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It is generally believed that sensory systems transform their inputs 
into internal representations that efficiently and effectively capture 
information needed for current and future tasks1. For example, the 

retina removes redundant spatiotemporal structure from incoming 
light, such that it may be efficiently transmitted through the optic 
nerve2–7. Cortical area V1 transforms the retinal representation by 
extracting frequently occurring features such as edges8, in support 
of efficient coding and discrimination of natural images9–11. Higher 
level visual areas in the ventral stream further transform this repre-
sentation by separating objects’ identity from viewing conditions, 
simplifying the task of object recognition12.

Yet most visual tasks require more than simply analyzing static 
images, as they rely on predictions about future outcomes given 
past observations. The patterns of light arriving at the retina evolve 
according to complex, nonlinear dynamics that are difficult to extrap-
olate. As a result, we propose that the brain transforms the incom-
ing stream of visual input to make it more predictable. Specifically, 
we propose that the nonlinear spatial representations of naturally 
occurring visual input are structured to straighten their temporal 
trajectories, enabling their prediction through linear extrapolation.

Temporal prediction has long been exploited by the video engi-
neering community in building compression systems13. In neurosci-
ence, a number of authors have proposed that temporal prediction 
could serve as a universal principle for the evolution, development 
and learning of visual representations14–17. Straightening of natural 
videos is consistent with current descriptions of the neural basis of 
object recognition, which propose that the brain ‘untangles’ trajec-
tories that evolve according to changing viewing conditions18.

To test the temporal straightening hypothesis, we developed a 
procedure for estimating the curvature (conversely, straightness) 
of the human perceptual representation of a sequence of images. 
By comparing this value to the curvature calculated from the pixel 
intensities of the image sequence, we tested three distinct predic-
tions of our hypothesis. First, natural sequences that are curved 
in the intensity domain should be straighter perceptually. On the 
other hand, unnatural sequences (those that are unlikely to occur 
in the real world) need not be straightened and could even exhibit 
increased perceptual curvature. Finally, synthetic sequences that 
contain naturalistic changes (for example, shifts in luminance or 

contrast) should be relatively straight. We show that human percep-
tual capabilities are consistent with all three predictions. In addi-
tion, we show that simple nonlinear population models of the early 
visual system partially account for these behaviors, while deep con-
volution networks optimized for object recognition do not.

Results
Estimating perceptual curvature. We gathered video sequences 
whose duration was roughly matched to the interval between suc-
cessive saccades and estimated their curvature in the pixel-inten-
sity and perceptual domains. Each frame of such a sequence can 
be represented in either domain as a point in a high-dimensional 
space (Fig. 1a). A natural measure of curvature for a sequence of 
points in either domain is the (unsigned) angle between consecutive 
segments and we summarize the curvature of a sequence using the 
average of these angles over the full sequence. This measure, known 
as discrete curvature, has the desirable property that it does not 
depend on the overall scale or units of the representation. It is zero 
only for straight (linear) sequences and increases as they become 
more curved. Intuitively, discrete curvature quantifies the dissimi-
larity between successive difference vectors and thus, the difficulty 
in linearly extrapolating the trajectory.

The curvature of sequences in the intensity domain can be mea-
sured directly, by computing the differences between successive 
frames in the high-dimensional space of pixel intensities, and the 
angles between them (Fig. 1b, Methods). Curvature in the percep-
tual domain is estimated from the discriminability (or perceptual 
distance) of all pairs of frames in a sequence, as measured from 
human subjects. Intuitively, the more curved a sequence is perceptu-
ally, the more the perceptual distance between a pair of frames (for 
example the first and third frames in Fig. 1b) should fall short of the 
summed intermediate distances (connecting the first, second and 
third frames). We measure the discriminability of a pair of frames 
by presenting them, on a given trial, as part of a sequence of three 
images in which the second is equal to the first or the last (an ‘AXB’ 
paradigm; Fig. 2a). By asking the observer to report which image is 
the unique one and measuring their performance over many trials, 
we arrive at an estimate of the perceptual distance between these 
two frames. Having obtained in this manner the distances between 
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all pairs of frames drawn from an 11-frame sequence (Fig. 2b), 
we search for a perceptual trajectory that accounts for these data, 
whose curvature we can then measure as in the intensity domain.

We start by proposing a candidate perceptual trajectory that 
might account for the pattern of discriminability we measured 
experimentally (chosen randomly; Fig. 2c, top left). Assuming 
(without loss of generality, see Methods) that our perceptual 
judgments are limited by additive Gaussian noise, the pairwise 
distances between points along the trajectory make a prediction 
regarding this pattern of discriminability19 (Fig. 2c, top middle). 
This allows us to measure the discrepancy between the predicted 
and observed patterns of discriminability (Fig. 2c, top right). In 
this case, a straighter perceptual trajectory provides a better match 
to the data, suggesting that these data are more consistent with low 
perceptual curvature (Fig. 2c, bottom row). Given this, it is tempt-
ing to iteratively adjust this trajectory until arriving at the most 
likely one (similarly to nonlinear dimensionality reduction meth-
ods20,21) and reporting its curvature, computed as in the intensity 
domain. But this two-step method is plagued by estimation bias 
when used with the amounts of data available from our experi-
ments (Supplementary Fig. 1a). As an alternative, we developed 
a data-efficient and nearly unbiased procedure for estimating the 
curvature that is most likely, by averaging over many plausible per-
ceptual trajectories (Supplementary Fig. 1b, Methods). For visual-
ization purposes, we show the perceptual trajectory whose length 
and curvature are equal to the average across plausible perceptual 
trajectories (Fig. 2c, bottom row).

Perceptual straightening of natural videos. The primary predic-
tion of the temporal straightening hypothesis is that natural image 
sequences that are curved in the intensity domain should be less 
curved in the perceptual domain. We measured the intensity-domain 
and perceptual-domain curvatures of 12 natural image sequences 
which differed in content (experiment 1; see Fig. 3a for three frames 
from an example sequence, Supplementary Figs. 2 and 3 for all 
sequences). To visualize our analysis and gain an intuition for the 
results, we projected the intensity-domain and perceptual-domain 
representations for a single sequence and observer onto the first 
two principal components (Fig. 3b). The trajectories are strikingly 
different. Trajectories of the first two components of this natural 

image sequence are highly curved in the intensity domain (cur-
vature = 39°). Consistent with our hypothesis, the same sequence 
appears much straighter perceptually (curvature = 4°). This differ-
ence in curvature is not simply a byproduct of dimensionality reduc-
tion: in the high-dimensional intensity and perceptual domains, 
the difference was even more substantial (intensity-domain curva-
ture = 99°, perceptual-domain curvature = 8°). Moreover, this cur-
vature reduction is robust across sequences and observers (Fig. 3c, 
blue histogram; median difference in curvature = −23°; P < 0.001, 
two-tailed Wilcoxon signed-rank test).

Since our curvature estimates are obtained through a novel anal-
ysis method, we wanted to verify the reliability of those estimates. 
To that end, we simulated data obtained from model observers who 
were identical to our human observers in their ability to discrimi-
nate successive frames, lapse rates and number and distribution of 
trials. Crucially, however, we designed these model observers to 
base their responses on a perceptual representation whose curva-
ture was matched to the pixel-domain curvature (Methods). When 
applied to these synthetic data, our analysis method found no 
reduction in curvature (Fig. 3c, gray downward histogram; median 
difference in curvature = 4°; P = 0.99, one-tailed test). Our estima-
tion method is thus not inherently biased towards curvature reduc-
tion. Moreover, this analysis reveals that the average reduction in 
curvature estimated for our human observers is significantly greater 
than the variability in the estimates (P < 0.001, two-tailed test on 
the difference between human observers and simulated controls). 
These data provide clear supporting evidence for the notion that the 
human visual system straightens natural videos.

Although we motivated our curvature measurements with 
their connection to the accuracy of first-order linear extrapola-
tion, we wanted to know whether perceptual straightening could 
also improve the accuracy of higher-order predictors. To that 
effect, we measured the performance of optimal second, third and 
fourth-order predictors (that is, that predict the next frame from 
a linear combination of the three, four or five previous frames) 
which can account for homogeneous curvature (Methods). These 
higher-order predictors are more accurate than first-order ones, but 
nevertheless exhibit significantly better performance on straighter 
perceptual trajectories than their curved intensity-domain counter-
parts (Supplementary Fig. 4). Indeed, we found prediction errors to 
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Fig. 1 | Quantifying straightness of image sequences in the intensity and perceptual domains. a, Visualization of a high-dimensional representation of 
a temporal sequence of images. We consider representations in two domains: the ‘pixel-intensity’ domain (axes correspond to pixel intensities in each 
frame) and the ‘perceptual’ domain (axes correspond to internal responses that underlie the perceptual judgments of human subjects). Each frame in 
the sequence corresponds to a point in the representational space. The discrete curvature at a given frame is equal to the angle between the segments 
connecting it to adjacent frames. We define the curvature of a sequence as the average of these angles. b, In the pixel-intensity domain, curvature can be 
calculated directly by computing the pixel-wise differences between successive frames and the angles between them. Note how this sequence of frames is 
curved in the intensity domain (difference images are dissimilar) but seems natural perceptually. In contrast, a linearly extrapolated frame in the intensity 
domain (bottom right) is perceptually unnatural.
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be reduced relative to those in the intensity domain (Fig. 3d, blue  
histogram; median difference in third-order prediction error 
between perceptual domain and intensity domain = −21%, 
P < 0.001), as well as to those of simulated control observers with 
internal curvature matched to that of the intensity domain (Fig. 3d, 
gray histogram; median difference in third-order prediction error 
between humans and controls = −15%, P < 0.001).

Perceptual distortion of artificial videos. The straightening of 
curved natural videos exhibited by our subjects implies that their 
perceptual responses arise from a nontrivial transformation of their 
visual input. It does not by itself indicate that this transformation is 
specifically tailored for this purpose. It could be the case that most, 
or even all, sequences are straightened by the visual system, regard-
less of whether they could occur under natural conditions. But if, 
as we propose, temporal straightening targets sequences that occur 
naturally, then sequences that are unlikely to occur should not be 
straightened. On the contrary, these sequences are more likely to be 
distorted by the nonlinear hierarchical transformations of the visual 
system22 and therefore exhibit increased perceptual curvature.

We tested this second prediction of the temporal straightening 
hypothesis by estimating the perceptual curvature of artificial image 
sequences that are strictly linear in the intensity domain (experi-
ment 2). Specifically, we created synthetic sequences that fade from 
the initial to the final frame of each of the natural videos used in 
experiment 1. These sequences are straight (that is, they have zero 
curvature) in the intensity domain but unnatural in that, for exam-
ple, the interpolated middle frames contain pixel-wise averages of 
two different images (see Fig. 4a for three frames from an exam-
ple sequence, and Supplementary Figs. 2 and 3 for all sequences).  

We estimated the perceptual curvature of these sequences for the 
same observers that participated in experiment 1.

Consider the two-dimensional projections of the intensity- 
and perceptual-domain representations of a single observer  
(Fig. 4b). Consistent with our hypothesis, the perceptual-domain 
trajectory of this artificial sequence is much more curved than the 
intensity-domain trajectory (difference in curvature = 48°). This 
effect was just as prominent in the high-dimensional spaces (dif-
ference in curvature = 49°) and was consistent across all artificial 
sequences and observers (Fig. 4c, green histogram; median differ-
ence in curvature = 53°). Note that curvature is a positive-valued 
quantity and since the image-domain curvature of these sequences 
is zero, some increase in curvature is expected due to estimation 
error. To determine this baseline expectation, we simulated model 
observers that preserved image-domain curvature but were other-
wise matched to our human observers. For these model observers, 
the median increase in curvature was 29° (Fig. 4c, gray histogram), 
significantly smaller than the 53° increase observed in our human 
subjects (P < 0.001).

Although this increase in curvature probably makes these 
sequences less predictable for a first-order linear extrapolator, they 
could remain predictable for a higher-order one. Hence, we mea-
sured the accuracy of second-, third- and fourth-order predictors, 
but nevertheless found them all to be reduced in the perceptual 
domain compared to the intensity domain (Supplementary Fig. 4; 
Fig. 4d, green histogram; median difference in third-order prediction 
error between perceptual and intensity domains = 66%, P < 0.001) 
and to simulated controls who did not increase the curvature of these 
sequences (Fig. 4d, gray histogram; median difference in third-order 
prediction error between humans and controls = 61%, P < 0.001).
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Fig. 2 | Measuring perceptual straightness of image sequences. a, Psychophysical AXB task. On each trial, observers viewed a sequence of three images. 
The first and the last are randomly selected frames from a given sequence; the middle one is identical to one of the other two. Observers indicated 
whether the first or the last image was the unique one. b, Performance of a single observer for all pairs of frames in a given sequence (total of 1,000 
trials). Pixel brightness depicts proportion correct in discriminating the corresponding pair of frames (brighter indicates more discriminable). c, Inferring 
perceptual curvature from psychophysical data. Left: two-dimensional projections of ten-dimensional perceptual trajectories (x- and y-axes represent 
first and second principal components, respectively). Each point illustrates the centroid of a two-dimensional Gaussian distribution corresponding to 
the noisy perceptual representation of a frame in the sequence. Middle: pattern of performance on the AXB task predicted from the pairwise distances 
between points along the trajectory. Right: match between empirical and trajectory-predicted proportion correct (one point for each pair of frames), along 
with the 95% confidence interval expected from binomial variability (gray region). Top: a curved perceptual trajectory predicts a moderate increase in 
discriminability as frames are further separated in time, providing a poor match to the data. Bottom: a straighter perceptual trajectory predicts a faster 
increase in discriminability and provides a better match to the data.
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Curvature preservation of naturalistic videos. We interpreted the 
outcome of experiment 2 as evidence that the nonlinear computa-
tions underlying perceptual straightening target natural sequences 
and exhibit the opposite effect on straight artificial sequences. But it 
could be the case that all videos that are straight in the pixel-inten-
sity domain yield highly curved perceptual-domain representations, 
regardless of whether they are natural or artificial.

To resolve this ambiguity, we characterized the perceptual-domain 
curvature of a new set of synthetic sequences, that are straight in the 
intensity domain but mimic natural transformations. Specifically, 
we constructed sequences by gradually and monotonically changing 
the contrast of the initial frame over time (Fig. 5a). These sequences 
have zero curvature in the intensity domain by construction and 
are more natural than the sequences of experiment 2 because they 

approximate changes in scene visibility (for example due to the onset 
of fog). The temporal straightening hypothesis predicts that these 
sequences should be much straighter than their unnatural counter-
parts. Figure 5b shows the low-dimensional projection of a percep-
tual-domain trajectory, for an example observer in experiment 3. In 
this case, the perceptual distortion of the contrast-varying sequence 
is minimal (difference in low-dimensional curvature = 9°; difference 
in high-dimensional curvature = 18°). We found this result to be 
consistent across all sequences and observers. Specifically, although 
these sequences evoked a significant increase in curvature (median 
difference between human observers and simulated controls = 12°, 
P = 0.009), this increase was significantly smaller than that of the arti-
ficial sequences in experiment 2 (Fig. 5c; difference in median cur-
vature = 22°, P = 0.003). Similarly, these sequences were significantly  
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and final frames of one such image sequence. Initial and final frames are 
identical to those of the corresponding natural sequence (Fig. 3a), whereas 
intermediate frames are generated by linearly interpolating (fading) 
between the initial and final frames. b, Low-dimensional projections of 
an example sequence in the intensity domain (left) and in the inferred 
perceptual domain (right). c, Difference in curvature between the intensity 
and perceptual domains, for 12 artificial image sequences and 18 observers 
(n!=!35 sequence–observer pairs total). Green histogram, perceptual 
curvature estimated from human subject data (median!=!53°, IQR!=!14°). 
Gray histogram, perceptual curvature estimated from data simulated from 
model observers whose perceptual curvature is matched to the intensity-
domain curvature (in this case, zero), with all other parameters matched to 
those of the human observers (median!=!29°, IQR!=!29°). Triangles indicate 
the median of each distribution. d, Difference in third-order prediction 
error between the intensity and perceptual domains (human observers, 
median!=!66%, IQR!=!14%; simulated controls, median!=!6%, IQR!=!9%). 
Same layout as c. ***P!<!0.001, two-tailed Wilcoxon signed-rank test.
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Fig. 3 | Curvature reduction for natural image sequences. a, Initial, 
middle and final frames of an example sequence (a person walking 
in front of a cyclist). b, Two-dimensional projections of an example 
sequence in the intensity domain (left) and in the inferred perceptual 
domain (right). Each point represents a frame. c, Difference in curvature 
between the intensity and perceptual domains, for 12 natural image 
sequences and 18 observers (n!=!35 sequence–observer pairs total). 
Blue histogram, perceptual curvature estimated from human subject 
data (median!=!−23°, interquartile range (IQR)!=!38°). Gray histogram, 
perceptual curvature estimated from data simulated from model 
(control) observers whose perceptual curvature is matched to the 
intensity-domain curvature, with all other parameters matched to those 
of the human observers (median!=!4°, IQR!=!12°). Triangles indicate 
the median of each distribution. d, Difference in third-order prediction 
error between the intensity and perceptual domains (human observers, 
median!=!−21%, IQR!=!24%; simulated controls, median!=!−4%, 
IQR!=!7%). Same layout as c. ***P!<!0.001, two-tailed Wilcoxon  
signed-rank test.
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more predictable than their unnatural counterparts (Fig. 5d; dif-
ference in median third-order prediction error = 26%, P < 0.001). 
Hence, consistent with the temporal straightening hypothesis, we 
conclude that the human visual system is able to largely preserve the 
linearity and predictability of straight, naturalistic videos.

Computational basis of perceptual straightening. Finally, we 
asked how perceptual straightening could arise from the underlying 
neural activity of the visual system. In particular, if straightening is 
a fundamental goal of visual processing, we might expect that each 
successive transformation throughout the visual hierarchy could 
serve to further reduce the curvature of natural videos. To probe this 

hypothesis, we examined responses of a two-stage model that mim-
ics the nonlinear functional properties of the early visual system 
(Fig. 6a). The first stage is comprised of center-surround filtering 
followed by local luminance and contrast gain control operations, 
capturing the primary nonlinear transformations performed by the 
retina and lateral geniculate nucleus23,24. The second stage further 
transforms this representation using a set of oriented filters whose 
responses are squared and combined over phase, capturing the non-
linear behavior of complex cells in primary visual cortex (area V1)25. 
We constructed response trajectories by applying the model to each 
video frame independently and evaluated the curvature of these 
trajectories directly. Both model stages induced systematic changes 
in curvature that were consistent with the changes we measured 
perceptually. Specifically, both stages straightened natural image 
sequences, distorted unnatural ones and preserved the linearity 
of naturalistic ‘contrast’ sequences (Fig. 6b). The first stage of the 
model likely straightens natural videos by providing robustness to 
local fluctuations in luminance and contrast23,26, whereas the second 
provides further straightening through the position- and phase-
invariance properties of the ‘energy model’ for complex cells25,27. The 
straightening induced by both stages is substantial, although still less 
than the perceptual straightening observed in the human subjects.

We also tested the straightening capabilities of artificial neural 
networks constructed from many stages of rectified linear filters. 
Such models have shown impressive capabilities when optimized 
for object recognition28 and have been proposed as candidate mod-
els of biological vision29–31. We hypothesized that the ability of these 
networks to ‘untangle’ image manifolds associated with object cate-
gories32 might also extend to straightening of natural videos. To test 
this, we evaluated the changes in curvature induced by each stage 
of the AlexNet architecture33 (Fig. 6c). Unlike the simple biological 
models and our human subjects however, we found that this model 
did not straighten any natural videos (Fig. 6d). We tested several 
other current deep neural network architectures used for image 
classification34–37 and found that all of them increased the curvature 
of natural videos (Supplementary Fig. 5). In principle, we would 
expect these networks to be capable of approximating the nonlinear 
transformations of the two-stage biological model (local gain con-
trol and energy), which exhibit substantial straightening. We thus 
conclude that optimizing such networks for static object recogni-
tion fails to endow them with the nonlinear temporal straightening 
capabilities found in the human visual system.

Discussion
We have introduced the temporal straightening hypothesis, which 
provides a normative explanation for the structure of sensory rep-
resentations. We developed a methodology for estimating percep-
tual curvature and provided behavioral evidence for three distinct 
predictions of the hypothesis. Our results demonstrate that the 
visual system nonlinearly transforms its inputs such that naturally 
occurring temporal image transformations give rise to straighter 
trajectories in perceptual space than in the input space. We also 
find that synthetic, behaviorally irrelevant sequences that are 
straight in the intensity domain are distorted by the visual system, 
breaking their perceptual contiguity. Nonetheless, we found that 
the visual system is able to largely preserve the linearity of natural-
istic, intensity-linear sequences.

To design an experimental test of temporal straightening, we 
assumed a restricted form of the hypothesis in which linear predict-
ability over time is achieved through nonlinear spatial processing of 
visual input. Moreover, by measuring curvature between successive 
frames in a sequence, we have restricted our tests of straightening to 
a specific timescale, corresponding to the interval between frames. 
Despite these restrictions, we have found human perceptual capa-
bilities (and simple models of the early visual system) to behave as 
predicted. How would these results generalize to the straightening 
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Fig. 5 | Curvature conservation for naturalistic, intensity-linear image 
sequences. a, Initial, middle and final frames of one such sequence. Initial 
frame is identical to those in Figs. 3 and 4, and the rest are generated by 
gradually reducing contrast. b, Low-dimensional projections of an example 
sequence in the intensity domain (left) and in the inferred perceptual 
domain (right). c, Difference in curvature between the intensity and 
perceptual domains, for nine natural, intensity-linear image sequences and 
nine observers (n!=!25 sequence–observer pairs total). Yellow histogram, 
perceptual curvature estimated from human subject data (median!=!31°, 
IQR!=!26°). Gray histogram, perceptual curvature estimated from data 
simulated from model observers whose perceptual curvature is matched 
to the intensity-domain curvature (in this case, zero), with all other 
parameters matched to those of the human observers (median!=!21°, 
IQR!=!14°). Triangles indicate the median of each distribution. Green 
triangle is copied from Fig. 4c, showing that naturalistic sequences are 
significantly less curved than their artificial counterparts. **P!=!0.003, 
two-tailed Mann–Whitney U-test. d, Difference in third-order prediction 
error between the intensity and perceptual domains (human observers, 
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Same layout as c. *** P!<!0.001, two-tailed Mann–Whitney U-test.
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of continuous streams of images and over different timescales? We 
used sequences with sampling rates roughly matched to the integra-
tion times of photoreceptors (30 frames per second or less), whose 
response would probably be similar to those under static presen-
tation. However, we might expect downstream areas that process 
visual input over longer timescales to respond differently (for exam-
ple, direction-selective neurons in areas V1 or MT). A more general 
psychophysical protocol, in which perceptual representations are 
evaluated within their recent temporal context, seems necessary to 
test straightening at these longer timescales.

Our temporal straightening hypothesis provides a specific 
instance, as well as an augmentation, of the efficient coding hypoth-
esis—one of the most widely discussed and successful theories of 
early sensory processing1. Efficient coding posits that sensory rep-
resentations are structured to preserve information in natural sig-
nals, while reducing redundancy and minimizing the use of neural 
resources (for example, cells and spikes), a goal that is especially rel-
evant for early sensory areas that are separated from cortex by a com-
munication bottleneck. Temporal straightening (and more generally,  
prediction) offers a specific form of coding efficiency, given that 
predictable signals can be coded via small residual errors13. Beyond 
this bottleneck, however, coding efficiency may no longer suffice to 
fully explain the form or specifics of sensory processes38–41. Rather, 
as sensory information propagates through the brain, it is combined 
with experience (memory), goals, desires and other internal states 

that govern behavioral relevance and probably play an important 
role in specifying which information is processed and which is dis-
carded. Temporal prediction offers a potential unification, by aug-
menting coding efficiency with a universal goal that is essential for 
a large class of behaviorally relevant tasks14,17,42.

Temporal straightening offers a simple and readily testable instan-
tiation of the temporal prediction hypothesis: assuming a first-order 
extrapolation model, the curvature of a sequence is equivalent to its 
predictability. Although we found that straightening improved the 
accuracy of a number of higher-order predictors as well, we do not 
know whether human observers base their predictions on a model 
from this class. Therefore, a new psychophysical paradigm that 
measures the ability of human observers to predict future frames of 
a sequence seems essential to characterize the mechanism by which 
we extrapolate observations.

Temporal straightening also bears similarity to the ‘untangling 
hypothesis’ that has been proposed as a normative explanation for 
the visual representations underlying object recognition capabili-
ties18. Specifically, the fundamental difficulty of object recognition 
lies in constructing representations that vary substantially across 
object categories, while being unaffected by the substantial vari-
ability in visual appearance that arises from changes in viewing  
conditions and configuration. This hypothesis posits that the goal of 
the visual system is to produce a representation of objects that can 
be linearly decoded, which requires that variation due to viewing  

–30

–20

–10

0

10

20

30

Pixel LGN V1 Perception

C
ur

va
tu

re
 c

ha
ng

e 
(°

)

Model area

–60

–40

–20

0

20

40

60

Pixel 1 2 3 Perception

C
ur

va
tu

re
 c

ha
ng

e 
(°

)

AlexNet block number

V1LGN

Max poolingMax poolingMax pooling

a

c

b

d

Artificial
Contrast

Natural

Artificial
Contrast

Natural

Fig. 6 | Changes in curvature induced by models of the visual system. a, Two-stage cascade model describing computations found in the retina, lateral 
geniculate nucleus (LGN) and V1. The first stage performs bandpass filtering (gray boxes contain icons representing spatial filters), followed by luminance 
and contrast gain control. The second stage decomposes the output of the previous stage with an oriented, multiscale linear transform and measures the 
local energy in each of its sub-bands (only one sub-band shown). b, Change in curvature induced by these computations for natural, artificial and contrast 
sequences. Each stage in the model incrementally contributes to the changes in the curvature found perceptually (circles indicate the median across 
sequences, error bars show the 68% confidence interval, n!=!12 sequences for the natural and artificial stimuli, n!=!9 sequences for the naturalistic ‘contrast’ 
stimuli). We report the perceptual data as the median difference in curvature between human observers and simulated controls, to correct for any estimation 
bias. c, Multistage neural network (AlexNet) trained for object recognition. d, Change in curvature induced by this network, for the same sequences (circles 
indicate the median across sequences, error bars where visible show the 68% confidence interval; n!=!12 sequences for the natural and artificial stimuli, n!=!9 
sequences for the naturalistic ‘contrast’ stimuli). Despite strong performance on object classification, this model does not straighten natural sequences.

NATURE NEUROSCIENCE | www.nature.com/natureneuroscience

http://www.nature.com/natureneuroscience


ARTICLESNATURE NEUROSCIENCE

conditions be confined to a low-dimensional subspace. The 
straightening hypothesis is more restrictive in that it seeks to con-
tain the representation of individual videos in one-dimensional 
subspaces but also more general in that it does not rely on the 
definition or categorization of objects. It could therefore provide a 
practical means of learning such an untangled representation in an 
unsupervised manner, one of the most important open problems in 
machine learning28. Indeed, if the brain were to learn to straighten 
image sequences that evolve according to changes in viewpoint or 
lighting (as is the case for most natural sequences), the resulting 
representation would restrict these ephemeral fluctuations to a low-
dimensional subspace, while preserving object-persistent informa-
tion. Moreover, this objective could enable the untangling of more 
complex naturally occurring image variations, such as the motion of 
articulated or flexible objects and materials.

Our hypothesis is defined with regard to an unspecified inter-
nal perceptual representation, which presumably corresponds to 
the activity of some collection of neurons within the visual system. 
Although the perceptual measurements we report offer no direct 
indication as to where these neurons reside, our computational 
modeling suggests that straightening might emerge through the 
incremental transformations achieved by successive stages of visual 
processing, in line with current descriptions of the emergence of 
feature and object selectivity in the ventral stream29,43,44. The curva-
ture estimation methodology we have developed is agnostic to the 
particular form of experimental measurement and we have begun 
to explore its application to physiological data (spiking responses 
recorded with multi-electrodes45) to directly evaluate the curvature 
of neural population representations in different visual areas.

Our findings also provide a new means of evaluating the ade-
quacy of models of biological visual systems. A number of recent 
studies have examined the appropriateness of learned artificial 
neural network representations as models for biological percep-
tion24,29,30. Since they fail to straighten the timecourse of natural vid-
eos, these models cannot provide a complete account of biological 
vision. Our model of early visual processing is able to account for a 
significant portion of the straightening properties found in humans 
and it could be that downstream computations could also be identi-
fied by their effect on curvature. Going further, these models can be 
more stringently tested by asking which sequences are the straight-
est in their representational space (in technical terms, the ‘geodesics’ 
of the representation). We have developed a computational method 
to generate such geodesic sequences46 and we have used the per-
ceptual straightness of these sequences as a measure for comparing 
candidate models of the human visual system47.

Although we have stated and tested the straightening hypothesis 
in terms of fixed response properties of the visual system, we can 
view it more generally as a means of adapting sensory representa-
tions to the properties of natural temporal inputs. This suggests, for 
example, that temporal straightening might play a role in perceptual 
learning. If so, it should be possible to induce perceptual straighten-
ing of arbitrary sequences through repeated or prolonged exposure. 
There is already some evidence in support of this: a series of studies 
showed that consecutive presentation of pairs of images at differ-
ent positions48 or scales49 can change the invariance properties of 
single cells in visual area IT, as well as the robustness of perceptual 
discriminability in human observers50. But a more direct test of this 
idea, over more general input sequences, is warranted.

Finally, even if the straightening hypothesis proves consistent 
with physiological measurements, this does not answer the ques-
tion of whether it is sufficiently powerful to serve as an objective 
for structuring representations throughout the visual system. To test 
this, one would need to simulate a system that learns to temporally 
straighten the content of natural videos and examine its similarity to 
biological systems. Our understanding of vision, whether biological 
or machine-based, has progressed furthest with regard to the simple 

representations that occur in early stages of hierarchical processing. 
In these, principles of coding efficiency have been useful, both in 
testing for the efficiency of visual representations and in showing 
that they can be learned by maximizing efficiency in the representa-
tion of naturally occurring stimuli1,38,39. Temporal straightening, as 
a task-relevant generalization of efficient coding, holds promise to 
fulfill an analogous role in downstream visual areas.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41593-019-0377-4.

Received: 15 December 2017; Accepted: 7 March 2019;  
Published: xx xx xxxx

References
 1. Barlow, H. B. Possible principles underlying the transformation of sensory 

messages. Sensory Communication (ed. Rosenblith, W.) 217–234  
(M.I.T. Press, 1961).

 2. Atick, J. J. & Redlich, A. N. Towards a theory of early visual processing. 
Neural Comput. 320, 1–13 (1990).

 3. van Hateren, J. H. A theory of maximizing sensory information. Biol. Cybern. 
68, 23–29 (1992).

 4. Meister, M., Lagnado, L. & Baylor, D. A. Concerted signaling by retinal 
ganglion cells. Science 270, 1207–1210 (1995).

 5. Balasubramanian, V. & Berry, M. J. A test of metabolically efficient coding in 
the retina. Network 13, 531–552 (2002).

 6. Puchalla, J. L., Schneidman, E., Harris, R. A. & Berry, M. J. Redundancy in 
the population code of the retina. Neuron 46, 493–504 (2005).

 7. Doi, E. et al. Efficient coding of spatial information in the primate retina.  
J. Neurosci. 32, 16256–16264 (2012).

 8. Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction  
and functional architecture in the cat’s visual cortex. J. Physiol. 160,  
106–154 (1962).

 9. Olshausen, B. A. & Field, D. J. Emergence of simple-cell receptive field 
properties by learning a sparse code for natural images. Nature 381,  
607–609 (1996).

 10. Bell, A. J. & Sejnowski, T. J. The ‘independent components’ of natural scenes 
are edge filters. Vision Res. 37, 3327–3338 (1997).

 11. Goris, R. L. T., Simoncelli, E. P. & Movshon, J. A. Origin and function of 
tuning diversity in macaque visual cortex. Neuron 88, 819–831 (2015).

 12. Rust, N. C. & DiCarlo, J. J. Selectivity and tolerance (‘invariance’) both 
increase as visual information propagates from cortical area V4 to IT.  
J. Neurosci. 30, 12978–12995 (2010).

 13. Le Gall, D. MPEG: a video compression standard for multimedia applications. 
Commun. ACM 34, 46–58 (1991).

 14. Tishby, N., Pereira, F. C. & Bialek, W. The information bottleneck method.  
In Proc. Allerton Conference on Communication, Control and Computing 37, 
368–377 (1999).

 15. Wiskott, L. & Sejnowski, T. J. Slow feature analysis: unsupervised learning of 
invariances. Neural Comput. 14, 715–70 (2002).

 16. Richthofer, S. & Wiskott, L. Predictable feature analysis. In Proceedings IEEE 
1fourth International Conference on Machine Learning and Applications (2016).

 17. Palmer, S. E., Marre, O., Berry, M. J. & Bialek, W. Predictive information in a 
sensory population. Proc. Natl Acad. Sci. USA 112, 6908–13 (2015).

 18. DiCarlo, J. J. & Cox, D. D. Untangling invariant object recognition. Trends 
Cogn. Sci. 11, 333–341 (2007).

 19. Noreen, D. L. Optimal decision rules for some common psychophysical 
paradigms. Proc. of the Symposium in Applied Mathematics of the American 
Mathematical Society and the Society for Industrial and Applied Mathematics 
13, 237–279 (1981).

 20. Tenenbaum, J. B., De Silva, V. & Langford, J. C. A global geometric framework 
for nonlinear dimensionality reduction. Science 290, 2319–23 (2000).

 21. Roweis, S. T. & Saul, L. K. Nonlinear dimensionality reduction by locally 
linear embedding. Science 290, 2323–6 (2000).

 22. Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J. & Ganguli, S. Exponential 
expressivity in deep neural networks through transient chaos. Advances in 
Neural Information Processing Systems 29, 3360–3368 (2016).

 23. Mante, V., Bonin, V. & Carandini, M. Functional mechanisms shaping  
lateral geniculate responses to artificial and natural stimuli. Neuron 58, 
625–638 (2008).

 24. Berardino, A., Ballé, J., Laparra, V. & Simoncelli, E. P. Eigen-distortions of 
hierarchical representations. Advances in Neural Information Processing 
Systems 30, 3530–3539 (2017).

NATURE NEUROSCIENCE | www.nature.com/natureneuroscience

https://doi.org/10.1038/s41593-019-0377-4
https://doi.org/10.1038/s41593-019-0377-4
http://www.nature.com/natureneuroscience


ARTICLES NATURE NEUROSCIENCE

 25. Adelson, E. H. & Bergen, J. R. Spatiotemporal energy models for the 
perception of motion. J. Opt. Soc. Am. A 2, 284 (1985).

 26. Carandini, M. & Heeger, D. J. Normalization as a canonical neural 
computation. Nat. Rev. Neurosci. 13, 51–62 (2012).

 27. Mallat, S. Group invariant scattering.Commun. Pur. Appl. Math. 65, 
1331–1398 (2012).

 28. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521,  
436–444 (2015).

 29. Yamins, D. L. K. et al. Performance-optimized hierarchical models predict 
neural responses in higher visual cortex. Proc Natl Acad. Sci. USA 111, 
8619–8624 (2014).

 30. Khaligh-Razavi, S. M. & Kriegeskorte, N. Deep supervised, but not 
unsupervised, models may explain IT cortical representation. PLoS Comput. 
Biol. 10, e1003915 (2014).

 31. Tacchetti, A., Isik, L. & Poggio, T. Invariant recognition drives neural 
representations of action sequences. PLoS Comput. Biol. 13,  
e1005859 (2017).

 32. Hong, H., Yamins, D. L. K., Majaj, N. J. & Dicarlo, J. J. Explicit information 
for category-orthogonal object properties increases along the ventral stream. 
Nat. Neurosci. 19, 613–22 (2016).

 33. Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with 
deep convolutional neural networks. Advances in Neural Information 
Processing Systems 25, 1–9 (2012).

 34. Simonyan, K. & Zisserman, A. Very deep convolutional networks for 
large-scale image recognition. In Proc. International Conference on Learning 
Representations 3, 1–14 (2015).

 35. Ioffe, S. & Szegedy, C. Batch normalization: accelerating deep network 
training by reducing internal covariate shift. In Proc. International Conference 
on Machine Learning 7, 1–9 (2015).

 36. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image 
recognition. In Proc. Conference on Computer Vision and Pattern Recognition 
29, 770–778 (2016).

 37. Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K. Q. Densely 
connected convolutional networks. In Proc. Conference on Computer Vision 
and Pattern Recognition 30, 2261–2269 (2017).

 38. Simoncelli, E. P. & Olshausen, B. A. Natural image statistics and neural 
representation. Annu. Rev. Neurosci. 24, 1193–1216 (2001).

 39. Barlow, H. Redundancy reduction revisited. Network 12, 241–253 (2001).
 40. Machens, C. K., Gollisch, T., Kolesnikova, O. & Herz, A. V. M. Testing the 

efficiency of sensory coding with optimal stimulus ensembles. Neuron 47, 
447–456 (2005).

 41. Geisler, W. S. Visual perception and the statistical properties of natural 
scenes. Annu. Rev. Psychol. 59, 167–192 (2008).

 42. Bialek, W., De Ruyter Van Steveninck, R. R. & Tishby, N. Efficient 
representation as a design principle for neural coding and computation. In 
Proc. International Symposium on Information Theory, 659–663 (2006).

 43. Fukushima, K. Neocognitron: a self-organizing neural network model  
for a mechanism of pattern recognition unaffected by shift in position.  
Biol. Cybernet. 36, 193–202 (1980).

 44. Serre, T., Oliva, A. & Poggio, T. A feedforward architecture accounts for rapid 
categorization. Proc. Natl Acad. Sci. USA 104, 6424–6429 (2007).

 45. Bai, Y., et al. Neural straightening of natural videos in macaque primary 
visual cortex. Soc. Neurosci. Abstr. 485.07 (2018).

 46. Hénaff, O. J. & Simoncelli, E. P. Geodesics of learned representations. In Proc. 
International Conferenceon Learning Representations 4, 1–10 (2016).

 47. Hénaff, O.J., Goris, R.L.T. & Simoncelli, O.J. Perceptual evaluation of artificial 
visual recognition systems using geodesics. Cosyne Abstr. II-72 (2016).

 48. Li, N. & DiCarlo, J. J. Unsupervised natural experience rapidly alters invariant 
object representation in visual cortex. Science 321, 1502–1507 (2008).

 49. Li, N. & DiCarlo, J. J. Unsupervised natural visual experience rapidly reshapes 
size-invariant object representation in inferior temporal cortex. Neuron 67, 
1062–1075 (2010).

 50. Cox, D. D., Meier, P., Oertelt, N. & DiCarlo, J. J. ‘Breaking’ position-invariant 
object recognition. Nat. Neurosci. 8, 1145–1147 (2005).

Acknowledgements
We thank S. Palmer and J. Salisbury for making available the video sequences in their 
Chicago Motion Database. We are also grateful to Y. Bai for helpful comments on the 
manuscript. This work was supported by the Howard Hughes Medical Institute (O.J.H, 
R.L.T.G., E.P.S).

Author contributions
O.J.H., R.L.T.G. and E.P.S. conceived the project and designed the experiments. O.J.H. 
designed the analysis and performed the experiments. O.J.H, R.L.T.G. and E.P.S. wrote 
the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41593-019-0377-4.
Reprints and permissions information is available at www.nature.com/reprints.
Correspondence and requests for materials should be addressed to O.J.H.
Journal peer review information: Nature Neuroscience thanks Konrad Kording and 
other anonymous reviewer(s) for their contribution to the peer review of this work.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.
© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019

NATURE NEUROSCIENCE | www.nature.com/natureneuroscience

https://doi.org/10.1038/s41593-019-0377-4
https://doi.org/10.1038/s41593-019-0377-4
http://www.nature.com/reprints
http://www.nature.com/natureneuroscience


ARTICLESNATURE NEUROSCIENCE

Methods
Stimuli. We measured the perceptual curvature of 12 natural image sequences 
that are representative of the diversity found in real videos (experiment 1; 
Supplementary Figs. 2 and 3, blue path). To constrain our choice of sequences, we 
established a list of attributes that distinguish natural videos. These pertain to the 
content of the videos (discrete, isolated objects versus dense textures) as well as 
the types of motion and transformations over time (camera motion, rigid object 
motion and flexible/articulated object motion). Supplementary Table 1 indicates 
the diversity of the chosen set.

We obtained eight of these (‘water’, ‘prairie’, ‘egomotion’, ‘ice’, ‘bees’, ‘carnegie-
dam’, ‘leaves-wind’, ‘chironomus’) from the Chicago Motion Database (https://cmd.
rcc.uchicago.edu), one from a feature film (‘Dogville’, Lions Gate Entertainment, 
2003) and two from the LIVE Video Quality Database51,52 (‘smile’ and ‘walking’). 
The last (‘boats’) was generated by translating a single image over time. For most 
sequences, we used consecutive frames at the sampling rate of the original videos 
(30 frames per second). However, because curvature can only be resolved when 
successive frames are sufficiently discriminable, we temporally down-sampled 
videos with little variation. As a result, each 11-frame sequence lasted anywhere 
from 92 ms to 1,650 ms in real time (on average, about 300 ms) but each contained 
roughly the same average change (measured perceptually) from one frame to the 
next. All video frames had a spatial resolution of 512 × 512 pixels.

For each sequence, we collected data from three to four observers (41 
sequence–observer pairs in total). Because we required perceptual trajectories 
of sufficient length (when measured in terms of d′) for curvature estimation, 
we excluded data from observers with unusually low average discriminability 
(specifically, those whose proportion of correct answers did not exceed 0.7), 
leaving two to four observers per sequence and 35 sequence–observer pairs.

Each observer was also shown an artificial sequence that faded linearly between 
the first and the last frame of the corresponding natural sequence (experiment 2;  
Supplementary Figs. 2 and 3, green path). Finally, nine of these observers 
also viewed nine natural, intensity-linear sequences that were generated by 
manipulating the contrast of a single frame (experiment 3; 25 sequence–observer 
pairs in total). Four such sequences varied the contrast of the first frame of the 
‘water’, ‘walking’, ‘bees’ and ‘boats’ sequences, respectively, from 50% to 100% in 
linear steps. The five others varied the contrast of the first frame of the ‘prairie’, 
‘walking’, ‘smile’, ‘bees’ and ‘egomotion’ sequences, respectively, from 10% to 100% 
in logarithmic steps.

Experimental paradigm. We tested 18 observers (6 females, 12 males; ages 
19–30 yr) with normal or corrected-to-normal vision. Protocols for selection of 
observers and experimental procedures were approved by the human subjects 
committee of New York University and all subjects signed an approved consent 
form. One observer was an author (O.J.H.); all others were naive as to the purposes 
of the experiments.

Each trial followed an AXB paradigm. Three images were shown in sequence, 
the first and the last being a randomly chosen pair of frames from the sequence, 
the middle one being identical to one of the other two. Observers were asked to 
indicate with a button-press whether the first or last image was unique and were 
given feedback after each trial. Sequences obtained from the Chicago Motion 
Database were luminance calibrated and we showed their intensities on a calibrated 
display. For the others, intensities were transformed with pixel-wise power 
(gamma) function, whose exponent we obtained from the camera meta-data (ICC 
profile), to approximate the original luminance. Images were presented for 200 ms, 
with a 500 ms inter-stimulus interval, in an annulus whose inner and outer radii 
were equal to 2 and 12 degrees, respectively. Subjects were instructed to fixate 
on a small cross in the center of the annulus. Their eye position was monitored 
with an EyeLink 2000 eye-tracker and a warning signal indicated when their gaze 
deviated from the cross by more than 1.5 degrees. Trials for which eye position 
deviated by more than 2 degrees were discarded. Trials were grouped into blocks 
of 40, in which observers were presented with images from a single sequence. 
Blocks presenting natural and artificial stimuli were interleaved within a session, 
alleviating the need for separate experimental groups and blind data collection. 
Each observer performed 1,000 trials for each sequence on which they were tested, 
resulting in an average of 18 trials for each pairwise comparison.

Curvature: definition and notation. The curvature at a given node of a sequence 
is defined as the angle between the segments connecting it to adjacent nodes and 
can be computed directly when we have access to the high-dimensional locations 
of each node. If x = {xt}t=0,…,T are such locations (for example a sequence of vectors, 
each containing the pixel luminances of a frame of a video or model responses 
to a frame; T = 10 in our experiments), we can define a sequence of normalized 
displacement vectors ^ = …v{ }t t T1, , :

= −
̂ = ∥ ∥

−v x x

v v
v

t t t

t
t

t

1

and the curvature at a given node t is simply the angle between two such vectors, 
which can be computed from their dot product:

= ̂ ⋅ ̂+c v varccos( )t t t 1

The global curvature of the sequence ĉ is the average of the local curvatures over 
time, in degrees.

Modeling: observer model. We wish to infer the perceptual curvature of a 
sequence from the discriminability of pairs of frames. To this end, we formulate 
an observer model that assigns a location in a D-dimensional perceptual space 
to every frame in the sequence and explains the observed discriminability as 
arising from distances in that space. Since T dimensions are sufficient to render 
any pattern of pairwise distances amongst T + 1 points, we can choose D = T = 10 
without loss of generality. Let x = {xt}t=0,…,T be the perceptual locations associated 
with the frames in a video, for a given subject. For a given pair of frames (i,j) 
we describe the subject’s nij correct and mij incorrect responses in terms of the 
probability of being correct pij with a binomial likelihood
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The probability of a correct response pij is a linear combination of the probability 
of successfully performing the AXB task pij

AXB and the probability of successfully 
guessing the correct answer (1

2
) weighted by the probability of guessing pG = 2λ, 

where λ is known as the lapse rate53:
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The discriminability of two frames does not determine their relative locations in 
perceptual space or the shape of their associated noise distributions. In particular, 
we are free to choose noise distributions for each frame and have them determine 
their relative locations. To apply the same definition of curvature we use in the 
intensity domain (which assumes Euclidean geometry in the dot product), we 
assume that task performance is limited by additive Gaussian noise. The probability 
of successfully performing the task may then be expressed using standard methods 
from signal detection theory19:
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where = ∥ − ∥d x xij i j  is the Euclidean distance between the perceptual locations of 
frames i and j and Φ(·) is the cumulative distribution function of the standard normal.

Modeling: perceptual curvature estimation. Intuitively, a natural procedure 
for estimating perceptual curvature consists of maximizing the likelihood of the 
perceptual locations {xt}t=0,…,T of each frame given the entire dataset of correct and 
incorrect responses of an observer (n, m) = {nij, mij}0≤i,j≤T and then computing the 
curvature of this trajectory. Although this is accurate in the limit of large amounts 
of data, for our experimental data (1,000 trials per sequence and per observer) it is 
prone to substantial biases, consistently preferring curvature values that are closer 
to 90° (the most probable configuration of random vectors in a high-dimensional 
space; Supplementary Fig. 1a). Instead, we perform a direct maximum-likelihood 
estimate of the curvature, by parameterizing the trajectory in terms of its curvature 
and marginalizing over the perceptual locations of individual frames. Although 
more complex, this procedure is substantially more robust than the greedy two-
step process described above and is nearly unbiased (Supplementary Fig. 1b).

To develop this estimation method, we need to parameterize the trajectory in 
terms of its local (and global) curvature. As for pixel-domain curvature, we first 
express the frame vectors in terms of displacement vectors {vt}t=1,…,T, which are 
factored into distances and normalized displacements:

= +
= ̂
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Since our objective is invariant to global translation, we choose x0 = 0.
Next, we define the normalized displacement recursively as a function of the 

curvature at each node ct and the direction of curvature ât:

̂ = ̂ +−v c v c âcos( ) sin( )t t t t t1

where ât is a unit vector orthogonal to the previous displacement vector ̂ −vt 1, 
thereby ensuring that the curvature at node t is equal to ct. Since the objective is 
invariant to rotations, we choose ̂v1 to lie in the direction of the first coordinate axis.

This polar parameterization can express the same set of trajectories as the 
initial Cartesian parameterization but allows us to directly estimate the global 
curvature while marginalizing over local variables. Specifically, we define a prior 
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probability over local curvatures that is Gaussian and centered around the global 
curvature c*. Given a set of local curvatures, the optimal estimate of the global 
curvature is simply the average local curvature, consistent with our previous 
definition. We also define similar priors over local distances, directions and the 
lapse rate, by introducing a set of Gaussian-distributed auxiliary variables that are 
mapped through nonlinear functions:
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where fd is a smooth rectifying function, fa ensures that ât is of unit length and 
orthogonal to vt−1 and fλ(z) = λmaxΦ(z) effectively places a uniform prior on the 
lapse rate (we choose λmax = 0.06 as in ref. 53). Here Σa is diagonal and controls the 
effective dimensionality and aspect-ratio of the trajectory.

Define θ = {d*, c*, σd, σc, Σa} as the set of parameters governing random variables 
=z z z z z{ , , , }t

d
t
c

t
a . Direct curvature estimation amounts to maximizing the likelihood 

of these parameters to best account for the data, a form of empirical Bayes estimation. 
Computing the (log) likelihood of these parameters requires marginalizing over local 
variables, a high-dimensional integral that is intractable in practice:

∫= ∣θ θp n m p n m z p zlog ( , ) log ( , ) ( )

Fortunately, variational methods provide a tractable lower bound on the 
likelihood54. Given an approximate Gaussian posterior qϕ(z|n, m), we replace the 
intractable integral with an analytical one:
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In practice, we optimize this lower bound simultaneously with respect to the global 
parameters θ and those of the approximate posterior ϕ, using a stochastic gradient 
descent algorithm55.

The example trajectories and curvature values in Figs. 3b, 4b and 5b are the 
result of this optimization procedure. Specifically, the optimal parameters θ* 
contain our estimate of the trajectory’s global length, curvature and shape, whereas 
the optimal parameters ϕ* contain estimates of the trajectory’s local distances, 
curvature and direction. When describing population data in Figs. 3c, 4c and 5c 
we further reduce the variance of our curvature estimates by reporting the mean of 
100 bootstrapped samples.

Modeling: evaluating curvature estimates with simulated observers. After 
fitting our model to a given observer’s data, we are left with a distribution over 
the perceptual trajectory’s parameters. The mean of this distribution determines 
a trajectory whose curvature is equal to our estimate of the human observer’s 
perceptual curvature (which we report in the results). If we replace its local 
curvature values with those of the intensity-domain trajectory, we arrive at the 
perceptual-domain trajectory of a simulated observer that is identical to the 
human observer but whose internal curvature is identical to the intensity-domain 
curvature. We then simulate a new dataset of responses from this observer, with 
the same number and distribution of trials as the original one. Fitting the model to 
this simulated dataset yields a perceptual-domain curvature estimate which reflects 
the null hypothesis for this set of sequences and observers. By comparing the 
distribution of perceptual-domain curvature for human observers to that of their 
simulated counterparts, we can assess whether perceptual-domain curvature differs 
significantly from intensity-domain curvature. This null distribution also provides 
a means of evaluating the bias and variance of our estimation procedure.

Modeling: predictability of intensity domain and perceptual trajectories. Having 
inferred a perceptual trajectory and its curvature for each image sequence and 
observer, we wanted to know whether straighter trajectories were more predictable 
than more curved ones. This is likely the case for first-order linear extrapolation but 
need not be for higher-order extrapolators. Having observed the frames xt, xt−1, and 
so on, a Kth-order extrapolator predicts the next frame xt+1 to be:

β β β̂ = + + … ++ − −x x x xt t t K t K1 0 1 1

in which the weights β = (β0, …, βK) can be fit using least-squares regression:
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In Figs. 3d, 4d and 5d we report the error of such a predictor as a percentage of the 
average step size, for each sequence and observer’s perceptual trajectory x:
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As a control, we also applied this analysis to the perceptual trajectories of simulated 
observers described in the previous section.

Statistical tests. Unless specified otherwise, all statistical testing used a two-tailed 
Wilcoxon signed-rank test, typically for comparing curvature (or prediction 
error) in the intensity and perceptual domains or between human observers and 
simulated controls. The only exceptions are when ensuring that our curvature 
estimation methodology is not biased towards curvature reduction (we used a one-
tailed test) and when comparing artificial and naturalistic ‘contrast’ sequences (we 
used a Mann–Whitney U-test).

Since the simulation process is inherently variable, we also compared the 
median change in curvature for human observers to the distribution of median 
change in curvature across simulated control populations, which yielded similar 
results (Supplementary Fig. 6). Specifically, the simulated populations we present 
in Figs. 3–5 show a median change in curvature which is equal to the median 
of the distribution across simulations. Moreover, for experiments 1 and 2 this 
distribution is concentrated around the median, such that the median change 
in curvature observed in human observers is significantly greater than for all 
simulated populations (P < 0.001, two-tailed Z-test; Supplementary Fig. 6, left 
and middle). For experiment 3, the median change in curvature shown by 
human observers relative to simulated controls is significantly smaller than in 
experiment 2 (P = 0.02; Supplementary Fig. 6, right). For these statistical tests, the 
distribution of median change in curvature across simulated control populations 
was assumed to be normal but this was not formally tested. As such, the simulated 
populations presented in Figs. 3–5 are representative of the distributions across 
simulated controls.

Modeling: curvature in hierarchical models. We constructed a two-stage model 
of early visual processing by cascading a model of retinal processing and one 
of primary visual cortex. The retinal model composes spatial center-surround 
filtering, luminance and contrast gain control and a rectifying nonlinearity24. 
The model of primary visual cortex uses a set of multi-scale, oriented and band-
pass filters (a ‘steerable pyramid’56), followed by squaring and summing over 
quadrature pairs to mimic the action of complex cells25. We used six scales and four 
orientations, excluding the high- and low-pass residual bands. The retinal model 
was optimized to match foveal perceptual discriminability judgments of human 
observers24 but our images were presented at 2 degree eccentricity. To approximate 
the loss of visual acuity in the parafovea57, we spatially down-sampled images by a 
factor of 2 using a Lanczos filter before presenting them to our model. Our results 
were robust to the precise choice of resolution (down-sampling by factors of 1, 2, 4 
or 8 all give qualitatively similar results). We computed model response vectors for 
each frame in a sequence and measured the curvature of this sequence of responses.

We also evaluated the curvature of the same sequences as represented in 
each layer of a deep convolutional neural network (known as ‘AlexNet’) trained 
for object recognition33. The network contains a sequence of five rectified 
convolutional layers, with max pooling after the first, second and fifth layers. The 
convolutional layers have 64, 192, 384, 256 and 256 filters of size 11, 5, 3, 3 and 3 
pixels respectively. We obtained the pre-trained model from the PyTorch Model 
Zoo, with corresponding Top-5 error rate on the ImageNet test set of 21%. We also 
tested more recent architectures (the 19-layer VGG model34 with and without batch 
normalization35, a 152-layer Residual Network36 and a 121-layer Dense Network37, 
with test errors of 8%, 9%, 6% and 8%, respectively) and obtained similar results. In 
all of these, we report curvature in the pooling layers, but obtained similar results 
in intermediate ones.

Sample size and replication. Our simulation and recovery analysis allowed us to 
estimate the variability in our curvature estimation method. This analysis revealed 
that six sequences and three observers per sequence would be sufficient to detect 
a curvature reduction of 20°. We collected these data which were the basis of our 
initial submission. For our final submission, we replicated our original findings 
with a new set of six sequences and three observers per sequence. We have 
presented the combination of both datasets.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.
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Data availability
The data supporting the findings of this study are available from the corresponding 
author on reasonable request.

Code availability
The code used to analyze the data of this study is available from the corresponding 
author on reasonable request.
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Sample size Our simulation and recovery analysis allowed us to estimate the variability in our curvature estimation method. This analysis revealed that 6 
sequences and 3 observers per sequence would be sufficient to detect a curvature reduction of 20 degrees. We collected these data which 
were the basis of our initial submission. For our final submission, we replicated our original findings with a new set of 6 sequences and 3 
observers per sequence. The manuscript presents the combination of both datasets.

Data exclusions We were unable to reliably estimate perceptual curvature from observers with very low accuracy. For that reason, we excluded data from 
observers whose proportion of correct responses was below 70%. This criterion was determined in simulation, before analyzing human 
human data. 

Replication For this revised version, we collected a second dataset (identical in size to the original) from an independent set of sequences. The results 
from this new dataset were perfectly consistent with our original findings. The manuscript presents the combination of both datasets. 

Randomization Experiments 1 and 2 were interleaved within a session for each sequence and observer, alleviating the need for group allocation and blinded 
data collection. A random subset of these observers also participated in experiment 3.

Blinding Experiments 1 and 2 were interleaved within a session for each sequence and observer, alleviating the need for group allocation and blinded 
data collection.
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Population characteristics We tested 18 observers (6 females, 12 males; ages 19-30) with normal or corrected-to-normal vision. 

Recruitment We advertised the study with fliers in the common areas of the department, as well as a department-wide e-mail. All volunteers 
participated in the study. Given the nature of our measurements (visual discrimination of natural video frames), we do not 
expect any self-selection bias to impact our results.
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