑛 | |𝐴𝑦𝑛 | |2/𝜎2 =
∑𝑁

𝑖=1 𝑠
2
𝑖 .

When we examine the preserved signal subspace, we find that the clean image lies almost

completely within it. For inputs of the form 𝑦 := 𝑥 +𝑛 (where 𝑥 is the clean image and 𝑛 the noise),

we find that the subspace spanned by the singular vectors up to dimension 𝑑 contains 𝑥 almost

entirely, in the sense that projecting 𝑥 onto the subspace preserves most of its energy. This holds

for the whole range of noise levels over which the network is trained (Figure 2.15).

We also find that for any given clean image, the effective dimensionality of the signal subspace

(𝑑) decreases systematically with noise level (Figure 2.13c). At lower noise levels the network

detects a richer set of image features, and constructs a larger signal subspace to capture and

preserve them. Empirically, we found that (on average) 𝑑 is approximately proportional to 1
𝜎
(see

dashed line in Figure 2.13c). These signal subspaces are nested: the subspaces corresponding to
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Figure 2.15: Signal subspace properties. Left: Signal subspace, computed from Jacobian of a BF-CNN
evaluated at a particular noise level, contains the clean image. Specifically, the fraction of squared ℓ2 norm
preserved by projection onto the subspace is nearly one as 𝜎 grows from 10 to 100 (relative to the image
pixels, which lie in the range [0, 255]). Results are averaged over 50 example clean images. Right: Signal
subspaces at different noise levels are nested. The subspace axes for a higher noise level lie largely within
the subspace obtained for the lowest noise level (𝜎 = 10), as measured by the sum of squares of their
projected norms. Results are shown for 10 example clean images.

lower noise levels contain more than 95% of the subspace axes corresponding to higher noise

levels (Figure 2.15).

Finally, we note that this behavior of the signal subspace dimensionality, combined with

the fact that it contains the clean image, explains the observed denoising performance across

different noise levels (Figure 2.11). Specifically, if we assume 𝑑 ≈ 𝛼/𝜎 , the mean squared error is

proportional to 𝜎 :

MSE = 𝐸𝑛 | |𝐴𝑦 (𝑥 + 𝑛) − 𝑥 | |2

≈ 𝐸𝑛 | |𝐴𝑦𝑛 | |2

≈ 𝜎2𝑑

≈ 𝛼 𝜎 (2.13)

Note that this result runs contrary to the intuitive expectation that MSE should be proportional to

the noise variance, which would be the case if the denoiser operated by projecting onto a fixed

subspace. The scaling of MSE with the square root of the noise variance implies that the PSNR of
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the denoised image should be a linear function of the input PSNR, with a slope of 1/2, consistent

with the empirical results shown in Figure 2.11. Note that this behavior holds even when the

networks are trained only on modest levels of noise (e.g., 𝜎 ∈ [0, 10]).

2.4 Discussion

In the first half of this chapter, we describe a framework for extracting the prior embedded

in a denoiser. Specifically, we develope a stochastic iterative score ascent (SISA) algorithm that

uses the denoiser to draw high-probability samples from its implicit prior. The derivation is based

on a simple and direct expression relating denoising to priors, and a few basic empirical facts

about universal CNN denoisers. We empirically demonstrated its efficiency in Fig. 2.2. It is worth

noting that the assumed use of Gaussian additive noise and MSE objective in training the denoiser

is necessary only to justify the use of Miyasawa’s expression (Eq. 2.3), but does not impose any

such restrictions on use of the trained denoiser for sampling from the implicit prior. Our method

for image generation offers a means of visualizing the implicit prior of a denoiser, which arises

from the combination of architecture, optimization, regularization, and training set. As such, it

might offer a means of experimentally isolating and elucidating the effects of these components.

Although the method can be used with any universal least-squares denoiser designed or trained

to remove Gaussian noise, the complexity of the embedded prior, and thus the quality of samples,

relies heavily on the expressive power of the denoiser, as well as the diversity of the training set.

In the second half of this chapter, we discuss properties of CNN denoisers at the heart of our

synthesis algorithm. We show that removing constant terms from CNN architectures ensures

strong generalization across noise levels, and also provides interpretability of the denoising

method via linear-algebra techniques. We provide insights into the relationship between bias

and generalization through a set of observations. Theoretically, we argue that if the denoising

network operates by projecting the noisy observation onto a linear space of “clean” images, then
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that space should include all rescalings of those images, and thus, the origin. This property can

be guaranteed by eliminating bias from the network. Empirically, in networks that allow bias,

the net bias of the trained network is quite small within the training range. However, outside the

training range the net bias grows dramatically resulting in poor performance, which suggests that

the bias may be the cause of the failure to generalize. In addition, when we remove bias from

the architecture, we preserve performance within the training range, but achieve near-perfect

generalization, even to noise levels more than 10x those in the training range. These observations

do not fully elucidate how our network achieves its remarkable generalization- only that bias

prevents that generalization, and its removal allows it.

It is of interest to examine whether bias removal can facilitate generalization in noise dis-

tributions beyond Gaussian, as well as other image-processing tasks, such as image restoration

and image compression. We have trained bias-free networks on uniform noise and found that

they generalize outside the training range. In fact, bias-free networks trained for Gaussian noise

generalize well when tested on uniform noise.

Finally, our linear-algebraic analysis uncovers interesting aspects of the denoising map, but

these interpretations are very local: small changes in the input image change the activation

patterns of the network, resulting in a change in the corresponding linear mapping. Extending

the analysis to reveal global characteristics of the neural-network functionality is a challenging

direction for future research.
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3 | Generalization beyond memorizing

training images

Diffusion methods have demonstrated ever-more impressive capabilities for sampling from

high-dimensional image densities (Ho et al., 2020; Kadkhodaie and Simoncelli, 2020; Song and

Ermon, 2019a). However, approximating a continuous density in a high-dimensional space is

notoriously difficult: do these networks actually achieve this feat, learning from a relatively small

training set to generate high-quality samples, in apparent defiance of the curse of dimensionality?

If so, this must be due to their inductive biases, that is, the restrictions that the architecture and

optimization place on the learned denoising function. But the approximation class associated with

these models is not well understood. Here, we take several steps toward elucidating this mystery.

Several recently reported results show that, when the training set is small relative to the

network capacity, diffusion generative models do not approximate a continuous density, but

rather memorize samples of the training set, which are then reproduced (or recombined) when

generating new samples (Carlini et al., 2023; Somepalli et al., 2023) — see Figure 3.1. This is a form

of overfitting (high model variance). Here, we confirm this behavior for DNNs trained on small

data sets, but demonstrate that these same models do not memorize when trained on sufficiently

This chapter is published (Kadkhodaie et al., 2023b) in collaboration with Florentin Guth and Stephane Mallat.
The code for generating results is available at https://github.com/LabForComputationalVision/memorization_
generalization_in_diffusion_models
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Figure 3.1: Memorization vs. generalization in 2D. Approximating the true continuous underlying
distribution defined over a one-dimensional manifold can lead to one of the two extreme cases or anything
in between. On the left, the approximated density is the empirical density; a set of delta functions
corresponding to the training examples. This model is discrete, and samples drawn from it are high quality,
because they all lie on the true manifold. However, diversity of samples will be low. On the right, the
learned density is defined over a continuous manifold approximating the trough manifold. Samples from
this density are novel and diverse. If the estimator is low biased, then the samples drawn from this density
will be high quality because they lie on or near the true manifold. Note that, assuming a fixed model
bias, going from memorization to generalization reduces the dependence of the learned density on the
individual examples in the training set.

large sets. Specifically, we show that two denoisers trained on sufficiently large non-overlapping

sets converge to essentially the same denoising function. That is, the learned model becomes

independent of the training set (i.e., model variance falls to zero). As a result, when used for image

generation, these networks produce nearly identical samples. These results provide stronger and

more direct evidence of generalization than standard comparisons of average performance on

train and test sets. This generalization can be achieved with large but realizable training sets (for

our examples, roughly 105 images suffices), reflecting powerful inductive biases of these networks.

Moreover, sampling from these models produces images of high visual quality, implying that these

inductive biases are well-matched to the underlying distribution of photographic images (Goyal

and Bengio, 2022; Griffiths et al., 2023; Wilson and Izmailov, 2020).

To study these inductive biases, we exploit the relationship between denoising and density

estimation. In Section 2.3, we described the operation of the DNN denoiser as an approximate pro-

jection onto an image subspace. In this chapter, using the same linear algebraic tools, we expand

our interpretation of the denoising operation from an approximate projection to a shrinkage oper-

ation. We find that DNN denoisers trained on photographic images perform a shrinkage operation
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in an orthonormal basis consisting of harmonic functions that are adapted to the geometry of

features in the underlying image. We refer to these as geometry-adaptive harmonic bases (GAHBs).

This observation, taken together with the generalization performance of DNN denoisers, suggests

that optimal bases for denoising photographic images are GAHBs and, moreover, that inductive

biases of DNN denoisers encourage such bases. To test this more directly, we examine a particular

class of images whose intensity variations are regular over regions separated by regular contours.

A particular type of GAHB, known as “bandlets” (Peyré and Mallat, 2008), have been shown to be

near-optimal for denoising these images (Dossal et al., 2011). We observe that the DNN denoiser

operates within a GAHB similar to a bandlet basis, also achieving near-optimal performance. Thus

the inductive bias enables the network to appropriately estimate the score in these cases.

If DNN denoisers induce biases towards the GAHB approximation class, then they should

perform sub-optimally for distributions whose optimal bases are not GAHBs. To investigate this,

we train DNN denoisers on image classes supported on low-dimensional manifolds, for which the

optimal denoising basis is only partially constrained. Specifically, an optimal denoiser (for small

noise) should project a noisy image on the tangent space of the manifold. We observe that the

DNN denoiser closely approximates this projection, but also partially retains content lying within

a subspace spanned by a set of additional GAHB vectors. These suboptimal components reflect

the GAHB inductive bias.

3.1 Diffusion model variance and denoising generalization

Diffusion models learn the scores of the distributions of noise-corrupted images, rather than

approximating this density directly. Here, we show that the denoising error provides a bound on

the density modeling error, and use this to analyze the convergence of the density model.
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3.1.1 Diffusion models and denoising

As discussed in Section 2.1, The density 𝑝𝜎 (𝑦) of noisy images is then related to 𝑝 (𝑥) through

marginalization over 𝑥 :

𝑝𝜎 (𝑦) =
∫

𝑝 (𝑦 |𝑥) 𝑝 (𝑥) d𝑥 =

∫
𝑔𝜎 (𝑦 − 𝑥) 𝑝 (𝑥) d𝑥,

where 𝑔𝜎 (𝑧) is the density of 𝑧. Hence, 𝑝𝜎 (𝑦) is obtained by convolving 𝑝 (𝑥) with a Gaussian with

standard deviation 𝜎 . The family of densities {𝑝𝜎 (𝑦);𝜎 ≥ 0} forms a scale-space representation of

𝑝 (𝑥), analogous to the temporal evolution of a diffusion process.

Diffusion models learn an approximation 𝑠𝜃 (𝑦) (dropping the 𝜎 dependence for simplicity)

of the scores ∇ log𝑝𝜎 (𝑦) of the blurred densities 𝑝𝜎 (𝑦) at all noise levels 𝜎 . The collection of

these score models implicitly defines a model 𝑝𝜃 (𝑥) of the density of clean images 𝑝 (𝑥) through a

reverse diffusion process. The error of the generative model, as measured by the KL divergence

between 𝑝 (𝑥) and 𝑝𝜃 (𝑥), is then controlled by the integrated score error across all noise levels

(Song et al., 2021a):

KL (𝑝 (𝑥) ∥ 𝑝𝜃 (𝑥)) ≤
∫ ∞

0
E
𝑦

[
∥∇ log𝑝𝜎 (𝑦) − 𝑠𝜃 (𝑦)∥2

]
𝜎 d𝜎. (3.1)

The key to learning the scores is Miyasawa/Tweedie equation 2.3 that relates them to the mean of

the corresponding posteriors:

∇ log𝑝𝜎 (𝑦) = (E
𝑥
[𝑥 |𝑦] − 𝑦)/𝜎2.

The score is learned by training a denoiser 𝑓𝜃 (𝑦) to minimize the mean squared error (MSE)
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(Raphan and Simoncelli, 2011; Vincent, 2011b):

MSE(𝑓𝜃 , 𝜎2) = E
𝑥,𝑦

[
∥𝑥 − 𝑓𝜃 (𝑦)∥2

]
, (3.2)

so that 𝑓𝜃 (𝑦) ≈ E𝑥 [𝑥 |𝑦]. This estimated conditional mean is used to recover the estimated score

using eq. (2.3): 𝑠𝜃 (𝑦) = (𝑓𝜃 (𝑦) − 𝑦)/𝜎2. As we show in Appendix B.3.2, the error in estimating the

density 𝑝 (𝑥) is bounded by the integrated optimality gap of the denoiser across noise levels:

KL (𝑝 (𝑥) ∥ 𝑝𝜃 (𝑥)) ≤
∫ ∞

0

(
MSE(𝑓𝜃 , 𝜎2) −MSE(𝑓 ★, 𝜎2)

)
𝜎−3 d𝜎, (3.3)

where 𝑓 ★(𝑦) = E𝑥 [𝑥 |𝑦] is the optimal denoiser. Thus, learning the true density model is equiv-

alent to performing optimal denoising at all noise levels. Conversely, a suboptimal denoiser

introduces a score approximation error, which in turn can result in an error in the modeled

density.

Generally, the optimal denoising function 𝑓 ★ (as well as the “true” distribution, 𝑝 (𝑥)) is un-

known for photographic images, which makes numerical evaluation of sub-optimality challenging.

We can however separate deviations from optimality arising from model bias and model variance.

Model variance measures the size of the approximation class, and hence the strength (or restric-

tiveness) of the inductive biases. It can be evaluated without knowledge of 𝑓 ★. Here, we define

generalization as near-zero model variance (i.e., an absence of overfitting), which is agnostic to

model bias. This is the subject of Section 3.1.2. Model bias measures the distance of the true score

to the approximation class, and thus the alignment between the inductive biases and the data

distribution. In the context of photographic images, visual quality of generated samples can be a

qualitative indicator of the model bias, although high visual quality does not necessarily guarantee

low model bias. We evaluate model bias in Section 3.2.2 by considering synthetic image classes

for which 𝑓 ★ is approximately known.
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Figure 3.2: Transition from memorization to generalization, for a UNet denoiser trained on face images.
Each curve shows the denoising error (output PSNR, ten times log10 ratio of squared dynamic range to
MSE) as a function of noise level (input PSNR), for a training set of size 𝑁 . As 𝑁 increases, performance on
the training set generally worsens (left), while performance on the test set improves (right). For 𝑁 = 1 and
𝑁 = 10, the train PSNR improves with unit slope, while test PSNR is poor, independent of noise level, a
sign of memorization. The increase in test performance on small noise levels at 𝑁 = 1000 is indicative of
the transition phase from memorization to generalization. At 𝑁 = 105, test and train PSNR are essentially
identical, and the model is no longer overfitting the training data.

3.1.2 Transition from memorization to generalization

DNNs are susceptible to overfitting, because the number of training examples is typically small

relative to the model capacity. Since density estimation, in particular, suffers from the curse of

dimensionality, overfitting is of more concern in the context of generative models. An overfitted

denoiser performs well on training images but fails to generalize to test images, resulting in

low-diversity generated images. Consistent with this, several papers have reported that diffusion

models can memorize their training data (Carlini et al., 2023; Dar et al., 2023; Somepalli et al., 2023;

Zhang et al., 2023). To directly assess this, we compared denoising performance on training and

test data for different training set sizes 𝑁 . We trained denoisers on subsets of the (downsampled)

CelebA dataset (Liu et al., 2015) of size 𝑁 = 100, 101, 102, 103, 104, 105. We used a UNet architecture

(Ronneberger et al., 2015b), which is composed of 3 convolutional encoder and decoder blocks with

rectifying non-linearities. These denoisers are universal and blind: they operate on all noise levels
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without having noise level as an input (Mohan* et al., 2020). Networks are trained to minimize

mean squared error (3.2). See Appendix B.1 for architecture and training details.

Results are shown in Figure 3.2. When 𝑁 = 1, the denoiser essentially memorizes the single

training image, leading to a high test error. Increasing 𝑁 substantially increases the performance

on the test set while worsening performance on the training set, as the network transitions from

memorization to generalization. At 𝑁 = 105, empirical test and train error are matched for all

noise levels.

To investigate this generalization further, we train denoisers on non-overlapping subsets of

CelebA of various size 𝑁 (see Figure 3.4). We then generate samples using the scores learned

by each denoiser, through the SISA algorithm discussed in Chapter 2. Figure 3.3 shows samples

generated by these denoisers, initialized from the same noise sample. For small 𝑁 , the networks

memorize their respective training images. However, for large 𝑁 , the networks converge to

the same score function (and thus sample from the same model density), generating nearly

identical samples. The bottom portion of figure compare the similarity between pairs of images

generated by the two networks with the similarity between each generated sample and the most

similar image in the corresponding training set. For small 𝑁 , a significant number of samples

are perfectly matched to training set images, and the samples from the two networks are not

matched. With increasing 𝑁 , images drawn from the two denoisers become more similar to each

other, and less similar to the closest image in their respective training sets, demonstrating the

convergence to a generalized common distribution. This surprising behavior provides a much

stronger demonstration of convergence than comparison of average train and test performance.

More examples of pairs of images synthesized at convergence are shown in Figure 3.5. To see an

example of less similar pairs of synthesized images see Figure 3.6.

Convergence of model variance is robust to the change of data distribution and architecture.

Figure 3.7 shows convergence for models trained on LSUN bedrooms dataset. Figures 3.8, 3.9, 3.10

and 3.11 show convergence for BF-CNN models trained on CelebA and LSUN bedrooms datasets.
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Figure 3.3: Convergence of model variance. Diffusion models are trained on non-overlapping subsets 𝑆1
and 𝑆2 of a face dataset (filtered for duplicates). The subset size 𝑁 varies from 1 to 105. We then generate a
sample from each model with a reverse diffusion algorithm (SISA), initialized from the same noise image.
Top. For training sets of size 𝑁 = 1 to 𝑁 = 100, the networks memorize, producing samples nearly identical
to examples from the training set. For 𝑁 = 1000, generated samples are similar to a training example,
but show distortions in some regions. This transitional regime corresponds to a qualitative change in the
shape of the PSNR curve (Figure 3.2). For 𝑁 = 105, the two networks generate nearly identical samples,
which no longer resemble images in their corresponding training sets. Bottom. The distribution of cosine
similarity (normalized inner product) between pairs of images generated by the two networks (blue) shifts
from left to right with increasing 𝑁 , showing vanishing model variance. Conversely, the distribution of
cosine similarity between generated samples and the most similar image in their corresponding training
set (orange) shifts from right to left.
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Figure 3.4: Similarity between data subsets. Histogram of cosine similarity between pairs of closest
images in the non-overlapping subsets 𝑆1 and 𝑆2 of CelebA (left) and LSUN bedroom (right). Images with
similarity score higher than 0.95 are removed from the datasets before training to eliminate replicated
images. This should be compared with the histograms in Figures 3.3 and 3.7.

Figure 3.5: More examples to illustrate convergence of model variance for models shown in Figure 3.3, at
𝑁 = 105. Samples generated by each denoiser are shown in separate rows, where each column shows same
initialization across the networks. The networks generate nearly identical samples, showing convergence
to the same function.

Figure 3.6: Bifurcation of trajectories. Sampling trajectories for the two samples shown in the last column
of Figure 3.5. The two diffusion models arrive at different samples starting from the same initial point.
The bifurcation of gradients appears to emerge somewhere around the middle of the trajectories, which
illustrates instabilities predicted by recent dynamical models (Biroli et al., 2024). All the intermediate
samples in the trajectories have been denoised in a on-shot denoising manner using the corresponding
denoisers. This example shows that the convergence is not perfect, hence the distribution of cosine
similarities at 𝑁 = 105 is not perfectly a delta function at 1.
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The minimum size of the training set, 𝑁 , for which the model transitions from memorization to

generalization indeed depends on the architecture, image size and complexity of data distribution.

Nevertheless, with enough data, two models trained on non-overlapping subsets of data converge

to virtually the same function. Deriving precise scaling laws for number of images required for

generalization as a function of network capacity, dataset complexity, and image dimensionality

is an interesting and important topic for future investigation. Figure 3.12, shows a preliminary

result in scaling law of UNet architecture on CelebA dataset.
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Figure 3.7: Transition from memorization to generalization, for a UNet denoiser trained on bedroom
LSUN images (Yu et al., 2015) downsampled to 80× 80. Similarly to denoisers trained on face images shown
in Figure 3.2, the model transitions from memorizing the training set to generalizing outside of the training
set. Top. At 𝑁 = 105 the performance is almost identical on training and test sets, and the model is no
longer overfitting the training data. Middle. Diffusion models are trained on non-overlapping subsets 𝑆1
and 𝑆2 of a bedroom LSUN dataset. The subset size 𝑁 varies from 1 to 105. Notice the samples generated
by network trained on 𝑁 = 100 images: they are combinations of patches of training images. This type
of memorization has been previously reported in (Somepalli et al., 2023). See caption of Figure 3.3 for a
complete description of the figure.
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Figure 3.8: Transition from memorization to generalization, for a BF-CNN denoiser trained on CelebA HQ
dataset (Karras et al., 2018) downsampled to 40 × 40 resolution. See caption of Figure 3.2.
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Figure 3.9: Convergence of model variance for a BF-CNN denoiser. BF-CNN denoisers are trained on
non-overlapping subsets 𝑆1 and 𝑆2 of CelebA HQ dataset. The subset size 𝑁 varies from 1 to 104. See
caption of Figure 3.3.
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Figure 3.10: Convergence of model variance on LSUN bedroom dataset (Yu et al., 2015). A dataset of
bedroom images is partitioned into two non-overlapping datasets, 𝑆1 and 𝑆2, each containing 𝑁 = 20, 000
images down-sampled to size 32 × 32. We train two networks (BF-CNN architecture described in Appendix
B.1) on 𝑆1 and 𝑆2. Each network is then used in an iterative deterministic reverse diffusion algorithm to
generate a sample, with both networks initialized with the same noise image. Samples generated by each
denoiser are shown in separate rows, where each column shows same initialization across the networks.
The networks generate nearly identical samples, showing convergence to the same function.

0.0 0.2 0.4 0.6 0.8 1.0

N = 20000
Samples from two denoisers
Sample and closest train image

Figure 3.11: Convergence for LSUN dataset. Blue histogram: cosine similarity between samples generated
by two denoisers trained on non-overlapping training sets of size 𝑁 = 20, 000 from LSUN bedroom dataset
downsampled to 32 × 32 resolution. Orange histograms: cosine similarity between generated samples
and the closest image from the corresponding training set. Images drawn from the two denoisers are very
similar to each other, compared to the closest image in their respective training sets.
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Figure 3.12: Generalization scaling law. Generalization is measured as the difference between train and
test PSNRs averaged across noise levels 𝜎 ∈ [0, 1]. Top left. Each curve shows average PSNR gap as a
function training set size for a specific image resolution 𝑑 × 𝑑 and number of network parameters (which
grow together by a factor of 4). As expected, to reach the threshold PSNR gap, denoisers trained on larger
images require more training data. Top right. Number of training images required to hit the PSNR
gap threshold as a function of image size and number of network parameters, which grow together by a
factor of 4. Number of images grows linearly on a log-log plot. However, it seems that for larger images
the relationship becomes sublinear. This observation is consistent with results in Chapter 4 indicating
that conditioned on coarser content of the image, learning the finer details requires less data due to the
conditional Markov property of images. Bottom. UNet architectures used in experiments shown here.
With the four-fold increase of the image size, the number of parameters increases approximately four
times.
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3.2 Inductive biases

The number of samples needed for estimation of an arbitrary probability density grows

exponentially with dimensionality (the “curse of dimensionality”). As a result, estimating high-

dimensional distributions is only feasible if one imposes strong constraints or priors over the

hypothesis space. In a diffusion model, these arise from the network architecture and the opti-

mization algorithm, and are referred to as the inductive biases of the network (Goyal and Bengio,

2022; Griffiths et al., 2023; Wilson and Izmailov, 2020). In Section 3.1.2, we demonstrated that

DNN denoisers can learn scores (and thus a density) from relatively small training sets. This

generalization result, combined with the high quality of sampled images, is evidence that the

inductive biases are well-matched to the “true” distribution of images, allowing the model to

rapidly converge to a good solution through learning. On the contrary, when inductive biases are

not aligned with the true distribution, the model will arrive at a poor solution with high model

bias.

For diffusion methods, learning the right density model is equivalent to performing optimal

denoising at all noise levels (see Section 3.1.1). The inductive biases on the density model thus

arise directly from inductive biases in the denoiser. This connection offers a means of evaluating

the accuracy of the learned probability models, which is generally difficult in high-dimensions.

3.2.1 Denoising as shrinkage in an adaptive basis

The inductive biases of the DNN denoiser can be studied through an eigendecomposition of

its Jacobian. We describe the general properties that are expected for an optimal denoiser, and

examine several specific cases for which the optimal solution is partially known.

Jacobian eigenvectors as an adaptive basis. To analyze inductive biases, we perform a local

analysis of a denoising estimator 𝑥 (𝑦) = 𝑓 (𝑦) by looking at its Jacobian ∇𝑓 (𝑦). For simplicity, we
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assume that the Jacobian is symmetric and non-negative (we show below that this holds for the

optimal denoiser, and it is approximately true of the network Jacobian (Mohan* et al., 2020)). We

can then diagonalize it to obtain eigenvalues (𝜆𝑘 (𝑦))1≤𝑘≤𝑑 and eigenvectors (𝑒𝑘 (𝑦))1≤𝑘≤𝑑 .

In Chapter 2 we saw if 𝑓 (𝑦) is computed with a DNN denoiser with no additive “bias” parame-

ters, its input-output mapping is piecewise linear, as opposed to piecewise affine (Mohan* et al.,

2020; Romano et al., 2017a). It follows that the denoiser mapping can be rewritten in terms of the

Jacobian eigendecomposition as

𝑓 (𝑦) = ∇𝑓 (𝑦) 𝑦 =
∑︁
𝑘

𝜆𝑘 (𝑦) ⟨𝑦, 𝑒𝑘 (𝑦)⟩ 𝑒𝑘 (𝑦). (3.4)

The denoiser can thus be interpreted as performing shrinkage with factors 𝜆𝑘 (𝑦) along axes of a

basis specified by 𝑒𝑘 (𝑦). Note that both the eigenvalues and eigenvectors depend on the noisy

image 𝑦 (i.e., both the basis and shrinkage factors are adaptive (Milanfar, 2012b)).

Even if the denoiser is not bias-free, small eigenvalues 𝜆𝑘 (𝑦) reveal local invariances of the

denoising function: small perturbations in the noisy input along the corresponding eigenvectors

𝑒𝑘 (𝑦) do not affect the denoised output. Intuitively, such invariances are a desirable property for a

denoiser, and they are naturally enforced by minimizing mean squared error (MSE) as expressed

with Stein’s unbiased risk estimate (SURE, proved in Appendix B.3.3 for completeness):

MSE(𝑓 , 𝜎2) = E
𝑦

[
2𝜎2 tr∇𝑓 (𝑦) + ∥𝑦 − 𝑓 (𝑦)∥2 − 𝜎2𝑑

]
. (3.5)

To minimize MSE, the denoiser must trade off the approximate “rank” of the Jacobian (the trace

is the sum of the eigenvalues) against an estimate of the denoising error: ∥𝑦 − 𝑓 (𝑦)∥2 − 𝜎2𝑑 .

The denoiser thus locally behaves as a (soft) projection on a subspace whose dimensionality

corresponds to the rank of the Jacobian. As we now explain, this subspace approximates the

support of the posterior distribution 𝑝 (𝑥 |𝑦), and thus gives a local approximation of the support
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of 𝑝 (𝑥).

It is shown in Appendix B.3.1 that the optimal minimum MSE denoiser and its Jacobian are

given by

𝑓 ★(𝑦) = 𝑦 + 𝜎2∇ log𝑝𝜎 (𝑦) = E
𝑥
[𝑥 |𝑦], (3.6)

∇𝑓 ★(𝑦) = Id + 𝜎2∇2 log𝑝𝜎 (𝑦) = 𝜎−2Cov [𝑥 |𝑦] . (3.7)

That is, the Jacobian of the optimal denoiser is proportional to the posterior covariance matrix,

which is symmetric and non-negative. This gives us another interpretation of the adaptive

eigenvector basis as providing an optimal approximation of the unknown clean image 𝑥 given the

noisy observation 𝑦. Further, the optimal denoising error is then given by (see Appendix B.3.1 for

the first equality)

MSE(𝑓 ★, 𝜎2) = E
𝑦
[tr Cov [𝑥 |𝑦]] = 𝜎2 E

𝑦

[
tr∇𝑓 ★(𝑦)

]
= 𝜎2 E

𝑦

[∑︁
𝑘

𝜆★
𝑘
(𝑦)

]
. (3.8)

A small denoising error thus implies an approximately low-rank Jacobian (with many small

eigenvalues) and thus an efficient approximation of 𝑥 given 𝑦.

In most cases, the optimal adaptive basis (𝑒★
𝑘
(𝑦))1≤𝑘≤𝑑 is not known. Rather than aiming for

exact optimality, classical analyses (Donoho, 1995) thus focus on the asymptotic decay of the

denoising error as the noise level 𝜎2 falls, up to multiplicative constants. This corresponds to

finding a basis (𝑒𝑘 (𝑦))1≤𝑘≤𝑑 which captures the asymptotic slope of the PSNR plots in Figure 3.2 but

not necessarily the intercept. This weaker notion of optimality is obtained by showing matching

upper and lower-bounds on the asymptotic behavior of the denoising error. To provide intuition,

we first consider a fixed orthonormal basis 𝑒𝑘 (𝑦) = 𝑒𝑘 , and then consider the more general case of

best bases selected from a fixed dictionary.
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Denoising in a fixed basis. Consider a denoising algorithm that is restricted to operate in

a fixed basis 𝑒𝑘 but can adapt its shrinkage factors 𝜆𝑘 (𝑦). An unreachable lower-bound on the

denoising error—and thus an upper-bound on the PSNR slope—is obtained by evaluating the

performance of an “oracle” denoiser where the shrinkage factors 𝜆𝑘 depend on the unknown

clean image 𝑥 rather than the noisy observation 𝑦 (Mallat, 2008). Appendix B.3.4 shows that the

denoising error of this oracle is

E
𝑥

[∑︁
𝑘

(
(1 − 𝜆𝑘 (𝑥))2 ⟨𝑥, 𝑒𝑘⟩2 + 𝜆𝑘 (𝑥)2𝜎2) ] , (3.9)

which is minimized when 𝜆𝑘 (𝑥) = ⟨𝑥,𝑒𝑘 ⟩2
⟨𝑥,𝑒𝑘 ⟩2+𝜎2 . The coefficient 𝜆𝑘 (𝑥) thus acts as a soft threshold:

𝜆𝑘 (𝑥) ≈ 1 when the signal dominates the noise and 𝜆𝑘 (𝑥) ≈ 0 when the signal is weaker than the

noise. Appendix B.3.4 then shows that the oracle denoising error is the expected value of

𝜎2
∑︁
𝑘

𝜆𝑘 (𝑥) =
∑︁
𝑘

𝜎2 ⟨𝑥, 𝑒𝑘⟩2

⟨𝑥, 𝑒𝑘⟩2 + 𝜎2
∼
∑︁
𝑘

min(⟨𝑥, 𝑒𝑘⟩2 , 𝜎2) = 𝑀𝜎2 + ∥𝑥 − 𝑥𝑀 ∥2, (3.10)

where 𝑥𝑀 =
∑
⟨𝑥,𝑒𝑘 ⟩2>𝜎2 ⟨𝑥, 𝑒𝑘⟩ 𝑒𝑘 is the𝑀-term approximation of 𝑥 with the𝑀 basis coefficients

⟨𝑥, 𝑒𝑘⟩ above the noise level, and ∼means that the two terms are of the same order up to multiplica-

tive constants (here smaller than 2). The denoising error is small if 𝑥 has a sparse representation

in the basis, so that both𝑀 and the approximation error ∥𝑥 − 𝑥𝑀 ∥2 are small. For example, if the

coefficients decay as ⟨𝑥, 𝑒𝑘⟩2 ∼ 𝑘−(𝛼+1) (up to reordering), Appendix B.3.4 shows that

𝑀𝜎2 + ∥𝑥 − 𝑥𝑀 ∥2 ∼ 𝜎2𝛼/(𝛼+1), (3.11)

which is a lower bound on the MSE of any denoising algorithm in the basis 𝑒𝑘 . Reciprocally, this

oracle denoising error is nearly reached with a soft-thresholding estimator that computes the

shrinkage factors 𝜆𝑘 (𝑦) by comparing ⟨𝑦, 𝑒𝑘⟩2 (rather than ⟨𝑥, 𝑒𝑘⟩2) with a threshold proportional

to 𝜎2 (Donoho and Johnstone, 1994), and achieves the decay (3.11) up to a logarithmic factor. The
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decay (3.11) of the MSE with decreasing 𝜎 corresponds to an asymptotic slope of 𝛼/(𝛼 + 1) in

the PSNR curve when the input PSNR increases. Thus, a larger sparsity/regularity exponent 𝛼 ,

which corresponds to a faster decay of the small coefficients of 𝑥 in the basis (𝑒𝑘)1≤𝑘≤𝑑 , leads to

improved denoising performance.

Best adaptive bases. Adapting the basis (𝑒𝑘)1≤𝑘≤𝑑 to the noisy image𝑦 allows obtaining sparser

representations of the unknown clean image 𝑥 with a faster decay, and thus a larger PSNR slope.

To calculate the optimal adaptive basis, we need to find an oracle denoiser that has the same

asymptotic MSE as a non-oracle denoiser, yielding matching lower and upper bounds on the

asymptotic MSE.

Consider an oracle denoiser which performs a thresholding in an oracle basis (𝑒𝑘 (𝑥)) that

depends on the unknown clean image 𝑥 . The above analysis then still applies, and if the coefficients

⟨𝑥, 𝑒𝑘 (𝑥)⟩2 decay as 𝑘−(𝛼+1) , then the asymptotic PSNR slope is again 𝛼/(𝛼 + 1). The best oracle

basis satisfies 𝑒1(𝑥) = 𝑥/∥𝑥 ∥, but it yields a loose lower bound as it cannot be estimated from the

noisy image 𝑦 alone. We thus restrict the oracle denoiser to choose the basis (𝑒𝑘 (𝑥)) within a

fixed dictionary. A larger dictionary increases adaptivity, but it then becomes harder to estimate

the basis that best represents 𝑥 from 𝑦 alone. If the dictionary of bases is constructed from a

number of vectors 𝑒𝑘 which is polynomial in the dimension 𝑑 (the number of bases can however

be exponential in 𝑑) then a thresholding in the basis (𝑒𝑘 (𝑦)) that best approximates the noisy

image 𝑦 achieves the same slope as the oracle denoiser (Barron et al., 1999; Dossal et al., 2011).

This near-optimality despite the presence of noise comes from the limited choice of possible

basis vectors 𝑒𝑘 in the dictionary, which limits the variance of the best-basis estimation, e.g. by

preventing 𝑒1(𝑦) = 𝑦/∥𝑦∥. The main difficulty is then to design a small-enough dictionary that

gives optimal representations of images from the data distribution in order to achieve the optimal

PSNR slope.

We now evaluate the inductive biases of DNN denoisers through this lens. In Section 3.1, we
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Figure 3.13: Analysis of a denoiser trained on 105 face images, evaluated on a noisy test image. Top
left. Clean, noisy (𝜎 = 0.15) and denoised images. Bottom left. Decay of shrinkage values 𝜆𝑘 (𝑦) (red),
and corresponding coefficients ⟨𝑥, 𝑒𝑘 (𝑦)⟩ (blue), evaluated for the noisy image 𝑦. The rapid decay of the
coefficients indicates that the image content is highly concentrated within the preserved subspace. Right.
The adaptive basis vectors 𝑒𝑘 (𝑦) contain oscillating patterns, adapted to lie along the contours and within
smooth regions of the image, whose frequency increases as 𝜆𝑘 (𝑦) decreases.

showed that the DNN denoisers overcome the curse of dimensionality: their variance decays to

zero in the generalization regime. In the next section, we explain this observation by demonstrating

that they are inductively biased towards adaptive bases 𝑒𝑘 (𝑦) from a particular class.

3.2.2 Geometry-adaptive harmonic bases in DNNs

Figure 3.13 shows the shrinkage factors (𝜆𝑘 (𝑦)), adaptive basis vectors (𝑒𝑘 (𝑦)), and signal

coefficients (⟨𝑥, 𝑒𝑘 (𝑦)⟩) of a DNN denoiser trained on 105 face images. The eigenvectors have

oscillating patterns both along the contours and in uniformly regular regions and thus adapt

to the geometry of the input image. We call this a geometry-adaptive harmonic basis (GAHB).

The coefficients are sparse in this basis, and the fast rate of decay of eigenvalues exploits this

sparsity. The high quality of generated images and the strong generalization results of Section 3.1

show that DNN denoisers rely on inductive biases that are well-aligned to photographic image

distributions. All of this suggests that DNN denoisers might be inductively biased towards GAHBs.

In the following, we provide evidence supporting this conjecture by analyzing networks trained

on synthetic datasets where the optimal solution is (approximately) known.
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C𝛼 images and bandlet bases. If DNNs are inductively biased towards GAHBs, we expect that

they generalize and converge to the optimal denoising performance when such bases are optimal.

We consider the so-called geometric C𝛼 class of images (Donoho, 1999; Korostelev and Tsybakov,

1993; Peyré and Mallat, 2008) which consist of regular contours on regular backgrounds, where

the degree of regularity is controlled by 𝛼 . Examples of these images are shown in Figure 3.14 and

Appendix B.2.1. A mathematical definition and an algorithm for their synthesis are presented in

Appendix B.4.

Optimal sparse representations of C𝛼 images are obtained with “bandlet” bases (Peyré and

Mallat, 2008). Bandlets are harmonic functions oscillating at different frequencies, whose geometry

is adapted to the directional regularity of images along contours. Geometric C𝛼 images can be

represented with few bandlets having low-frequency oscillations in regular regions and along

contours but sharp variations across contours. The 𝑘-th coefficient in the best bandlet basis then

decays as 𝑘−(𝛼+1) . It follows that the optimal denoiser has a PSNR which asymptotically increases

with a slope 𝛼/(𝛼 + 1) as a function of input PSNR (Dossal et al., 2011; Korostelev and Tsybakov,

1993).

Figure 3.14 shows that DNN denoisers trained on C𝛼 images also achieve this optimal rate

and learns GAHBs, similarly to bandlets but with a more flexible geometry. This generalization

performance confirms that inductive biases of DNNs favor GAHBs.

Low-dimensional manifolds. If DNNs are inductively biased towards GAHBs, then we expect

these bases to emerge even in cases where they are suboptimal. To test this prediction, we

consider a dataset of disk images with varying positions, sizes, and foreground/background

intensities. This defines a five-dimensional curved manifold, with a tangent space evaluated at a

disk image 𝑥 that is spanned by deformations of 𝑥 along these five dimensions. When the noise

level 𝜎 is much smaller than the radius of curvature of the manifold, the posterior distribution

𝑝 (𝑥 |𝑦) is supported on an approximately flat region of the manifold, and the optimal denoiser is
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Figure 3.14: Analysis of denoiser trained on C𝛼 images. UNet denoisers trained on 105 C𝛼 images achieve
near-optimal performance. Left. PSNR curves for various regularity levels 𝛼 . The empirical slopes closely
match the theoretical optimal slopes (parenthesized values, dashed lines). Right. A C𝛼 image (𝛼 = 4) of size
80 × 80 and its top eigenvectors, which consist of harmonics on the two regions and harmonics along the
boundary. The frequency of the harmonics increases with 𝑘 . More examples are given in Appendix B.2.1.

approximately a projection onto the tangent space. Thus, the optimal Jacobian should have only

five non-negligible eigenvalues, whose corresponding eigenvectors span the tangent space. The

remaining eigenvectors should have shrinkage factors of 𝜆 = 0, but are otherwise unconstrained.

The optimal MSE is asymptotically equal to 5𝜎2, corresponding to a PSNR slope of one.

Figure 3.17 shows an analysis of a denoiser trained on 105 disk images, of size 80 × 80. We

observe additional basis vectors with non-negligible eigenvalues that have a GAHB structure,

with oscillations on the background region and along the contour of the disk. We also find that

the number of non-zero eigenvalues increases as the noise level decreases, leading to a suboptimal

PSNR slope that is less than 1.0. These results reveal that the inductive biases of the DNN are not

perfectly aligned with low-dimensional manifolds, and that in the presence of the curvature, this

suboptimality increases as the noise level decreases.

We obtain similar results on two additional examples of a distribution supported on a low-

dimensional manifold, given in Figure 3.15 and Figure 3.16.
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Figure 3.15: Analysis of a BF-CNN denoiser trained on a single face image. BF-CNN denoiser trained on a
single face image, with intensity rescaling. We consider an image class consisting of a single image 𝑥 ∈ R𝑑
and its positive rescalings 𝑠 𝑥 for 𝑠 > 0. The resulting images lie on a ray emanating from the origin, and
optimal denoising corresponds to projecting the noisy image onto this ray. The optimal denoising basis
should therefore include the normalized vector 𝑥/∥𝑥 ∥ with associated shrinkage factor 𝜆 = 1, whereas
the remaining basis vectors should have shrinkage factors of 𝜆 = 0 but are otherwise unconstrained. This
optimal denoiser achieves an MSE of 𝜎2, and thus a linear PSNR curve with unit slope and intercept
10 log10(𝑑). Top left. Denoising of the training image with 𝜎 = 0.04. Right. Decay of the coefficients
⟨𝑥, 𝑒𝑘⟩ and the shrinkage factors 𝜆𝑘 . The DNN denoiser exhibits a slower decay of shrinkage factors than
the optimal solution, which results in suboptimal performance. Bottom left. Top 5 basis vectors 𝑒𝑘 (𝑦). The
first basis vector is nearly identical to the (normalized) train image. The next vectors, which have non-zero
shrinkage factors, exhibit 2D harmonics. These GAHB components underlie the non-optimal behavior
of the denoiser. Specifically, the 𝑁 = 1 curve in the left panel of Figure 3.8 shows that performance as a
function of noise level falls below the optimal solution (dotted line). The DNN performance has a unit
slope over most of the noise range but has a less-than-optimal intercept (the flattening of the curve at
small noise levels is a result of de-emphasis of small noise levels during training).

Figure 3.16: Analysis of a BF-CNN denoiser is trained on a set of 2D sine wave images. A BF-CNN
denoiser is trained on a set of 2D sine wave images with unit frequency and varying phases and intensities.
The train images thus lie on a 2D cone manifold with low curvature. For small 𝜎 , the manifold can be
assumed to be locally flat, so that the optimal denoising is achieved by projecting the noisy image on the
two-dimensional subspace tangent to the manifold. This subspace is spanned by two sine waves with
unit frequency and a 𝜋/2 phase shift. Top left. Clean, noisy (𝜎 = 0.08), and denoised test image. Middle
left. The unit vectors spanning the tangent subspace. The optimal denoising results from projection onto
this subspace. Bottom row. Empirical basis obtained from the network Jacobian. The empirical solution
has a slower decay than optimal (i.e., ⟨𝑥, 𝑒𝑘 (𝑦)⟩ > 0 for 𝑘 ≥ 2, as seen in the right panel), with harmonic
patterns. This sub-optimality reveals the nature of the inductive bias.
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Figure 3.17: Analysis of a denoiser trained on a disk dataset. UNet denoiser trained on a dataset of
translating and dilating disks, with variable foreground/background intensity. Top center. Clean, noisy
(𝜎 = 0.04), and denoised images. Bottom center. The decay of shrinkage factors 𝜆𝑘 (𝑦) and coefficients
⟨𝑥, 𝑒𝑘 (𝑦)⟩ indicates that the network achieves and preserves a sparse representation of the true image.
Top right. denoising performance is sub-optimal, with PSNR slope below the optimal value of 1.0 for
small noise. Top left. An optimal basis (in the small-noise limit) spanning the 5-dimensional tangent space
of the image manifold. Bottom left. Top eigenvectors of the adaptive basis. The first five basis vectors
closely match the basis of the tangent space of the manifold evaluated at the clean image. In contrast, the
next five are GAHBs that lie along contours and within background regions of the clean image.

Shuffled faces. We also consider a dataset of shuffled faces, obtained by applying a common

permutation to the pixels of each face image. This permutation does not preserve locality between

neighboring pixels, and thus the optimal basis does not have harmonic structure. The resulting

mismatch between the DNN inductive biases and the data distribution result in substantially

worse performance than for the original (unscrambled) faces.

66



Shuffled Clean Noisy Denoised

5 = 1.182 17 = 1.07 29 = 0.974 41 = 0.91 53 = 0.87

0 1000 2000 3000 4000 5000 6000
k

0

2

4

6

8

10

12

14

16

x,
e k

0.0

0.5

1.0

1.5

2.0

2.5

k(y
)

42393633302724211815129630

input PSNR
10

22

35

ou
tp

ut
 P

SN
R

non-shuffled
identity

Figure 3.18: Analysis of a denoiser trained on a dataset of shuffled faces. DNN denoiser trained on a
dataset of shuffled faces obtained by permuting the pixels of 105 face images in the CelebA dataset. The
permutation was chosen randomly, and does not preserve locality, as neighboring pixels are mapped to
independent positions. By construction, the optimal denoiser on shuffled faces has the same performance
as the optimal denoiser on ordinary faces (unshuffling the image pixels, optimally denoising the face image,
and then shuffling the pixels back). For visualization purposes, we “unshuffle” the pixels by applying
the inverse of the permutation to the images before display. Top left. Clean (shuffled then unshuffled),
noisy (unshuffled, 𝜎 = 0.3), and denoised (unshuffled) images. Middle. The shrinkage factors 𝜆𝑘 (𝑦) decay
more slowly than when the denoiser is trained on non-shuffled faces (Figure 3.13), which is indicative of
suboptimality.. Right. The denoiser performs significantly worse than the denoiser trained on unshuffled
faces: the MSE is much higher with a much lower PSNR slope. Bottom left. Basis vectors (top row:
shuffled, bottom row: unshuffled). After unshuffling, we observe GAHBs adapted to the geometry of the
face, although these are noisier and less precisely aligned with the image features than the non-shuffled
examples in Figure 3.13.

3.3 Discussion

Diffusion generative models, which operate through iterative application of a trained DNN

denoiser, have recently surpassed all previous methods of learning probability models of images.

Their training objective (minimization of squared denoising error) is simple and robust, and they

generate samples of impressive quality. In this paper, we elucidate the approximation properties

that underlie this success, by analyzing the trained denoiser, which is directly related to the score

function, and to the density from which the samples are drawn.

We show empirically that diffusion models memorize samples when trained on small sets,

but transition to a strong form of generalization as the training set size increases, converging

to a unique density model that is independent of the specific training samples. The amount of

data needed to reach this phase transition is very small relative to the size of dataset needed for
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convergence without any inductive biases, and depends on the image size and complexity relative

to the neural network capacity (Yoon et al., 2023). It is of interest to extend both the theory and

the empirical studies to account for the interplay of these factors. Figure 3.12 shows preliminary

results in this direction.

We also examined the inductive biases that enable this strong generalization. Using a well-

established mathematical framework, we showed that DNN denoisers perform shrinkage of noisy

coefficients in a geometry-adaptive harmonic basis (GAHB) which is shaped by geometric features

of the image. For the C𝛼 class of images, such geometric bases are known to be optimal, and DNN

denoisers achieve near-optimal performance on this class. Previous mathematical literature has

shown that bandlet bases, which are a specific type of GAHB, are near-optimal for this class, but

the GAHBs learned by the DNN denoiser are more general and more flexible. For images drawn

from low-dimensional manifolds, for which the optimal basis spans the tangent subspace of the

manifold, we find that DNN denoisers achieve good denoising within a basis aligned with this

subspace, but also incorporate GAHB vectors in the remaining unconstrained dimensions. The

non-suppressed noise along these additional GAHB components leads to suboptimal denoising

performance. This observation, along with similar ones shown in Figures 3.15 and 3.16, provide

more supporting evidence for the hypothesis that inductive biases of DNN denoisers promote

GAHBs.

We do not provide a formal mathematical definition of the class of GAHBs arising from the

inductive biases of DNNs. Convolutions in DNN architectures, whose eigenvectors are sinusoids,

presumably engender GAHB harmonic structure, but the geometric adaptivity must arise from

interactions with rectification nonlinearities (ReLUs). A more precise elucidation of this GAHB

function class, and its role in shaping inductive biases of the DNNs used in a wide variety of other

tasks and modalities, is of fundamental interest.
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4 | Muli-scale Local conditional image

density

In the previous two chapters, we demonstrated that a DNN denoiser embeds a density which

is accessible through sampling, and then showed, when in generalization regime, the embedded

density is a good approximation of the underlying image prior. In this chapter, we employ this

learned image density to study the question of low-dimensionality of image priors.

A critical feature for the success of DNNs in the diffusion framework is their global receptive

fields (RF). Large RF allows for capturing long range dependencies in the image through modeling

the joint density directly. Naturally, this yields to a large number of parameters, currently on

the order of hundreds of millions for the state-of-the-art diffusion models. Can we exploit image

properties to factorize the joint density into low dimensional densities, thereby reducing the

number of parameters and training examples?

To answer this question, we return to the classical idea of modeling image densities using

Markov random fields (MRF) (Dobrushin, 1968; Sherrington and Kirkpatrick, 1975). Markov

random fields assume localized conditional dependencies, which guarantees that the density

can be factorized into terms acting on local, typically overlapping neighborhoods (Clifford and

A version of this chapter is published (Kadkhodaie et al., 2023a) in collaboration with Florentin Guth and Stephane
Mallat. The code for generating results can be found at https://github.com/LabForComputationalVision/
local-probability-models-of-images
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Hammersley, 1971). MRFs have been used to model stationary texture images, with conditional

dependencies within small spatial regions of the pixel lattice. At a location𝑢, such a Markov model

assumes that the pixel value 𝒙 (𝑢), conditioned on pixel values 𝒙 (𝑣) for 𝑣 in a neighborhood of 𝑢,

is independent from all pixels outside this neighborhood. Beyond stationary textures, however,

the chaining of short-range dependencies in pixel domain has proven insufficient to capture the

complexity of long-range geometrical structures. Many variants of Markov models have been

proposed (e.g., (Cui and Wang, 2005; Geman and Geman, 1984; Malfait and Roose, 1997)), but

none have demonstrated performance comparable to recent deep networks while retaining a local

dependency structure.

In this chapter, first we delve into a historical account of MRFs in image processing. The goal is

to show that the concepts on which MRFs rest—stationarity, locality and multi-scale conditioning—

are still of fundamental importance, despite MRF’s inferior performance. Then, we combine these

concepts with the power of deep nets to constrain and study score-based diffusion models.

To this end, we develop a low-dimensional probability model for images decomposed into

multi-scale wavelet sub-bands. The image probability distribution is factorized as a product of

conditional probabilities of its wavelet coefficients conditioned by coarser scale coefficients. We

assume that these conditional probabilities are local and stationary, and hence can be captured with

low-dimensional Markov models. Each conditional score can thus be estimated with a conditional

CNN (cCNN) with a small receptive field (RF). The effective size of Markov neighborhoods (i.e. the

size w.r.t to the grid size) grows from fine to coarser scales. The score of the coarse-scale low-pass

band (a low-resolution version of the image) is modeled using a CNN with a global RF, enabling

representation of large-scale image structures and organization. We test this model on a dataset

of face images, which present a challenging example because of their global geometric structure.

Using our coarse-to-fine sampling strategy for drawing samples from the posterior, we evaluate

the model on denoising, super-resolution, and synthesis, and show that locality and stationarity

assumptions hold for conditional RF sizes as small as 9 × 9 without harming performance. In
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comparison, the performance of CNNs restricted to a fixed RF size in the pixel domain dramatically

degrades when the RF is reduced to such sizes. Thus, high-dimensional score estimation for

images can be reduced to low-dimensional Markov conditional models, alleviating the curse of

dimensionality.

4.1 Theory of Markrov random fields

Markov random fields are undirected graphical models that satisfy the Markov property. Let

G = (S, E) be a graph, where S = {𝑠1, 𝑠2, ...𝑠𝑁 } are a set of vertices or sites and E is the set

of edges. Markov property indicates that at any site 𝑠 on the graph, the value 𝑥𝑠 ∈ Λ of the

random variable, 𝑋𝑠 , conditioned on its neighbors, is independent from all variables outside its

neighborhood. Below, we make these terms more precise.

Definition 4.1 (Neighbors). Two sites, 𝑠𝑖 and 𝑠 𝑗 are neighbors if there is an edge 𝑒𝑖 𝑗 ∈ E. The set

of all neighbors of a site, 𝑠 , is the neighborhood of 𝑠 and is denoted by G𝑠 .

Definition 4.2 (Neighborhood system). Moreover G = {G𝑠 |𝑠 ∈ S} is a neighborhood system for

G if 𝑠 ∉ G𝑠 and 𝑠 ∈ G𝑟 ⇔ 𝑟 ∈ G𝑠 .

Each site of the graph is associated with a random variable, 𝑋𝑠 , that can take any values

𝑥𝑠 ∈ Λ. A configuration 𝜔 describes value assignments at all sites, 𝜔 = (𝑥𝑠1, 𝑥𝑠2, ..., 𝑥𝑠𝑁 ). The joint

probability distribution, 𝑝 (𝑋𝑠1 = 𝑥𝑠1, 𝑋𝑠2 = 𝑥𝑠2, ..., 𝑋𝑠𝑁 = 𝑥𝑠𝑁 ), is defined on the set of all possible

configurations, Ω = {𝜔 = (𝑥𝑠1, 𝑥𝑠2, ..., 𝑥𝑠𝑁 ) : 𝑥𝑠𝑖 ∈ Λ}.

Definition 4.3 (MRF). X is a Markov random field (MRF) with respect to G if

1. for all 𝜔 ∈ Ω: 𝑝 (𝑋 = 𝑤) > 0, and

2. for every 𝑠 ∈ S and 𝜔 ∈ Ω :

𝑝 (𝑋𝑠 = 𝑥𝑠 |𝑋𝑟 = 𝑥𝑟 , 𝑟 ≠ 𝑠) = 𝑝 (𝑋𝑠 = 𝑥𝑠 |𝑋𝑟 = 𝑥𝑟 , 𝑟 ∈ G𝑠).
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The second point in Definition 4.3 describes Markov property. A remarkable theorem by

Clifford and Hammersley (1971) showed that one can factorize the joint probability density on a

Markov random field into a product factors, each defined over a small number of variables. To

describe the theorem more precisely, we need to define clique and Gibbs distribution first.

Definition 4.4 (Clique). A subset of sites is a clique,𝐶 ⊂ S, if every pair of sites in𝐶 are neighbors.

A maximal clique is a clique that cannot be extended by including one more adjacent sites.

Definition 4.5 (Gibbs distribution). A Gibbs distribution is a probability measure on Ω with

following form

𝑝 (𝜔) = 1
𝑍

exp−𝑈 (𝜔)

where 𝑍 is the normalizing constant (partition function):

𝑍 =
∑︁
𝜔

exp−𝑈 (𝜔)

and𝑈 (𝜔) is energy and defined as

𝑈 (𝜔) = −
∑︁
T

𝑉T (𝜔)

Each 𝑉T is called an interaction potential and assigns a number to each sub-configuration 𝜔T .

Now we can describe Hammersely-Clifford theorem (Clifford and Hammersley, 1971).

Theorem 4.6 ( Hammersely-Clifford). 𝑋 is an MRF with respect to the neighborhood system G if

and only if 𝑝 (𝑋 = 𝜔) is a Gibbs distribution with potentials over the set of cliques,

𝑝 (𝜔) = 1
𝑍

exp(−
∑︁
𝐶∈C

𝑉𝐶 (𝜔))

This equivalence is beneficial because it is usually very difficult to specify local characteristics

in conditioning neighborhoods. Instead, one can specify potentials over cliques to describe the
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joint distribution. Interestingly, the Gibbs distribution can also be derived by maximizing entropy.

That is, Gibbs distribution has maximal entropy among all probabilty measures on Ω with the

same average energy.

When describing images, it is natural to define MRF on a regular lattice, 𝑆 = {𝑠 = (𝑖, 𝑗) : 0 ≤

𝑖, 𝑗 < 𝑀}. In this case, we can define 𝑛𝑡ℎ order neighborhood systems as

G𝑛 = {G𝑛
(𝑖, 𝑗) : (𝑖, 𝑗) ∈ S}

G𝑛
(𝑖, 𝑗) = {(𝑘, 𝑙) ∈ S : (𝑘 − 𝑖)2 + (𝑙 − 𝑗)2 ≤ 𝑛}

Figure 4.1 shows first and second order neighborhood systems and their corresponding cliques.

In modeling images, choosing the size of the neighborhood is an empirical question. Obviously,

reducing the size of the neighborhood decreases the computational cost and alleviates the curse

of dimensionality more. However, with too small neighborhoods, it would be impossible to define

clique potentials that are complex enough to capture structures of images. Increasing the size of

the neighborhood results in more complex maximal cliques, hence potentially more sophisticated

clique potentials and eventually better global models. But this comes with a computational cost and

gives rise to the same problem MRFs are set to resolve; the curse of dimensionality. Traditionally,

more than two order systems were rarely used since the computation required for the complicated

energy function would be too expensive (Kato et al., 2012). Ideally, we would like to find the

smallest size neighborhoods that can still capture image statistics, along with the most complex

interaction potentials. As we will see in this chapter, deep neural network offers a way to achieve

this.
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Figure 4.1: Markov neighborhoods on a regular lattice. Left. 1st order neighborhood and its cliques.
Right. 2nd order neighborhood and its cliques (Kato et al., 2012)

4.2 MRF image models for solving inverse problems

A simple MRF is the 2-D Ising model (Kindermann and Snell, 1980) with a 1st order neigh-

borhood system, in which each pixel has four neighbors. Even in such a simple example, it is

still difficult to define conditional probabilities given the neighbors. Instead one can easily define

potentials over cliques, which consists of two vertical or horizontal adjacent pixels. The energy

function is the sum of these potentials defined over pairs of pixels (Kindermann and Snell, 1980).

Clearly, the 2-D Ising model is too simplistic for modeling images. Over the years, a variety of MRF

models with different neighborhood systems and clique potentials have been proposed. Generally,

to test the quality of the models, they are used for solving inverse problems, such as restoration or

segmentation, or simply synthesis. The assumption is that a good enough model performs well

in these tasks. This section describes example models suggested and tested for these tasks. The

general frameworks is as follows: First a model with a particular neighborhood system and local

dependencies is suggested. Local dependencies are usually enforced with potentials that encourage

some sort of smoothness between neighbors. The parameters of the model are estimated using

maximum likelihood estimation (MLE) or expectation-maximization (EM) methods, depending on

the problem. Then a sampling method, such as Gibbs sampler, Metropolis Hasting, or loopy belief
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propagation is used to obtain samples from the model.

An important feature shared across all of these models is their hierarchical nature. Geman and

Geman (1984) suggested a two-layer model consists of an intensity process and a line process,

where the latter dictates the parameters of the former. In MRF models designed for segmentation,

it is common to assume an MRF for hidden variables of regions and an intensity process for pixel

values (Bouman and Shapiro, 1994). The role of these types of hierarchies is to give the model the

chance to break the smoothness prior enforced by simple local potentials whenever needed, for

example around edges. Similarly, in single image super resolution applications, multi-level MRF

for gradually coarse grained image intensities has been suggested (Freeman and Liu, 2011). Of

particular importance are multi-scale MRF models for restoration and texture synthesis. Multi-

scale image decompositions, e.g. wavelet decomposition, offered a mathematical and algorithmic

framework better suited for the structural properties of images (Burt and Adelson, 1983; Mallat,

1999). Regardless of the specifics of the hierarchy, a multi-scale representation is necessary for

handling of larger structures, and local (Markov) models have captured these probabilistically

(e.g., (Buccigrossi and Simoncelli, 1999b; Chambolle et al., 1998; Crouse et al., 1998; Şendur and

Selesnick, 2002; Mihçak et al., 1999; Wainwright et al., 2001)).

As we will see below, almost three decades of research on MRFs led to a steady and slow

progress in probabilistic image modeling. However, none of these have been able to demonstrate

performance comparable to recent deep networks while retaining a local dependency structure

(Guth et al., 2022a; Ho et al., 2020). Although we observe impressive performance in some image

processing tasks, it is limited to applications that do not rely on long range correlations. For

example, Markov random fields have been used to model and synthesize stationary texture images,

with conditional dependencies within small spatial regions of the pixel image grid. Beyond

stationary textures, however, the chaining of short-range dependencies has been insufficient

to capture the complexity of long-range geometrical structures. A question that remains to be

answered is whether such failure is inevitable. Or could it be due to certain MRF modeling choices
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that have been made so far? Often conditioning neighborhoods have been chosen to be too small

and clique potentials have been set to simple parametric models mandated by computational

limitations. Could less conservative choices result in models that can synthesize non-stationary

image structures? We will return to this question later and explore the possibilities provided by

the rich expressivity and computational power of DNNs.

4.2.1 Image restoration

Image restoration refers to recovering a clean image from blurry and noisy signal. This is

one of the most basic problems in image processing since all optical sensing devices return noisy

and blurry images. To remove moderate levels of noise and blur from images, local information

is sufficient. This makes restoration a good test-bed for MRF models. Geman and Geman (1984)

introduced the first popular MRF for images and specifically designed it for the purpose of

restoration. They defined the image as a two layer random process, 𝑋 = (𝐹, 𝐿), where 𝐹 denotes a

Markov random field of observed grayscale discrete intensities, 𝑓 ∈ Λ, and 𝐿 denotes a Markov

random field of unobservable binary line process. X is the union of these two graphs, such that

each pixel has four line site neighbors (see Figure 4.2). The goal is to sample from the posterior

distribution of 𝑋 , given the degraded image 𝐺 . It is worth noting that the assumption is that only

intensities are transformed by the degradation and lines are intact and a realization is known a

priori. The key in this work, is that the Markov property is not only assumed on the prior, 𝑃 (𝑋 ),

but also on the posterior, 𝑃 (𝑋 |𝐺). Since the noise is Gaussian, the difference between the energy

function of the posterior and prior is a quadratic term from the likelihood. The potentials, 𝑉𝐶 ,

are chosen ad hoc (instead of MLE) such that they penalize intensity gap between neighbors in

cliques. Moreover, the line process breaks the smoothness prior of the intensity process, such that

if 𝑙 ≠ 0 then intensity gap between neighbors is not penalized. The neighborhood system is of 2𝑛𝑑

order, i.e. 3 × 3 neighborhoods. In order to make the model work reasonably with these simple

assumptions, the test images are very simple and consist of only 5 levels of intensities. Finally to
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Figure 4.2: Markov Random Field for restoration Left. Intensity and line process and their union. Right.
Example degraded image along with the performance of the model. (Geman and Geman, 1984)

sample from the posterior, they device a Gibbs sampler with annealing schedule which updates

one coordinate at a time. The goal of annealing is to gradually decreasing the temperature to avoid

local maxima. In the initial iterations, the high temperature smooths out the density and makes it

easy to escape local maxima. As temperature decreases, the density becomes more peaked and the

solution gets pinned down with reduced chaos. Figure 4.2 shows as example clean image along

with degraded and restored versions. Geman and Geman laid out a thorough framework for MRFs

in image modeling. The main shortcomings were the oversimplification of clique potentials as

well as assumed realization of the line process.

As mentioned before, various MRF models were proposed for restoration. Portilla et al. (2003b)

proposed Scale Mixtures of Gaussians(GSM), an MRF model with impressive and state-of-the-art

performance in denoising. First, the image was transformed to a multi-scale over-complete wavelet

representation. The local neighborhoods were defined across space and scale as shown in Figure

4.3. This choice was based on the empirical analysis suggesting a strong dependency between child

and parent coefficients, Figure 4.3. Then the wavelet coefficients were decomposed into the product

of two random variables: a Gaussian vector and a hidden positive scalar multiplier, 𝑥 =
√
𝑧𝑢.

Hidden variable 𝑧 modulates the local variance of the coefficients in the neighborhood, and is

thus able to account for the empirically observed correlation between the coefficient amplitudes.

The introduction of 𝑧 is one of the key reasons in the success of the model, because it makes

the interaction potential adaptive to each neighborhood. In this work, similarly to (Geman and
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Figure 4.3: Markov neighborhoods in GSM model. Left. Local neighborhoods across scale and space in
GSM. Right.Example degraded image along with the performance of the model. (Portilla et al., 2003b)

Geman, 1984), the goal is to estimate and sample from the posterior distribution given the noisy

coefficients, 𝑝 (𝑥𝑐 |𝑦), where 𝑥𝑐 is the center true coefficient in a 3 × 3 neighborhood, and 𝑦 is the

vector of noisy coefficients in the neighborhood. A key difference, however, is that rather than

sampling from the posterior, the algorithm returns the mean of the posterior (i.e. the minimizer of

mean squared error) as the optimal denoised coefficient. This offers a computational advantage

by removing the need for explicitly expressing the posterior. Instead, they only need to estimate

𝑝 (𝑧 |𝑦) from data which is much simpler. This method is truly Bayesian, because instead of a MAP

solution for the posterior, it marginalizes over all values of 𝑧,

E{𝑥𝑐 |𝑦} =
∫ ∞

0
𝑝 (𝑧 |𝑦)E{𝑥𝑐 |𝑦, 𝑧}𝑑𝑧

Although this approach has a computational advantage, which is likely responsible for its em-

pirical success, the absence of explicit clique potentials prevent us from obtaining a global Gibbs

distribution. Nevertheless, this model relies on the Markov property that limits the estimation of

a coefficient to conditioning on a small neighborhood, and offers a hidden MRF. This compromise

can be viewed as a trade-off between the explicit parameterization of the clique potentials and the

empirical performance. We will see more examples of this trade-off in the next sections. Figure

4.3 shows an example denoising result from this algorithm.
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Figure 4.4: Hierarchical GSM. Left. A segment of a q-adic tree, with the unique parent 𝑠𝑦 and children
𝑠𝛼1, 𝑠𝛼2, ... corresponding to node 𝑠 . Right. Example degraded image along with the performance of the
model. (Wainwright et al., 2000)

Wainwright et al. (2000) proposed a variant of GSM model designed to express a global Gibbs

distribution. In order to do that, they reduced the neighborhoods to only two coefficients, parent

and child, eliminating all the spacial coefficients. This choice of the neighborhood results in a

quad-tree, rising from multi-scale wavelet representation, and allows an explicit definition of GSM

clique potentials. The non-loopy tree structure allows for an exact estimation of the posterior

with belief propagation algorithm. Figure 4.4 shows an example denoising performance based on

this model. As clear by the example, the parametric expression of the global model comes at the

cost of reduced performance.

4.2.2 Image segmentation

Image segmentation is a difficult and mostly ill-defined problems in computer vision. Given an

image,𝑌 , the goal is to assign labels, 𝑋 , to pixels, where values of labels, 𝑥 ∈ 𝐿 consist a discrete

set, and each value represents a region or segment in the image. The goal is to find optimal labels

given the image, that is, to find the maximum of the posterior, 𝑝 (𝑋 |𝑌 ). According to the Bayes

rule, the MAP estimate is equivalent to the maximiser of likelihood times prior, 𝑝 (𝑌 |𝑋 )𝑝 (𝑋 ).

Markov random fields are suitable for modeling the prior of the hidden labels, because Markov

property is a reasonable assumption; the probability of a given label is independent from faraway

79



labels, conditioned on the surrounding labels. Thus, the posterior can be defined with a layered or

hierarchical MRF (Figure 4.5). Generally the framework of the problem is as follows. Take a simple

first order neighborhood system on the𝑋 graph. Such local interactions produce doubleton cliques

that consists of only two sites. A simple potential on such cliques comes from a smoothness prior

similarly to Ising model or the restoration problem. The potential can be a positive fixed value for

different labels in the doubleton, resulting in higher energy and lower probability. Conversely,

the clique potential for similar values in the doubleton can be set to a fixed negative value to

maximize probability.

𝑉𝐶 = 𝛽.𝛿 (𝑥𝑠1, 𝑥𝑠2) =


+𝛽, if 𝑥𝑠1 ≠ 𝑥𝑠2

−𝛽, otherwise

Additionally, the likelihood model, 𝑝 (𝑌 |𝑋 ), can be represented by a mixture of Gaussians. The

likelihood tells us the probability of a pixel belonging to a region with a particular mean and

variance. Generally, likelihood model determines the behavior of the image (e.g., texture, gray

scale, color, or multispectral values). If the parameters of the likelihood model are known apriori,

then the solution comes down to finding the maximum of the posterior. It is common to relax

the MAP problem with sampling due to non-convex nature of the optimization. To sample from

larger maxima, usually an annealed MCMC method is used. This method can be implemented

only if the likelihood model parameters are known, for example if the mean and variances of the

Gaussians can be estimated from a set of training data. When such information is not available,

the MAP solution is replaced with an EM solution, where the parameters of the model and the

minimum cost label assignments are estimated from data iteratively in alternating steps.

While the above-mentioned framework describes the backbone of most MRF segmentation

methods, many variations have been proposed to improve the results. For example, Kato (2008)

suggests using a reversible jump Markov chain Monte Carlo (RJMCMC) method that makes it

possible for samplers to jump between parameter subspaces of different dimensionality. Almost
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Figure 4.5: Markov random field for segmentation. Left. Structure of the doubly stochastic random field
used in segmentation. The behavior of the image (e.g., texture, gray scale, color, or multispectral values)
given the class labels is defined by the likelihoof, 𝑝 (𝑌 |𝑋 ). Prior information is contained in the distribution
of class labels 𝑝 (𝑋 ).(Bouman and Shapiro, 1994) . Right. Example segmentation of image (Kato et al.,
2012)

all other parts of the algorithm are the same as what was described above. Figure 4.5 shows

an example image segmented by this method in a fully unsupervised way (EM). Other works

by Bouman and Liu (1988) assumed a mixture of multi-dimensional Gaussians as their texture

model which was used as the likelihood. More importantly, they implemented a multi-resolution

segmentation algorithm by first segmenting the image at coarse resolution and then progressing to

finer resolutions until each individual pixel is labeled. Segmentation at each resolution is performed

by maximizing the posterior subject to the label constrains. The cascade of these iterative MAP

estimations turns out to be computationally efficient. Also, choosing more expressive probabilities

families for 𝑝 (𝑥) is another way to improve the segmentation model. For example, (Bouman and

Sauer, 1994) replaced the discrete Ising model smoothness prior with a continuous generalized

Gaussian. Gaussian potentials do not model edges well. A number of None-Gaussian potentials

for pair-wise cliques have been proposed. Examples are shown in Figure 4.6. Although these

potentials have the advantage of creating sharp edges, it is very difficult to compute MAP estimates

when using them.

4.2.3 Texture synthesis

Markov random fields have been used to model stationary texture images, with conditional

dependencies within small spatial regions of the image grid. MRF modeling has proved to be
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Figure 4.6: Non-Gaussian pair-wise clique potentials, 𝑉𝑐 (Δ), where Δ = (𝑥𝑠1 − 𝑥𝑠2)/𝜎2. From left to right:
Δ2

1+Δ2 (Geman et al., 1992), min{𝛿2, 1} (Blake, 1989), log(1 + Δ2) (Hebert and Leahy, 1989), |Δ |1+|Δ | (Geman and
Reynolds, 1992). All of these penalize difference between label values up to a threshold, beyond which the
potential either does not increase or increase with a smaller rate. This construction model edges better
while still promotes smoothness

insufficient for non-stationary images with global structure. But textures consists of local and

repetitive patterns which makes them a natural candidate for MRF modeling and inference. In

this section I describe an MRF texture model (Paget and Longstaff, 1998) that takes a step in the

direction of capturing more complex local interactions than the conventional parametric MRF

models. It has been long understood that higher order models are required for texture synthesis.

While MRFs theoretically have the required statistical order, the computational limitations usually

comes in the way of choosing larger neighborhoods and more complex potentials. (Paget and

Longstaff, 1998) proposed a non-parametric texture MRF model to allow for a more complex local

conditional probability density function (LCPDF) over neighborhoods as larger as 9 × 9. The

LCPDF is separately learned for each new class of texture by a histogram estimation. Assuming

spacial stationary,

𝑃 (𝑥𝑠 |𝑥𝑟 , 𝑟 ∈ N𝑠) =
𝐹 (𝐿0 = 𝑥𝑠, 𝐿𝑛𝑟 = 𝑥𝑟 , 𝑟 ∈ N𝑠)∑

𝐿0∈Λ 𝐹 (𝐿0 = 𝑥𝑠, 𝐿𝑛𝑟 = 𝑥𝑟 , 𝑟 ∈ N𝑠)

Where the index 𝑛𝑟 denotes the relative position of site 𝑟 to 𝑝 . After building the multi-dimensional

histogram, a multi-dimensional Gaussian Parzen window is used to smooth it out. The size of

the window parameter is set to an optimal value for LCPDE. In order to alleviate the curse

of dimensionality in estimating LCPDE for larger neighborhoods, a multi-scale framework is

introduced. The multi-scale representation comes from decimating the original image, Fig 4.7.
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Figure 4.7: Markov random field for texture synthesis. Left. Grid organization for MR via decimation.
Right. Original image. Synthesized textures—using neighborhood order of 8 (i.e 5 × 5). Synthesized
textures—using neighborhood order of 18 (i.e 9 × 9)

Each scale is a new MRF with a lower dimensional lattice. The neighborhoods are redefined to

adjust for the smaller lattice. Starting from the top of the pyramid, a set of i.i.d sites are chosen.

Then LCPDF for 𝑥𝑠 is estimated in parallel using the above question and Parzen smoothing. Then

a new set of sites are chosen and their value is estimated by their LCPDF, as in Gibbs sampler. In

order to further reduce curse of dimensionality, the authors introduced "pixel temperature", a local

annealing procedure that assigns a temperature or confidence score, 𝑡 , to each 𝑥𝑠 . When 𝑡 = 0

there is no uncertainty about the value of the pixel and the update can stop. All pixel temperatures

start at 𝑡 = 1 and are updated in each iteration according to an update rule. 𝑡 reaches zero only

when all the neighbors have achieved zero. When all temperatures in the grid are zero, the sampler

stops and the coarse image is passed to the next step. The critical point is that the values and pixel

temperatures associated with pixel are fixed and don’t get updated even after being passed down

to the new finer level. In addition to lifting the curse of dimensionality, pixel temperature prevents

formation of artifacts. Figure 4.7 shows example textures synthesized using this method. The

impressive performance of this model indicates that larger neighborhoods and more flexible and

complex local interaction laws are necessary for a good MRF model. The downside of this model

however, is that it is not clear how one can define a valid joint distribution using the LCPDF.
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4.3 Markov Wavelet Conditional Models

This section introduces a relatively low-dimensional model class as a product of Markov

conditional probabilities over multi-scale wavelet coefficients. In the next section, we show that

this model can be successfully implemented using convolutional neural networks.

Based on the renormalization group approach in statistical physics (Wilson, 1971), new proba-

bility models are introduced in Marchand et al. (2022), structured as a product of probabilities of

wavelet coefficients conditioned on coarser-scale values, with spatially local dependencies. These

Markov conditional models have been applied to ergodic stationary physical fields, with simple

conditional Gibbs energies that are parameterized linearly. Here, we generalize such models by

parameterizing conditional Gibbs energy gradients with deep conditional convolutional neural

networks having a local RF. This yields a class of Markov wavelet conditional models that can

generate complex structured images, while explicitly relying on local dependencies to reduce the

model dimensionality.

An orthonormal wavelet transform uses a convolutional and subsampling operator𝑊 defined

with conjugate mirror filters (Mallat, 1999), to iteratively compute wavelet coefficients (see Fig-

ure 4.8). Let 𝒙0 be an image of 𝑁 × 𝑁 pixels. For each scale 𝑗 > 1, the operator𝑊 decomposes

𝒙 𝑗−1 into:

𝑊 𝒙 𝑗−1 = (𝒙 𝑗 , 𝒙 𝑗 ),

where 𝒙 𝑗 is a lower-resolution image and 𝒙 𝑗 is an array of three wavelet coefficient images, each

with dimensions 𝑁 /2 𝑗×𝑁 /2 𝑗 , as illustrated in Figure 4.8. The inverse wavelet transform iteratively

computes 𝒙 𝑗−1 =𝑊 𝑇 (𝒙 𝑗 , 𝒙 𝑗 ).

We now introduce the wavelet conditional factorization of probability models. Since𝑊 is

orthogonal, the probability density of 𝒙 𝑗−1 is also the joint density of (𝒙 𝑗 , 𝒙 𝑗 ). It can be factorized
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by conditioning on 𝒙 𝑗 :

𝑝 (𝒙 𝑗−1) = 𝑝 (𝒙 𝑗 , 𝒙 𝑗 ) = 𝑝 (𝒙 𝑗 )𝑝 (𝒙 𝑗 |𝒙 𝑗 ).

This is performed 𝐽 times, so that the lowest resolution image 𝒙 𝐽 is small enough, which yields:

𝑝 (𝒙) = 𝑝 (𝒙 𝐽 )
𝐽∏
𝑗=1

𝑝 (𝒙 𝑗 |𝒙 𝑗 ). (4.1)

The conditional distributions 𝑝 (𝒙 𝑗 |𝒙 𝑗 ) specify the dependencies of image details at scale 𝑗 condi-

tioned on the coarser scale values, and may be expressed in terms of a conditional Gibbs energy:

𝑝 (𝒙 𝑗 |𝒙 𝑗 ) = Z𝑗 (𝒙 𝑗 )−1 𝑒−𝐸 𝑗 (𝒙 𝑗 |𝒙 𝑗 ), (4.2)

whereZ(𝒙 𝑗 ) is the normalization constant for each 𝒙 𝑗 . The conditional Gibbs energies (4.2) have

been used in the wavelet conditional renormalization group approach to obtain a stable parame-

terization of the probability model even at critical phase transitions, when the parameterization of

the global Gibbs energy becomes singular (Marchand et al., 2022).

Local wavelet conditional renormalization group models (Marchand et al., 2022) further impose

that 𝑝 (𝒙 𝑗 |𝒙 𝑗 ) is a conditional Markov random field. That is, the probability distribution of a

wavelet coefficient of 𝒙 𝑗 conditioned on values of 𝒙 𝑗 and 𝒙 𝑗 in a restricted spatial neighborhood

is independent of all coefficients of 𝒙 𝑗 and 𝒙 outside this neighborhood (see Figure 4.8). The

Hammersley-Clifford theorem states that this Markov property is equivalent to imposing that

𝐸 𝑗 can be written as a sum of potentials, which only depends upon values of 𝑥 𝑗 and 𝑥 𝑗 over local

cliques (Clifford and Hammersley, 1971). This decomposition substantially alleviates the curse

of dimensionality, since one only needs to estimate potentials over neighborhoods of a fixed

size which does not grow with the image size. To model ergodic stationary physical fields, the

local potentials of the Gibbs energy 𝐸 𝑗 have been parameterized linearly using physical models
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Figure 4.8: Markov wavelet conditional model structure. At each scale 𝑗 , an orthogonal wavelet transform
𝑊 decomposes an image 𝒙 𝑗−1 into three wavelet channels, 𝒙 𝑗 , containing vertical, horizontal, and diagonal
details, and a low-pass channel 𝒙 𝑗 containing a coarse approximation of the image, all subsampled by a
factor of two. At each scale 𝑗 , we assume a Markov wavelet conditional model, in which the probability
distribution of any wavelet coefficient of 𝒙 𝑗 (here, centered on the left eye), conditioned on values of 𝒙 𝑗

and 𝒙 𝑗 in a local spatial neighborhood (red squares), is independent of all coefficients of 𝒙 𝑗 outside this
neighborhood.

Marchand et al. (2022).

We generalize Markov wavelet conditional models by parameterizing the conditional score

with a conditional CNN (cCNN) having small receptive fields (RFs):

−∇𝒙 𝑗
log𝑝 (𝒙 𝑗 |𝒙 𝑗 ) = ∇𝒙 𝑗

𝐸 𝑗 (𝒙 𝑗 |𝒙 𝑗 ). (4.3)

Computing the score (4.3) is equivalent to specifying the Gibbs model (4.2) without calculating the

normalization constantsZ(𝒙 𝑗 ), since these are not needed for noise removal, super-resolution or

image synthesis applications.

4.4 Score-based Markov Wavelet Conditional Models

Score-based diffusion models have produced impressive image generation results (e.g., (Guth

et al., 2022a; Ho et al., 2020; 2022; Ramesh et al., 2022; Rombach et al., 2022; Saharia et al., 2022;

Song et al., 2021b)). To capture large-scale properties, however, these networks require RFs

that encompass the entire image. Our score-based wavelet conditional model leverages the

Markov assumption to compute the score using cCNNs with small receptive fields, offering a
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low-dimensional parameterization of the image distribution while retaining long-range geometric

structures.

To model the conditional wavelet distribution 𝑝 (𝒙 𝑗 |𝒙 𝑗 ), Guth et al. (2022b) parameterize the

score ∇𝒚 𝑗
log𝑝 (𝒚 𝑗 |𝒙 𝑗 ) of noisy wavelet coefficients 𝒚 𝑗 conditioned on a clean low-pass image 𝒙 𝑗

with a cCNN (eq. (4.3)). Specifically, the cCNN takes as input three noisy wavelet detail channels,

along with the corresponding low-pass channel, and generates three estimated detail channels.

The network is trained to minimize mean square distance between 𝒙 𝑗 and 𝑓 𝑗 (𝒚 𝑗 , 𝒙 𝑗 ). Thanks to

a conditional extension of eq. (2.3), an optimal network computes 𝑓 𝑗 (𝒚 𝑗 , 𝒙 𝑗 ) = ∇𝒚 𝑗
log𝑝 (𝒚 𝑗 |𝒙 𝑗 ).

Additionally, at the coarsest scale 𝐽 , a CNN denoiser 𝑓𝐽 (𝒚𝐽 ) is trained to estimate the score of the

low-pass band, ∇𝒚 𝐽
log𝑝 (𝒙 𝐽 ) by minimizing mean square distance between 𝒙 𝐽 and 𝑓𝐽 (𝒚𝐽 ).

The following theorem proves that the Markov wavelet conditional property is equivalent to

imposing that the cCNN RFs are restricted to the conditioning neighborhoods. The RF of a given

element of the network response is defined as the set of input image pixels on which this element

depends.

Theorem 4.7. The wavelet conditional density 𝑝 (𝒙 𝑗 |𝒙 𝑗 ) is Markovian over a family of conditioning

neighborhoods if and only if the conditional score ∇𝒙 𝑗
log𝑝 (𝒙 𝑗 |𝒙 𝑗 ) can be computed with a network

whose RFs are included in these conditioning neighborhoods.

The proof of the theorem is provided in Appendix C.1. Note that even if the conditional

distribution of clean wavelet coefficients 𝑝 (𝒙 |𝒙 𝑗 ) satisfies a local Markov property, the noisy

distribution 𝑝 (𝒚 𝑗 |𝒙 𝑗 ) is in general not Markovian. However, we shall parameterize the scores with

a cCNN with small RFs and hence show that both the noisy and clean distributions are Markovian.

At each scale 1 ≤ 𝑗 ≤ 𝐽 , the cCNN has RFs that are localized in both 𝒚 𝑗 and 𝒙 𝑗 , and have a fixed

size over all scales, independent of the original image size. From Theorem 4.7, this defines the

Markov conditioning neighborhoods of the learned model. The effect of the RF size is examined

in the numerical experiments of Section 4.5.
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Figure 4.9: Wavelet conditional denoiser architecture used to estimate the score (illustrated for a two-scale
decomposition). The input noisy image 𝒚 (lower left) is decomposed by recursive application of a fast
orthogonal wavelet transform𝑊 into successive low-pass images 𝒚 𝑗 (blue) and three wavelet detail images
𝒚 𝑗 (red). The coarsest low-pass image 𝒚 𝐽 is denoised using a CNN with a global receptive field to estimate
�̂� 𝐽 . At all other scales, a local conditional CNN (cCNN) estimates ˆ̄𝒙 𝑗 from𝒚 𝑗 conditioned on �̂� 𝑗 , from which
𝑊𝑇 recovers �̂� 𝑗−1.

Parameterizing the score with a convolutional network further implies that the conditional

probability 𝑝 (𝒙 𝑗 |𝒙 𝑗 ) is stationary on the wavelet sampling lattice at scale 𝑗 . Despite these strong

simplifications, we shall see that these models are able to capture complex long-range image

dependencies in highly non-stationary image ensembles such as centered faces. This relies on the

low-pass CNN, whose RF is designed to cover the entire image 𝒙 𝐽 , and thus does not enforce local

Markov conditioning nor stationarity. The product density of eq. (4.1) is therefore not stationary.

4.5 Markov Wavelet Conditional Denoising

We now evaluate our Markov wavelet conditional model on a denoising task. We use the

trained CNNs to define a multi-scale denoising architecture, illustrated in Figure 4.9. The wavelet

transform of the input noisy image 𝒚 is computed up to a coarse-scale 𝐽 . The coarsest scale image
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is denoised by applying the denoising CNN learned previously: �̂� 𝐽 = 𝑓𝐽 (𝒚𝐽 ). Then for 𝐽 ≥ 𝑗 ≥ 1,

we compute the denoised wavelet coefficients conditioned on the previously estimated coarse

image: ˆ̄𝒙 𝑗 = 𝑓 (𝒚 𝑗 , �̂� 𝑗 ). We then recover a denoised image at the next finer scale by applying an

inverse wavelet transform: �̂� 𝑗−1 =𝑊 𝑇 ( ˆ̄𝒙 𝑗 , �̂� 𝑗 ). At the finest scale we obtain the denoised image

�̂� = �̂�0.

Because of the orthogonality of𝑊 , the global MSE can be decomposed into a sum of wavelet

MSEs at each scale, plus the coarsest scale error: ∥𝒙−�̂� ∥2 = ∑𝐽−1
𝑗=1 ∥𝒙 𝑗− ˆ̄𝒙 𝑗 ∥2+∥𝒙 𝐽 −�̂� 𝐽 ∥2. The global

MSE thus summarizes the precision of the score models computed over all scales. We evaluate the

peak signal-to-noise ratio (PSNR) of the denoised image as a function of the noise level, expressed

as the PSNR of the noisy image. We use the CelebA dataset (Liu et al., 2015) at 160× 160 resolution.

We use the simplest of all orthogonal wavelet decompositions, the Haar wavelet, constructed from

separable filters that compute averages and differences of adjacent pairs of pixel values (Haar,

1910). All denoisers are “universal” (they can operate on images contaminated with noise of any

standard deviation), and “blind” (they are not informed of the noise level). They all have the same

depth and layer widths, and their receptive field size is controlled by changing the convolutional

kernel size of each layer. Appendix C.2 provides architecture and training details.

Figure 4.10 shows that the multi-scale denoiser based on a conditional wavelet Markov model

outperforms a conventional denoiser that implements a Markov probability model in the pixel

domain. More precisely, we observe that when the Markov structure is defined over image pixels,

the performance degrades considerably with smaller RFs (Figure 4.10, left panel), especially at

large noise levels (low PSNR). Images thus contain long-range global dependencies that cannot

be captured by Markov models that are localized within the pixel lattice. On the other hand,

multi-scale denoising performance remains nearly the same for RF sizes down to 9 × 9, and

degrades for 5 × 5 RFs only at small noise levels (high PSNR) (Figure 4.10, right panel). This is

remarkable considering that, for the finest scale, the 9 × 9 RF implies conditioning on one percent

of the coefficients. The wavelet conditional score model thus successfully captures long-range
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image dependencies, even with small Markov neighborhoods.

It is also worth noting that in the large noise regime (i.e., low PSNR), all multi-scale denoisers

(even with RF as small as 5 × 5) significantly outperforms the conventional denoiser with the

largest tested RF size (43 × 43). The dependency on RF size in this regime demonstrates the

inadequacy of local modeling in the pixel domain. On the contrary, the effective neighborhoods

of the multi-scale denoiser are spatially global, but operate with spatially-varying resolution.

Specifically, neighborhoods are of fixed size at each scale, but due to the subsampling, cover larger

proportions of the image at coarser scales. The CNN applied to the coarsest low-pass band (scale

𝐽 ) is spatially global, and the denoising of this band alone explains the performance at the highest

noise levels.

To further illustrate this point, consider the denoising examples shown in Figure 4.11. Since

all denoisers are bias-free, they are piecewise linear (as opposed to piecewise affine), providing

some interpretability, as discussed in Chapter 2. Specifically, each denoised pixel is computed

as an adaptively weighted sum over the noise input pixels. The last panels show the equivalent

adaptive linear filter that was used to estimate the pixel marked by the green square, which can

be estimated from the associated row of the Jacobian. The top row shows denoising results of a

conventional CNN denoiser for small images that are the size of the network RF. Despite very

heavy noise levels, the denoiser exploits the global structure of the image, and produces a result

approximating the clean image. The second row shows the results after training the same denoiser

architecture on much larger images. Now the adaptive filter is much smaller than the image, and

the denoiser solution fails to capture the global structure of the face. Finally, the last row shows

that the multi-scale wavelet conditional denoiser can successfully approximate the global structure

of a face despite the extreme levels of noise. Removing high levels of noise requires knowledge

of global structure. In our multi-scale conditional denoiser, this is achieved by setting the RF

size of the low-pass denoiser equal to the entire low-pass image size, similarly to the denoiser

shown on the top row. Then, each successive conditioning stage provides information at a finer
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psnr in = 7

RF = 9x9RF = 23x23RF = 43x43 RF = 9x9RF = 23x23RF = 43x43

Pixel-domain denoiser Wavelet-domain denoiser

Figure 4.10: Comparison of denoiser performance on pixel vs wavelet domain. Test images are of resolution
of 160 × 160 from the CelebA dataset. Each panel shows the error of the denoised image as a function of
the noise level, both expressed as the peak signal-to-noise ratio (PSNR). Left: Conventional CNN denoisers
with different RF sizes. The blue curve shows performance of BF-CNN. The rest are BF-CNN variants with
smaller RF obtained from setting some intermediate filter sizes to 1 × 1. Also shown are the outputs of
three denoisers with varying RF on a test image. Right: Multi-scale denoisers, as depicted in Figure 4.9,
with different cCNN RF sizes. Performance us almost the same on the test image regardless of denoiser’s
RF. Note that the low-pass denoiser RF is 40 × 40 in all cases, and thus covers the entire low-pass band.

91



Figure 4.11: Denoising examples. Each row shows clean image, noisy image, denoised image, and the
adaptive filter (one row of the Jacobian of the end-to-end denoising transformation) used by the denoiser
to estimate a specific pixel, indicated in green. The heat-map ranges from red for most negative to black for
most positive values. In the last two rows, the last column shows an enlargement of this adaptive filter, for
enhanced visibility. Images are displayed proportional to their sizes. Top row: 40 × 40 images estimated
with a CNN denoiser with RF 40× 40. Second row: 160× 160 images estimated with a CNN denoiser with
RF 43 × 43. Third row: 160 × 160 images, estimated with the proposed conditional multi-scale denoiser of
Figure 4.9. The denoiser uses a 40 × 40 RF for the coarsest scale, and 13 × 13 RFs for conditional denoising
of subsequent finer scales.
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resolution, over ever smaller RFs relative to the coefficient lattice. The adaptive filter shown in

the last column has a foveated structure: the estimate of the marked pixel depends on all pixels in

the noisy image, but those that are farther away are only included within averages over larger

blocks. Thus, imposing locality in the wavelet domain lifts the curse of dimensionality without

loss of performance, as opposed to a locality (Markov) assumption in the pixel domain.

4.6 Markov Wavelet Conditional Super-resolution and

Synthesis

We generate samples from the learned wavelet conditional distributions in order to visually

assess the quality of the model in a super-resolution task. We compare this approach with solving

the super-resolution inverse problem directly using a CNN denoiser operating in the pixel domain.

We also compare the models on image synthesis.

We first give a high-level description of our conditional generation algorithm. The low-

resolution image 𝒙 𝐽 is used to conditionally generate wavelet coefficients 𝒙 𝐽 from the conditional

distribution 𝑝 (𝒙 𝐽 |𝒙 𝐽 ). An inverse wavelet transform next recovers a higher-resolution image 𝒙 𝐽−1

from both 𝒙 𝐽 and 𝒙 𝐽 . The conditional generation and wavelet reconstruction are repeated 𝐽 times,

increasing the resolution of the sample at each step. In the end, we obtain a sample 𝒙 from the

full-resolution image distribution conditioned on the starting low-resolution image 𝑝 (𝒙 |𝒙 𝐽 ). 𝒙 is

thus a stochastic super-resolution estimate of 𝒙 𝐽 .

To draw samples from the distributions 𝑝 (𝒙 𝑗 |𝒙 𝑗 ) implicitly embedded in thewavelet conditional

denoisers, we use the anti-diffusion algorithm (SISA) introduced in Chapter 2. Extension to the

conditional case is straightforward. The sampling algorithm is detailed in Algorithm 2. All the

cCCN denoisers have a RF size of 13 × 13. Train and test images are from the CelebA HQ dataset

(Karras et al., 2018) and of size 320 × 320. For the examples in Figures 4.12, C.1 and 4.13, we chose

ℎ = 0.01, 𝜎0 = 1, 𝛽 = 0.1 and 𝜎∞ = 0.01. Samples drawn using the conditional denoiser correspond
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to a Markov conditional distribution with neighborhoods restricted to the RFs of the denoiser.

We compare these with samples from a model with a local Markov neighbhorhood in the pixel

domain. This is done using a CNN with a 40 × 40 RF trained to denoise full-resolution images,

which approximates the score ∇ log𝑝 (𝒙). Given the same low-pass image 𝒙 𝐽 , we can generate

samples from 𝑝 (𝒙 |𝒙 𝐽 ) by viewing this as sampling from the image distribution of 𝒙 constrained

by a linear measurements 𝒙 𝐽 . This method is described in more detail in Chapter 5.

Algorithm 2: Wavelet Conditional Synthesis
parameters: number of scales 𝐽 , low-pass image 𝒙 𝐽 , conditional denoisers (𝑓𝑗 )1≤ 𝑗≤ 𝐽 , step size ℎ,
initial noise level 𝜎0, final noise level 𝜎𝐿

for 𝑗 ∈ {𝐽 , . . . , 1} do
Wavelet conditional sampling:
𝒙 𝑗 ← DrawSample(𝑓𝑗 (·, 𝒙 𝑗 ), ℎ, 𝜎0, 𝜎𝐿)
Wavelet reconstruction:
𝒙 𝑗−1 ←𝑊𝑇 (𝒙 𝑗 , 𝒙 𝑗 )

end
return 𝒙0

Figure 4.12 shows super-resolution samples from these two learned image models. The local

Markov model in the pixel domain generates details that are sharp but artifactual and incoherent

over long spatial distances. On the other hand, the Markov wavelet conditional model produces

much more natural-looking face images. This demonstrates the validity of our model: although

these face images are not stationary (they have global structures shared across the dataset), and are

not Markov in the pixel domain (there are clearly long-range dependencies that operate across the

image), the details can be captured with local stationary Markov wavelet conditional distributions.

We also evaluated the Markov wavelet conditional model on image synthesis. We first synthe-

size a 40 × 40 terminal low-pass image using the score, ∇𝒙 𝐽 log𝑝 (𝒙 𝐽 ), obtained from the low-pass

CNN denoiser with a global RF. Again, unlike the conditional wavelet stages, this architectural

choice does not enforce any local Markov structure nor stationarity. This global RF allows captur-

ing global non-stationary structures, such as the overall face shape. The synthesis then proceeds

using the same coarse-to-fine steps as used for super-resolution: wavelet coefficients at each
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Figure 4.12: Super-resolution examples. Column 1: original images (320 × 320). Column 2: Low-pass
image of a 3-stage wavelet decomposition (downsampled to 40 × 40) expanded to full size for viewing.
Column 3: Conditional generation of full-resolution images using CNN denoiser with RF of size 43 × 43.
Column 4: Coarse-to-fine conditional generation using the multi-scale cCNN denoisers, each with RFs of
size 13 × 13. Additional examples are shown in Appendix C.3.
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Figure 4.13: Image synthesis. Left four images: Coarse-to-fine synthesis, achieved by sampling the score
learned for each successive conditional distribution. Synthesized images are shown at four resolutions,
from coarse-scale only (leftmost, 40 × 40) to the finest scale (rightmost, 320 × 320). Conditional RFs are all
13 × 13. Right image: Synthesis using a pixel-domain CNN with a receptive field (40 × 40) smaller than
the synthesized image 320 × 320.

successive scale are generated by drawing a sample using the cCNN conditioned on the previous

scale.

The first (smallest) image in Figure 4.13 is generated from the low-pass CNN (see Chapter 2

for SISA algorithm). We can see that it successfully captures the coarse structure of a face. This

image is then refined by application of successive stages of the multi-scale super-resolution

synthesis algorithm described above. The next three images in Figure 4.13 show successively

higher resolution images generated in the procedure. For comparison, the last image in Figure 4.13

shows a sample generated using a conventional CNN with equivalent RFs trained on large face

images. Once again, this illustrates that assuming spatially localized Markov property on the pixel

lattice and estimating the score with a CNN with RF smaller than the image fails to capture the

non-stationary distribution of faces. Specifically, the model is unable to generate structures larger

than the RF size, and the samples are texture-like and composed of local regions resembling face

parts.
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4.7 Discussion

We have generalized a Markov wavelet conditional probability model of image distributions,

and developed an explicit implementation using cCNNs to estimate the conditional model scores.

The resulting conditional wavelet distributions are stationary and Markov over neighborhoods

corresponding to the cCNN receptive fields. The coarse-scale low-pass band is modeled using the

score estimated with a CNN with global receptive fields. We trained this model on a dataset of

face images, which are non-stationary with large-scale geometric features. We find that the model,

even with relatively small cCNN RFs, succeeds in capturing these features, producing high-quality

results on denoising and super-resolution tasks. We contrast this with local Markov models in the

pixel domain, which are not able to capture these features, and are instead limited to stationary

ergodic textures.

The Markov wavelet conditional model demonstrates that probability distributions of images

can be factorized as products of conditional distributions that are local. This model provides

a mathematical justification which can partly explain the success of coarse-to-fine diffusion

synthesis (Guth et al., 2022b; Ho et al., 2020), which also compute conditional scores at each scale.

Our experiments were performed on cropped and centered face images, which present a

particular challenge given their obvious non-stationarity. Although the cCNN networks in our

model are fully convolutional, the conditional models are only approximately stationary, because

of the zero-padded boundary handling. The influence of the boundary handling grows for the

coarser scales, giving rise to the non-stationary capabilities of the full model. In particular, the

terminal low-pass CNN is fully non-stationary. Furthermore, the overall model has a "foveated"

structure. The RF of the finer scales is smaller compared to the size of the entire grid. In the

coarser scales, the ratio of the RF size to the grid size grows exceeding 1 for the low-pass grid,

resulting in a global RF. The gradual transition from local stationary to global non-stationary

models across scale is the key reason for success of the overall model.

97



Previously, diffusion models (Guth et al., 2022b; Ho et al., 2022) have used coarse-to-fine

strategies, generating a sequence of images of increasing resolution, each seeded by its predecessor.

None of these models, however, impose locality restrictions on their computation. On the contrary,

the stage-wise conditional sampling is typically accomplished with huge DNNs (up to billions of

parameters, as opposed to ours which uses 600k parameters for the low-pass CNN and 200k for the

cCNNs), with global receptive fields. As a result, these models require much larger training sets to

enter the generalization regime. The success of the multi-scale conditional model suggests that

there is a lot of redundancy in finer components of the image, which can be captured with smaller

models. Additionally, our local conditional Markov assumptions provide a step towards the goal

of making explicit the probability model and its factorization into low-dimensional components.

Another potential direction to explore is assuming a scale invariance property. The cCNNs

in our model all share the same architecture and local RFs, and may (empirically) be capturing

similar local conditional structure at each scale. Forcing these conditional densities to be the

same at each scale (through weight sharing of the corresponding cCNNs) would impose a scale

invariance assumption on the overall model. This would further reduce model complexity, and

enable synthesis and inference on images of size well beyond that of the training set.
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5 | Using learned image densities to

solve linear inverse problems

In the previous chapter, we showed that the learned prior embedded in the denoiser can be

used to study properties of image distribution such as locality and stationarity. In this chapter, we

aim to utilize the prior more directly to solve linear inverse problems. Many applications in signal

processing can be expressed as linear inverse problems - deblurring, super-resolution, estimating

missing pixels (e.g., inpainting), and compressive sensing are all examples. Given a set of linear

measurements of an image, 𝑥𝑐 = 𝑀𝑇𝑥 , where𝑀 is a low-rank measurement matrix, one attempts

to recover the original image. A prior probability model can provide a universal substrate for

solving inference problems. This is in contrast to mapping-based approach where the solution is

intertwined with the task for which the network is optimized, so it requires training a separate

network for each new application.

In Section 2.2, we developed a stochastic iterative score ascent (SISA) algorithm for obtain-

ing a high-probability sample from 𝑝 (𝑥). Here, we generalize SISA algorithm to solve for a

high-probability sample from the conditional density 𝑝 (𝑥 |𝑀𝑇𝑥 = 𝑥𝑐). The resulting procedure

generates high-probability samples from the prior conditioned on the measurements, thus pro-

Some of the results in this chapter are published in (Kadkhodaie and Simoncelli, 2020) and (Kadkhodaie and Simon-
celli, 2021a). The code to reproduce the results is available at https://github.com/LabForComputationalVision/
universal_inverse_problem
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Figure 5.1: Two-dimensional simulation/visualization of constrained sampling. Only points lying at the
intersection of manifold (green curve) and constraint hyperplane (blue line, represented by low-rank matrix
𝑀) are valid samples.

viding a general stochastic solution for any linear inverse problem. Geometrically, constrained

sampling corresponds to drawing points which sit at the intersection of the image manifold and

the constrained hyperplane (see Fig. 5.1). Note that for these problems, the injection of noise

(𝛽 < 1) is particularly important, because points on the intersection are not necessarily the closest

points to the initial image.

We demonstrate that our method produces visually high-quality results in recovering missing

pixels, and state-of-the-art levels of unsupervised performance on superresolution, deblurring

and compressive sensing.

5.1 Constrained sampling algorithm

Consider the distribution of a noisy image, 𝑦, conditioned on the linear measurements, 𝑥𝑐 =

𝑀𝑇𝑥 . Without loss of generality, we assume the columns of the matrix M are orthogonal unit

vectors.1 We project 𝑦 onto two complementary subspaces spanned by the measurement matrix

and its orthogonal complement �̄� . We write the conditional density of the noisy image conditioned
1If not, we can re-parameterize to an equivalent constraint using the SVD. In this case,𝑀 is the pseudo-inverse of

𝑀𝑇 , and the matrix𝑀𝑀𝑇 projects an image onto the measurement subspace.
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on the linear measurement as

𝑝 (𝑦 |𝑥𝑐) = 𝑝 (𝑦𝑐, 𝑦𝑢 |𝑥𝑐) = 𝑝 (𝑦𝑢 |𝑦𝑐, 𝑥𝑐)𝑝 (𝑦𝑐 |𝑥𝑐) = 𝑝 (𝑦𝑢 |𝑥𝑐)𝑝 (𝑦𝑐 |𝑥𝑐)

where 𝑦𝑐 = 𝑀𝑇𝑦, 𝑦𝑢 = �̄�𝑇𝑦. The last equality is obtained by considering that 𝑦𝑐 is equal to 𝑥𝑐

plus independent Gaussian noise. So given 𝑥𝑐 , 𝑦𝑐 does not provide any additional information

about 𝑦𝑢 . That is, 𝑦𝑢 is independent of 𝑦𝑐 when conditioned on 𝑥𝑐 . As with SISA algorithm of

Section 2.2, we wish to obtain a local maximum of this function using stochastic coarse-to-fine

gradient ascent. Applying the operator 𝜎2∇ log(·) yields

𝜎2∇𝑦 log𝑝 (𝑦 |𝑥𝑐) = 𝜎2∇𝑦 log𝑝 (𝑦𝑢 |𝑥𝑐) + 𝜎2∇𝑦 log𝑝 (𝑦𝑐 |𝑥𝑐)

The second term is the gradient of the log of the observation noise distribution that lies within

the measurement subspace (column space of M). For Gaussian noise with variance 𝜎2, it reduces

to𝑀 (𝑦𝑐 − 𝑥𝑐). The first term is the gradient of log of the noisy image distribution in the subspace

orthogonal to the measurement subspace, conditioned on the measurements. This can be computed

by projecting the measurement subspace out of the full gradient given by the denoiser residual.

Specifically, we project 𝑓 (𝑦) onto the orthogonal complement of 𝑀 using the matrix 𝐼 −𝑀𝑀𝑇 .

Combining these gives:

𝜎2∇𝑦 log𝑝 (𝑦) = (𝐼 −𝑀𝑀𝑇 )𝜎2∇𝑦 log𝑝 (𝑦) +𝑀 (𝑥𝑐 − 𝑦𝑐)

= (𝐼 −𝑀𝑀𝑇 ) 𝑓 (𝑦) +𝑀 (𝑥𝑐 −𝑀𝑇𝑦). (5.1)

Thus, we see that the gradient of the conditional density is partitioned into two orthogonal

components, capturing the gradient of the (log) noisy density, and the deviation from the con-

straints, respectively. To draw a high-probability sample from 𝑝 (𝑥 |𝑥𝑐), we use the same algorithm

described in Section 2.2, substituting Eq. (5.1) for the deterministic update vector, 𝑑𝑡 (see Algorithm
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3 and Figure 5.2). Note that without any measurements (i.e., 𝑀 = 0) Algorithm 3 reduces to

Algorithm 1.

Algorithm 3: Stochastic iterative score ascent (SISA) method for sampling from 𝑝 (𝑥 |𝑀𝑇𝑥 = 𝑥𝑐),
based on the residual of a denoiser, 𝑓 (𝑦) = 𝑥 (𝑦) − 𝑦. Note: 𝑒 is an image of ones.
parameters: 𝜎0, 𝜎𝐿 , ℎ0, 𝛽 ,𝑀 , 𝑥𝑐
initialization: t=1; draw 𝑦0 ∼ N(0.5(𝐼 −𝑀𝑀𝑇 )𝑒 +𝑀𝑥𝑐 , 𝜎2

0 𝐼 )
while 𝜎𝑡−1 ≥ 𝜎𝐿 do

ℎ𝑡 =
ℎ0𝑡

1+ℎ0 (𝑡−1) ;
𝑑𝑡 = (𝐼 −𝑀𝑀𝑇 ) 𝑓 (𝑦𝑡−1) +𝑀 (𝑥𝑐 −𝑀𝑇𝑦𝑡−1);
𝜎2
𝑡 =

| |𝑑𝑡 | |2
𝑁

;
𝛾2
𝑡 =

(
(1 − 𝛽ℎ𝑡 )2 − (1 − ℎ𝑡 )2

)
𝜎2
𝑡 ;

Draw 𝑧𝑡 ∼ N(0, 𝐼 );
𝑦𝑡 ← 𝑦𝑡−1 + ℎ𝑡𝑑𝑡 + 𝛾𝑡𝑧𝑡 ;
𝑡 ← 𝑡 + 1

end
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Figure 5.2: Block diagrams for denoiser training, and Universal Inverse Sampler. Top: A parametric blind
denoiser, 𝐷𝜃 (·), is trained to approximate 𝑥 (𝑦) by minimizing mean squared error when removing additive
Gaussian white noise (𝑧) of varying amplitude (𝜎) from images drawn from a training distribution. The
trained denoiser parameters, 𝜃 , constitute an implicit model of this distribution. Bottom: The trained
denoiser is embedded within an iterative computation to draw samples from this distribution, starting from
initial image 𝑦0, and conditioned on a low-dimensional linear measurement of a test image: 𝑥 ∼ 𝑝 (𝑥 |𝑥𝑐),
where 𝑥𝑐 = 𝑀𝑇𝑥 . If measurement matrix𝑀 is empty, the algorithm draws a sample from the unconstrained
distribution. Parameter ℎ0 ∈ [0, 1] controls the step size, and 𝛽 ∈ [0, 1] controls the stochasticity (or lack
thereof) of the process.
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5.2 Linear inverse examples

We evaluate our method on five linear inverse problems. The same algorithm and pa-

rameters are used on all problems - only the measurement matrix 𝑀 and measured values

𝑀𝑇𝑥 are altered. In particular, as in section 2.2.2, we used BF-CNN, and chose parameters

𝜎0 = 1, 𝜎𝐿 = 0.01, ℎ0 = 0.01, 𝛽 = 0.01. For each example, we show original images (𝑥), the

direct least-squares reconstruction (𝑀𝑀𝑇𝑥), and restored images. Subjective assessment of per-

ceptual quality is particularly important in cases where the measurement matrix is of very low

rank, and the distribution of solutions is diverse (the synthesis examples of the previous section

correspond to the limiting case, with measurements of rank zero). We also provide numerical

comparisons with other unsupervised methods, in terms of both PSNR and SSIM (an approximate

measure of perceptual quality). Since our method is stochastic, we provide standard deviations of

these performance values across 10 realizations.

5.2.1 Spatial super-resolution

Here, one aims to reconstruct a high resolution image from a low resolution (i.e. downsampled)

image. Downsampling is typically performed after lowpass filtering, and the downsampling factor

and filter kernel determine the measurement model,𝑀 . Here, we use a 4 × 4 constant filter, and

4 × 4 downsampling (i.e., measurements are averages over non-overlapping blocks). We compare

to two recent unsupervised methods Deep image Prior (DIP) (Ulyanov et al., 2020) and DeepRED

(Mataev et al., 2019). DIP chooses a random input vector, and adjusts the weights of a CNN to

minimize the mean square error between the output and the corrupted image. Regularization

by denoising (RED) is a recent successful method closely related to P&P (Romano et al., 2017b).

DeepRED (Mataev et al., 2019) combines DIP and RED, obtaining better performance than either

method alone.

Inspection of results on two example images demonstrates that our method produces results
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cropped low res DIP DeepRED Ours Ours:avg

Figure 5.3: Spatial super-resolution. First column shows cropped portion of original images from Set14
(face: 272 × 272 and, Barbara: 720 × 576). The SISA algorithm can be applied to images of any resolution
- we show cropped portions to facilitate visual inspection. Second column shows cropped portion with
resolution reduced by averaging over 4x4 blocks (dimensionality reduction to 6.25%). Next three columns
show reconstruction results obtained using DIP (Ulyanov et al., 2020), DeepRED (Mataev et al., 2019), and
our method. In all cases, our method produces an image that is sharper with less noticeable artifacts (e.g.,
note blocking/aliasing artifacts along diagonal contours of lower image). The last column shows an average
over 10 samples obtained by our method.

that are sharper with less noticeable artifacts (Fig. 5.3). Despite this, the PSNR and SSIM values are

slightly worse than both DIP and DeepRED (Table 5.1). These can be improved by averaging over

realizations (last column of Table 5.1), producing superior PSNR and SSIM values at the expense of

some blurring (last column of Fig. 5.3). This is expected: the algorithm produces high-probability

samples of the prior subject to the measurement constraint, but the least-squares optimal solution

is the mean of the posterior distribution. If the samples are drawn from a curved manifold, their

average (a convex combination of those points) will lie off the manifold. Finally, note that our

method is more than two orders of magnitude faster than either DIP or DeepRED (bottom row,

Table 5.1).
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Table 5.1: Spatial super-resolution performance over Set5 (top 2 rows) and Set14 (second 2 rows). Values
indicate YCbCr-PSNR (SSIM). Last row shows average Set14 runtime on a DGX GPU.

𝑀𝑀𝑇𝑥 DIP DeepRED Ours±std Ours:avg

4:1 26.35 (0.826) 30.04 (0.902) 30.22 (0.904) 29.47±0.09 (0.894±0.001) 31.20 (0.913)
8:1 23.02 (0.673) 24.98 (0.760) 24.95 (0.760) 25.07±0.13 (0.767±0.003) 25.64 (0.792)

4:1 24.65 (0.765) 26.88 (0.815) 27.01 (0.817) 26.56±0.09 (0.808±0.001) 27.14 (0.826)
8:1 22.06 (0.628) 23.33 (0.685) 23.34 (0.685) 23.32±0.11 (0.681±0.002) 23.78 (0.703)

runtime (sec): 1,190 1,584 9 10 × 9

Table 5.2: Spectral super-resolution (deblurring) performance over Set5, in YCbCr-PSNR (SSIM).

Ratio 𝑀𝑀𝑇𝑥 DIP DeepRED Ours±std Ours:avg

10% 30.2 (0.91) 32.54 (0.93) 32.63 (0.93) 31.82±0.08 (0.93±0.001) 32.78 (0.94)
5% 27.77 (0.85) 29.88 (0.89) 29.91 (0.89) 29.22±0.14 (0.89±0.002) 30.07 (0.90)

5.2.2 Deblurring (spectral super-resolution)

The applications described above are based on partial measurements in the pixel domain.

Here, we consider a blurring operator that retains a set of low-frequency coefficient in the Fourier

domain, discarding the rest. This is equivalent to convolving the image with a sinc kernel. In

this case,𝑀 consists of the preserved low-frequency columns of the discrete Fourier transform,

and 𝑀𝑀𝑇𝑥 is the blurred version of 𝑥 . Example images are shown in Fig. 5.4 and numerical

comparisons are shown in Table 5.2. Our method produces strong results, both perceptually and

numerically.

Table 5.3: Compressive sensing performance over Set68 (Martin et al., 2001). Values indicate PSNR (SSIM).
TVAL3 (Li et al., 2013), ISTA-Net (Zhang and Ghanem, 2018), DIP (Ulyanov et al., 2020), BNN (Pang et al.,
2020)

Ratio TVAL3 ISTA-Net DIP BNN Ours±std Ours:avg

25% 26.48 (0.77) 29.07 (0.84) 27.78 (0.80) 28.63 (0.84) 29.16±0.033 (0.88±0.001) 29.74(0.89)
10% 22.49 (0.58) 25.23 (0.69) 24.82 (0.69) 25.24 (0.71) 25.47±0.03 (0.78±0.001) 25.84 (0.80)
4% 19.10 (0.42) 22.02 (0.54) 22.51 (0.58) 22.52 (0.58) 22.07±0.05 (0.68±0.002) 22.29 (0.69)

runtime (sec) 3.1 (CPU) 0.04 ? 1,680 32 32 × 10
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cropped blurry DIP DeepRED Ours Ours:avg

Figure 5.4: Deblurring (spectral super-resolution). Measurements correspond to lowest 5% of frequencies.
Original images are from Set5 (butterfly of size 256 × 256 and woman of size 224 × 336.

5.2.3 Compressive sensing

Compressive sensing (Candès et al., 2006; Donoho, 2006) provides a set of theoretical results

regarding recovery of sparse signals from a small number of linear measurements. Specifically, if

one assumes that signals can be represented with at most 𝑘 << 𝑁 non-zero coefficients in a known

basis, they can be recovered from a measurements obtained by projecting onto a surprisingly small

number of axes (approaching 𝑘 log(𝑁 /𝑘)), far fewer than expected from traditional Shannon-

Whitaker sampling theory. The theory relies on the sparsity property, which corresponds to a

“union of subspaces” prior (Blumensath and Davies, 2009), and on the measurement axes being

incoherent (essentially, weakly correlated) with the sparse basis. Typically, one chooses a sensing

matrix containing a set of 𝑛 << 𝑁 random orthogonal axes. Recovery is achieved by solving the

sparse inverse problem, using any of a number of methods.

Photographic images are not truly sparse in any fixed linear basis, but they can be reasonably
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approximated by low-dimensional subsets of Fourier or wavelet basis functions, and compressive

sensing results are typically demonstrated using one of these. The manifold prior embedded within

our CNN denoiser corresponds to a nonlinear form of sparsity, and analogous to sparse inverse

algorithms used in compressed sensing, SISA algorithm can be used to recover an image from a

set of linear projections onto a set of random basis functions. Figure 5.5 shows four examples of

images recovered from random projections using our denoiser-induced manifold prior, versus a

sparse discrete cosine transform (DCT) prior. In all cases, the denoiser-recovered images exhibit

sharper edges, more detail, and fewer artifacts. Numerical performance, in terms of both PSNR

and SSIM, is consistent with the perceptual comparison.

We also compare to four other methods. TVAL3 (Li et al., 2013) is an optimization algorithm

using total variation regularization, ISTA-Net (Zhang and Ghanem, 2018) is a block-based su-

pervised CNN method trained to reconstruct images from measurements obtained from a single

pre-specified measurement matrix. BNN (Pang et al., 2020) is an unsupervised Bayesian method

for solving compressive sensing problems. DIP (Ulyanov et al., 2020) was previously described.

Fig. 5.6 shows results for two example images, and Table 5.3 summarizes numerical performance.

All values are taken from (Pang et al., 2020) except for ISTA-Net which were obtained by running

the open-source code. Our method generally outperforms all other methods, even those that are

specialized for Compressive Sensing (ISTA-NET, BNN).
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31.1, 0.96 34.6, 0.99 36.7, 0.98 22.8, 0.78 25.2, 0.83 24.6, 0.77

22.7, 0.73 24.7, 0.71 27.4, 0.79 17.1, 0.41 19.9, 0.47 19.8, 0.49

23.4, 0.76 27.6, 0.86 30.4, 0.90 16.2, 0.40 19.5, 0.51 17.5, 0.43

Figure 5.5: Compressive sensing. Measurement matrix𝑀 contains random, orthogonal unit vectors, with
dimensionality reduced to 30% for the first three columns, and 10% for last three columns. As in previous
figures, top row shows original images (𝑥 ), and second row is linear (pseudo-inverse) reconstruction (𝑀𝑀𝑇𝑥 ).
Third row: images recovered using our method. Fourth row: standard compressive sensing solutions,
assuming a sparse DCT signal model. Last row: standard compressive sensing solutions, assuming a sparse
wavelet (db3) signal model. Numbers indicate performance, in terms of PSNR (dB), and SSIM (Wang et al.,
2004b).
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original measured ISTA-Net Ours

Figure 5.6: comparison with a deep net method in compressive sensing. Measurement matrix𝑀 contains
random orthogonal unit vectors, whose number is equal to 10% of the number of image pixels (300 × 300).
Third column: images recovered using ISTA-Net (Zhang and Ghanem, 2018)(trained with supervision for
a particular measurement matrix). Fourth column: Our method, which again is seen to exhibit fewer
artifacts.

5.2.4 Inpainting

A simple example of a linear inverse problem involves restoring a block of missing pixels,

conditioned on the surrounding content. Here, the columns of the measurement matrix𝑀 are a

subset of the identity matrix, corresponding to the measured (outer) pixel locations. We choose a
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missing block of size 30× 30 pixels, which is less than the size of the receptive field of the BF-CNN

network (40 × 40), the largest extent over which this denoiser can be expected to directly capture

joint statistical relationships. Figure 5.7 shows examples. Figure 5.8 illustrates the stochasticity of

our method in solving inverse problems.

Figure 5.7: Inpainting examples. Top row: original images (𝑥). Middle: Images corrupted with blanked
region (𝑀𝑀𝑇𝑥). Bottom: Images restored using SISA algorithm.
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Figure 5.8: Sampling diversity. Inpainting examples generated using two BF-CNN denoisers trained on (1)
MNIST, (2) Berkeley grayscale segmentation dataset (3) Berkeley color segmentation dataset. First column:
original images. Second column: partially measured images, with missing block . Right three columns:
Restored examples, arising from different random initializations, 𝑦0.

5.2.5 Random missing pixels

Consider a measurement process that discards a random subset of pixels. 𝑀 is a low rank

matrix whose columns consist of a subset of the identity matrix corresponding to the randomly

chosen set of preserved pixels. Figure 5.9 shows examples with 10% of pixels retained. Despite the

significant number of missing pixels, the recovered images are remarkably similar to the originals.
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Figure 5.9: Recovery of randomly selected missing pixels. 10% of dimensions retained. Top row: original
images, 𝑥 . Middle: projection onto measurements,𝑀𝑀𝑇𝑥 , Bottom: images recovered using SISA algorithm.

5.2.6 colorization

Another example of a linear inverse problem is colorization. A grayscale image can be

interpreted as a partial measurement of a color image, where the measurement is the sum of the

three RGB channels. The measurement matrix can be constructed accordingly. Figure 5.10 shows

examples of grayscale image, colorized using the universal inverse problem algorithm. The colors

are realistic and show consistency across continuous region.

113



More linear examples: Colorization 

Original measurement Sample

Figure 5.10: Colorization of grayscale images. Left column: original images, 𝑥 . Middle: grayscale images.
Right column: colorized images

5.2.7 Reconstruction from retinal cone excitations

We 2 can use the inverse problem solver to understand representations of biological vision.

When photons land on the retina, they elicit responses from the cone photoreceptor. This response

is a partial measurement of the totality of light reflected from an object. Our brains, arguably, rely

on an internal prior of images to make sense of this partial measurement.

An interesting observation about human retina is its huge diversity in terms of proportions of

the three types of cone cells. In most humans, cone cells in the retina consist of three types: L, M,

S, which respond to long, medium and short wavelength respectively. Surprisingly, the ratio of
2This is part of the result presented in (Zhang et al., 2022b) in collaboration with Ling-Qi Zhang and David

Brainard.
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L-cones to M-cones varies tremendously across individuals (Hofer et al., 2005) (see top part of

Figure 5.11). However, it appears that our perception is invariant across this diversity. It turns out

that the denoiser prior is aligned with human prior in this regard.

We use the iSet-Bio package (Cottaris et al., 2019) to simulate the cone photoreceptor array of 8

individuals, ranging from low to high L-cone to M-cone ratio. The red asterisks in Figure 5.11 mark

these ratios for human subjects. Then we use our method to reconstruct images from the simulated

cone measurements. The plot on the right in Figure 5.11 shows the error of reconstruction using

the denoiser prior. Each curve shows contours of constant reconstruction error. For comparison,

on the left we show the reconstruction error using a sparse image prior. Interestingly, all the

human cones are similar in terms of reconstruction error and they all fall within the elongated

global minimum area. On the contrary, the sparse prior leads to different reconstruction error in

different subjects, which is not consistent with perceptual reports.

Figure 5.11: Reconstruction from cone excitations is robust to cone cell proportions under the denoiser
prior. Top. Example data from 4 human subjects. Bottom right. Contour plot pf reconstruction error
assuming denoiser prior. The measurements are taken from 8 simulated retina shown by asterisks. Bottom
left. Contour plot pf reconstruction error assuming sparse prior (Zhang et al., 2022a).
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5.2.8 de-qantization

Image compression is an important tool in signal communication. The most popular com-

pression technique is JPEG, in which the image is encoded using block DCT. Then coefficients

are quantized into bins. The severity of quantization varies depending on the desired size of

the compressed image, determined by a trade-off between the quality and the number of bits

(rate-distortion) allocated. Decoding the image, specially from severely compressed images causes

visible distortions in the form of blur, artifact and blocking effects. We use Algorithm 3 to remove

these artifacts and improve the quality of the image using the denoiser prior.

This problem is a simple case of a non-linear inverse problem, in which the measurements

(quantized DCT coefficients) are constrained to be within a convex set (the corresponding bin),

rather than lying on a hyper-plane. We modify the algorithm to handle projection onto a convex

set. At each iteration, the image is modified following the direction of gradient provided by the

denoiser. Then the constraint is enforced by projecting the altered coefficients to the convex set

determined by the bin boundaries.
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Non-linear inverse: de-quantization 

Sample

Sample

Original

Original

3 bits

JPEG blocking artifacts

Figure 5.12: de-quantization. Top row: An original 8-bit image is quantized in the pixel domain to a 3-bit
image. The last column shows a reconstruction from the 3-bit image. Bottom row: The same image is
compressed using JPEG method, and improved through reconstruction using the deoniser prior.

5.2.9 reconstructing from noisy measurements

Finally, we extend our algorithm to handle noisy partial measurements. In real world, all mea-

surements obtained by sensing systems are noisy. Here we assume Gaussian noise for simplicity.

Generalizing this result to other noise models is a future direction, with important implications

for practice.

Intuitively, when the measurements are noisy, we do not aim to perfectly satisfy the constraint,

as that results in noisy reconstruction. With increasing measurement noise, the reliance on the

measurement decreases and the reconstruction becomes more prior-reliant. Hence, we modify the

update line in Algorithm 3 to account for the measurement noise:
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𝑑𝑡 = (𝐼 −
𝜎2

𝜎2 + 𝜎2
𝑤

𝑀𝑀𝑇 ) 𝑓 (𝑦𝑡−1) +
𝜎2

𝜎2 + 𝜎2
𝑤

𝑀 (𝑥𝑐 −𝑀𝑇𝑦𝑡−1)

where 𝜎𝑤 is the standard deviation of the measurement noise.More linear examples: Noisy measurement 

Noisy & low resolution Sample

Noisy & blurry Sample

Noisy & missing pixels Sample

d = fy − ( σ2

σ2 + σ2
w

)MMTfy + ( σ2

σ2 + σ2
w

)MMT(y − x)

d = (I − σ2
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w
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w

)MMT(y − x)

Figure 5.13: reconstructing from noisy measurements
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Table 5.4: Run time, in seconds, and (number of iterations until convergence) for different applications,
averaged over images in Set12, on an NVIDIA RTX 8000 GPU. The cost of running the algorithm can
be divided into two parts: number of iterations, and cost per iteration. Number of iterations for all
applications except for inpainting is in the same order. Solving inpainting with this algorithm requires
information to spread in from the borders of the missing block, which in turn requires more iterations.
Cost of each iteration, aside from the cost of denoiser’s forward pass, comes from𝑀𝑀𝑇𝑥 operation. For
all applications, except for CS, dot products can be reduced to more efficient operations such as Hadamard
products or filtering. In CS,𝑀 contains random vectors, so measurements require full matrix multiplication.
Consequently, CS takes longer per iteration.

Inpainting 30 × 30 Missing pixels 10% SISR 4:1 Deblurring 10% CS 10%

15.7 (647) 7.8 (313) 7.6 (301) 8.4 (332) 32.5 (317)

5.3 Optimal linear measurements

In Section 5.2 we demonstrated that the denoiser prior can be utilized to solve any linear

inverse problems. A striking observation regarding these solutions is that for a given image and a

fixed number of measurements, the quality of the solution is highly dependent on the task itself. In

other words, not all measurement procedures are equally effective if the objective is to reconstruct

the image from a low dimensional measurement using the prior. This observation gives rise to a

fundamental question: Given a specific signal prior, what is the optimal set of low-dimensional

linear measurements?

The optimality of the measurements is defined with respect to the prior. For example, for a

Gaussian prior, the optimal set of linear measurements are the top principal components (PCs), and

the minimal squared error reconstruction is in turn achieved through a simple linear projection

onto those PCs. However, the Gaussian prior falls short of capturing important higher-order

dependencies in natural images, resulting in poor reconstruction quality.

With the emergence of sparse priors, an important breakthrough in developing better linear

Results in this section are presented in (Zhang et al., 2024) in collaboration with Ling-Qi Zhang and David
Brainard
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measurements arose. The seminal work by Donoho (Donoho, 2006) in compressed sensing (CS)

proved that when the signal lies within a union of subspaces (a type of sparse prior), the optimal

measurements are incoherent with the axes of the signal subspaces, and are well-approximated by

a set of randomly chosen vectors. Under this setting, an iterative non-linear reconstruction from

low-dimensional linear measurements can achieve near-perfect recovery (Tropp, 2006). The sparse

prior is well-suited to describe some signal classes such as medical images, leading to significant

empirical improvements.

The statistical characterization underlying PCA and CS assumes alignment of signal content

along principal component axes or subspaces, but this assumption does not adequately capture

the statistical structure of natural images (Ballé et al., 2016; Portilla et al., 2003b). In support of

this, previous work (Weiss et al., 2007) has demonstrated that random measurements outperform

PCs only on idealized sparse signals, but not on natural images.

We re-visit the question of optimal linear measurement for inverse problems, with respect

to the prior implicit in a denoiser. Specifically, we develop a framework for optimizing a set of

linear measurements in order to minimize the error obtained from nonlinear reconstruction via

Algorithm 3. This enables us to analyze the impact of natural image statistics on the Optimized

Linear Measurements (OLM). We demonstrate that these measurements

(1) vary substantially with the training dataset (e.g., digits vs. faces); See Figure 5.14

(2) vary with the choice of reconstruction loss (e.g., MSE vs. SSIM); See Figure 5.15

(3) are distinct from those of PCA and CS; See Figure 5.14

(4) lead to substantial performance improvements over PCA and CS. See Figure 5.16 and 5.17

This work provides yet another example of the impressive improvements that can be achieved by

applying modern ML methods to foundational problems of signal processing. For more detail, see

(Zhang et al., 2024).
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Figure 5.14: Analysis of optimized measurement vectors. A) Left: Twenty-five selected principal compo-
nents of the MNIST dataset are visualized as images. They are ordered by variance explained from top to
bottom, and left to right. Right: Twenty-five components from the columns of the OLM for 𝑘 = 64. B) Same
as A) but for the CelebA dataset. C) The variance of the measurement on each component as a function of
number of measurements (𝑘) for the PCs (blue) and OLMs (red). Note that the optimal measurements are
sorted post hoc based on the variance explained by each component. These vectors are optimized jointly
for each 𝑘 and are not ordered by the algorithm itself. D) The Grassmann distance betweensubspaces
spanned by different linear measurements as a function of 𝑘 (Hamm and Lee, 2008). We show the distance
between subspaces spanned by PCs obtained on two random halves of the training data (blue), between
subspaces spanned by PCs and OLM (blue), and between subspaces spanned by PCs and a set of random
measurements (green).

5.4 Related work

Nearly a decade ago, a strategy known as Plug-and-Play (P&P) was proposed for using a

denoiser as a regularizer in solving other inverse problems (Venkatakrishnan et al., 2013), and a

number of recent extensions have used this concept to develop MAP solutions for linear inverse

problems (Chan et al., 2017; Kamilov et al., 2017; Mataev et al., 2019; Meinhardt et al., 2017; Reehorst

and Schniter, 2019; Romano et al., 2017b; Sun et al., 2019; Teodoro et al., 2019; Zhang et al., 2017c).

Generally, the objective is decoupled into data fidelity and regularization terms, introducing a

slack variable for use in a proximal optimization algorithm (e.g., ADMM). The proximal operator of
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Figure 5.15: Optimal measurement for perceptual loss (structural similarity index measure - SSIM) (Wang
et al., 2004a). A) Left: SSIM as a function of number of measurement 𝑘 , for PC projection, PC, and OLM
optimized for MSE and SSIM, all three using the denoiser prior. The number indicates the increase in
SSIM from OLM optimized for MSE to OLM optimized for SSIM. Right: Scatter plot of the SSIM value for
individual images, for OLM optimized for SSIM (x-axis) and MSE (y-axis), respectively. B) Example linear
inverse solutions obtained from different measurement matrices combined with the denoiser prior. The
numbers indicate the SSIM value for each individual image. C) Example measurement vectors from the
OLM optimized for SSIM.

the regularization term is interpreted as the MAP solution of a denoising problem, and is replaced

by a denoiser. The main drawback of the P&P framework is its reliance on a MAP denoiser, which

is not easy to obtain. As a result, virtually all methods within this framework replace the MAP

denoiser with an MMSE denoiser in practice, which breaks the convergence rules. However, recent

publications have proven convergence of such algorithms when used in conjunction with MMSE

denoisers (Laumont et al., 2021; Xu et al., 2020).

Our method is conceptually similar to P&P in that it uses a denoiser to solve linear inverse

problems. But it differs in a number of important ways: (1) direct relationship between prior and

denoiser mapping. The rationale for using a denoiser as a regularizer in P&P frameworks arises

from interpreting the proximal operator of the regularizer as a MAP solution of a denoising

problem, providing an indirect connection to prior; We derive our method from Miyasawa’s

relationship between an MMSE denoiser and the prior, which is exact and explicit, and makes the

algorithm interpretable. This connection has also been made in (Laumont et al., 2021; Xu et al.,

2020). (2) sampling vs. MAP estimation. We obtain a high probability image from the implicit prior

that is consistent with a linear constraint. Our solution is stochastic, and does not minimize MSE,
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Figure 5.16: Reconstruction from optimal measurements. Columns show the PC projection, three
conditional samples from the denoiser prior using the PCs, and three samples using the OLMs, respectively.
Rows correspond to increasing number of measurements, 𝑘 . The numbers indicate the PSNR value of the
reconstructions, obtained by averaging over 16 samples.

but has high perceptual quality. RED and other P&P methods are derived as MAP solutions, and

although this is not equivalent to minimizing MSE (maximizing PSNR), the results generally have

better PSNR than our sampling results, but are visually more blurred (see Figs. 5.3 and 5.4); (3)

automatic step-size selection and convergence. P&P, which uses ADMM for optimization, relies on

hyper-parameter selection that are critical for convergence (as discussed extensively in (Romano

et al., 2017b)). Our algorithm adjusts step-size automatically using the blind denoiser, with only
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Figure 5.17: Performance of the optimized linear measurements, for A)MNIST and B) CelebA datasets.
Left panel shows the peak signal-to-noise ratio (PSNR) as a function of the number of measurements 𝑘 ,
for linear reconstruction from PCs (blue), denoiser prior reconstruction from PCs (orange), denoiser prior
reconstruction from random measurements (green), and denoiser prior reconstruction from OLMs (red).
Numbers indicate increase in PSNR from PC + denoiser prior compare to OLM + prior. The right panel
shows a scatter plot comparing the PSNR values using the OLM (x-axis), and PCs (y-axis), over the images
in the test set, for a value of 𝑘 around 10% of the total number of pixels. Red points mark those shown in
the examples of Figure 5.16.

two primary hyper-parameters (ℎ0 and 𝛽), and convergence is robust to choices of these (Fig. 2.2).

5.5 Discussion

We’ve described a framework for using the prior embedded in a denoiser to solve inverse

problems. Specifically, we developed a stochastic iterative score ascent algorithm that uses the

denoiser to draw high-probability samples from its implicit prior, and a constrained variant that

can be used to solve any deterministic linear inverse problem. To demonstrate the generality

of our algorithm, we showed solving several inverse problems using the same algorithm and

parameters, without any additional training. Finally, we empirically demonstrated its efficiency in

Table 5.1. Denoisers can be trained supervised on unlimited amounts of unlabeled data, and as

such, our method extends the power of supervised learning to a much broader set of problems,

with no additional training.

As mentioned previously, the performance of our method is not well-captured by comparisons

to the original image (using, for example, PSNR or SSIM). Performance should ultimately be tested
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using experiments with human observers, which might be approximated using a no-reference

perceptual quality metric (e.g., (Ma et al., 2018)). Handling of nonlinear inverse problems is a

natural extension of the method which requires modification of the algorithm. Another potential

extension is generalization to stochastic linear inverse problems, 𝑥𝑐 = 𝑀𝑥 + 𝑒 , where 𝑒 is any type

of noise.

Additionally, we showed that we can find optimal linear measurements, using our reconstruc-

tion method based on a learned prior embedded in a denoiser. We showed numerically that the

set of linear measurements found through our method, result in superior image reconstruction.

This result shows that for signals with non-Gaussian distributions, better measurements exist for

minimizing MSE, even though projections onto the PCs maximize the explained variance. We

show that the optimal measurement are sensitive to both the statistics of the image dataset, and

to the objective function for which they are optimized. Our results highlight the importance of

accurately modeling the statistics of the signals to design efficient linear measurements.

125



6 | Discussion

This thesis explores image density models in the era of deep learning. We propose a methodol-

ogy to learn a prior from data and sample from it, which was thought to be impossible before the

advent of deep neural networks. The learned prior is sophisticated, powerful, and mysterious,

hence a very interesting subject of study.

A foundational question regarding the learned prior is whether it is a "good" approximation of

the true underlying density. Indeed measuring the optimality of the density is not straightforward

since we do not (and will never) have access to the true image density. Regardless, we can invent

and use proxies for evaluating optimality. We approach this question in Chapter 3 by designing

an experiment to measure the convergence of model variance. We showed that, with large yet

realizable datasets, the learned density becomes independent of the specific examples in the

training set, indicating strong generalization defined as zero model variance. In this regime

the learned prior is well-defined over a continuous set, achieved through interpolation between

training images. Thereby, samples drawn from a density model in the generalization regime are

novel and diverse. On the contrary, if the model manages to memorize the training examples, the

diversity of the samples is limited to the diversity of the training set. This case corresponds to a

high model variance, since changing the training set maximally affects the learned density.

A low model variance, or high sample diversity, is not a sufficient measure of a "good" density

approximation. In addition to high sample diversity, we would like high sample quality. Zero

model variance can be achieved by reducing the neural network capacity, which can result in
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diverse but low quality samples. For a model with zero variance, high sample quality is a proxy

for low model bias. Measuring sample quality, although difficult, is more tractable than evaluating

model bias.

In Chapter 3 we demonstrated that for a fixed image resolution and network capacity, the model

resides in three different regimes as a function of training set size. For small number of training

images, the network memorizes the training set, leading to high quality but low diversity samples.

By increasing the dataset, the model enters a transition phase where the diversity increases but

the quality degrades drastically. Eventually the model enters a generalization regime, where both

image quality and diversity are high. This feat is due to the alignment of inductive biases of the

network with the characteristics of the distribution. These inductive biases manifest themselves

in the form of an adaptive harmonic basis. Assuming a manifold hypothesis, top directions of the

basis reveal the tangent plane of the manifold locally.

Revealing the inductive biases of the network is key in understanding the prior and improving

it. To this end, in Chapter 2 we modify the architecture to achieve algebraic homogeneity, which

promotes intensity invariance in the learned prior. Along the same lines, in Chapter 4, we introduce

a conditional local multi-scale architecture to verify and incorporate a locality assumption about

images. The results presented in the chapter demonstrate that introducing inductive biases

inspired by image distribution structures directly results in reducing network parameters, hence

dramatically decreasing the number of training images needed to generalize.

Having access to learned priors embedded in DNN naturally leads to many more questions

and opens numerous research possibilities. An important component missing from the picture

is an explicit internal representation. Unlike VAEs, it is not immediately obvious where in the

network the internal representation reside and how to access it. If successfully obtained, then it

can be used as an effective embedding in a variety of downstream tasks, such as solving non-linear

inverse problems, proper conditioning during sampling, or defining similarity metrics.

This thesis present a collection of studies that fall under the emerging field of science of
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deep learning. We used carefully designed experiments to validate or falsify hypotheses formed

through empirical observations and intuitions. The ultimate goal is not to beat the state-of-the-art

performance, but to understand the mechanisms of deep nets and then employ the understanding

to improve generalization properties of our models. And we have just begun!
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A | Learning image densities from data

using a denoiser

A.1 Description of denoising architectures

In this section we describe the denoising architectures used for our computational experiments

in more detail.

A.1.1 DnCNN

We implement BF-DnCNN based on the architecture of the Denoising CNN (DnCNN) (Zhang

et al., 2017a). DnCNN consists of 20 convolutional layers, each consisting of 3 × 3 filters and 64

channels, batch normalization (Ioffe and Szegedy, 2015), and a ReLU nonlinearity. It has a skip

connection from the initial layer to the final layer, which has no nonlinear units. To construct

a bias-free DnCNN (BF-DnCNN) we remove all sources of additive bias, including the mean

parameter of the batch-normalization in every layer (note however that the scaling parameter is

preserved).
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A.1.2 Recurrent CNN

Inspired by (Zhang et al., 2018a), we consider a recurrent framework that produces a denoised

image estimate of the form 𝑥𝑡 = 𝑓 (𝑥𝑡−1, 𝑦noisy), at time 𝑡 where 𝑓 is a neural network. We use

a 5-layer fully convolutional network with 3 × 3 filters in all layers and 64 channels in each

intermediate layer to implement 𝑓 . We initialize the denoised estimate as the noisy image, i.e

𝑥0 := 𝑦noisy. For the version of the network with net bias, we add trainable additive constants to

every filter in all but the last layer. During training, we run the recurrence for a maximum of 𝑇

times, sampling 𝑇 uniformly at random from {1, 2, 3, 4} for each mini-batch. At test time we fix

𝑇 = 4.

A.1.3 UNet

Our UNet model (Ronneberger et al., 2015a) has the following layers:

1. conv1 - Takes in input image and maps to 32 channels with 5 × 5 convolutional kernels.

2. conv2 - Input: 32 channels. Output: 32 channels. 3 × 3 convolutional kernels.

3. conv3 - Input: 32 channels. Output: 64 channels. 3 × 3 convolutional kernels with stride 2.

4. conv4- Input: 64 channels. Output: 64 channels. 3 × 3 convolutional kernels.

5. conv5- Input: 64 channels. Output: 64 channels. 3 × 3 convolutional kernels with dilation

factor of 2.

6. conv6- Input: 64 channels. Output: 64 channels. 3 × 3 convolutional kernels with dilation

factor of 4.

7. conv7- Transpose Convolution layer. Input: 64 channels. Output: 64 channels. 4 × 4 filters

with stride 2.
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8. conv8- Input: 96 channels. Output: 64 channels. 3 × 3 convolutional kernels. The input to

this layer is the concatenation of the outputs of layer conv7 and conv2.

9. conv9- Input: 32 channels. Output: 1 channels. 5 × 5 convolutional kernels.

The structure is the same as in (Zhang et al., 2018a), but without recurrence. For the version

with bias, we add trainable additive constants to all the layers other than conv9. This configuration

of UNet assumes even width and height, so we remove one row or column from images in with

odd height or width.

A.1.4 Simplified DenseNet

Our simplified version of the DenseNet architecture (Huang et al., 2017) has 4 blocks in

total. Each block is a fully convolutional 5-layer CNN with 3 × 3 filters and 64 channels in the

intermediate layers with ReLU nonlinearity. The first three blocks have an output layer with 64

channels while the last block has an output layer with only one channel. The output of the 𝑖𝑡ℎ

block is concatenated with the input noisy image and then fed to the (𝑖 + 1)𝑡ℎ block, so the last

three blocks have 65 input channels. In the version of the network with bias, we add trainable

additive parameters to all the layers except for the last layer in the final block.

A.2 Datasets and training procedure

Our experiments are carried out on 180 × 180 natural images from the Berkeley Segmentation

Dataset (Martin et al., 2001). We use a training set of 400 images. The training set is augmented

via downsampling, random flips, and random rotations of patches in these images (Zhang et al.,

2017a). A test set containing 68 images is used for evaluation. We train the DnCNN and it’s bias

free model on patches of size 50 × 50, which yields a total of 541,600 clean training patches. For

the remaining architectures, we use patches of size 128 × 128 for a total of 22,400 training patches.
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We train DnCNN and its bias-free counterpart using the Adam Optimizer (Kingma and Ba,

2014) over 70 epochs with an initial learning rate of 10−3 and a decay factor of 0.5 at the 50𝑡ℎ and

60𝑡ℎ epochs, with no early stopping. We train the other models using the Adam optimizer with an

initial learning rate of 10−3 and train for 50 epochs with a learning rate schedule which decreases

by a factor of 0.25 if the validation PSNR decreases from one epoch to the next. We use early

stopping and select the model with the best validation PSNR.

A.3 Network bias impairs generalization across

architectures
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Figure A.1: First-order analysis of the residual of different architectures: Recurrent-CNN (Section A.1.2),
UNet (Section A.1.3) and DenseNet (Section A.1.4) as a function of noise level. The plots show the magni-
tudes of the residual and the net bias averaged over 68 images in Set68 test set of Berkeley Segmentation
Dataset (Martin et al., 2001) for networks trained over different training ranges. The range of noises used
for training is highlighted in gray. (left) When the network is trained over the full range of noise levels
(𝜎 ∈ [0, 100]) the net bias is small, growing slightly as the noise increases. (middle and right) When the
network is trained over the a smaller range (𝜎 ∈ [0, 55] and 𝜎 ∈ [0, 30]), the net bias grows explosively
for noise levels outside the training range. This coincides with the dramatic drop in performance due to
overfitting, reflected in the difference between the residual and the true noise.
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Figure A.2: Effect of net bias on performance for different architectures. Comparisons of architectures
with (red curves) and without (blue curves) a net bias for the experimental design described in Section 2.3.3.
The performance is quantified by the PSNR of the denoised image as a function of the input PSNR of
the noisy image. All the architectures with bias perform poorly out of their training range, whereas the
bias-free versions all achieve excellent generalization across noise levels. (a) Deep Convolutional Neural
Network, DnCNN (Zhang et al., 2017a). (b) Recurrent architecture inspired by DURR (Zhang et al., 2018a).
(c) Multiscale architecture inspired by the UNet (Ronneberger et al., 2015a). (d) Architecture with multiple
skip connections inspired by the DenseNet (Huang et al., 2017).
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Figure A.3: Effect of net bias on performance in terms of SSIM for different architectures. Comparisons of
architectures with (red curves) and without (blue curves) a net bias for the experimental design described
in Section 2.3.3. The performance is quantified by the SSIM of the denoised image as a function of the input
SSIM of the noisy image. All the architectures with bias perform poorly out of their training range, whereas
the bias-free versions all achieve excellent generalization across noise levels. (a) Deep Convolutional Neural
Network, DnCNN (Zhang et al., 2017a). (b) Recurrent architecture inspired by DURR (Zhang et al., 2018a).
(c) Multiscale architecture inspired by the UNet (Ronneberger et al., 2015a). (d) Architecture with multiple
skip connections inspired by the DenseNet (Huang et al., 2017).
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A.4 Revealing the Denoising Mechanisms Learned by other

architectures

Figure A.4: Visualization of left singular vectors of the Jacobian for different architectures, a BF Recurrent
CNN (top 2 rows), BF UNet (next 2 rows) and BF DenseNet (bottom 2 rows) evaluated on three different
images, corrupted by noise with standard deviation 𝜎 = 25. The left column shows original (clean)
images. The next three columns show singular vectors corresponding to non-negligible singular values. The
vectors capture features from the clean image. The last three columns on the right show singular vectors
corresponding to singular values that are almost equal to zero. These vectors are noisy and unstructured.
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Figure A.5: Analysis of the SVD of the Jacobian of BF-CNN for ten natural images, corrupted by noise of
standard deviation 𝜎 = 50. For all images, a large proportion of the singular values are near zero, indicating
(approximately) a projection onto a subspace (the signal subspace). (a) Recurrent architecture inspired by
DURR (Zhang et al., 2018a). (b)Multiscale architecture inspired by the UNet (Ronneberger et al., 2015a).
(c) Architecture with multiple skip connections inspired by the DenseNet (Huang et al., 2017).
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B | Generalization beyond memorizing

training images

B.1 Experimental details

B.1.1 Training and architecture details

Architectures. We performed empirical experiments using two different architectures: UNet,

and BF-CNN. All the denoisers are “bias-free”: we remove all additive constants from convolution

and batch-normalization operations (i.e., the batch normalization does not subtract the mean).

This facilitates unversality (denoisers can operate at all noise levels), and interpretability (network

transformations are homogeneous of order 1, and the Jacobian provides a local characterization).

UNet networks contain 3 decoder blocks, one mid-level block, and 3 decoder blocks (Ron-

neberger et al., 2015b). Each block consists of 2 convolutional layers followed by a ReLU non-

linearity and bias-free batch-normalization. Each encoder block is followed by a 2 × 2 spacial

down-sampling and a 2 fold increase in the number of channels. Each decoder block is followed

by a 2 × 2 spacial upsampling and a 2 fold reduction of channels. The total number of parameters

is 7.6𝑚.

BF-CNN networks Mohan* et al. (2020) are bias-free versions of DNCNN networks (Zhang

et al., 2017b), contain 21 convolutional layers with no subsampling, each consisting of 64 channels.
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Each layer, except for the first and the last, is followed by a ReLU non-linearity and bias-free

batch-normalization. All convolutional kernels are of size 3 × 3, resulting in 700𝑘 parameters in

total.

Training. We follow the training procedure described in Mohan* et al. (2020), minimizing

the mean squared error in denoising images corrupted by i.i.d. Gaussian noise with standard

deviations drawn from the range [0, 1] (relative to image intensity range [0, 1]). Training is

carried out on batches of size 512, for 1000 epochs. Note that all denoisers are universal and blind:

they are trained to handle a range of noise, and the noise level is not provided as input to the

denoiser. These properties are exploited by SISA sampling algorithm, which can operate without

manual specification of the step size schedule (Kadkhodaie and Simoncelli, 2020). This method

produces high-quality results in generative sampling, as well as sampling conditioned on linear

measurements (Kadkhodaie and Simoncelli, 2021b).

Datasets. For experiments shown in Figures 3.2, 3.3, 3.5 and 3.13, we use the CelebA dataset

(Liu et al., 2015) downsampled to 80 × 80 resolution. For experiments shown in Figure 3.7, we use

images drawn from the LSUN bedroom dataset (Yu et al., 2015) downsampled to 80× 80 resolution.

This dataset is downsampled to 32 × 32 resolution for experiments shown in Figure 3.10. For

experiments shown in Figure 3.8 we use CelebA HQ dataset (Karras et al., 2018) downsampled to

40 × 40 resolution.

137



B.2 Additional numerical results on inductive biases

B.2.1 More C𝛼 examples

Figure B.1: BF-CNN denoisers trained on C𝛼 images of size 40×40 achieve near-optimal performance. Top.
PSNR curves of trained networks for various regularity levels 𝛼 . The empirical slopes achieved for different
values of 𝛼 closely match the optimal slopes (dashed lines). Bottom. Eigenvectors for two C𝛼 images (top
row: 𝛼 = 4, bottom row: 𝛼 = 2), which consist of harmonics on the two regions and harmonics along the
boundary. The frequency of the harmonics increases with 𝑘 . For less regular images, the harmonics are
more localized along the contours.
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Figure B.2: Geometric-adaptive harmonic basis for three test images from C𝛼 class. Here the regularity
of the one-dimensional contours 𝛼1 is different from the regularity of the two-dimensional background
𝛼2. Top. Three example images. The regularity of the contour increases from left to right: 𝛼1 = 1.5, 2, 4.
Background regularity is the same in all three examples, 𝛼2 = 8, and 𝜎 = 0.2. Bottom. Top 10 basis vectors
for each image are shown. With increasing 𝛼1, the contours become more regular, and the harmonics along
the boundaries become less localized. This allows for a faster decay of coefficients and a lower denoising
error.

Figure B.3: Top. An additional example of a 𝐶𝛼 test image with 𝛼 = 3. Bottom. Top eigenvectors of the
geometric harmonic adaptive basis.
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B.3 Mathematical derivations

B.3.1 Miyasawa relationships

The relationship of MMSE estimation of a signal corrupted by additive Gaussian noise to the

score was published in (Miyasawa, 1961), and generalized in (Efron, 2011; Raphan and Simoncelli,

2011). For completeness, and notational consistency, we provide a derivation here. We begin by

expressing the score ∇ log𝑝 (𝑦) (dropping the 𝜎 dependence to simplify notation) and its Jacobian

∇2 log𝑝 (𝑦) in terms of the measurement density 𝑝 (𝑦 |𝑥) (which is Gaussian) and the posterior

density 𝑝 (𝑥 |𝑦). Using Bayes’ rule and marginalization, the probability density of the noisy images

is expressed as

𝑝 (𝑦) =
∫

𝑝 (𝑥) 𝑝 (𝑦 |𝑥) d𝑥 .

Taking the logarithm and differentiating with respect to 𝑦, and using the fact that for any

function ℎ, ∇ℎ(𝑦) = ℎ(𝑦) ∇ logℎ(𝑦), we find

∇ log𝑝 (𝑦) =
∫

𝑝 (𝑥) 𝑝 (𝑦 |𝑥) ∇𝑦 log𝑝 (𝑦 |𝑥) d𝑥
/
𝑝 (𝑦)

=

∫
𝑝 (𝑥 |𝑦) ∇𝑦 log𝑝 (𝑦 |𝑥) d𝑥

= E
[
∇𝑦 log𝑝 (𝑦 |𝑥) |𝑦

]
, (B.1)

which can be thought of as an equivalent of the chain rule on the scores as opposed to the densities.

Differentiating again with respect to 𝑦, we have

∇2 log𝑝 (𝑦) =
∫

𝑝 (𝑥 |𝑦)
(
∇𝑦 log𝑝 (𝑥 |𝑦)∇𝑦 log𝑝 (𝑦 |𝑥)T + ∇2 log𝑝 (𝑦 |𝑥)

)
d𝑥 . (B.2)
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The term ∇𝑦 log𝑝 (𝑥 |𝑦) can be calculated by differentiating the logarithm of Bayes rule:

log𝑝 (𝑥 |𝑦) = log𝑝 (𝑦 |𝑥) − log𝑝 (𝑦) + log𝑝 (𝑥),

∇𝑦 log𝑝 (𝑥 |𝑦) = ∇𝑦 log𝑝 (𝑦 |𝑥) − ∇ log𝑝 (𝑦), (B.3)

so that when injected into eq. (B.2) we obtain

∇2 log𝑝 (𝑦) =
∫

𝑝 (𝑥 |𝑦)
( (
∇𝑦 log𝑝 (𝑦 |𝑥) − ∇ log𝑝 (𝑦)

)
∇𝑦 log𝑝 (𝑦 |𝑥)T + ∇2 log𝑝 (𝑦)

)
d𝑥

= E
[ (
∇𝑦 log𝑝 (𝑦 |𝑥) − ∇ log𝑝 (𝑦)

)
∇𝑦 log𝑝 (𝑦 |𝑥)T|𝑦

]
+ E

[
∇2 log𝑝 (𝑦 |𝑥) |𝑦

]
= Cov[∇𝑦 log𝑝 (𝑦 |𝑥) |𝑦] + E

[
∇2 log𝑝 (𝑦 |𝑥) |𝑦

]
, (B.4)

where the last line used ∇ log𝑝 (𝑦) = E
[
∇𝑦 log𝑝 (𝑦 |𝑥) |𝑦

]
.

We then use the fact that 𝑦 is obtained from 𝑥 by adding Gaussian white noise of variance

𝜎2Id:

log𝑝 (𝑦 |𝑥) = − 1
2𝜎2 ∥𝑦 − 𝑥 ∥

2 + cst, (B.5)

∇𝑦 log𝑝 (𝑦 |𝑥) = − 1
𝜎2 (𝑦 − 𝑥), (B.6)

∇2
𝑦 log𝑝 (𝑦 |𝑥) = − 1

𝜎2 Id, (B.7)

so that eqs. (B.1) and (B.4) become

∇ log𝑝 (𝑦) = 1
𝜎2 (E [𝑥 |𝑦] − 𝑦) ,

∇2 log𝑝 (𝑦) = 1
𝜎4Cov[𝑥 |𝑦] −

1
𝜎2 Id.

Finally, the above identities can be rearranged to yield the first- and second-order Miyasawa

141



relationships:

E [𝑥 |𝑦] = 𝑦 + 𝜎2∇ log𝑝 (𝑦), (B.8)

Cov[𝑥 |𝑦] = 𝜎2 (Id + 𝜎2∇2 log𝑝 (𝑦)
)
. (B.9)

Note that the optimal denoising error satisfies

E
[
∥𝑥 − E [𝑥 |𝑦] ∥2

]
= E

[
E
[
tr(𝑥 − E [𝑥 |𝑦]) (𝑥 − E [𝑥 |𝑦])𝑇 |𝑦

] ]
= E [trCov [𝑥 |𝑦]] .

B.3.2 Control on Kullback-Leibler divergence

Equation (3.1) results from Theorem 1 of Song et al. (2021a), considering the so-called “variance-

exploding” SDE d𝑥𝑡 = d𝑤𝑡 where (𝑤𝑡 )𝑡≥0 is a Brownian motion (𝑡 = 𝜎2 then corresponds to the

noise variance), and letting the stopping time 𝑇 go to infinity.

To reformulate the score-matching error as a denoising objective, we insert the Miyasawa

equation (2.3) as well as the expression of the score model 𝑠𝜃 (𝑦) = (𝑓𝜃 (𝑦) − 𝑦)/𝜎2 into the score-

matching error:

E
[
∥∇ log𝑝𝜎 (𝑦) − 𝑠𝜃 (𝑦)∥2

]
=

1
𝜎4E

[
∥E[𝑥 |𝑦] − 𝑓𝜃 (𝑦)∥2] (B.10)

We recall the decomposition of the denoising error when conditioning on 𝑦:

E
[
∥𝑥 − 𝑓𝜃 (𝑦)∥2

]
= E

[
∥𝑥 − E[𝑥 |𝑦] ∥2

]
+ E

[
∥E[𝑥 |𝑦] − 𝑓𝜃 (𝑦)∥2

]
, (B.11)

so that inserting eq. (B.11) into eq. (B.10) yields

E
[
∥∇ log𝑝𝜎 (𝑦) − 𝑠𝜃 (𝑦)∥2

]
=

1
𝜎4

(
E
[
∥𝑥 − 𝑓𝜃 (𝑦)∥2

]
− E

[
∥𝑥 − E[𝑥 |𝑦] ∥2

] )
=

1
𝜎4

(
MSE(𝑓𝜃 , 𝜎2) −MSE(𝑓 ★, 𝜎2)

)
.
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Combined with eq. (3.1), this proves eq. (3.3).

B.3.3 SURE objective

We decompose the MSE as follows:

E
[
∥𝑥 − 𝑓 (𝑦)∥2

]
= E

[
∥(𝑦 − 𝑓 (𝑦)) − (𝑦 − 𝑥)∥2

]
= E

[
∥𝑦 − 𝑓 (𝑦)∥2

]
− 2E[⟨𝑦 − 𝑥,𝑦 − 𝑓 (𝑦)⟩] + E

[
∥𝑦 − 𝑥 ∥2

]
. (B.12)

The last term is the total variance of the noise and is thus equal to 𝜎2𝑑 . The middle term can be

rewritten with an integration by parts, using the fact that 𝑦 − 𝑥 = −𝜎2∇𝑦 log𝑝 (𝑦 |𝑥):

E[⟨𝑦 − 𝑥,𝑦 − 𝑓 (𝑦)⟩] = −𝜎2
∬ 〈

∇𝑦 log𝑝 (𝑦 |𝑥), 𝑦 − 𝑓 (𝑦)
〉
𝑝 (𝑥) 𝑝 (𝑦 |𝑥) d𝑥 d𝑦,

= −𝜎2
∬ 〈

∇𝑦𝑝 (𝑦 |𝑥), 𝑦 − 𝑓 (𝑦)
〉
𝑝 (𝑥) d𝑥 d𝑦,

= 𝜎2
∬

tr (Id − ∇𝑓 (𝑦)) 𝑝 (𝑥) 𝑝 (𝑦 |𝑥) d𝑥 d𝑦,

= 𝜎2E[𝑑 − tr∇𝑓 (𝑦)] . (B.13)

Inserting eq. (B.13) into eq. (B.12), we then obtain

E
[
∥𝑥 − 𝑓 (𝑦)∥2

]
= E

[
∥𝑦 − 𝑓 (𝑦)∥2

]
+ 2𝜎2E[tr∇𝑓 (𝑦)] − 𝜎2𝑑, (B.14)

proving the Stein’s Unbiased Risk Estimator of the MSE.

B.3.4 Optimal thresholding in a basis

For completeness, we derive here the error of the fixed-basis oracle denoiser (Donoho, 1995;

Donoho and Johnstone, 1994; Mallat, 2008).

143



We consider an oracle denoiser which computes

∑︁
𝑘

𝜆𝑘 (𝑥) ⟨𝑦, 𝑒𝑘⟩ 𝑒𝑘 .

In practice, the denoiser does not have access to the clean image 𝑥 , and the shrinkage factors 𝜆𝑘

thus have to be estimated from the noisy image 𝑦 alone. Note however that optimizing this oracle

estimator is non-trivial as the shrinkage factors have to be independent from the noise.

We can then compute its denoising error on a clean image 𝑥 by averaging over the noise

E

[𝑥 −∑︁
𝑘

𝜆𝑘 (𝑥) ⟨𝑦, 𝑒𝑘⟩ 𝑒𝑘

2

|𝑥
]
= E

[∑︁
𝑘

(⟨𝑥, 𝑒𝑘⟩ − 𝜆𝑘 (𝑥) ⟨𝑦, 𝑒𝑘⟩)2 |𝑥
]

= E

[∑︁
𝑘

((1 − 𝜆𝑘 (𝑥)) ⟨𝑥, 𝑒𝑘⟩ − 𝜆𝑘 (𝑥) ⟨𝑧, 𝑒𝑘⟩)2 |𝑥
]

=
∑︁
𝑘

(
(1 − 𝜆𝑘 (𝑥))2 ⟨𝑥, 𝑒𝑘⟩2 + 𝜆𝑘 (𝑥)2𝜎2) , (B.15)

where the last step used the fact that ⟨𝑧, 𝑒𝑘⟩ ∼ N (0, 𝜎2) independently from 𝑥 . For each 𝑥 and 𝑘 ,

the optimal oracle shrinkage factor 𝜆𝑘 (𝑥) thus minimizes the quadratic function

(1 − 𝜆𝑘 (𝑥))2 ⟨𝑥, 𝑒𝑘⟩2 + 𝜆𝑘 (𝑥)2𝜎2,

which is achieved when

𝜆𝑘 (𝑥) =
⟨𝑥, 𝑒𝑘⟩2

⟨𝑥, 𝑒𝑘⟩2 + 𝜎2
. (B.16)

Injecting eq. (B.16) into eq. (B.15) gives the denoising error on 𝑥 as

E

[𝑥 −∑︁
𝑘

𝜆𝑘 (𝑥) ⟨𝑦, 𝑒𝑘⟩ 𝑒𝑘

2

|𝑥
]
=
∑︁
𝑘

𝜎2 ⟨𝑥, 𝑒𝑘⟩2

⟨𝑥, 𝑒𝑘⟩2 + 𝜎2
. (B.17)

Incidentally, this error is also equal to 𝜎2 ∑
𝑘 𝜆𝑘 (𝑥), similarly to the optimal denoiser as shown in
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eq. (3.8).

The fraction 𝜎2⟨𝑥,𝑒𝑘 ⟩2
⟨𝑥,𝑒𝑘 ⟩2+𝜎2 is of the same order as min(⟨𝑥, 𝑒𝑘⟩2 , 𝜎2) up to a factor of 2, as we have

the inequalities for any 𝑎, 𝑏 > 0

1
2

min (𝑎, 𝑏) ≤ 𝑎𝑏

𝑎 + 𝑏 ≤ min (𝑎, 𝑏) ,

which follow from 𝑎𝑏 = min(𝑎, 𝑏)max(𝑎, 𝑏) and max(𝑎, 𝑏) ≤ 𝑎 + 𝑏 ≤ 2 max(𝑎, 𝑏). We thus have

E

[𝑥 −∑︁
𝑘

𝜆𝑘 (𝑥) ⟨𝑦, 𝑒𝑘⟩ 𝑒𝑘

2

|𝑥
]
∼
∑︁
𝑘

min
(
⟨𝑥, 𝑒𝑘⟩2 , 𝜎2)

=
∑︁

⟨𝑥,𝑒𝑘 ⟩2>𝜎2

𝜎2 +
∑︁

⟨𝑥,𝑒𝑘 ⟩2<𝜎2

⟨𝑥, 𝑒𝑘⟩2 . (B.18)

Let𝑀 be the number of terms in the left sum (that is, the number of ranks 𝑘 such that ⟨𝑥, 𝑒𝑘⟩2 > 𝜎2),

and 𝑥𝑀 =
∑
⟨𝑥,𝑒𝑘 ⟩2>𝜎2 ⟨𝑥, 𝑒𝑘⟩ 𝑒𝑘 be the𝑀-term approximation of 𝑥 . We then have

∥𝑥 − 𝑥𝑀 ∥2 =

 ∑︁
⟨𝑥,𝑒𝑘 ⟩2<𝜎2

⟨𝑥, 𝑒𝑘⟩ 𝑒𝑘

 = ∑︁
⟨𝑥,𝑒𝑘 ⟩2<𝜎2

⟨𝑥, 𝑒𝑘⟩2 , (B.19)

so that plugging eq. (B.19) into eq. (B.18) gives

E

[𝑥 −∑︁
𝑘

𝜆𝑘 (𝑥) ⟨𝑦, 𝑒𝑘⟩ 𝑒𝑘

2

|𝑥
]
∼ 𝑀𝜎2 + ∥𝑥 − 𝑥𝑀 ∥2. (B.20)

This realizes a decomposition of the oracle denoising error into a denoising bias ∥𝑥 − 𝑥𝑀 ∥2, which

corresponds to the signal variance that has been lost, and a denoising variance 𝑀𝜎2, which

corresponds to the noise variance that has been preserved (note that denoising bias and variance

are different than the model variance and model bias studied in the paper). The sum of the two

terms captures the efficiency of the approximation of 𝑥 in the basis (𝑒𝑘).

Let us reorder the coefficients so that ⟨𝑥, 𝑒1⟩2 ≥ · · · ≥ ⟨𝑥, 𝑒𝑑⟩2(note that the ordering depends
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on 𝑥), and assume that ⟨𝑥, 𝑒𝑘⟩2 ∼ 𝑘−(𝛼+1) for some 𝛼 > 0. More precisely, we assume that there

exists two constants 𝑐, 𝑐′ independent of 𝑥 and 𝑘 such that 𝑐 𝑘−(𝛼+1) ≤ ⟨𝑥, 𝑒𝑘⟩2 ≤ 𝑐′ 𝑘−(𝛼+1) . By

definition of𝑀 ,

⟨𝑥, 𝑒𝑀⟩2 > 𝜎2 ≥ ⟨𝑥, 𝑒𝑀+1⟩2 ,

so that

𝑐′𝑀−(𝛼+1) > 𝜎2 ≥ 𝑐 (𝑀 + 1)−(𝛼+1) .

We then have𝑀−(𝛼+1) ∼ 𝜎2, i.e.,𝑀 ∼ 𝜎−2/(𝛼+1) , and thus𝑀𝜎2 ∼ 𝜎2𝛼/(𝛼+1) . We also have

∑︁
𝑘>𝑀

⟨𝑥, 𝑒𝑘⟩2 ≤ 𝑐′
∑︁
𝑘>𝑀

𝑘−(𝛼+1) ≤ 𝑐′
∫ +∞

𝑀

𝑡−(𝛼+1)d𝑡 =
𝑐′

𝛼
𝑀−𝛼 ,∑︁

𝑘>𝑀

⟨𝑥, 𝑒𝑘⟩2 ≥ 𝑐
∑︁
𝑘>𝑀

𝑘−(𝛼+1) ≥ 𝑐

∫ +∞

𝑀+1
𝑡−(𝛼+1)d𝑡 =

𝑐

𝛼
(𝑀 + 1)−𝛼 ,

so that ∥𝑥 − 𝑥𝑀 ∥2 ∼ 𝑀−𝛼 ∼ 𝜎2𝛼/(𝛼+1) . Finally, we have shown that the two terms in eq. (B.20) are

of the same order, and it follows that

E

[𝑥 −∑︁
𝑘

𝜆𝑘 (𝑥) ⟨𝑦, 𝑒𝑘⟩ 𝑒𝑘

2

|𝑥
]
∼ 𝑀𝜎2 + ∥𝑥 − 𝑥𝑀 ∥2 ∼ 𝜎2𝛼/(𝛼+1) .

Because the constants have been assumed to be independent of 𝑥 , one can average over 𝑥 to obtain

that the oracle MSE is ∼ 𝜎2𝛼/(𝛼+1) .

B.4 Geometric C𝛼 images

A continuous image 𝑥 : [0, 1]2 → R is part of the geometric C𝛼 class (Donoho, 1999; Korostelev

and Tsybakov, 1993; Peyré and Mallat, 2008) if it is uniformly 𝛼-Lipschitz over [0, 1]2 \ {𝛾𝑖}, where
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the 𝛾𝑖 are uniformly 𝛼-Lipschitz curves in [0, 1]2 which do not intersect tangentially. A function 𝑓

is uniformly 𝛼-Lipschitz over a domain Ω if there exists a constant𝐶 such that for all 𝑥 ∈ Ω, there

exists a polynomial 𝑞𝑥 of degree ⌊𝛼⌋ such that for all 𝑦 ∈ Ω,

|𝑓 (𝑦) − 𝑞𝑥 (𝑦) | ≤ 𝐶 |𝑥 − 𝑦 |𝛼 . (B.21)

We explain how to generate numerically such images in Algorithm 4.

Algorithm 4: Synthesis of a C𝛼 image via integration
requires: regularity 𝛼 , Fast Fourier Transform FFT
Make a contour
Define a 1D filter 𝑓1(𝜔) = |𝜔 |−𝛼
Draw a random 1D C0 function with i.i.d. uniform entries 𝑐 (𝑡) ∼ U([−0.5, 0.5])
Integrate in the Fourier domain to define 𝐶 = FFT−1(𝑓1 × FFT(𝑐))
Make the background
Define a 2D filter 𝑓2(𝜔) = (𝜔2

1 + 𝜔2
2)−𝛼/2

Draw two random 2D C0 functions with i.i.d. uniform entries
𝑏1(𝑥,𝑦), 𝑏2(𝑥,𝑦) ∼ U([−0.5, 0.5])
Integrate in the Fourier domain to define 𝐵𝑖 = FFT−1(𝑓2 × FFT(𝑏𝑖)) (𝑖 = 1, 2)
Make a mask and combine
Define a binary mask𝑀 = 1𝑦>𝐶
Let 𝑥 = 𝑀 × 𝐵1 + (1 −𝑀) × 𝐵2
return 𝑥
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C | Muli-scale Local conditional image

density

C.1 Proof of Theorem 4.7

To simplify notation, we drop the 𝑗 subscript. Let 𝐼 (resp. 𝐽 ) denote the set of indices of pixel

values of 𝒙 (resp. 𝒙). If 𝑆 is a set of indices, we denote 𝒙 (𝑆) = (𝒙 (𝑖))𝑖∈𝑆∩𝐼 . Let𝐺 be a graph whose

nodes are 𝐼 ∪ 𝐽 . For each 𝑖 ∈ 𝐼 , let 𝑁 (𝑖) ⊆ 𝐼 ∪ 𝐽 be the neighborhood of node 𝑖 , with 𝑖 ∉ 𝑁 (𝑖), and

𝑁+(𝑖) = 𝑁 (𝑖) ∪ {𝑖}.

To prove Theorem 4.7, we need to show that the local Markov property:

∀𝑖 ∈ 𝐼 , 𝑝
(
𝒙 (𝑖)

�� 𝒙 (𝐼 \{𝑖}), 𝒙 ) = 𝑝
(
𝒙 (𝑖)

�� 𝒙 (𝑁 (𝑖)), 𝒙 (𝑁+(𝑖))), (C.1)

is equivalent to the conditional score being computable with RFs restricted to neighborhoods:

∀𝑖 ∈ 𝐼 , 𝜕 log𝑝
𝜕𝒙 (𝑖)

(
𝒙
�� 𝒙 ) = 𝑓𝑖

(
𝒙 (𝑁+(𝑖)), 𝒙 (𝑁+(𝑖))

)
, (C.2)

for some functions 𝑓𝑖 .

We first prove that eq. (C.1) implies eq. (C.2). Let 𝑖 ∈ 𝐼 . We have the following factorization of
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the probability distribution:

𝑝
(
𝒙
�� 𝒙 ) = 𝑝

(
𝒙 (𝑖)

�� 𝒙 (𝐼 \{𝑖}), 𝒙 ) 𝑝 (𝒙 (𝐼 \{𝑖}) �� 𝒙 )
= 𝑝

(
𝒙 (𝑖)

�� 𝒙 (𝑁 (𝑖)), 𝒙 (𝑁+(𝑖))) 𝑝 (𝒙 (𝐼 \{𝑖}) �� 𝒙 ),
where we have used eq. (C.1) in the last step. Then, taking the logarithm and differentiating, only

the first term remains:

𝜕 log𝑝
𝜕𝒙 (𝑖)

(
𝒙
�� 𝒙 ) = 𝜕 log𝑝

𝜕𝒙 (𝑖)
(
𝒙 (𝑖)

�� 𝒙 (𝑁 (𝑖)), 𝒙 (𝑁+(𝑖))),
which proves eq. (C.2).

Reciprocally, we now prove that eq. (C.2) implies eq. (C.1). Let 𝑖 ∈ 𝐼 , and 𝜹𝑖 ( 𝑗) = 𝛿𝑖 𝑗 where 𝛿𝑖 𝑗

is the Kronecker delta. We have, by integrating the partial derivative:

log𝑝
(
𝒙
�� 𝒙 ) = log𝑝

(
𝒙 − 𝒙 (𝑖)𝜹𝑖

�� 𝒙 ) − ∫ 1

0

𝜕 log𝑝
𝜕𝒙 (𝑖)

(
𝒙 − 𝑡𝒙 (𝑖)𝜹𝑖

�� 𝒙 )d𝑡
= log𝑝

(
𝒙 − 𝒙 (𝑖)𝜹𝑖

�� 𝒙 ) − ∫ 1

0
𝑓𝑖
(
𝒙 (𝑁+(𝑖)) − 𝑡𝒙 (𝑖)𝜹𝑖, 𝒙 (𝑁+(𝑖))

)
d𝑡,

where we have used eq. (C.2) in the last step. Note that the first term does not depend on 𝒙 (𝑖), while

the second term only depends on 𝒙 (𝑁+(𝑖)) and 𝒙 (𝑁+(𝑖)). This implies that when we condition

on 𝒙 (𝑁 (𝑖)) and 𝒙 (𝑁+(𝑖)), the density factorizes as a term which only involves 𝒙 (𝑖) and a term

which does not involve 𝒙 (𝑖). This further implies conditional independence and thus eq. (C.1).

C.2 Training and Architecture Details

Architecture. The terminal low-pass CNN and all cCNNs are “bias-free”: we remove all addi-

tive constants from convolution and batch-normalization operations (i.e., the batch normalization

does not subtract the mean) (Mohan* et al., 2020). All networks contain 21 convolutional layers
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with no subsampling, each consisting of 64 channels. Each layer, except for the first and the last,

is followed by a ReLU non-linearity and bias-free batch-normalization. Thus, the transformation

is both homogeneous (of order 1) and translation-invariant (apart from handling of boundaries), at

each scale. All convolutional kernels in the low-pass CNN are of size 3× 3, resulting in a 43× 43 RF

size and 665, 856 parameters in total. Convolutional kernels in the cCNNs are adjusted to achieve

different RF sizes. For example, a 13 × 13 RF arises from choosing 3 × 3 kernels in every 4th layer

and 1 × 1 (i.e., pointwise linear combinations across all channels) for the rest, resulting in a total

of 214, 144 parameters. For comparison, we also trained conventional (non-multi-scale) CNNs for

denoising. For RF 43 × 43, we used the same architecture as for the coarsest scale band of the

multi-scale denoiser: 21 bias-free convolutional layers with no subsampling. To create smaller

RFs, we followed the same strategy of setting some filter sizes in the intermediate layer to 1 × 1.

Training. For experiments shown in Figure 4.10 and Figure 4.11, we use 202, 499 training and

100 test images of resolution 160 × 160 from the CelebA dataset (Liu et al., 2015). For experiments

shown in Figure 4.12, Figure C.1 and Figure 4.13, we use 29, 900 train and 100 test images, drawn

from the CelebA HQ dataset (Karras et al., 2018) at 320 × 320 resolution. We follow the training

procedure described in (Mohan* et al., 2020), minimizing the mean squared error in denoisingd

images corrupted by i.i.d. Gaussian noise with standard deviations drawn from the range [0, 1]

(relative to image intensity range [0, 1]). Training is carried out on batches of size 512. Note that

all denoisers are universal and blind: they are trained to handle a range of noise, and the noise

level is not provided as input to the denoiser. These properties are exploited by the sampling

algorithm, which can operate without manual specification of the step size schedule (Kadkhodaie

and Simoncelli, 2021b).

C.3 Additional Super-resolution Examples
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Figure C.1: Additional super-resolution examples. Columns, in groups of three, from left to right:
original images, 320 × 320 pixels. Low-pass images of corresponding 3-stage wavelet decomposition
(downsampled to 40 × 40, expanded to full size for viewing). Coarse-to-fine conditional generation using
the multi-scale conditional denoisers, each with RF size 13 × 13.
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Figure C.2: Additional super-resolution examples. See caption of Fig. C.1.
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Figure C.3: Additional super-resolution examples. See caption of Fig. C.1.
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