
Proc. Natl. Acad. Sci. USA
Vol. 93, pp. 623–627, January 1996
Colloquium Paper

This paper was presented at a colloquium entitled ‘‘Vision: From Photon to Perception,’’ organized by John Dowling,
Lubert Stryer (chair), and Torsten Wiesel, held May 20–22, 1995, at the National Academy of Sciences in Irvine, CA.

Computational models of cortical visual processing
(visionyneuronsycerebral cortex)

DAVID J. HEEGER*, EERO P. SIMONCELLI†, AND J. ANTHONY MOVSHON‡§

*Department of Psychology, Stanford University, Stanford, CA 94305; †Department of Computer and Information Science, University of Pennsylvania,
Philadelphia, PA 19104; and ‡Howard Hughes Medical Institute and Center for Neural Science, New York University, New York, NY 10003

ABSTRACT The visual responses of neurons in the cere-
bral cortex were first adequately characterized in the 1960s by
D. H. Hubel and T. N. Wiesel [(1962) J. Physiol. (London) 160,
106–154; (1968) J. Physiol. (London) 195, 215–243] using
qualitative analyses based on simple geometric visual targets.
Over the past 30 years, it has become common to consider the
properties of these neurons by attempting to make formal
descriptions of the transformations they execute on the visual
image. Most such models have their roots in linear-systems
approaches pioneered in the retina by C. Enroth-Cugell and
J. R. Robson [(1966) J. Physiol. (London) 187, 517–552], but it
is clear that purely linear models of cortical neurons are
inadequate. We present two related models: one designed to
account for the responses of simple cells in primary visual
cortex (V1) and one designed to account for the responses of
pattern direction selective cells in MT (or V5), an extrastriate
visual area thought to be involved in the analysis of visual
motion. These models share a common structure that operates
in the same way on different kinds of input, and instantiate the
widely held view that computational strategies are similar
throughout the cerebral cortex. Implementations of these
models for Macintosh microcomputers are available and can
be used to explore the models’ properties.

The ultimate goal of our research is to develop detailed,
quantitative models of neuronal function in visual cortex. We
consider a model to be successful if it captures the behavior of
the target neurons with a tractable number of measurable
parameters. With such a model, we can hope to understand the
neural basis of perceptual experience and perceptually driven
behavior, as far as these depend on the activity of the neurons
being modeled.

Simple cells in V1 of cats and monkeys respond in a selective
way to variations in stimulus position, orientation, size, and
direction of motion (1, 2). Based on the early success of
linear-systems analysis in retina (3, 4), there is an established
tradition of modeling simple cells as linear neurons (5–9). The
response of a linear visual neuron is a weighted sum, over local
space and recently past time, of the distribution of light
intensity values in the stimulus. According to the linear model,
orientation and other spatial selectivities arise from variations
in the degree to which particular stimuli match the shape and
location of excitatory (positively weighted) and inhibitory
(negatively weighted) subregions of the receptive field. Direc-
tion selectivity arises similarly from differences in the time
course of responses evoked from different parts of the cell’s
receptive field. The linear model of simple cells is attractive
because, if successful, it allows us to predict the responses of
a simple cell to any visual stimulus, based on a limited number

of measurements. For example, any visual image can be
approximated by summing light intensity in a number of small
regions (‘‘pixels’’). For a linear neuron, the response would be
given by summing the independent responses elicited by each
pixel, and thus measuring the neuron’s response to each pixel
would enable one to predict the response to any visual image.

There are a number of problems with the linear model of
simple cells. One relatively simple issue is that neural responses
(firing rates) are positive, whereas idealized linear cells can
have positive or negative responses. The typical interpretation
of the linear model is that the positive and negative values are
encoded by two cells: one responsible for the positive part, and
the other one responsible for the negative part. The response
of each cell is halfwave-rectified so that only one of the two
cells has a non-zero response at any given time. A more
complicated set of departures from linearity becomes evident
when the model is tested in detail. To explain these, we and
others have recently proposed a model of simple cell responses
called the ‘‘normalization model’’ (10–15).

Almost all neurons in MT (or V5), an extrastriate area of the
monkey’s visual cortex, are selective for the direction of
movement. MT receives a strong input from V1, which arises
from directionally selective neurons (16). MT contains two
types of directionally selective neurons: component direction-
selective neurons and pattern direction-selective neurons (17,
18). Component direction-selective neurons respond like di-
rectionally selective neurons in V1, signaling the movement of
individual oriented components of complex moving patterns.
Pattern direction-selective neurons, on the other hand, com-
bine information across multiple orientations to signal unam-
biguously the motion of whole patterns. Both types of neuron
have nonlinear spatial summation and have response proper-
ties that differ in a variety of ways from their inputs in V1 (19).
Nonetheless, a model whose architecture is identical to the
normalization model for V1 simple cells can explain the
transformation of signals from directionally selective V1 cells
into those of pattern direction-selective cells in MT.

Models of V1 and MT Neurons

Our current models describe two concatenated stages corre-
sponding broadly to cortical areas V1 and MT. The models
attempt to capture the behavior of cells like V1 simple cells and
like pattern direction-selective cells in MT but include ideas
that can be useful in understanding other cell types. As
indicated in Fig. 1, the computation is very similar in each
model. A model neuron computes a linear combination of its
inputs, followed by rectification and normalization (in which
each neuron’s response is divided by a quantity proportional to
the pooled activity of a group of neurons presumed to be its
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near neighbors in the cortex). The behavior of the model
neurons at each stage is determined by the properties of the
input neurons and the way these are weighted by the initial
linear combination.

A model V1 neuron sums image intensities over a local
spatial region and recently past time. The linear weighting of
these neurons is designed so that they respond selectively to a
particular image velocity (i.e., speed and direction).

In this paper we do not attempt to make the models of V1
and MT responses biologically realistic; they are presented as
mathematical abstractions, whose goal is to describe informa-
tional transformations rather than the details of the neuronal
mechanisms that perform those transformations. The models
can, however, be implemented with biologically reasonable

mechanisms (15). Complete mathematical details are provided
elsewhere (refs. 12–15; E.P.S. and D.J.H., unpublished data).

Examples of the Behavior of the Model of V1 Responses.
Many aspects of simple cell responses are consistent with the
linear model. However, there also are important violations of
linearity. One major fault with the linear model is the fact that
simple cell responses saturate (level off) at high contrasts, as
in Fig. 2A (20, 21). The responses of a truly linear neuron
would increase in proportion to stimulus contrast over the
entire range of contrasts.

A second fault with the linear model is revealed by testing
linear superposition. A typical simple cell responds vigorously
to stimuli at the preferred orientation and direction of motion
(e.g., a vertical grating moving rightward), but not at all to the
perpendicular orientationydirection (e.g., a horizontal grating
moving upward). Superposition is tested by displaying both
stimuli at once, the upward moving grating superimposed on
the rightward moving grating. According to the linear model,
the response to the superimposed pair of stimuli (preferred
plus perpendicular) should equal the response to the preferred
stimulus presented alone (since there is no response to the
upward grating alone). Surprisingly, this prediction is wrong;
the response to the superimposed pair of gratings is typically
about half the response to the rightward grating alone. This
phenomenon is known as cross-orientation inhibition, and is
an example of a variety of phenomena that can collectively be
described as ‘‘nonspecific suppression.’’ Fig. 2C shows that
adding a ‘‘masking’’ grating of a different orientation reduces
the response elicited by an optimal grating presented alone
(horizontal line) (22). The reduction in response is maximal for
near-orthogonal stimuli but is evident for stimuli of other
orientations.

It is the normalization stage of the normalization model that
allows it to account for these data. Each neuron’s linear
response to the stimulus is divided by a quantity proportional
to the pooled activity of a number of other neurons from the
nearby cortical ‘‘neighborhood.’’ Activity in this large pool of
neurons partially suppresses the response of each individual
neuron. Normalization is a nonlinear operation: one input (a
neuron’s underlying linear response) is divided by another
input (the pooled activity of a large number of neurons). The
effect of this divisive suppression is that the response of each
neuron is normalized (rescaled) with respect to stimulus
contrast. The normalization model exhibits amplitude satura-
tion (Fig. 2B) because the divisive suppression increases with
stimulus contrast. The model exhibits nonspecific suppression
(Fig. 2D) because the normalization signal is pooled over many
other neurons with a wide variety of tuning properties, includ-
ing many that respond to orthogonal gratings.

Examples of the Behavior of the Model of MT Responses.
Because of the structure of the linear portion of their receptive
fields, V1 neurons can only signal the component of motion
that is perpendicular to their preferred orientation. When
stimulated with a complex stimulus containing multiple ori-
entation components, a V1 neuron responds vigorously when
any one of the oriented components is aligned with the
neuron’s preferred orientation (17, 23). Fig. 3 A and B show
polar plots of direction tuning for V1 neurons using two
stimuli: (i) drifting sinusoidal gratings and (ii) drifting plaid
patterns composed of two gratings. For both real neurons and
model neurons there is a unimodal response, a single preferred
direction, for drifting grating stimuli. The direction tuning
curves for plaids, however, are very different, with two distinct
lobes. Each lobe is due to responses elicited by one of the
plaid’s component gratings. The normalization model of V1
cells correctly predicts this behavior (Fig. 3 C and D).

A recombination of motion signals is required to compute
and represent stimulus velocity independently of the stimulus’
spatial pattern. This second stage appears to exist in area MT.
For some MT neurons, the direction tuning curves are uni-

FIG. 1. Illustrations of the two models. In each, a model neuron
computes a linear combination of its inputs, followed by rectification
and normalization (see text). (A) V1 model. The linear weighting of
each V1 neuron is designed so that it responds selectively to intensity
patterns of a particular orientation and direction of motion. The linear
stage combines complementary inputs from the lateral geniculate
nucleus. The central excitatory subregion of the receptive field sums
responses of ON-center cells and subtracts responses of OFF-center
cells with spatially superimposed receptive fields. The flanking inhib-
itory subregions are obtained by the opposite arrangement of excita-
tion and inhibition. (B) MT model. The linear weighting function of
each MT neuron is designed so that it responds selectively to a
particular image velocity (i.e., speed and direction). Each of the V1
afferents is selective for a different direction of component motion, but
all of these component motions are consistent with the same overall
pattern motion.
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modal for both grating and plaid stimuli (17, 18). An example
is shown in Fig. 3 E and F. This MT neuron responded to the
motion of the entire plaid pattern, not to the motions of the
component gratings. Fig. 3 G and H show that the normaliza-
tion model of MT cells predicts this behavior. Pattern direction
selectivity arises in the model because each MT neuron sums
inputs from several V1 afferents. Each of the V1 afferents is
selective for a different direction of component motion, but
their component motions are all consistent with the same
overall pattern motion. The preferred velocity of a model MT
neuron depends on which V1 afferents are combined and on
the linear weighting function used to sum their responses.

This mechanism for velocity selectivity may be viewed as a
neural implementation of the ‘‘intersection-of-constraints’’
scheme proposed by Adelson and Movshon (24) and is related
to a number of other proposed models of MT function (17,
25–35).

Fig. 4 shows some further comparisons between real and
model MT neurons. For the data shown in Fig. 4A, the stimuli
were stochastic dot patterns consisting of a coherently moving
field of dots superimposed upon a background of randomly
moving dots (36). The percentage of randomly versus coher-
ently moving dots was systematically varied to alter the
strength of the unidirectional motion signal, in close analogy
to varying contrast while recording from V1 neurons (see Fig.
2A). For MT neurons, response rises nearly linearly with
stimulus coherence for motion in the preferred direction, and
response falls nearly linearly with stimulus coherence for

motion in the opposite direction. This behavior is well captured
by the normalization model of MT (Fig. 4B).

The decrease in response for motion stimuli in the ‘‘null’’
direction represents a suppression of MT responses by ‘‘inap-
propriate’’ motions. Fig. 4C shows this suppression in another
way, analogous to the V1 cross-orientation results shown in
Fig. 2C. The dashed horizontal line is the response to a single
dot field moving in the preferred direction. A second dot field
was superimposed upon the first and the direction of motion
of the added dots was varied. The solid curves show that
responses were suppressed by the presence of the added field
of dots, especially for nonoptimal directions (37). Fig. 4D
shows that the model also accounts for this kind of suppres-
sion, which results from the normalization stages in both the
V1 and MT components of the model.

Our model differs from earlier MT models in three impor-
tant ways. (i) These and other simulation results demonstrate
that the model accounts for a wide variety of physiological
data. (ii) Unlike some of the previous models, the model is
sufficiently elaborated that model responses can be computed
for any visual stimulus (any spatiotemporal distribution of
image intensities). (iii) The model prescribes a precise rela-
tionship (derived mathematically) between the response prop-
erties of a population of V1 and MT neurons. This theoretical
relationship allows for a complete and unbiased representation
of velocity while using a minimal number of neurons. The point
here is not that the brain literally uses the minimum possible
number of neurons; it simply guarantees that a completey
intact representation of velocity can be computed with a finite

FIG. 2. (A and B) Response saturation in a real V1 neuron: data replotted from Tolhurst and Dean (21) and a model V1 neuron. Response
(firing rate) of a simple cell as a function of stimulus contrast for drifting sine-grating (periodic dark and light bar) stimuli. There are three critical
results. (i) The cells are direction selective, meaning that they respond more vigorously to stimuli moving in a preferred direction (closed symbols)
but less well to stimuli moving in the opposite direction (open symbols). (ii) The responses saturate for high contrast. (iii) The curves shift downward
(on the logarithmic scale) for motion in the opposite direction. In other words, direction selectivity (defined here as the ratio of the responses
produced by the two different stimuli) is largely invariant with respect to stimulus contrast, in spite of saturation. This invariance is critical for
encoding information about motion independent of contrast. Direction and orientation selectivity in the model are due to the underlying linear
summation of stimulus intensities. Response saturation and the downward shift are both due to normalization. (C and D) Cross-orientation
suppression in a real V1 neuron: data replotted from Bonds (22) and a model V1 neuron. Dashed horizontal lines are response to single gratings
at the preferred orientation. The solid curves are responses to a pair of superimposed gratings, a base grating of optimal orientation superimposed
on a second (mask) grating of variable orientation. Responses were suppressed for nonpreferred orientations of the second (mask) grating, due
to normalization.
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number of neurons. In addition, knowing this theoretical
minimal number allows us to perform the model simulations
efficiently and accurately.

Role of Models in Visual Neuroscience

Models of the kind described in this paper are of great value
for uncovering the organizational principles that determine
the responses of visual cortical neurons. By incorporating our
knowledge of these neurons’ response properties into a formal
computational structure, we greatly enhance our ability to test
our understanding of the fundamental operations performed
by cortical circuits. In this our approach differs sharply from
those who seek to understand cortical computation by at-
tempting to simulate the biology of the neurons (e.g., refs.
38–41). Rather than trying to sort out a coherent neuronal
model from the wealth of anatomical, physiological, and
biophysical data available, we attempt to deduce the function
of cortical circuits by analysis and simulation of the signals
carried, and transformed, by cortical neurons. There is value,
of course, in both approaches. Those whose models are
founded on accurate models of neurons and circuits are
inherently more likely to come close to biological accuracy. On
the other hand, we know so little about the detailed function
of most elements of the circuitry of neocortex that biologically
based models must inevitably be built upon many uncertain-
ties. To model neocortex on the basis of signal transformations
is also difficult, since it is presumptuous to assume that all of
the data necessary to create a sound model are available and
sufficiently accurate. Nonetheless, the richness of our under-
standing of visual processing is considerable and provides a
strong foundation for models of the kind we have described.
The usefulness of these models does not depend crucially on
the accuracy of a particular proposal (e.g., ref. 15) for how they
might be implemented biologically. Rather, the identification
of several well-defined functional elements in the models
encourages physiological experimentation designed to uncover
the neuronal mechanisms involved.

An attractive feature of these two models is their common-
ality of structure. It is often noted that the computational
architecture of the cerebral cortex is very much the same from

one neocortical area to another: the types, arrangements, and
connections of cortical neurons are highly stereotyped. Yet in
recent years it has become clear that there is great heteroge-

FIG. 3. Component direction selectivity and pattern direction selectivity. (A–D) Direction tuning curves of a real V1 neuron: (A and B) data replotted
from Movshon et al. (17); (C and D) a model V1 neuron. Stimuli were drifting gratings and plaid patterns composed of two gratings. Response is plotted
radially and the direction of stimulus motion is indicated by the angular coordinate. Circles near the origin indicate the spontaneous firing rate. The
direction tuning for plaids is bimodal, indicating that these neurons responded separately to the motions of the two component gratings. (E and H)
Direction tuning curves for a real MT neuron: (E and F) data replotted from Movshon et al. (17); (G and H) a model MT neuron. The direction tuning
curves for plaids are unimodal, indicating that these neurons responded to the combined motion of entire plaid pattern, not to the motions of the
component gratings. Pattern selectivity arises in the model because each model MT neuron sums inputs from several V1 afferents; each V1 afferent is
selective for a different component motion, but all of these component motions are consistent with the same pattern motion.

FIG. 4. (A and B) MT response as a function of motion signal strength
for a real MT neuron: data replotted from Britten et al. (36) and a model
MT neuron. Stimuli were stochastic dot patterns consisting of a coher-
ently moving field of dots superimposed with randomly moving dots.
Horizontal lines show the spontaneous firing rate. Responses increase
nearly linearly for motion in the preferred direction (closed symbols) as
a function of motion signal strength (percentage of coherently moving
dots). Responses decrease nearly linearly for motion in the opposite
(nonpreferred) direction (open symbols). (C and D) Suppression in MT
responses for a real MT neuron: data replotted from Snowden et al. (37)
and a model MT neuron. Solid horizontal lines are the spontaneous firing
rate in the absence of a dot stimulus. Dashed horizontal lines are
responses to a single dot field moving in the preferred direction. The solid
curves are responses to a pair of superimposed drifting dot fields, one field
drifting in the preferred direction superimposed on a second (mask) field
of variable direction. Responses were suppressed when the second (mask)
dot field moved in nonpreferred directions, due to normalization.
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neity in the functional properties of neurons in different
cortical areas. A natural explanation is that each cortical area
conducts calculations of the same form but that the inputs to
each area are different and distinctive. Certainly there is ample
evidence that the neurons carrying output signals from one
cortical area to another are quite inhomogeneous in their
properties and distribution, and it is unusual to find individual
cortical neurons projecting to more than one cortical target
area (42). Our models suggest a particular computational
architecture that can be applied successfully to at least two
cortical areas, based only on differences in their inputs. We
hope in the future to show that this architecture can be applied
to other cortical areas, differing in each case only in the nature
of the input signals that each area receives.

Available Implementation. A simulation program for
Macintosh computers that implements these two models
(as well as the linear model of simple cell receptive fields)
is available on the World Wide Web at the URL
http:yywhite.stanford.eduy or via anonymous ftp from
white.stanford.edu, in directory ;yv1-mt-modely.
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