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Primary visual cortex straightens natural video
trajectories
Olivier J. Hénaff 1,5,7✉, Yoon Bai 2,6,7✉, Julie A. Charlton2, Ian Nauhaus2, Eero P. Simoncelli 1,3,4 &

Robbe L. T. Goris 2✉

Many sensory-driven behaviors rely on predictions about future states of the environment.

Visual input typically evolves along complex temporal trajectories that are difficult to

extrapolate. We test the hypothesis that spatial processing mechanisms in the early visual

system facilitate prediction by constructing neural representations that follow straighter

temporal trajectories. We recorded V1 population activity in anesthetized macaques while

presenting static frames taken from brief video clips, and developed a procedure to measure

the curvature of the associated neural population trajectory. We found that V1 populations

straighten naturally occurring image sequences, but entangle artificial sequences that contain

unnatural temporal transformations. We show that these effects arise in part from compu-

tational mechanisms that underlie the stimulus selectivity of V1 cells. Together, our findings

reveal that the early visual system uses a set of specialized computations to build repre-

sentations that can support prediction in the natural environment.
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The computations implemented by sensory systems are
shaped by the properties of the physical environment and
the behavioral demands of organisms. Many essential tasks

such as catching prey and escaping predators rely on predictions
about the future state of the world. Naturally occurring sensory
input typically has a complex relationship with future environ-
mental states, and it has been hypothesized that organisms
transform these inputs into internal representations that facilitate
temporal prediction1–5. Consider vision. Under natural circum-
stances, the patterns of light projected on the retina evolve
according to nonlinear dynamics that are difficult to extrapolate.
We hypothesize that the visual system transforms its input into a
representation that follows a “straighter” trajectory through time
(the temporal straightening hypothesis6). In this representation,
prediction can be achieved through simple linear extrapolation.

Testing the temporal straightening hypothesis requires com-
paring the straightness (conversely, curvature) of the trajectory of
a sequence of images in the pixel domain with that of the visual
system’s internal representation. We previously developed a
method for estimating the curvature of perceptual representations
of video sequences and used it to demonstrate that the human
visual system selectively straightens natural videos6. Is this effect
directly observable in the activity of neural populations, and if so,
what are the response properties that underlie it? Here, we
examine these questions in macaque primary visual cortex (V1).
We used multi-electrode arrays to record V1 activity in anes-
thetized macaques while presenting frames taken from brief video
clips. We developed a procedure for estimating the curvature of
the neural population representation of these video sequences and
compared this value to its pixel domain counterpart.

Our analysis revealed that the early visual system transforms
the frames of natural videos so as to straighten their V1 popu-
lation trajectories. This temporal straightening process is specific
to natural sequences: the same analysis of neural responses to
frames of synthetic videos that contain unnatural transformations

revealed that V1 populations substantially entangle such
sequences. To gain insight into the computations underlying
these effects, we examined the behavior of a stimulus response
model built from operations of linear filtering, nonlinear pooling,
and divisive normalization. This model captured the selectivity of
individual V1 neurons for elementary stimulus attributes
(orientation, scale, and phase), but only partially explained
responses of single units to natural images. Despite this, the
model largely replicated differences in population-level straigh-
tening effects across natural videos. We show that this behavior
critically depends on the model’s nonlinear pooling. Together,
these findings establish that the early visual system processes its
inputs using a set of specialized computations that can support
perceptual prediction in the natural environment.

Results
We compared the curvatures of brief video clips in the pixel and
neural domains. In the pixel domain, each video frame corre-
sponds to a point in a high-dimensional space whose coordinates
are the brightness of individual pixels. A video clip corresponds to
a sequence of such points. Consider three consecutive frames
(Fig. 1a). A natural measure of local curvature is the unsigned
angle between the segments that connect the middle frame to
adjacent frames (Fig. 1b). We define the global curvature of a
video clip as the average of these local curvatures. This measure,
known as discrete curvature, is positive-valued and achieves a
minimal value of zero only for straight sequences. The larger its
value, the more curved a sequence is, and the more error-prone a
linear extrapolation of the trajectory would be.

Estimating neural curvature. We recorded the activity of
populations of up to a few dozen V1 neurons while presenting
frames taken from brief video clips (see “Methods”). In our
previous perceptual experiments, we used an experimental
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Fig. 1 Measuring curvature in the pixel and neural domains. a An example sequence of three movie frames. b Visualization of a high-dimensional
representation of this sequence. Each point corresponds to a single movie frame, with each coordinate specifying the brightness of a pixel within that
frame. Discrete curvature cpixel is defined as the unsigned angle between two segments connecting adjacent frames. c The curvature of a sequence is fully
determined by the collection of pairwise distances. d Simulated responses of two neurons to a sequence of three movie frames. Error bars
illustrate ± 1 standard deviation. e Joint response probabilities for these two neurons, for each of the three frames. f Representation of the same sequence of
frames in a two-dimensional neural distance space. The distance metric is frame discriminability (in units of d'—Euclidian distance divided by standard
deviation). g Comparison of neural curvature estimates obtained under a response model that includes correlations (abscissa) to one that assumes
independence (ordinate).
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protocol that relies on the presentation of static images, thereby
isolating the contribution of spatial processing mechanisms6.
Here, we seek to study the neural basis of these perceptual effects.
We therefore used the same stimulus presentation method. Movie
frames were presented in randomized order, interleaved with a
blank screen. These manipulations removed any systematic
contribution from fast motion-selective mechanisms, as well as
from history-dependent mechanisms such as response adapta-
tion. We then obtained neural response trajectories by arranging
the data in the movies’ natural temporal order.

The curvature of a trajectory is fully determined by the
distances between all pairs of frames. Moreover, the pairwise
distances between a set of T+ 1 points are uniquely constrained
by their relative positions within a T-dimensional space (Fig. 1c).
Mapping population representations into a neural distance space
of this dimensionality (i.e., one less than the number of movie
frames) is therefore sufficient for inferring neural curvature.
Consider the responses of two neurons to a sequence of three
movie frames (Fig. 1d). Their joint activity constitutes a
population trajectory (Fig. 1e). Neural responses are noisy—
repeated presentations of the same stimulus elicit different
patterns of population activity7,8—and this noise is generally
believed to limit perceptual discriminability. We therefore used
frame discriminability as neural distance metric. Specifically, the
overlap of the population response distributions elicited by each
frame provides a principled measure of this statistic (Fig. 1e).

The number of measurements obtained in typical experiments
is insufficient to describe the joint population response distribu-
tion, even for populations of moderate size. For this reason, we fit
a descriptive response model to the observed population activity
and computed frame discriminability under this fitted model. We
then mapped the population responses for each frame into a
neural distance space such that pairwise Euclidean distances were
equal to the discriminability of the model-predicted response
distributions (Fig. 1f). Finally, we obtained a curvature estimate
by inferring a distribution of neural trajectories that were
consistent with the data, and computed the value of curvature
that was most likely under this distribution (see “Methods”). This
procedure allowed us to obtain largely unbiased neural curvature
estimates (Supplementary Fig. 1).

Neural trajectories are not only shaped by the mean pattern of
neural activity, but also by the variability of this pattern.
Variations in response strength across repeated presentations of
the same stimulus are often correlated across neurons9. Such
“noise correlations” can impact stimulus discriminability by
altering the overlap of population response distributions10. For
the two-neuron example, the impact of noise correlations is
considerable. Inspection of the average responses suggests that
the neural trajectory is modestly curved (Fig. 1e). Yet, in neural
distance space, the trajectory is highly curved (Fig. 1f). Moreover,
shared variability affects the distribution of plausible neural
trajectories and can therefore affect our curvature estimates. We
wondered whether a simpler estimation procedure that ignores
these correlations would produce the same answer. We found this
not to be the case: for many recorded trajectories, treating
populations as pseudo-populations by ignoring noise correlations
gave a dramatically different estimate of curvature. For some
trajectories, this increased the estimate, but for others, it
decreased the estimate (Fig. 1g)11.

Neural straightening of natural videos. Consider an example
recording (Fig. 2). Individual neurons respond in a selective
manner to a randomly ordered sequence of movie frames
(Fig. 2a). Neural response trajectories are obtained by arranging
the data in the movies’ natural order, as can be seen for three
example units (Fig. 2b). We refer to the responses of an entire
population to a single movie as a dataset. For each dataset, we fit
population responses with a descriptive model in which spikes
arise from a Poisson process that is subject to slow gain
fluctuations8,12,13 (black lines in Fig. 2b, see “Methods“). These
gain fluctuations were shared across neurons, giving rise to cor-
related spiking activity across repeated trials. We evaluated the
model’s ability to explain the empirically observed response
mean, variance, and covariance (Fig. 2c, Supplementary Fig. 2). If
the model performed well, we proceeded to use it as a basis for
estimating the curvature of the neural trajectory.

The projections of the pixel-domain and neural-domain
trajectories of a six-frame video onto their corresponding first
two principal components illustrate our main results (Fig. 2d). As
can be seen, the neural trajectory is straighter than its pixel-
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domain counterpart (cpixel = 34∘; cneural = 19∘). This difference is
not due to dimensionality reduction: in their native
5-dimensional spaces the difference is even more substantial
(cpixel = 83∘; cneural = 19∘). To evaluate the statistical significance
of this effect, we computed the distribution of neural curvature
estimates under a null model. We simulated a hypothetical
population that was identical to the observed population in all
regards, but whose neural trajectory preserved the pixel-domain

curvature (see “Methods”). For the example dataset of Fig. 2, the
empirically observed curvature fell well beyond the central 95%
interval of the null distribution (Fig. 2e). Neural curvature
estimates can be biased, causing the average estimate under the
null model to deviate from the pixel-domain value (Fig. 2e, black
vs gray triangle). To take this potential bias into account, our
analysis hereafter focuses on the difference between the empirical
curvature estimate and the average estimate of the null model. We
refer to this as “relative curvature”. For the example dataset, its
value is −69∘.

V1 trajectories elicited by natural movies were typically
straighter than their pixel-domain inputs (median relative
curvature = −9.9∘, P < 0.001, n = 127 datasets, Wilcoxon
signed-rank test), but the effect varied substantially across
datasets (Fig. 3a; 23 of 127 datasets were significantly straighter
than the null model). This variability existed across neural
populations (Fig. 3b; P < 0.001, F1,123 = 11.87, n = 7, analysis of
variance), as well as across movies (Fig. 3c; P < 0.01, F1,123 = 7.77,
n = 20). These effects did not interact statistically (P = 0.28,
F1,123 = 1.17). Visual inspection of the movies revealed that
straightening was generally stronger for movies containing dense
textures rather than isolated objects (Fig. 3c inset, Supplementary
Fig. 3). Finally, we verified that our conclusions were robust to the
choice of null model, by comparing neural curvatures directly to
pixel-domain curvature (Supplementary Fig. 4).

Neural entangling of unnatural videos. We have shown that V1
populations represent images in a manner that tends to straighten
natural videos. This does not imply, however, that this repre-
sentation is specifically tailored for this purpose. Following the
approach of our perceptual experiments6, our stimulus set
therefore included twenty unnatural image sequences that fade
from the first to the final frame of each of the natural videos (see
Fig. 4a and Supplementary Fig. 3 for examples). Such sequences
are unlikely to occur in the real world (e.g., the middle frame
contains the average of the first and last frames—a “double
exposure“). Perceptually, we found that their curvature typically
increased6, presumably because they are entangled by the non-
linear transformations of the early visual system14.

We fit the response model to the population activity elicited by
the unnatural movies (Fig. 4b, c). The projection of the pixel-
domain and neural-domain trajectories of an unnatural movie onto
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the first two principal components reveal a very different outcome
(Fig. 4d). As can be seen, the neural trajectory is much more curved
than its pixel-domain counterpart (cpixel = 1∘; cneural = 80∘).
This visual impression was confirmed by calculating the relative
curvature in the full-dimensional neural response domain
(Fig. 4e; mean cnull = 6∘; cneural = 88∘, P < 0.05). V1 trajectories
elicited by unnatural movies were typically more curved than their
pixel-domain inputs (Fig. 5a; estimated curvature fell outside the
central 95% interval of the null distribution for 25% of datasets;
median relative curvature = 24.4∘, P < 0.001, n = 119 datasets).
There was modest variability in the entangling effect across neural
populations (Fig. 5b; P = 0.05, F1,115 = 3.79, n = 7), though this
effect was partly due to an outlier (population 1). There was no
consistent difference across movies (Fig. 5c; P = 0.32, F1,115 = 0.98,
n = 20). In summary, these control analyses suggest that temporal
straightening by V1 populations is specific to image sequences that
occur under natural conditions.

Effects of spatial and temporal scale. So far, we have presented
evidence that V1 population representations straighten naturally
occurring image sequences and distort unnatural ones. We
hypothesize that the straightening or entangling of a sequence
depends on its probability of occurring in the real world. If so,
sequences which have equal real world probability should display
similar amounts of straightening. Natural scenes are approxi-
mately scale-invariant, both spatially15,16 and temporally17.
Modest changes in either the spatial or temporal scale of a video
should preserve its real world probability and it should therefore
undergo a similar amount of straightening. Our experimental
stimuli were constructed to test this prediction. Specifically, our

stimulus set of twenty natural and unnatural movies included ten
unique movies that were each displayed at two spatial scales:
zoom × 1 (the original scale) and zoom × 2 (created by upsam-
pling the central portion of each frame—see Fig. 6a for an
example). Likewise, for each 6-frame movie, we also included 5
intermediate frames, enabling us to compare two temporal scales
(frame rate × 1 and frame rate × 2—see Fig. 6b). Consistent with
natural videos’ statistical scale-invariance, we found that the
pixel-domain curvature of these sequences was largely preserved
across spatial and temporal scales (r = 0.96 across spatial scales,
r = 0.91 across temporal scales; Supplementary Fig. 5). For nat-
ural movies, there was also a clear association of the neural
representations across spatial scales: movies that elicited stronger
straightening at the coarser scale tended to do so as well at the
finer one (Fig. 6a; r = 0.80, P < 0.01, n = 10). Similarly, there was
a strong association of relative curvature across temporal scales
(Fig. 6b; r = 0.71, P < 0.001, n = 20 movies).

Unnatural sequences do not occur in the real world, and
their entangling can therefore not be a design goal, but must
instead be a byproduct of the non-linearity of the visual system.
As such, we would not expect entangling to be a robust
phenomenon. For example, two sequences that are displayed at
different scales need not be equally entangled by neural
transformations. Indeed, for the unnatural videos, we found no
significant correlations in relative curvature across spatial (Fig. 6a;
r = 0.23, P = 0.53, n = 10) and temporal scales (Fig. 6b; r = 0.14,
P = 0.56, n = 20).

Note that on average, the zoom× 1 condition elicited stronger
straightening for natural movies than zoom × 2 (Fig. 6a; P < 0.05, n=
10 movies, Wilcoxson signed-rank test of difference in relative
curvature). Why might this be? V1 neurons are selective for the
spatial scale of visual input18. The zoom × 1 condition elicited
stronger responses than zoom× 2 at the level of populations (Fig. 6c,
mean response histograms; P = 0.01, n = 61 paired datasets, two-
sided Wilcoxson signed-rank test), and individual units (P < 0.001, n
= 2614 units, two-sided Wilcoxson signed-rank test), indicating that
those videos were better matched to the preferred spatial scale of the
recorded populations. We therefore asked whether firing rate was
associated with straightening, and found this to indeed be the case
(Fig. 6c; P < 0.001, F1,123 = 12.59, ANCOVA). After controlling for
this relationship, there was no effect of spatial scale on relative
curvature (P = 0.60, F1,123 = 0.28). The relationship between
straightening and mean firing could potentially be explained by
movies containing cells’ preferred image features also engaging
additional non-linearities of V1 circuits19 (Supplementary Fig. 6).
This interpretation comes with an important implication. These
stimuli activate millions of cortical neurons, and it is unlikely that our
recordings include the most strongly driven cells. As such, our
estimates of relative curvature might understate the temporal
straightening occurring in the full cortical population.

In summary, the straightening of natural sequences appears to
be an intrinsic property of each sequence, whereas the entangling
of unnatural sequences is more erratic.

Computational basis of neural straightening. Which neural
computations give rise to the perceptual straightening of natural
videos? To explore this, we constructed a computational model
for V1 neurons that is simple enough to be fit to data, yet pow-
erful enough to describe basic feature selectivity and nonlinear
response properties. This model has its roots in the work of Hubel
and Wiesel20, and incorporates elements introduced by many
others21–29. Neural responses are described using a cascade of two
linear-nonlinear (LN) operations. Visual stimuli are first pro-
cessed by a set of oriented linear spatial filters that are identical in
orientation and spatial frequency tuning but have different
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selectivity for spatial phase. The filter responses are nonlinearly
transformed (halfwave rectified and squared), and then locally
pooled. Finally, this pooled signal is subject to untuned divisive
normalization to generate a response rate (Fig. 7a), which is used
to generate spikes from a modulated Poisson process8.

We probed all neurons within each V1 population with both
white noise stimuli and drifting gratings (see “Methods”).

Responses to the white noise stimuli enabled us to determine
each neuron’s receptive field location; responses to the drifting
gratings revealed their selectivity for orientation, scale, and phase.
For each neuron, we fit the parameters of the stimulus-response
model to these data (see “Methods“). Consider an example
neuron, for which the model provided a good account of basic
stimulus selectivity (Fig. 7b). We quantified goodness of fit by
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computing the correlation between the model’s predicted
responses and the measured tuning for orientation, spatial
frequency, and temporal modulation while the other stimulus
parameters were at the cells’ preferred value. We found that the
model typically performed well in describing these classic forms
of stimulus selectivity (Fig. 7c; median r = 0.89, 0.95, and 0.60 for
orientation, spatial frequency, and temporal modulation,
respectively).

We also examined how well this model predicts individual
cells’ responses to natural and unnatural movie frames. In
general, performance was much worse, at times close to chance
(Fig. 7b, c; median r = 0.07, P < 0.001, n = 440 frames,
Wilcoxson signed-rank test for natural frames; median r = 0.08,
P < 0.001 for unnatural frames). These failures may indicate that
the model lacks computational ingredients that are essential for
explaining V1 activity in natural settings. If so, we might expect it
to make poor predictions of the curvature of population
trajectories. Alternatively, the model may fail to capture
idiosyncratic response properties of individual neurons, but still
provide a good summary of population trajectories.

For each dataset, we computed the population trajectory
predicted by the stimulus-response model and compared its
curvature to the empirically obtained estimate (see Fig. 7d for an
example). Across all movies, there was a robust relationship
between predicted and measured relative curvature (Fig. 7e; r =
0.79, P < 0.001, n = 40). Separated by movie type, this
relationship remained substantial for natural movies (r = 0.63,
P = 0.003, n = 20), but not for unnatural ones (r = 0.02, P =
0.928, n = 20). This is consistent with our results from previous
analyses: the straightening of natural sequences displays a strong
variation across videos (Fig. 3) and a strong association across
spatial and temporal scales (Fig. 6). The entangling of unnatural
sequences lacks both of these properties, indicating that it
contains less explainable variability (the fraction of cross-movie
variance is 26.6% for natural movies and 10.7% for unnatural
movies).

Which elements of the stimulus-response model enable it to
capture population-level straightening effects? To answer this
question, we created restricted model versions by eliminating
specific components. Removing untuned divisive normalization
largely preserved the model’s explanatory power (Fig. 8). This
was also the case when we eliminated the simple cells (see
“Methods”, for reference: 60% of cells were “complex” when
categorized by the relative temporal modulation of their firing
rate to the preferred grating (F1/F0 < 1)30). On the other hand,

when we eliminated complex cells, the model’s explanatory
power was substantially diminished (Fig. 8). We conclude that,
as with perceptual effects6, the nonlinear pooling mechanism
that underlies the phase-invariance of complex cells is
largely responsible for the model’s ability to explain patterns
of straightening at the population level. This is broadly
consistent with the view that complex cell pooling reduces
temporal image fluctuations due to translation or other
deformations1,20,22,28,31–34.

While this LN–LN model provides insight into the computational
basis of neural straightening, note that it systematically under-
estimated the values obtained from V1 measurements (median
predicted relative curvature across all natural movies = −0.6∘;
median neural relative curvature = −9.9∘) and failed to capture
cross-population differences in curvature (natural movies: r = −0.71,
P = 0.077, n = 7; unnatural movies: r = 0.02, P = 0.962, n = 7). We
conclude that simple stimuli only partially engage the mechanisms
that govern population responses to natural signals, and that
additional model elements are necessary to fully explain the data.

Discussion
What do sensory neurons seek to accomplish when they trans-
form their inputs? We have tested the proposal that neurons in
the visual system transform their inputs so as to straighten their
temporal trajectories6. We developed a method to measure the
curvature of a neural population trajectory and used it to analyze
physiologically recorded V1 responses elicited by natural and
unnatural image sequences. Our analysis revealed that the spatial
processing mechanisms of the early visual system selectively
straighten naturally occurring sequences.

Estimating the curvature of a neural population trajectory is a
challenging statistical problem. The difficulty arises from several
factors. First, neural responses are highly variable, leading to
substantial variance in estimates. Second, realistic numbers of
experimental trials and neurons are insufficient to yield precise
estimates of joint response distributions or correlations. And
third, curvature measurements in high-dimensional neural spaces
are plagued by severe estimation bias (Supplementary Fig. 1a).
We found that the combination of a principled statistical model
of neural population activity, a probabilistic inference procedure
for curvature, and an explicit null model of expected curvature
estimates was sufficient to overcome these challenges (Supple-
mentary Fig. 1b).

Our experimental test of the temporal straightening hypothesis
only partially engages the mechanisms that shape neural trajec-
tories under natural viewing conditions. In particular, by pre-
senting static movie frames in a randomized order, interleaved by
blanks, we excluded systematic contributions from history-
dependent mechanisms such as temporal filtering, motion selec-
tivity, response adaptation and recurrent computation, all of
which are known to influence V1 responses. Despite this
restriction, we found V1 representations to behave as predicted,
consistent with a simple static model. How would these results
generalize to representations of continuous streams of images? If
temporal straightening is a prominent goal of visual processing,
we might expect stronger effects under more natural stimulus
conditions. Indeed, the inertia of physical systems makes their
three-dimensional physical trajectories locally linear, and thus
predictable. Although linear motion trajectories display a stable
distribution of spatiotemporal energy, they can yield highly
curved image-domain trajectories, since the brightness of indi-
vidual pixels can change abruptly due to the passage of sharp
edges, sudden occlusion, or changes in illumination. Engaging
motion-selective neural mechanisms may therefore further
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increase temporal straightening. This is an important question for
future work.

In recent years, the neuroscience community has witnessed a
growing interest in characterizing the geometric properties of
population representations. For example, recent studies of the
motor cortex and the frontal cortex sought to measure the
tangling35, divergence36, and curvature37 of neural trajectories
that unfold over hundreds of milliseconds. Each of these relied on
analyses of trial-averaged trajectories and hence did not take
response variability or correlation into account. While the sim-
plicity of such analyses is appealing, we found that ignoring
shared variability can dramatically alter neural curvature esti-
mates in V1 (Fig. 1g). Our study is thus an example of how
precise quantification of the geometry of neural trajectories may
require the joint characterization of population activity11. In
identifying the potential biases exhibited by population-level
statistics, our results also highlight the need for an explicit null
model when interpreting them11. The methodology we intro-
duced for the estimation of neural curvature can be applied to
other population datasets and generalized to other geometrical
properties.

We also evaluated the predictions of a stimulus-response
model that describes the primary selectivity properties of indivi-
dual V1 neurons (in particular, for orientation, spatial frequency,
and spatial phase) using linear filtering, the phase or position-
invariance properties using nonlinear pooling, and the gain
control properties using divisive normalization. Although this
model did not accurately describe the responses of individual cells
to natural videos38, it was sufficient to account for the
population-level pattern of straightening across natural videos.
Comparison of different model parameterizations revealed that
the nonlinear pooling mechanism played the most important role.
How could the model be further improved? Under natural sti-
mulation, intricate center-surround interactions shape the sup-
pression at play in the primary visual cortex39–41. It seems likely
that enriching our model to include these normalization
mechanisms or those of earlier processing stages6,42,43 could lead
to a better account for our experimental findings.

We found that V1 population representations straighten nat-
ural videos, consistent with our previous perceptual findings6. But
despite the use of largely identical stimuli, there was a substantial
quantitative difference between these results (average straigh-
tening of ~10∘ in macaque V1, and ~30∘ in human perception),
although the most responsive V1 populations did show effects
nearly as large as the perceptual effect (Fig. 6c). One possible
explanation for this discrepancy is that the best-driven subset of
V1 neurons can fully explain the perceptual results, but that we
typically failed to observe this subset because we did not tailor our
stimuli to the recorded populations. Alternatively, it could be the
case that downstream visual areas further straighten their inputs,
and provide the substrate for perception. To examine this ques-
tion, we have begun to assess the evolution of neural curvature
along the visual hierarchy44.

Finally, our results suggest that straightening might serve as
an objective for learning more biologically plausible models of
the visual system. Deep neural networks trained for object
recognition are currently the best predictors of high-level
visual function45–47. But these are typically trained on large
sets of labeled images, and more stringent tests of their
ability to account for human perception have revealed sys-
tematic deficiencies43,48–50, including a failure to account for
straightening6. These studies imply that a robust metric for the
similarity of natural images is an important property of bio-
logical systems, and that this is currently lacking in artificial
systems. An unsupervised objective that can learn to represent
image structures and the natural continuous perturbation of

those structures as they evolve over time provides a promising
alternative1,4,6,33,51. As such, temporal straightening could
provide an effective principle underlying the emergence of
visual representations that support the efficiency, flexibility, and
robustness of biological intelligence.

Methods
Surgical preparation. We recorded from four anesthetized, paralyzed, adult
macaque monkeys (Macaca cynomolgus). Before surgery, each animal was initially
anesthetized with ketamine (10 mg/kg, IM injection) and pretreated with 1.5 mg/kg
diazepam and atropine sulfate (0.04 mg/kg, IM). Surgery consisted of the place-
ment of cannulate in the saphenous veins of both legs as well as installation of a
tracheal cannula. The animal’s head was placed in a stereotaxic frame (David Kopf
Instruments) and craniotomies and durotomies (2 × 2 cm) were performed to
expose the brain. Experiments typically lasted 5–6 days. Throughout the experi-
ment, anesthesia was maintained with sufentanil citrate (4–20 μg/kg/h, IV), sup-
plemented with isoflurane (0.5–2%) during surgeries. Animals were paralyzed
using pancuronium bromide (0.1–0.2 mg/kg/h, IV). We monitored vital signs
(heart rate, blood pressure, lung pressure, end-tidal CO2, EEG, body temperature,
urine flow and osmolarity), and maintained them within appropriate physiological
ranges. Pupils were dilated with topical atropine. The eyes were protected with gas-
permeable contact lenses and refracted with supplementary lenses chosen through
retinoscopy. All procedures were approved by the University of Texas Institutional
Animal Care and Use Committee and conformed to National Institutes of Health
standards.

Electrophysiology. We recorded extracellular activity in area V1 using multi-
shank electrode arrays (32 or 64 channels; Neuronexus A32, 2 or 4 shanks; A64,
8 shanks), advanced into the brain through a craniotomy and small durotomy.
Once the electrode array was in place, we covered the exposed brain with a mixture
of agarose and artificial cerebrospinal fluid. We allowed 30 min for the cortical
tissue to settle before recording began.

Visual stimulation. We presented visual stimuli on a 20 inch gamma-corrected
CRT monitor at a resolution of 1024 × 768 pixels with a refresh rate of 60 Hz.
Visual stimuli were generated and presented using the Psychophysics Toolbox
extensions for MatLab52,53. For each population, we first determined eye dom-
inance, occluded the non-preferred eye, and estimated the population receptive
field center. We then recorded responses to (1) sinusoidal gratings, (2) modified
sparse-noise stimuli, and (3) static frames from natural and unnatural movie clips.
Within each experiment, stimuli were centered on the population receptive field
and presented in random order.

In the first experiment, we presented drifting sinusoidal gratings within a large
circular aperture (diameter: 15 visual degrees). The stimulus set consisted of the
combination of 16 equi-spaced directions of motion and 6 logarithmically spaced
spatial frequencies (0.25–8 cycles/deg). Stimuli were presented for 1000 ms each,
interleaved with a blank screen for 500 ms, and each was repeated 50 times.

In the second experiment, we presented modified sparse-noise stimuli,
following the approach of ref. 54. This stimulus set consisted of a collection of static
bars (2 × 0.01 degrees) with randomly chosen orientation, position, and polarity.
Stimuli were presented for 133 ms each for approximately 20 min in total.

In the third experiment, we presented frames drawn randomly from
40 sequences. Ten of these were 11-frame clips extracted from movies:
‘chironomus’, ‘bees’, ‘egomotion’, ‘prairie’, ‘carnegie dam’, ‘walking’, ‘water’, and
‘leaves-wind’ (Chicago Motion Database, https://cmd.rcc.uchicago.edu), ‘dogville’
(a feature film, from Lions Gate Entertainment), and ‘smile’ (LIVE Video Quality
Database55,56). All frames were achromatic and presented through a large aperture
(diameter: 15 visual degrees). We generated rescaled versions of each original clip
by extracting the central square of pixels, and upsampling and interpolating by a
factor of two in both directions. We also designed artificial control sequences by
linearly interpolating between the first and last frames of the corresponding natural
sequence. In summary, 10 original movie clips produced 20 natural image
sequences and 20 artificial image sequences. Single frames were presented for 200
ms each and interleaved with a blank screen for 100 ms. Each trial, all frames of all
movies were presented exactly once, in randomized order. The experiment
consisted of 50 trials in total.

Extraction of neuronal response. We used multi-electrode arrays to make
extracellular recordings from V1. To extract responses of individual units, we first
automatically spike-sorted these data with Kilosort257 (https://github.com/
MouseLand/Kilosort2), followed by manual curation with the ‘phy’ user interface
(https://github.com/kwikteam/phy). For each identified unit, we calculated its
response by counting spikes in a time window whose duration matched that of the
stimulus presentation. We chose a response latency for each unit by maximizing
the stimulus-associated response variance58.
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Measuring pixel-domain curvature. Given an image sequence, we wish to
compare its curvature in the domain of pixel-intensities with that of neural

responses. Measuring the pixel domain curvature is straightforward. Let xpixelt be
the vector of pixel intensities of the frame at time t∈ {0,…, T}. We define a

sequence of normalized displacement vectors vpixelt :

vpixelt ¼ xpixelt � xpixelt�1

xpixelt � xpixelt�1

���
��� ð1Þ

and the curvature at time t is simply the angle between two such vectors, which can
be computed from their dot product:

cpixelt ¼ arccos vpixelt � vpixeltþ1

� �
ð2Þ

The global curvature of the sequence cpixel is the average of these local curvature
values, in degrees.

Modulated Poisson model of response distributions. On a given trial k, the

image xpixelt induces a pattern of recorded spiking activity which is summarized as a
vector of spike counts nkt , whose dimensionality D is equal to the number of cells
being recorded. We start by building a parametric model in which this spiking
activity arises from a vector of spike rates λt. Images are presented in random order,
interleaved with a blank screen, and we assume that the spike counts in response to
different images are independent from one another:

Pðfnkt gjfλtgÞ ¼
YK

k¼1

YT
t¼0

Pðnkt jλtÞ ð3Þ

The simplest model of neural activity describes neural spike counts as distributed
according to a Poisson distribution:

PPoissonðnjλÞ ¼
YD
i¼1

λ
ni
i expð�λiÞ

ni!
ð4Þ

We enrich this description by modeling spike-count correlations across cells,
assuming their rates are modulated by a common gain factor8,12. Specifically, we
assume they are independent and Poisson-distributed when conditioned on both
the stimulus-driven rate, λi, and an unknown multiplicative gain g. We model the
gain as a multivariate log-normal random variable: g ¼ exp½ϵ�, where
ϵ � N ðμϵ;ΣϵÞ. The covariance matrix Σϵ thus captures the dependencies across
cells, and the mean vector μϵ is chosen such that the gain variable has unit mean
(i.e. μϵ ¼ � 1

2 diag Σϵ , where diag extracts the diagonal of a matrix). The probability
of a vector of spike counts is then:

Pðnjλ;ΣϵÞ ¼
Z

dgPðgjΣϵÞPðnjλ; gÞ

¼
Z

dgPðgjΣϵÞPPoissonðnjλ� gÞ
ð5Þ

where⊙ denotes the element-wise product between two vectors. We constrain Σϵ

to be the sum of a diagonal matrix (representing private gain modulation) and a
low-rank matrix (representing shared gain modulation)12. We chose the rank of
this matrix by cross-validation, resulting in the use of a rank-2 matrix throughout
the analysis. The covariance matrix Σϵ represents a stable property of the neural
population, and we therefore share its parameters across all frames and videos.

Summarizing responses with neural embeddings. Having described the neural
responses to each frame with a parametric distribution, we now summarize these
distributions with a sequence of neural embeddings. We choose these embeddings
such that their pairwise Euclidean distances are equal to the discriminability of the
corresponding multi-dimensional response distributions. Specifically, we use the
Fisher information metric I ðλÞ to approximate the discriminability of the rate
vector λ from nearby vectors:

½I ðλÞ�i;j ¼ En

�
∂

∂λi
logPðnjλ;ΣϵÞ

∂

∂λj
logPðnjλ;ΣϵÞ

�
ð6Þ

We simplify our analysis by first considering the Fisher information metric
resulting from a modulated Poisson model with independent gain modulation for
each neuron (the general case is described in the section “Numerical curvature
calculation”). Under this approximation, the metric is diagonal with entries:

½I ðλÞ�i;i ¼
1

λi þ σ2i λ
2
i

ð7Þ

where σ2i ¼ expð½Σϵ�i;iÞ � 1. Thus, the discriminability of the rate vector λ is
heterogeneous (i.e., it is a function of λ).

We devised a monotonic nonlinear transformation that maps the rates into a
space that is homogeneous in discriminability. Specifically, consider the following

transformation:

yi ¼
2
σ i
sinh�1ðσi

ffiffiffiffi
λi

p
Þ; ð8Þ

which can be inverted to yield:

λi ¼
1
σ i
sinh

σ i
2
yi

� �� �2
: ð9Þ

The Fisher information metric for the transformed rate variables yi may be
computed using the chain rule:

½I ðyÞ�i;i ¼En

�
∂

∂yi
logPðnjyÞ ∂

∂yi
logPðnjyÞ

�

¼ ∂λi
∂yi

En

�
∂

∂λi
logPðnjλÞ ∂

∂λi
logPðnjλÞ

�
∂λi
∂yi

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λi þ σ2i λ

2
i

q
½I ðλÞ�i;i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λi þ σ2i λ

2
i

q

¼ 1

ð10Þ

Thus, the discriminability between response distributions for frames t and t0 is
simply the Euclidean distance between transformed rate vectors yt and yt0 . As such,
the curvature of a neural trajectory may be estimated by computing the curvature
of the transformed trajectory fytgt¼0;::;T using the same procedure as in the pixel-
domain.

Variational Bayesian inference of neural curvature. Next, we turn to the
question of inferring the curvature of the sequence fytgt¼0;::;T from data. It is
tempting to solve this sequentially, by first estimating the parameters of each
response distribution by maximizing their likelihood (Eq. (5)) given the dataset of
all spike counts:

fλ̂tgt ; Σ̂ϵ ¼ arg max
fλt gt ;Σϵ

YK

k¼1

YT
t¼0

Pðnk
t jλt ;ΣϵÞ ð11Þ

and then using these to estimate the most likely neural embedding fŷtgt (Eq. (8)),
and taking the curvature of this. However this two-step procedure is plagued by
substantial estimation bias when used with the amounts of data available in our
experiments (Supplementary Fig. 1a). We therefore sought to compute the most
likely curvature over a distribution of plausible neural embeddings.

Since a set of T+ 1 points lie within a T-dimensional subspace, we start by
parameterizing the D-dimensional rate vectors yt as a function of T-dimensional
vectors xneuralt and an orthogonal embedding matrix E:

yt ¼ E xneuralt ð12Þ
Since distances are preserved in this lower-dimensional subspace, so is the
curvature of the sequence. We parameterize the trajectory in terms of the distances
between successive points dt, local curvatures ct, and directions of curvature at:

xneuralt ¼ xneuralt�1 þ dt v
neural
t

vneuralt ¼ cosðctÞ vneuralt�1 þ sinðctÞ at
ð13Þ

These are themselves parameterized in terms of real-valued variables, on which we
place the following priors:

dt ¼ f dðzdt Þ zdt � N ðf �1
d ðd�Þ; σ2dÞ

ct ¼ zct zct � N ðc�; σ2c Þ
at ¼ f at ðz

at Þ zat � N ð0; ΣaÞ
E ¼ f EðZEÞ ZE � N ð0; IÞ

ð14Þ

where fd is a smooth rectifying function, f at ensures that at is of unit length and

orthogonal to vneuralt�1 , and Σa controls the effective dimensionality and aspect-ratio
of the trajectory. The function fE implements the Graham-Schmidt algorithm,
which ensures that the columns of E are an orthonormal family of vectors in the D-
dimensional neural space. This guarantees that the metric properties of the
trajectory fytgt (i.e. all pairwise distances, path length, and curvature) are identical
to those of the trajectory fxneuralt gt . Note that the optimal global curvature
cneural= c* given a sequence of local curvature values fctgt is simply their average,
in keeping with our previous definition.

Let θ= {d*, c*, σd, σc, Σa} be the parameters governing the global properties of
the neural trajectory, and z ¼ fzdt ; zct ; zat ;ZEg be those specifying its local
properties. We wish to estimate the most likely value of the global parameters

(including the global curvature) given the dataset of all spike counts N ¼ fnkt g
k¼1;K
t¼0;T :

θ� ¼ argmax
θ

logPðNjθÞ

¼ argmax
θ

log
Z

PðNjzÞPðzjθÞdz
ð15Þ

Intuitively, these are the global parameters that are most consistent with the family
of neural trajectories z that are supported by the data. However, this quantity is
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impossible to compute in practice, given the dimensionality of z. We therefore
derive a lower bound on the likelihood59, using an approximate posterior
distribution over local variables PðzjN;ϕÞ:

logPðNjθÞ ¼ log
Z

PðzjN;ϕÞ
PðzjN;ϕÞPðNjzÞPðzjθÞdz

¼ logEzjN;ϕ

�
PðNjzÞPðzjθÞ
PðzjN;ϕÞ

�

≥ EzjN;ϕ

�
log

PðNjzÞPðzjθÞ
PðzjN;ϕÞ

�

≥ EzjN;ϕ½logPðNjzÞ� � DKL½PðzjN;ϕÞjjPðzjθÞ�

ð16Þ

We chose the approximate posterior PðzjN;ϕÞ to be a Gaussian N ðμϕ;ΣϕÞ with a
diagonal covariance. Since the prior PðzjθÞ is also Gaussian, the second term may
be expressed in closed form. We use a Monto Carlo approximation of the first
term60, by sampling from the approximate posterior and evaluating Eq. (5). We
maximize this lower bound with respect to the parameters of the prior and
approximate posterior (θ, ϕ) using the Adam optimizer61 as implemented by the
PyTorch machine-learning library.

We use the resulting curvature estimates (which we refer to as “population-
based curvature estimates”) in subsequent analyses, unless mentioned otherwise. In
order to assess the importance of including noise correlations in our estimate of the
distribution of plausible neural trajectories, we repeated this analysis while
constraining the gain modulation to be independent across neurons (i.e. Σϵ is
diagonal). We refer to these as “pseudo-population curvature estimates”, and plot
them on the y-axis of Fig. 1g and Supplementary Fig. 7a.

Our inference procedure also provides estimates of the average neural distance
between successive frames d*. We found this distance to correlate well with our
ability to recover neural curvature. In particular, very small trajectories (e.g.
d* < 0.25) yielded unreliable curvature estimates, and we therefore excluded them
from further analysis.

Evaluating the model fit. Having optimized the objective described above, we
obtain a distribution over plausible neural trajectories, represented by the vector of
parameters ϕ. In particular, the mean vector μϕ represents a trajectory which best
captures the distributions over local distances and curvatures. We use this trajectory
to evaluate the goodness of fit of our model. We use Eqs. (14) (left column), (13),
(12), and (9) to compute a trajectory of rate vectors fλtgt . We compare these model-

predicted rates to the trial average λ̂t ¼ 1
K Σ

K
k¼1n

k
t , in the first column of Figs. 2c, 4c.

Specifically, we compute the Pearson correlation r between log-transformed rate
distributions, and exclude from our analysis any trajectory whose r2 was below 0.75.

To estimate the model-predicted spike-count variance and covariance, we start
by computing the model-predicted gain covariance. Given that we enforce the gain
to have unit-mean, this covariance is Σg ¼ exp½Σϵ� � 1, where the exponential is
computed element-wise. Under the modulated Poisson model8 the spike-count
covariance is

Σt ¼ diag½λt � þ Σg � λtλ
>
t ð17Þ

where diag[ ⋅ ] forms a diagonal matrix from a vector,⊙ denotes element-wise
multiplication, and ⊤ transposition. We compare these model-predicted

covariances to the empirical covariance Σ̂t ¼ 1
K�1Σ

K
k¼1ðnkt � λ̂tÞðnkt � λ̂tÞ

>
in the

second and third columns of Figs. 2c, 4c. Here too we compute the Pearson
correlation r between predicted and observed log-transformed variances, and
exclude any trajectory whose r2 was below 0.5. We proceed similarly for the non-
diagonal covariance entries, excluding negative entries and using an inclusion
criterion of 0.25. We verified that our use of an inclusion criterion did not affect
our conclusions (Supplementary Fig. 8).

Numerical curvature calculation. To define and estimate neural curvature, we
sought to transform rate trajectories such that their pairwise Euclidean distances
would represent the discriminability of the underlying response distributions. In
the previous section, we derived this transformation under the assumption that
gain modulation is independent across neurons (Eq. (8)). Our response model
estimates the coupling of gain variability across neurons, hence we can assess
whether this assumption has affected our estimates of neural curvature.

Given that the curvature of a sequence is fully determined by its pairwise
distances, we seek to estimate the pairwise discriminability of our inferred response
distributions, while taking into account the noise correlations induced by shared
gain variability. The discriminability of two nearby distributions t and t0 can again
be computed using Fisher information:

dFðλt ; λt0 Þ
� 	2 ¼ ðλt � λt0 Þ>

Σt þ Σt0

2

� ��1

ðλt � λt0 Þ ð18Þ

where the covariance matrices Σt and Σt0 are fully determined by their associated
rate vectors (Eq. (17)).

For arbitrary, potentially distant, rate vectors this measure of local
discriminability may no longer be valid. For these, we define a sequence of
rate vectors fligi2½0;I� connecting the two (i.e. l0= λt and lI ¼ λt0 ). Given a

sufficiently dense sampling, we can compute the discriminability of successive
points along the path dF(li, li+1). Summing these local distances gives us the
path length, or discriminability of the end-points while following the path {li}.
Finally, the geodesic distance between the end-points is the minimum of such path
lengths:

dGðλt ; λt0 Þ ¼ min
flig

∑
I�1

i¼0
dFðli; liþ1Þ ð19Þ

Following ref. 49 we compute the geodesic by iteratively adjusting a candidate
sequence until it minimizes this objective. In this way we compute the geodesic
distance between all successive rate vectors dG(λt, λt+1) as well as rate vectors once
removed dG(λt, λt+2). We then use Al-Kashi’s theorem (the law of cosines) to
convert these distances into an estimate of curvature:

cos γt ¼
d2Gðλt�1; λtÞ þ d2Gðλt ; λtþ1Þ � d2Gðλt�1; λtþ1Þ

2 � dGðλt�1; λtÞ � dGðλt ; λtþ1Þ
ct ¼ π � γt

ð20Þ

We refer to the resulting values as “numerical curvature estimates”. Note that
these estimates are identical to the population-based estimates described previously
if we approximate the covariance matrices Σt by their diagonal during the
numerical calculation. We then assess the impact of this approximation by
comparing our numerical curvature estimates which utilize the diagonal
approximation and those that do not. Across the datasets we considered, we find
this approximation to have a negligible impact (Supplementary Fig. 7c). As such
the analytical rate-transformation we derived (Eq. (8)) provides a simple, accurate,
and efficient way of converting rate trajectories into a geometrically interpretable
space. We therefore use the resulting curvature estimates for all of our analyses,
except when assessing the impact of noise correlations on curvature estimates
(Fig. 1g and Supplementary Fig. 7 which use the numerical estimator on the x-
axis).

Fraction of cross-movie variance. We estimated the fraction of variance in
relative curvature that arises from variations in the stimulus. As is standard in
ANOVA, we partitioned the total sum of squares into components arising from
variations in movies (SSmovie) and populations (SSpopulation):

∑
k

ck � �c

 �2 ¼ ∑

k
ðck � �cÞ2 þ∑

k
ck � ck

 �2

¼ SSmovie þ SSpopulation
ð21Þ

where ck is the relative curvature of the kth trajectory, �c is the relative curvature
averaged over all trajectories, and ck is the relative curvature averaged over those
trajectories in which the presented movie was the same as that of the kth trajectory.
The fraction of cross-movie variance is given by: SSmovie/(SSmovie+ SSpopulation). We
calculated this number for natural and unnatural movies separately.

LN–LN model. We fit the parameters of a two-stage feedforward model by ana-
lyzing responses from individual V1 neurons to sinusoidal gratings (experiment 1)
and noise stimuli (experiment 2), and then used this model to predict each neu-
ron’s responses to complex natural and unnatural movie frames (experiment 3).
The model describes how a static image is transformed into the firing rate of a
cortical cell. In the first stage, stimuli are processed in four parallel channels, each
composed of a linear spatial filter whose output is halfwave rectified. The filters
have identical selectivity for orientation and spatial frequency, but differ in their
phase selectivity, with the first filter preferring a phase of ϕ degrees, and the others
preferring ϕ + 90, 180, and 270 degrees, respectively. The spatial profile of each
filter is given by the derivative of a 2-D Gaussian function (specific examples shown
in Fig. 7a)29. At the preferred orientation, the spatial frequency selectivity of the
filter solely depends on the order of the derivative b:

rω ω;ω0; b

 � / ω=ω0


 �
e�

1
2 ω=ω0ð Þ2h ib ð22Þ

where ω is stimulus spatial frequency and ω0 the filter’s preferred spatial frequency.
The orientation selectivity of this filter depends on the aspect ratio of the

Gaussian α, the order of the derivative b, and the directional selectivity d:

rθðθ; θ0; α; b; dÞ / 1þ d
2 sgn cosðθ � θ0Þ


 �� 1

 �� 	�

cosðθ � θ0Þ � e�
1
2ð1�α2Þcos2 ðθ�θ0Þ

� 	b ð23Þ

where θ is stimulus orientation, θ0 the filter’s preferred orientation, and parameter
d∈ [0, 1] determines the direction selectivity. The function sgnð:Þ computes the
sign of its argument (returning −1 for negative and +1 for positive), and the initial
parenthesized expression serves to multiply the half of the tuning curve in the non-
preferred direction by (1− d).

The second stage of the model consists of a linear combination of the
four channel responses, followed by divisive normalization. The normalized
response is transformed into a firing rate by including a spontaneous discharge
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and a response scalar:

R ¼ εþ β
∑4

i¼1 wi max ð0; LiÞ2
σ2 þ∑n

i¼1 L
2
i

� �
ð24Þ

where ε is spontaneous discharge rate, β controls the response range, wi is a pooling
weight, and Li a linear filter’s response. The normalization signal consists of the
sum of a stimulus-independent normalization constant σ and the pooled activity of
a diverse set of neurons. We set σ= 0.15, and approximated the latter term with the
root mean square contrast of the stimulus.

In total, the LN–LN model has 11 free parameters: five filter parameters
(preferred orientation θ0, preferred spatial frequency ω0 and phase ϕ, aspect ratio α,
derivative order b, and direction selectivity d), four pooling weights (wi,
constrained to sum to one, thus yielding three free parameters), and two
parameters controlling response range and amplitude (spontaneous discharge rate
ε and response scale β). For each cell, we first optimized the filter and response
range parameters by maximizing the likelihood over the observed grating responses
calculated by counting spikes in a time window whose duration matched that of the
stimulus presentation (1000 ms). We obtained a likelihood by assuming that spike
counts arise from a modulated Poisson process8. We used a simplex algorithm and
multi-start fitting procedure with semi-randomized starting values to find the best
fitting parameters. Next, we estimated the four pooling weights wi by fitting the
temporal response modulation exhibited during stimulation with the most effective
grating (see Fig. 7b for an example). We estimated the temporal evolution of the
firing rate by counting spikes in 12.5 ms time windows, and used least-squares
regression to find the best fitting pooling weights.

We analyzed the responses to the modified sparse-noise stimuli shown in
experiment 2 to obtain an estimate of the spatial location of each cell’s receptive
field center. Following the approach of ref. 54, we fit a 2-D Gaussian to the spatial
response profile measured for black and white bars whose orientation
approximated the cell’s preferred value. We used the center of the Gaussian as an
estimate of the cell’s receptive field center.

Finally, we combined all of these parameter estimates to generate model
predictions for the natural and unnatural stimuli of experiment 3. For each cell, we
generated the appropriate quadrature set of spatial Gaussian-derivative filters,
centered on the cell’s receptive field center estimate. We obtained filter responses Li
by cross-correlating these Gaussian derivatives with the stimuli, and then
transformed these responses into a firing rate prediction using Eq. (24). For
sinusoidal gratings, this image-computable version of the LN–LN model produced
responses identical to those of the Fourier domain formulation.

To facilitate the comparison with our neural curvature estimates, we
transformed the model-predicted firing rates with the same non-linearity derived
from our descriptive model (Eq. (8)). We then computed the curvature of the
transformed trajectory using the same definition as in the pixel domain. We
evaluated the model’s performance by computing the correlation between the
predicted and observed curvature for each natural and unnatural movie, averaged
across all populations (Fig. 7e).

Dissection of LN–LN model. To interrogate the role of each of the model’s ele-
ments, we created multiple versions of the model by manipulating its parameter
values (Fig. 8). Specifically, we created a version without divisive normalization by
adopting all the parameter estimates of the fitted model, but setting the denomi-
nator in Eq. (24) to one. We also created a version in which all cells were turned
into phase-invariant complex cells by setting all the pooling weights wi to 0.25.
Finally, we created a version in which all cells were turned into simple cells by
setting each cell’s highest pooling weight wi to one and the three other weights
to zero.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available in the following repository:
https://doi.org/10.17605/OSF.IO/VF2XK. Source data are provided with this paper.

Code availability
The analysis code that supports the findings of this study is available from the
corresponding authors upon reasonable request.
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