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Olivier J. Hénaff, Johannes Ballé, Neil C. Rabinowitz & Eero P. Simoncelli
Howard Hughes Medical Institute, and
Center for Neural Science
New York University
New York, NY 10003, USA
{ojh221, jb4726, nr66, eero.simoncelli}@nyu.edu

ABSTRACT

We develop a new statistical model for photographic images, in which the local
responses of a bank of linear filters are described as jointly Gaussian, with zero
mean and a covariance that varies slowly over spatial position. We optimize sets
of filters so as to minimize the nuclear norm of matrices of their local activations
(i.e., the sum of the singular values), thus encouraging a flexible form of sparsity
that is not tied to any particular dictionary or coordinate system. Filters opti-
mized according to this objective are oriented and band-pass, and their responses
exhibit substantial local correlation. We show that images can be reconstructed
nearly perfectly from estimates of the local filter response covariance alone, and
with minimal degradation (either visual or MSE) from low-rank approximations
of these covariances. As such, this representation holds much promise for use in
applications such as denoising, compression, and texture representation, and may
form a useful substrate for hierarchical decompositions.

1 INTRODUCTION

Figure 1: Global responses
of oriented band-pass filters
to natural images are heavy
tailed.

Many problems in computer vision and image processing can be
formulated in terms of statistical inference, based on probabilistic
models of natural, photographic images. Whereas natural images
themselves are complex, locally structured, and high-dimensional,
the vision community has traditionally sought probabilistic models
of images that are simple, global, and low-dimensional. For exam-
ple, in the classical spectral model, the coefficients of the Fourier
transform are assumed independent and Gaussian, with variance
falling with frequency; in block-based PCA, a set of orthogonal
filters are used to decompose each block into components that are
modeled as independent and Gaussian; and in ICA, filters are cho-
sen so as to optimize for non-Gaussian (heavy-tailed, or “sparse”)
projections (Bell & Sejnowski (1997); figure 1).

To add local structure to these models, a simple observation has
proved very useful: the local variance in natural images fluctu-
ates over space (Ruderman, 1994; Simoncelli, 1997). This has
been made explicit in the Gaussian Scale Mixture model, which
represents neighborhoods of individual filter coefficients as a sin-
gle global Gaussian combined with a locally-varying multiplica-
tive scale factor (Wainwright & Simoncelli, 2000). The Mixture of
GSMs model builds upon this by modeling the local density as a
sum of such scale mixtures (Guerrero-Colón et al., 2008).

Here, we extend this concept to a richer and more powerful model by making another simple ob-
servation about the local structure of natural images: the covariance of filter coefficients at a given
location can vary smoothly with spatial position, and these local covariances tend to be highly elon-
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gated, i.e. they lie close to low-dimensional subspaces. In section 2, we motivate the model, showing
that these properties hold for a pair of simple oriented filters. We find that the low-dimensionality
of local covariances depends on both the filter choice, and the content of the images—specifically, it
does not hold for phase-randomized filters or images. In section 3, we use this distinctive property
to optimize a set of filters for a measure of low-dimensionality over natural images. Finally, in sec-
tion 4, we demonstrate that the local low-dimensional covariance description captures most of the
visual appearance of images, by synthesizing images with matching local covariance structure.

2 ANALYSING LOCAL IMAGE STATISTICS

|r| = 0.78

|r| = 0.10

|r| = 0.37

|r| = 0.48

Figure 2: Locally, we can approximate the responses of a pair of oriented band-pass filters to pho-
tographic images as jointly Gaussian, with a covariance that changes continuously across space. In
regions with oriented content, these responses are low-dimensional, as indicated by a high correla-
tion between filter responses.

To understand the statistics of local image patches, we begin with a simple example, based on
analysis with two orthogonal, oriented band-pass filters. If we aggregate the two filters’ responses
over the whole image, the resulting joint distribution is approximately spherically symmetric but
the marginal distributions are heavy-tailed (Zetzsche & Krieger (1999); Lyu & Simoncelli (2009);
figure 1). However, if we aggregate only over local neighborhoods, the distributions are more ir-
regular, with covariance structure that varies in scale (contrast/energy), aspect ratio, and orientation
(figure 2). Our interest here is in the second property, which provides a measure of the dimensional-
ity of the data. Specifically, a covariance with large aspect ratio (i.e., ratio of eigenvalues) indicates
that the filter responses lie close to a one-dimensional subspace (line).

In the case of two filters, we can construct a simple, continuous measure of local dimensionality
by calculating the correlation coefficient between filter responses in local neighborhoods. The dis-
tribution of correlation coefficient magnitudes across image patches is very skewed (figure 3, left):
in many locations, the responses are correlated, i.e. the local Gaussians are low-dimensional. In
contrast, if we repeat the same experiment with spectrally-matched noise images rather than a pho-
tograph (figure 3, center), the correlations are typically lower, i.e. the local Gaussians are more
high-dimensional. The spectral properties of natural images alone are thus insufficient to produce
local low-dimensional structure. Similarly, if we analyze a photograph with phase-randomized fil-
ters (figure 3, right), we do not find the same local low-dimensionality. We take this as evidence that
local low-dimensional structure is a property that emerges from the combination of local band-pass
filters and photographic images.
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 0  1 correlation  0  1 correlation  0  1 correlation

Figure 3: Local low-dimensional structure is not a guaranteed property of all filter responses to all
images. For each panel, the pair of filters in the top left corner (enlarged 15×) are applied to the
image in the top right, and the histogram of local correlation coefficient magnitudes across locations
is plotted below. Oriented filters analyzing natural images (left) exhibit locally low-dimensional
responses, but when oriented filters are applied to spectrally matched noise images (center) or phase-
randomized filters are applied to photographic images (right) this behavior vanishes.

3 LOCAL LOW DIMENSIONALITY AS A LEARNING OBJECTIVE

3.1 OBJECTIVE FUNCTION

We now ask whether these oriented band-pass filters are the best filters, or indeed the only filters,
for producing representations of natural images that are locally low-dimensional. Just as marginal
sparsity has been used as an objective for optimizing filters for representation of natural images (Ol-
shausen & Field, 1996; Bell & Sejnowski, 1997), we aim to derive a filter bank that minimizes a
measure of the local dimensionality of responses to natural images. Here we describe the construc-
tion of the objective function and the motivation behind its components; in section 3.2 we cover
some technical details relating to the optimization; in section 3.3 we present the results.

To begin, suppose we have a convolutional filter bank f , and an image x. We compute a map of
filter responses yi(t) = (fi∗x)(t), with the index t indicating spatial position, and consider this map
in terms of a set of overlapping patches. For each patch P , we can form a matrix YP = [y(t)]t∈P
composed of all the response vectors in that patch.

Next, we need to define an appropriate measure of dimensionality for the local covariance on each
patch. The correlation coefficient presented in section 2 does not extend beyond the simple two-
dimensional case. Instead, we choose to measure the nuclear norm of YP , i.e. the sum of its singular
values. This is the convex envelope of the matrix rank function, so it provides a continuous measure
of dimensionality; unlike the rank, it is robust to small perturbations of filter responses away from
true subspaces. The local low-dimensionality component of the objective is thus:

Elocal dim =
∑

P
‖YP ‖∗

To ensure that the filter responses provide a reasonable representation of the original image, we
reconstruct the image from them via the filter bank transpose f̃(t) = f(−t), and penalize for
reconstruction error:

Erecons =
∑

t

(
x(t)−

∑
i
(f̃i ∗ yi)(t)

)2

Finally, in order to ensure that all filters are used and the filter responses are sufficiently diverse, we
include a term that makes the global distribution of filter responses high-dimensional. One way to
achieve this would be to form the matrix Y of all response vectors from the ensemble, and maximize
its nuclear norm:

Eglobal dim = −‖Y ‖∗
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Together with the reconstruction penalty, this tends to whiten the filter responses (i.e. Cov[y] ∝ I).
In practice however, this term allows degenerate solutions with filters that are related to each other
by a phase shift. This is best understood in the Fourier domain: with the Parseval identity,

Cov[y] =

[∫
yi(t)yj(t) dt

]

i,j

=

[∫
ŷi(ω)ŷj(ω) dω

]

i,j

=

[∫
|x̂(ω)|2f̂i(ω)f̂j(ω) dω

]

i,j

where â = F [a] is the Fourier transform of a. Two filters with identical Fourier magnitudes but
different phases can make this expectation zero. To eliminate this degeneracy, we can maximize the
dimensionality of the filter reconstructions zi = f̃i∗fi∗x, rather than the filter responses yi = fi∗x.
As

Cov[z] =

[∫
|x̂(ω)|2|f̂i(ω)|2|f̂j(ω)|2 dω

]

i,j

maximizing the nuclear norm of Z = [z(t)]t pushes Cov[z] towards a multiple of the identity and
hence penalizes any overlap between filter Fourier magnitudes. Since this tends to insist that filters
have hard edges in the Fourier domain, we relax this constraint by only penalizing for overlaps
between blurred versions of the filters’ Fourier magnitudes. Using a Gaussian blurring window h,
we compute modulated filter reconstructions z̃i = (hf̃i) ∗ (hfi) ∗ x, and whiten

Cov[z̃] =

[∫
|x̂(ω)|2|h ∗ f̂i(ω)|2|h ∗ f̂j(ω)|2 dω

]

i,j

by maximizing the dimensionality of Z̃ = [z̃(t)]t via the term

Eglobal dim = −
∥∥∥Z̃
∥∥∥
∗

Summarizing, we optimize our filter bank for
E = Elocal dim + λ Erecons + µ Eglobal dim

=
∑

P
‖YP ‖∗ + λ

∥∥∥x−
∑

i
zi

∥∥∥
2

2
− µ

∥∥∥Z̃
∥∥∥
∗

We now describe the practical details of the learning procedure and our results.

3.2 OPTIMIZATION

3.2.1 MODEL SPECIFICATIONS
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from ** to **. We fixed the blurring window h to be Gaussian with a standard deviation of **,
such that it only becomes negligeable at the kernel boundary. The hyperparameters λ and µ are
very easily tuned, in that the reconstruction weight λ can be increased until a desired reconstruction
level is reached (in our case a relative L2 error of 1%) and the diversity weight µ can be increased
until none of the filters are nul nor perfectly correlated with one another. In the experiments
below they were set to 3500 and 100 respectively. We optimized our filter bank using stochastic
gradient descent with a fixed learning rate, chosen as high as possible without causing any instability.

3.2.2 ACCELERATED LEARNING WITH GRADIENT SCALING

We developped a method to scale gradients according to the input spectrum, and found that it con-
siderably accelerated the optimization procedure. Given a gradient ∂E

∂yi
of the objective function

with respect to filter activations yi = fi ∗ x, the backpropagation rule (cite BP?) states that the filter
component fi(t) receives the gradient

∂E

∂fi(t)
=

∂E

∂yi
∗ x̃(t)

where x̃ is a horizontally- and vertically- flipped copy of the image x. This implies that the frequency
component of the filter f̂i(ω) receives the gradient **DETAILED PROOF?**

∂E

∂f̂i(ω)
= x̂(ω)

∂E

∂ŷi(ω)

Given the hyperbolic shape of x̂(ω) for natural images (see figure *****), the lower frequency
components of the filter effectively receive substantially larger gradients than the high frequency
ones. We correct for this by dividing the gradient ∂E

∂f̂i(ω)
by the corresponding mean image frequency

magnitude.
∂E

∂f̂i(ω)
← 1

E|x̂(w)|
∂E

∂f̂i(ω)
=

x̂(ω)

E|x̂(w)|
∂E

∂f̂i(ω)

Since our filter kernels and gradients are defined in the spatial domain, we complete this operation
with two Fourier transforms

∂E

∂fi(t)
← F−1

[
1

E|x̂(w)|F
[
∂E

∂fi

]
(ω)

]
(t)

We estimate the mean frequency magnitude of the dataset once, then divide all gradients by this
mean rather than by the local frequency magnitude x̂(ω) in order to avoid any instability due to
small values of x̂(ω), and to reduce the complexity of the operation. This enables us to use much
larger learning rates and we estimate that it accelerates learning by a factor of 10 to 100 (ref figure).
We repeated our experiments without the gradient scaling method and found no difference in the
final result.

FIGURE showing objective as a function of time for two identical networks, one optimized with
gradient scaling, the other not. Next to it show 2d plot of mean image spectrum, on a log scale.

3.3 RESULTS

Our results (figure 2) show that the optimal filter bank for exhibiting the low dimensional structure
of natural images is composed of a low-pass, a high-pass, and a set of oriented band-pass filters.
As we increase the number of filters, we obtain a finer partition of scales and orientations: 8 filters
partition Fourier space into a low-pass band, a high-pass residual, and 2 scales and 3 orientations.
This filter bank also becomes sensitive to aliasing in the input images, as indicated by the circular
boundaries of certain filter spectra.

4 LOCAL LOW DIMENSIONALITY AS A PRIOR FOR NATURAL IMAGES

Having learned a linear transformation that uncovers the low dimensional structure of natural im-
ages, we construct a non-linear representation which parametrizes local subspaces. We do so by

4

log10
2

Figure 4: Gradient scaling. Left: Input spectrum
ranges from 1 to 100. Right: Value of objective
over time, with and without gradient scaling.

We trained the model described above on the
van Hateren dataset (van Hateren & van der
Schaaf, 1998) using the Torch machine learning
library (Collobert et al., 2011). We used 20×20
pixel filter kernels, varying in number from 4
to 12, and estimated local dimensionality over
neighborhoods of size 16× 16 pixels, weighted
by a Gaussian window with a standard devia-
tion of 3 pixels. We fixed the blurring window
h to be Gaussian with a standard deviation of
3 pixels, such that it only becomes negligible
at the kernel boundary. The hyperparameters λ
and µ are easily tuned: we increased the reconstruction weight λ until a desired reconstruction level
was reached (e.g. a relative L2 error of 1%) and increased the diversity weight µ until none of the
filters were zero nor perfectly correlated with another. In the experiments below they were set to
3500 and 100 respectively. We optimized our filter bank using stochastic gradient descent with a
fixed learning rate, chosen as high as possible without causing any instability.
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3.2.2 ACCELERATED LEARNING WITH GRADIENT SCALING

We developed a method to scale gradients according to the input spectrum, and found that it consid-
erably accelerated the optimization procedure. In ordinary gradient descent, the descent direction
for the filter fi(t) is the negative gradient. Using the chain rule, it can be expressed in terms of the
filter responses yi = fi ∗ x:

∆fi(t) = − ∂E

∂fi(t)
= −

(
∂E

∂yi
∗ x̃
)

(t)

In the Fourier domain, this is

∆f̂i(ω) = − ∂E

∂f̂i(ω)
= −x̂(ω)

∂E

∂ŷi(ω)

Due to the hyperbolic spectrum of x̂(ω) (figure 4, left panel), the low frequency components of the
gradient are substantially larger than the high frequency ones. We offset this imbalance by dividing
the gradient by the corresponding mean image frequency magnitude. The modified descent direction
is thus

∆f̂i(ω) =
−1√

E [|x̂(w)|2]

∂E

∂f̂i(ω)
=

−x̂(ω)√
E [|x̂(w)|2]

∂E

∂ŷi(ω)

where the expectation is over the ensemble of all images. The gradient scaling algorithm accelerates
convergence by a factor of at least 10 (figure 4, right panel) and does not affect the final result.

3.3 RESULTS

Figure 5: Examples of optimized filter banks of size 4, 7 and 12. Top row: spatial filters, bottom
row: Fourier magnitudes (zero frequency is in center).

Even though our objective function is not convex with respect to the filter bank, we found empir-
ically that different initializations lead to qualitatively similar results. The optimized filter bank
for uncovering the local low-dimensional structure of natural images is composed of a low-pass, a
high-pass, and a set of oriented band-pass filters (figure 5). As we increase the number of filters, we
obtain a finer partition of scales and orientations: 7 filters divide the band-pass region into 2 radial
sub-bands, with 3 orientations in the mid-low band and 2 orientations in the mid-high band. With
12 filters, the mid-low band remains mostly unchanged, while the mid-high band is partitioned into
6 orientations.

4 REPRESENTING NATURAL IMAGES AS LOCAL COVARIANCE MAPS

Having optimized a linear transform to reveal the local low-dimensional covariance structure of
natural images, we now ask what information these local covariances actually capture about an im-
age. More precisely, we construct a nonlinear representation of an image by filtering it through
the learned filter bank, estimating the local covariances and subsampling the resulting covariance
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(a) Original image

#pixels: 21600

(b) neighborhood: 8×8
subsampling: 2×2
#measurements: 54000
‖∆x‖2 / ‖x‖2 = 1.5%

(c) neighborhood: 16×16
subsampling: 4×4
#measurements: 13500
‖∆x‖2 / ‖x‖2 = 5.7%

(d) neighborhood: 24×24
subsampling: 4×4
#measurements: 13500
‖∆x‖2 / ‖x‖2 = 11.1%

Figure 6: Synthesized images, matched for local covariance maps of a bank of 4 optimized filters
(figure 5), are almost indistinguishable from the original. As the neighborhood over which the
covariance is estimated increases, the errors increase but are still far less visible than equivalent
amounts of additive white noise. Top row: original image x and synthetic images. Middle row:
pixelwise magnitude of difference with original ∆x. Each difference image is individually scaled to
full dynamic range for display. Bottom row: original image corrupted with additive Gaussian noise,
such that the relative error (‖∆x‖2 / ‖x‖2) is the same.

map. To explore the power of this representation, we synthesize new images with the same covari-
ance representation. This method of image synthesis is useful for probing the equivalence class of
images that are identical with respect to an analysis model, thereby exhibiting its selectivities and
invariances (Portilla & Simoncelli, 2000).

The procedure for these experiments is as follows. We first build a representation of the original
image by estimating the covariance matrix of filter responses in each local neighborhood P :

CP (x) =
[∑

t∈P
w(t)yi(t)yj(t)

]
i,j

where w is a spatial windowing function. The local covariance map φ of the original (target) image
is then:

φ(xtarget) = [CP (xtarget)]P
To synthesize a new image with the same local covariance map, we start with a white noise image
x, and perform gradient descent on the objective

E(x) = ‖Vec (φ(x)− φ(xtarget))‖1
where Vec(a) is a vector composed of the elements of the multi-dimensional array a. We choose
an L1 penalty in order to obtain a piecewise quadratic error term, and use a harmonically decaying
gradient step to ensure convergence.

6
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4.1 PERCEPTUAL RELEVANCE OF LOCAL COVARIANCES

We distinguish two regimes which lead to very different synthesis results: overcomplete and un-
dercomplete. When φ(x) is overcomplete, the solution of the synthesis problem at x = xtarget is
often unique. However, even if this holds, finding this solution can be difficult or expensive as the
original image must be recovered from a set of quadratic measurements (Bruna et al., 2013). When
φ(x) is undercomplete, many images are represented with the same φ(x), and synthesis amounts to
sampling from this equivalence class of solutions (Portilla & Simoncelli, 2000).

In an overcomplete setting (figure 6b), the simple synthesis algorithm is able to reconstruct the image
almost perfectly from the local covariance map. Surprisingly, as we move into the undercomplete
regime by further subsampling the covariance map (figure 6c), the synthetic images retain excellent
perceptual quality.

In the undercomplete regime, the diversity amongst solutions reveals information which is lost by
this representation. When we subsample the covariance maps by a factor of 4 in each direction
(figure 6c), samples include slight phase shifts in high frequency content. When we estimate the
covariance over an even larger neighborhood (figure 6d), these phase shifts get larger as indicated
by the white lines in the difference image (figure 6, middle row). Nevertheless, despite the large
differences in mean squared error, the synthetic images are almost indistinguishable from the orig-
inal, especially when compared to images corrupted by additive white noise of equivalent variance
(figure 6, bottom row).

As a control, we compared these results against syntheses from a representation of natural images
in terms of local variance maps. These correspond to a subset of the parameters in local covari-
ance maps, namely the diagonals of the local covariances. To offset the fact that the local variance
maps have fewer parameters (the off-diagonal terms of each local covariance being discarded), we
increased the number of filters to match the cardinality of the covariance maps. We expected that the
results would be similar, as the covariance between two filters can be expressed as the variance of
their sum, subtracted by their respective variances. However, the reconstructions from the variance
maps are substantially worse (figure 8), both in terms of mean squared error and perceptual quality.
This is because successful synthesis from variance maps requires the filters to satisfy a stringent set
of properties (Bruna et al., 2013). Synthesis from covariance maps appears to be more robust, both
in the oversampled and undersampled regimes.

Having constructed a representation which captures the shape, scale, and orientation of local dis-
tributions of filter responses, and tested its perceptual relevance, we now investigate the role of the
shape of these distributions.

4.2 PERCEPTUAL RELEVANCE OF LOCAL LOW-DIMENSIONAL COVARIANCES

In section 2, we found that natural images distinguish themselves from noise by the proximity of
their local distributions to low-dimensional subspaces. We can now ask if these subspaces carry the
important information of natural images. Specifically, if we project the representation onto local
subspaces, how much of the original image is preserved? We answer this question by synthesizing
from a map of local covariances from which we have discarded information corresponding to the
smallest eigenvalues. For every covariance matrix, we compute its eigendecomposition, threshold
its eigenvalues at a fixed value, and synthesize from the resulting covariance map. Truncating the
distribution of eigenvalues results in the removal of high frequency noise as well as low-contrast
edges (figure 8, 2nd column). Since a fixed threshold does not distinguish between scale and shape,
we repeated the experiment with a threshold value that was scaled adaptively by the local energy
(sum of all eigenvalues but the first, which corresponds to the mean luminance). This modifies the
shape of local distributions regardless of their scale. Projecting local distributions onto their local
subspaces enhances the image by removing noise while preserving any oriented structure (figure 8,
3rd column). On the other hand, making the image locally high-dimensional by raising eigenvalues
to a power less than one degrades it by texturizing it artifically (figure 8, 4th column).

7



Published as conference paper at ICLR 2015

(a) Original image

#pixels: 21600

(b) neighborhood: 8×8
subsampling: 2×2
#measurements: 54000
‖∆x‖2 / ‖x‖2 = 8.4%

(c) neighborhood: 16×16
subsampling: 4×4
#measurements: 13500
‖∆x‖2 / ‖x‖2 = 15.4%

(d) neighborhood: 24×24
subsampling: 4×4
#measurements: 13500
‖∆x‖2 / ‖x‖2 = 20.7%

Figure 7: Synthesized images matched for local variance maps fail to capture the relevant structure
of the original. Local variances are computed from 10 filters, matching the cardinality of the full
covariance representation used in figure 6.

Figure 8: Effects of various modifications of the local covariance map. Top row: histograms of (log)
eigenvalues of local covariance matrices. Applying a fixed threshold to the corresponding singular
values (2nd column) removes non-oriented content but also low-contrast edges, whereas adaptive
thresholding (3rd column) preserves oriented structure regardless of contrast. Dimensionality ex-
pansion (4th column) corrupts the image with artificial texture.
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5 CONCLUSION

We have arrived at a representation of natural images in terms of a spatial map of local covariances.
We apply a bank of filters to the image, and view the vector of responses at each location as a sample
from a multivariate Gaussian distribution with zero mean and a covariance that varies smoothly
across space. We optimize the filter bank to minimize the dimensionality of these local covariances;
this yields filters that are local and oriented.

We used synthesis to demonstrate the power of this representation. Via a descent method, we im-
pose the covariance map estimated from an original image onto a second, noise image. The result-
ing image is nearly identical to the original image, and appears to degrade gracefully as we blur
and undersample the covariance map. Visually, these reconstructions are vastly better than those
obtained from variance maps of equivalent cardinality. The low-dimensionality of the covariances
appears to be a crucial factor: when we squeeze the local covariances to make them even more low-
dimensional, images retain much of their perceptual quality; when we do the opposite, and make the
local covariances more high dimensional, images are corrupted with artificial textures.

A related line of work by Karklin and Lewicki has studied the statistical fluctuations of natural im-
ages. Their initial model describes the variance of filter responses as linear combinations of a sparse
set of latent coefficients, thereby approximating the joint distributions of local filter responses as sep-
arable (Karklin & Lewicki, 2005). More recently, they examined the invariance and discriminability
of local filter response distributions, and modeled the log-covariance of image patches as a sparse
sum of outer products drawn from a learned dictionary (Karklin & Lewicki, 2009). Ultimately, as
in traditional sparse models such as sparse coding, ICA, ISA, or K-SVD (Olshausen & Field, 1996;
Bell & Sejnowski, 1997; Hyvärinen & Hoyer, 2000; Rubinstein et al., 2013), these higher order
coefficients are assumed to be sparse along the axes of a fixed, finite basis.

On the contrary, the filter responses in our model are not required to be sparse along fixed axes, but
along the axes specified adaptively by the eigenvectors of the local covariance matrix. Approximat-
ing an arbitrary subspace in a conventional sparse model would require dictionaries of a size that
scales exponentially in the dimensionality of the input space (the so-called “curse of dimensional-
ity”). In addition to its computational cost, the high coherence of such an overcomplete dictionary
would make the inference of sparse coefficients infeasible with convex relaxations (Donoho, 2006).
Our model circumvents these problems by continuously parameterizing orientation in feature space.
Similarly, continuous parametrizations of translation have been successfully embedded into sparse
optimization problems (Ekanadham et al., 2011). These models avoid the brittleness of conventional
sparse representations, which exhibit discontinuities when switching coefficients on or off as a signal
smoothly varies across space or time.

Our model appears promising for a number of image processing applications. The property of
local low-dimensionality provides a means of discriminating between natural images and noise,
and thus offers a potentially powerful prior for denoising. Our synthesis experiments indicate that
undercomplete or thresholded representations of the covariance map are sufficient to reconstruct
the original image with a high perceptual quality, suggesting that lossy compression schemes might
make use of this representation to produce less visually salient distortions.

Finally, we believe that local covariance map representations offer a natural path for extension into
a hierarchical model. As an example, scattering networks have developed decompositions based on
alternations of linear filters and local variance maps for applications such as texture synthesis and
invariant object recognition (Bruna & Mallat, 2012). Hierarchical models of alternating linear filters
and nonlinear pooling have also been proposed as an approximate description of computation along
the visual cortical hierarchy in mammals (Riesenhuber & Poggio, 1999; Jarrett et al., 2009). Our
synthesis experiments suggest that a similar infrastructure which recursively stacks linear decompo-
sitions and covariance maps, with an objective of reducing local dimensionality, could offer a new
canonical description for the biological visual hierarchy, and an unsupervised architecture for use in
machine inference, synthesis, and recognition tasks.
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