
Published as a conference paper at ICLR 2016

GEODESICS OF LEARNED REPRESENTATIONS
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ABSTRACT

We develop a new method for visualizing and refining the invariances of learned
representations. Specifically, we test for a general form of invariance, lineariza-
tion, in which the action of a transformation is confined to a low-dimensional sub-
space. Given two reference images (typically, differing by some transformation),
we synthesize a sequence of images lying on a path between them that is of mini-
mal length in the space of the representation (a “representational geodesic”). If the
transformation relating the two reference images is linearized by the representa-
tion, this sequence should follow the gradual evolution of this transformation. We
use this method to assess the invariance properties of a state-of-the-art image clas-
sification network and find that geodesics generated for image pairs differing by
translation, rotation, and dilation do not evolve according to their associated trans-
formations. Our method also suggests a remedy for these failures, and following
this prescription, we show that the modified representation is able to linearize a
variety of geometric image transformations.

1 INTRODUCTION

A fundamental requirement of pattern recognition is the ability to ignore irrelevant variations in the
input (Duda et al., 2001). Most visual recognition problems are thwarted by variations in position,
size, pose, lighting, and other viewing conditions that can bring objects from different classes closer,
while increasing within-class variability (DiCarlo & Cox, 2007), and the construction of represen-
tations that are invariant to these variations remains an active area of research. Recent examples of
learned visual representations have proven highly effective for recognition (Krizhevsky et al., 2012),
but a precise understanding of exactly what they represent remains elusive. And although these rep-
resentations are hypothesized to be invariant to various identity-preserving deformations, apart from
a few exceptions, these claims are rarely tested directly (Kavukcuoglu et al., 2009).

Image synthesis provides a powerful methodology for examining the invariances of arbitrary rep-
resentations. It has been used to explore and refine texture models, incrementally augmenting the
representation with new statistical constraints until images synthesized with matching parameters
are indistinguishable to human observers (Portilla & Simoncelli, 2000). When applied to deep
recognition networks, synthesis has revealed failures in the form of “adversarial examples”: images
that appear entirely different to a human observer, and yet are identified by the network as belonging
to the same category (Szegedy et al., 2013). In these cases, samples from the equivalence class of
images that map to the same representation vector provide a means of verifying or falsifying the
hypothesis that the invariances of the representation are also invariances for human observers.

But the synthesis test, in which human observers try to discriminate synthesized images, is one-
sided: failures (i.e. visually distinct images) can reveal inappropriate invariances of a representa-
tion, but successes can mask a lack of desired invariances. Consider the standard case of translation-
invariance. The Fourier amplitude spectrum (i.e., the set of magnitudes of Fourier transform coeffi-
cients) provides a well-known example of a translation-invariant representation, but it is invariant to
far more than translations, and this is immediately revealed by a synthesis test (figure 1, top right).
On the other hand, simply representing an image with its raw pixel values (the identity representa-
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ground truth pixel intensities Fourier magnitudes

Figure 1: Geodesics can reveal either insufficient or excessive invariance, whereas synthesis reveals
only the latter. Top: images synthesized so that their representation is matched to that of the ground
truth image (left). Middle image has matching pixel intensities (i.e., it is identical to the ground truth
image) and right image has matching Fourier magnitudes. Bottom: synthetic geodesic sequences
connecting two translated copies of the same image, via different representations. Shown are the
middle frame of each sequence, and below it, the temporal evolution of each row of pixels indicated
by a horizontal red line. The ground truth transformation (left) is a translation (as can be seen from
the diagonal lines in the temporal slice), but both geodesics deviate from the true transformation.
The pixel representation fully constrains the image, and has no invariances, and thus the synthesized
geodesic images are simply linearly interpolated between the initial and final images. The Fourier
magnitudes, while translation-invariant, are also invariant to arbitrary phase perturbations, and the
synthesized geodesic image contains Fourier components whose phases are shifted inconsistently.

tion) will trivially produce visually perfect synthetic examples (figure 1, top center) despite the fact
that it has no invariance properties at all.

We seek a more general method of evaluation that penalizes a model for discarding too much infor-
mation (as with synthesis) but also for discarding too little information. Each of these failures can
be seen as an inadequacy of the image metric induced by the representation. Specifically, an image
representation deforms the input space, bringing some images closer to each other while spreading
others out, and thus inducing a new metric in image space. We can expose properties of this image
metric by generating a geodesic sequence of images. Specifically, given an initial and final image,
we synthesize a sequence of images that follow a minimal-length path in the response space of the
representation. In the absence of any other constraints, this path will be a straight line connecting
the representations of the two images; more generally, it will be the straightest path connecting the
two points. In the case where the two images differ by a simple transformation (e.g. a translation,
figure 1, left column) that is not linearized by the representation (i.e. mapped to the straightest path
connecting the two representations), the geodesic will differ from the original transformation con-
necting the images (figure 1, middle column). Similarly, if the representation is invariant to many
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transformations, the geodesic may correspond to a path that uses a mixture of transformations, and
thus differ from the ground truth path (figure 1, right column). As a result, by visualizing whether
a representation has linearized the action of various deformations, representational geodesics can
reveal both excessive and insufficient invariance in an image model.

We develop an algorithm for synthesizing geodesic sequences for a representation, and use it to
examine whether learned representations linearize various real-world transformations such as trans-
lation, rotation, and dilation. We find that a current state-of-the-art object recognition network fails
to linearize these basic transformations. However, these failures point to a deficiency in the repre-
sentation, leading to a simple way of improving it. We show that the improved representation is
able to linearize a range of parametric transformations as well as generic distortions found in natural
image sequences.

2 SYNTHESIZING GEODESIC SEQUENCES

Suppose we have an image representation, y = f(x), where x is the vector of image pixel intensities
and f(·) a continuous function that maps it to an abstract vector-valued representation y (e.g. the
responses of an intermediate stage of a hierarchical neural network). Given initial and final images,
we wish to synthesize a sequence of images that lies along the path of minimal length in the repre-
sentation space (a representational geodesic). If the mapping is many-to-one (as is usually the case),
this sequence of images is not unique. We resolve this ambiguity by selecting the representational
geodesic that is also of minimal length in the space of images (i.e., a conditional geodesic in image
space).

2.1 OBJECTIVE FUNCTION

In order to generate such a sequence, we optimize an objective function that expresses a discrete
approximation of the problem, directly in terms of images sampled along the path. Given a desired
sequence length N and initial and final images, {x0, xN}, we wish to synthesize a sequence of
images, γ = {xn;n = 0 . . . N}, lying along a geodesic in representation space. The representational
path length is

L[f(γ)] =

N∑
n=1

‖f(xn)− f(xn−1)‖2

which is bounded by the representational energy

E[f(γ)] =

N∑
n=1

‖f(xn)− f(xn−1)‖22

thanks to the Cauchy-Schwartz inequality

L[f(γ)]2 ≤ NE[f(γ)]

with equality if and only if the representations are equispaced, which is encouraged by minimizing
the representational energy. As a result, a path that meets this condition (e.g. the red curve in figure
2) while minimizing the representational energy E[f(γ)] is a representational geodesic.

When the mapping to representation space is many-to-one, there are many possible solutions to this
problem. To uniquely constrain the solution, we define an analogous energy term that ensures that
this path is also of minimal length in the image domain

E[γ] =

N∑
n=1

‖xn − xn−1‖22

Since we are looking for the shortest path in image space that is also a geodesic in representation
space, we minimize E[γ] conditioned on the path also minimizing E[f(γ)]. Furthermore, during
the optimization we constrain image pixel intensities to the [0, 1] range.
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2.2 OPTIMIZATION

We optimize this objective in three steps. First, we initialize the path with the minimum of E[γ],
which is simply a sequence of images that are linearly interpolated between the initial and final
images. Next we minimize the representational geodesic objective E[f(γ)]. Finally, we minimize
the image-domain geodesic objective, conditioned on staying in the set of representational geodesics.

Minimizing the representational geodesic objective in the second step requires optimizing an image
for its representation via a non-linear function, and thus shares much of the non-convexity found in
training deep neural networks. In particular, the curvature of the energy surface can vary widely over
the course of the optimization. For this reason, we used the Adam optimization method (Kingma &
Ba, 2014), which scales gradients by a running estimate of their variance, providing robustness to
these changes in the energy landscape. We run Adam, using the default parameters, for 104 iterations
to ensure that we reach the minimum of the representational geodesic cost.

To optimize the image-domain geodesic objective while constraining the solution to remain in the
set of representational geodesics, we start by computing a descent direction for the image-domain
geodesic objective. We then project out the component of this direction that lies along the gradient
of the representational geodesic objective. We take a step in that direction, then project back onto the
set of representational geodesics by re-minimizing the representational geodesic cost (again using
Adam), and repeat until convergence. We summarize our method with the following algorithm.

Conditional geodesic computation

Require: f : continuous mapping
Require: x0, xN : initial and final images
Require: N : number of steps along geodesic path (N = 10 in all our experiments)
Require: λ: gradient descent step size
Ensure: γ = {xn;n = 0 . . . N} minimizes E[γ] conditioned on minimizing E[f(γ)]

xn ← N−n
N x0 +

n
N xN n ∈ J0, 1, . . . NK initialize with pixel-based interpolation

minimize E[f(γ)] project onto set of representational geodesics
while γ has not converged do
dr ← ∇γE[f(γ)]

dp ← ∇γE[γ]

d̂p ← dp − <dr,dp>

‖dr‖22
dr project out representational gradient

γ ← γ − λd̂p
minimize E[f(γ)] re-project onto set of representational geodesics

end while
return γ

Despite the non-convexity of the problem, we have good reason to believe that solving this opti-
mization problem should be feasible for trained neural networks. Since the output of the first layer
is equal to the convolution of the input image with a filter bank, our problem is similar in complexity
to optimizing the weights of the first layer of a network, for the same objective. Recent theoretical
work shows that optimizing all layers of a network jointly makes the problem significantly more
difficult than optimizing a single layer in isolation (Saxe et al., 2013). Hence optimizing E[f(γ)]
should be easier than training the full network for recognition. In practice we were able to solve the
optimization problem for a variety of deep networks.

It should be noted that if the mapping f(·) is not surjective, not all vectors in the representation space
are attainable from an input image. Specifically, if the mapping is non-linear (as for most represen-
tations of interest) the set of attainable vectors is non-convex, and vectors lying along the straight
line connecting two representations are not necessarily attainable. As such, we can only expect to
find a geodesic path whose representation is as close as possible to this straight line by minimizing
the representational geodesic cost E[f(γ)]. Figure 2 shows an example of this, for the case of image
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Figure 2: Deviation from the straight line connecting the
representations of a pair of images, for different paths in
representation space. Due to the non-linearity of the rep-
resentation (the third stage of L2 pooling of a deep neu-
ral network, see section 3) the geodesic deviates slightly
from the straight line. The ground truth transformation
(here, a translation) deviates similarly, indicating that
the representation has linearized the transformation to a
large extent. For reference, a pixel-based interpolation
deviates significantly more from a straight line. Axes
are in the same units, normalized by the distance sepa-
rating the end point representations. Knots along each
curve indicate samples used to compute the path.

translation. By construction, the geodesic is closer to a straight line in representation space than
either the ground truth transformation or a pixel interpolation. The ground truth transformation lies
close to the geodesic, indicating that this representation has almost (but not completely) linearized
this transformation. The differences between these two paths can be made explicit by visualizing
the geodesic sequence, as detailed in the following section.

3 VISUALIZING GEODESIC SEQUENCES

We used our geodesic framework to examine the invariance properties of the 16-layer VGG network
(Simonyan & Zisserman, 2014), which we chose for its conceptual simplicity and strong perfor-
mance on object recognition benchmarks. As a “representation” for our tests, we used the output
of the third stage of pooling. Each stage of this continuous non-linear mapping is constructed as a
composition of three elementary operations: linear filtering, half-wave rectification, and max pool-
ing (which summarizes a local region with its maximum). We followed the preprocessing steps de-
scribed in the original work: images are rescaled to the [0, 255] range, color channels are permuted
from RGB to BGR, and the mean BGR pixel value, [104, 117, 124], is subtracted. We verified that
our implementation could replicate the published object recognition results.

3.1 GEODESICS AS A DIAGNOSTIC TOOL

We first examined whether this representation linearizes basic geometric transformations: transla-
tion, rotation and dilation. To do so, we compute the geodesic sequence between two images that
differ by one of these transformations, and compare it to the ground truth sequence obtained by
incremental application of the same transformation. The extent of the overall transformation deter-
mines the difficulty of this task: all representations (even trivial ones) will produce geodesics that are
close to the ground truth for very small transformations, whereas all are likely to fail for very large
transformations. For our discriminative test we chose intermediate values: an 8 pixel translation, a
4◦ rotation, and a 10% dilation.

We found that the VGG network, despite its impressive classification performance, failed to lin-
earize these simple geometric deformations and produced geodesics with salient aliasing artifacts
(figure 3, middle column). Given that no subsampling is used in the convolutional layers, we at-
tributed this failure to the max pooling layers, which subsample the representation by a factor of 2
in each direction, despite their small spatial extent (a 2×2 pooling region). To avoid aliasing arti-
facts when subsampling by a factor of 2, the Nyquist theorem requires blurring with a filter whose
cutoff frequency is below π

2 . Following this indication, we replaced the max pooling layers with L2

pooling:

L2(x) =
√
g ∗ x2

where the squaring and square-root operations are point-wise, and the blurring kernel g(·) is chosen
as a 6×6 pixel Hanning window that approximately enforces the Nyquist criterion. This type of
pooling is often used to describe the behavior of neurons in primary visual cortex (Vintch et al.,
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ground truth VGG network, max pooling VGG network, L2 pooling

Figure 3: Comparison of geodesic sequences for VGG network representation with max pooling
(middle column) and VGG network with L2 pooling (right column) with ground truth sequence (left
column). Three different types of geometric transformation are tested: horizontal translation (top),
rotation around the center (middle), dilation about the center (bottom). As in figure 1, square images
are the middle frame from the corresponding sequence, and underneath is the temporal evolution of
three image slices, taken along the red lines shown in the left column. The original VGG network
is unable to linearize these transformations (as indicated by the ‘double exposure’ in the middle
frame, and the discontinuous temporal slices), whereas the same VGG network with L2 pooling
(right column) induces a geodesic that is close to ground truth.

6



Published as a conference paper at ICLR 2016

2015), and also bears resemblance to the complex modulus used in the “scattering transform” (Mal-
lat, 2011) which has been shown to be robust to smooth deformations.

We found that this modified VGG network not only produced geodesic sequences that were free
of most aliasing artifacts, but also linearized these geometric transformations convincingly, as can
be seen in the temporal slices of the geodesic (figure 3, right column). This confirms that, as with
the Fourier magnitude and the scattering transform, smooth, quadratic pooling operators are able to
linearize local deformations. Unlike the Fourier magnitude however, the locality and hierarchical
nature of these representations tailors their invariances to a much more limited set of transformations.
Furthermore, this demonstrates the power of geodesics as a visualization tool for understanding
learned representations. Not only does this diagnostic report a deficiency of a representation (figure
3, middle column), it also points to the mechanism of this failure, suggesting a simple way to
improve the model.

This suggests that the VGG network’s performance on object recognition tasks could be improved
by substituting max pooling with L2 pooling, and retraining the network to decode this new repre-
sentation. Indeed, the added invariance of this representation could enable the network to generalize
to new viewing conditions more robustly.

3.2 DISAMBIGUATING SPATIAL SCALE AND NONLINEAR COMPLEXITY WITH GEODESICS

Thus far we have found that a deep representation is able to linearize a range of real-world transfor-
mations (figure 3, right column) whereas a shallow one (e.g., the pixel intensities) is not (figure 1,
middle column). It is unclear, however, whether the improved invariance of the deep representation
is due to the spatial extent over which it computes its responses, or its nonlinear complexity. Indeed,
as we progress up the hierarchy of a neural network, the effective input region for each unit (the
“receptive field”) increases in size, simply due to cascaded convolution and subsampled pooling.
At the same time, the complexity of the representation increases as a longer sequence of non-linear
operations are composed.

In order to separate these two effects, we varied the complexity of the representation while keeping
the size of the receptive field constant. For an artificial neuron, the receptive field quantifies the
strength of the connection between a location in the image and that neuron’s activity, and can be
measured by computing the magnitude of the gradient of the neuron’s activity with respect to the
image. Hence, the receptive field of a non-linear neuron changes as a function of the input image.
In order to measure the extent of a neuron’s receptive field across all images, we averaged the

2nd pooling layer 3rd pooling layer1st pooling layer

Figure 4: Even when matched for “receptive field” size, shallow representations cannot linearize
translations as well as deep ones. From left to right: geodesics generated from 1st, 2nd and 3rd
pooling layers, with receptive field sizes approximately matched by altering the spatial extent of the
L2 pooling (to 36×36, 18×18 and 6×6 pixels, respectively). As the complexity of the representation
increases, so does the quality of the corresponding geodesic.
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magnitude of the gradient of its activity over a large set of white noise images. We generalized this
method to measuring the receptive field of an entire population by computing the average magnitude
of the gradient of an entire ‘cortical column’, or set of hidden units at a given location.

Using this method, we measured the receptive field size of the representation used in our previ-
ous experiments (third pooling layer of the VGG network with L2 pooling). We then computed
geodesics from shallower representations (first and second pooling layers of the VGG network) for
which we increased the pooling extent (from 6×6 to 36×36 and 18×18 respectively) in order to
match the receptive field size of the deep representation. These experiments show that shallower
layers, despite being matched for receptive field size, are unable to linearize translations as well as
deeper ones (figure 4). Interestingly, we find a gradual increase in the quality of the geodesics as the
complexity of the representation increases. Hence the curvature of representational geodesics, more
than their dimensionality, is essential for capturing these non-linear deformations of the image.

3.3 LINEARIZING NATURAL IMAGE SEQUENCES

Having tested for the modified VGG network’s ability to linearize simple parametric transforma-
tions, we asked whether it can linearize compositions of these transformations that arise in natural
image sequences. To explore this, we extracted 5 frames from the movie Melancholia and gener-
ated a geodesic from the first to the last of these. We find that this geodesic smoothly transitions
between the two images, and captures much of the true temporal evolution of the video (figure 5,
left and right panels). Relative to the original sequence, the only errors it produces are due to well
known problems in motion estimation. A large component of the transformation in the video is an
out-of-plane rotation due to the camera panning, creating a composition of translations and dilations
throughout the image. In a region of the image with periodic structure (e.g. the woven cane texture
of the chair), the motion between the two end frames is ambiguous, because the translation between
them exceeds one half of this period. This problem, known as temporal aliasing, can be seen in the
temporal slices, which reveal that the back of the chair is smoothly shifted in the opposite direction
of the rest of the image (figure 5, right panel). In motion estimation, this problem is usually solved
using a coarse-to-fine approach, in which the motion of the low frequencies is estimated first, and
used to condition (or initialize) motion estimates derived from higher frequencies. This method can
be naturally embedded in our framework by generalizing the nested conditionalization of geodesic

VGG network, L2 poolingground truth pixel intensities

Figure 5: Comparison of geodesic sequences for a pixel-based representation (middle column) and
the VGG network with L2 pooling (right column) for a natural movie (left column). Geodesic
sequences are generated between the first and last frame of the original movie. The pixel intensity
representation fails to linearize the sequence, while the VGG network with L2 pooling induces a
geodesic that is close to the original movie. The main deficiency in this geodesic is due to temporal
aliasing, where periodic structure in the image is shifted backwards relatively to the rest of the image
(see first and second temporal slices).
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objective functions (section 2.1). That is, each layer of the network can impose its own geodesic
constraints, conditioned on those imposed by deeper layers. This hierarchical construction provides
a means of solving the problem of temporal aliasing, and more generally should allow the network
to linearize a broader class of transformations.

4 DISCUSSION

The synthesis of geodesic sequences provide a means of visualizing and assessing metric properties
of a representation. We have developed a methodology for generating such sequences, and shown
that they can be used as a powerful diagnostic tool for evaluating the invariance properties of learned
representations. Specifically, evaluating geodesics enables one to test the “untangling hypothesis”
by which hierarchical representations (in particular, biological sensory systems) linearize the action
of identity-preserving transformations (DiCarlo & Cox, 2007). Such an “untangled” representation
can be linearly decoded, projecting out unwanted variations arising from image-domain renderings
to achieve invariant object recognition, or projecting out the orthogonal space, so as to estimate
latent rendering variables such as position, lighting, and pose.

We used this methodology to test a state-of-the-art recognition network and found that it was unable
to linearize basic image transformations such as translation, rotation and dilation. Importantly, these
results suggested a simple improvement in the architecture of the network, which in turn enabled
it to linearize parametric distortions as well as those found in a natural image sequence. Hence,
our geodesic visualization method provides both a means of testing the untangling hypothesis for
artificial networks, as well as a design tool for guiding improvements in learned representations.

Alternatively, one could directly test the invariance of a system to a given transformation by exam-
ining the variability of responses to objects deformed by the corresponding operation. But such a
test relies on establishing a meaningful measure of variability in the representation space, which is
undermined by the fact that essentially equivalent representations (e.g., that differ by an invertible
affine transformation) can have dramatically different distance or variability measures. As a result, it
can be difficult to compare invariance properties of different models, or even across different stages
of the same network, with this direct method. The use of geodesic sequences (which are unaffected
by invertible affine transformations) avoids this problem by expressing the invariance properties of
the representation back in the input (image) domain, where they can be directly compared.

Moreover, our method can be applied to arbitrary image pairs, including but not limited to para-
metrically transformed images and frames from natural videos. For example, generating geodesics
between two arbitrary images from the same object category can reveal whether object identity is an
invariant of a representation. An affirmative answer implies that, back in the representation space, all
of the images along the geodesic could be correctly identified using a linear decoder (as is commonly
done when reading out the penultimate layer of a deep neural network).

Finally, our method suggests a natural extension to hierarchical representations. Our geodesic se-
quences were computed by minimizing path length in the pixel domain, conditioned on minimizing
path length in a network representation. This process could be applied recursively in a hierarchical
representation, minimizing path length at each stage conditioned on minimal path length at higher
stages. The resulting non-linear coarse-to-fine computation has the potential to solve well-known
problems of temporal aliasing, and to enable hierarchical representations to linearize a much broader
class of naturalistic transformations. The resulting image sequences, in turn, could be used to probe
and characterize perceptual and physiological aspects of the representation of these transformations
in biological visual systems.
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