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Abstract

I have addressed the physiological mechanisms for, and perceptual consequences

of, integrating visual motion. Where possible, I have tried to determine the rules

by which the visual system decides whether to integrate or not. My first set of

experiments was motivated by the following observations. Humans and primates

can see motions at small and large scales. Also, neurons in area MT have large

receptive fields, which are known to play a role in the perception of visual motion.

I conducted a series of electrophysiological experiments to determine whether MT

neurons compute global motion, which was defined in terms of widely separated

apparent motion. I used stimuli in which there could be opposing local and global

motion. I found that MT neurons are unaffected by global motion, that their

responses are entirely determined by local motion. My control experiments suggest

that they do not compute global motion even in the absence of local motion. My

second set of experiments concerned how the visual system decides whether to

integrate or segment motions. I presented drifting square-wave plaids and asked

subjects to indicate whether they appeared to move coherently, as a single object,

or transparently, as two objects moving in different directions. I found that a

plaid’s component and pattern speed affected how it was perceived. Plaids were

more transparent at faster pattern speeds and were coherent otherwise. I developed

a Bayesian model that can explain these results. Key components of the model are

based on preferences of the system to see slow and singular motion. My final set of

questions was motivated by the idea that adaptation causes repulsion by reducing

the gain of mechanisms that encode properties of a stimulus. In psychophysical

experiments, I measured the pattern of biases in perceived direction that result

from adapting to coherent and transparent drifting square-wave plaids. My results
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suggest that adapting to plaids causes repulsion away from their pattern directions,

even when they are not perceived.
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Introduction

This thesis is presented as three self-contained papers. They are not part

of a single line of study, but are connected in that they address aspects of the

representation and perception of visual motion. My focus has been the perceptual

and physiological consequences of integrating visual motion information. Where

possible, I have tried make clear the rules by which the system decides whether to

integrate or not. I have also tried to identify the mechanisms which are associated

with the perceptual phenomena in which I was interested.

In this introduction, I briefly state what visual motion is, how representations of

it are formed, and what representations of it convey to an organism. I summarize

sets of observations on how it is represented and perceived. At the end of this

chapter, I link the questions that I address in the chapters that follow to the

background I present here and I briefly summarize my results. In many cases, I

have omitted some alternative views of the background I describe. I likewise have

not included all known pieces of evidence, for or against, the conclusions I discuss.

My aim is not to provide a comprehensive summary of these issues, but to lay out

the threads of knowledge that are foundational to the questions that I explored.

0.1 Basic observations

In simple terms, visual motion may be defined as changes in the position of

light over time. To represent these changes, a system can first transduce the

brightness within many different small cone-shaped regions in the surrounding

three-dimensional world. The retina does this by estimating the amount of light

that lands on its surface at many different positions in a given amount of time.
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When there is motion, such as when an object moves in a scene, the pattern of the

projected retinal image is shifted relative to the previous image that it formed. It is

the job of higher areas to estimate the motions in a scene from these changes in the

retinal representations. I should point out that this is true for luminance-defined

motion, but visual motion can be defined in other ways, an issue to which I will

return. Changes in luminance are sufficient, but not necessary for visual motion.

They may or may not evoke a sense of motion when the system has access to them

and the sense of motion can result without them.

A representation of motion provides a wealth of information to an organism.

There is ample evidence, for example, that humans use information about motion

to interpret the world. Among the functions it serves are: sensing the real motion

of objects; sensing the depth and relative distances to points in the environment;

sensing self motion, such as when walking in an environment; estimating the time

to collision of visual targets; segregating different objects in a scene; distinguish-

ing figure from ground; and driving eye movements. For many organisms, these

functions are essential for survival. In a sense this must be the case, since the

mechanisms that represent motion consume considerable resources, even though

they have been optimized to be as efficient as possible.

0.1.1 The aperture problem and a ’solution’

The ’aperture problem’ is an inherent ambiguity that results when measure-

ments of local motions are made [1, 2, 3, 4]. The solution to this ambiguity shapes

the form and processes of the system that represents motion. Consider an extended

contour, such as a line segment, moving within an aperture. There is not enough

information to determine the true motion of the surface of which the contour is
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part. In other words, there are many different physical motions that can lead to

the same physical stimulus. The key point is that any motion parallel to a one

dimensional (1D) pattern is invisible and, therefore, only motion normal to its

orientation can be detected.

The visual system faces this problem, since it makes local measurements (i.e.,

through an aperture), and many structures in the world are 1D when measured

locally. But it can, and does, determine the true motion of objects when more

than one unique 1D motion exists. The basic idea is to pool 1D motions that

are consistent with the same pattern of motion, as would result from a single

translating object. Since these estimates can be assumed to relate to each other in

a specific way a unique solution emerges. It is, nonetheless, not clear which signals

to pool. The idea is to pool the ones that are consistent with pattern motion,

although the pattern motion is unknown without pooling the local motions [5, 6].

It is easiest to consider the solution in the context of a few classic visual pat-

terns. The set of 1D stimuli to consider includes extended gratings, edges and

bars. None of these are truly one-dimensional in the real world, which is to say

their extent is not infinite, but they are essentially so, if they extend beyond the

edge of the region of visual space that is represented or perceived. The set of two

dimensional (2D) stimuli to consider includes plaids, which are the superposition of

two component gratings in overlapping visual space, and random dots, which can

be thought of as the superposition of a set of many overlapped drifting gratings.

In velocity space, each of these moving stimuli has a corresponding vector or

pattern of vectors, whose length relates to the stimulus’ speed and whose orienta-

tion relates to its direction [7]. A drifting grating, for example, maps to a line of

possible velocities, a constraint line. The constraint line is parallel to the stimulus’
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orientation and orthogonal to the vector representing its primary motion. For a

plaid there are two such constraint lines, one for each component, and they in-

tersect at a unique point. By integrating the two local motions the intersection

of constraints (IOC) solution can be determined. This corresponds to the true

motion of the plaid [3, 8, 7, 9]. Plaids are a simple case that illustrates the IOC

solution, but IOC is not limited to them. The point is that it provides a solution

for more complicated motions.

But IOC is not the only way to combine motion vectors, and some other options

include summing or averaging them. For some stimuli, there may be no difference

between the solutions provided by IOC and these other rules. One case for which

the solutions are different is a ’type II’ plaid. This is a plaid for which the di-

rection in which the constraint lines intersect is outside of the narrowest sector

of the directions of the two component motions. There is some evidence that the

perceived direction of motion (DoM) of type II plaids is biased towards the vector

average direction [10, 11]. Results like these remind us that the details of which

rule is most similar to what is perceived in different circumstances, have not been

worked out. That said, IOC is a good approximation for many stimuli.

A two-stage model for motion perception emerges from these observations about

integrating motions. The system first estimates local motions and then combines

them [3, 7, 9]. The first step is the decomposition of the image into 1D spatial

components of varying orientations. The speeds in the direction orthogonal to the

component orientations are computed. The directions and speeds of many different

components at a given spatial location are recombined to find the IOC solution.

This framework for estimating motion is formal and does not connect to any

particular physiological implementation. But subsequent studies have established
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that the system that represents motion does so in a way that parallels the IOC

solution. I will return to the evidence that supports this in some subsections that

follow, where I review the physiological and theoretical support for the two-stage

model. Before turning to that, I review what is known about deciding whether to

integrate or segment motions.

0.1.2 Integration versus segmentation

There is a need for integration, but the system cannot integrate all of the mo-

tions it represents. Motion signals may come from different objects, for example,

in which case combining their motions into one would be incorrect. The choice of

whether and how to integrate motions by the system is related to the rules by which

the integration is performed. Answering this question tells us something about the

properties of the mechanisms that are responsible for the integration. This issue

has been explored extensively with moving plaids, which have percepts that are

consistent with integration or segmentation. They appear either as a coherent pat-

tern moving with a singular velocity or as transparently overlaid patterns moving

in different directions. A simple approach used in many psychophysical studies is

to present plaids with different properties and ask subjects to indicate how they

appear to move.

I should mention at the outset that synthesizing the results of many different

psychophysical experiments on integration and segmentation is not straightfor-

ward. There are many differences between them, some of which are likely to

influence their outcomes, sometimes in unknown ways. The differences include the

plaids themselves, which tend to be of different sizes, eccentricities and contrasts.

Plaids are usually presented for different amounts of time or as part of different
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tasks. In terms of tasks, subjects may be instructed to report different things, such

as a plaid’s pattern direction relative to a reference direction, instead of whether it

looks coherent or transparent. In designs where subjects report which of the two

percepts they saw, it is assumed that there are only two possible percepts. Taken

together, these issues make it difficult to trust simple explanations for the effect

of a given parameter. Increased contrast may in some cases make plaids more

coherent, for example, but that might only be true within a limited portion of

the overall stimulus space, or true for sine-wave plaids, but not square-wave ones.

My view is that these issues should inspire the broadest possible sampling of any

parameter space that is explored.

One early study on plaid integration showed that the relative contrast of the

components has an effect [9]. For a plaid with one component of contrast 0.3,

increasing the contrast of the other component increased coherence. It is not clear

whether this was a consequence of the overall contrast level, or a consequence of

the similarity of the components’ contrasts, or some mixture of the two. A similar

effect for the relative spatial frequencies of the components was described. The

coherence decreases as the difference in spatial frequencies increases. Not much

data was shown in support of these results initially, although subsequent studies

have examined the effects of relative contrast and spatial frequency in greater

detail.

Many of the studies that followed continued to explore relative effects, where

the components differed in ways other than having different directions of motion.

This may have to do in part with the difficulty of evoking transparent percepts with

sine-wave plaids when the components are not different. Other types of plaids, such

as square-wave plaids, seem to be more transparent, so there is a greater chance
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of observing both percepts.

Smith examined the effects of relative contrast in later studies and found that

they were consistent with the earlier observations: coherence was maximal when

the components had the same contrast and decreased as the difference between

their contrasts increased [12]. The effect of relative spatial frequency was that the

maximum spatial frequency difference at which plaids were seen as coherent was

up to three or four octaves [13]. The range of spatial frequency differences for

which coherence remained, decreased as contrast decreased or component speed

increased. It seems like part of Smith’s motivation to examine relative spatial

frequency was to challenge the earlier suggestion by Adelson and Movshon that

component motions are combined in spatial frequency tuned channels, prior to the

formation of an estimate of the plaid’s pattern motion [7]. Smith’s results challenge

this idea since they suggest that plaids can appear to move coherently even when

the spatial frequencies of the components are very different. This suggests instead

that there is pooling across broad ranges of spatial frequencies before pattern

motion is computed.

Interestingly, most of these early studies on plaid integration assume that if a

plaid with certain parameters does not evoke a coherent percept then the pattern

motion is not being represented internally. Another way to say this is that they

assume that if a representation of pattern motion is formed then the coherent

percept occurs.

The effect of plaid angle has also been measured for plaids with components that

have different contrasts, spatial frequencies or speeds [14]. Angle had a significant

effect. Plaids were coherent for angles smaller than about 45 deg and became

increasingly transparent as angle increased. There were minimal differences in the
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effect of angle for contrast and spatial frequency differences up to 9:1. This was

taken as evidence that the angle between a plaid’s components’ DoM is the primary

determinant of the percept. The effects of angle were not connected with those of

pattern speed, which covaries with angle. Also, only a few component speeds were

used. The influences of angle may have been different at other speeds. Data from

plaids in which the two components have the same parameters were not included,

although that seems like an important control.

Another aspect of a square-wave plaid that influences how it is perceived to

move is the luminance of the intersections of its components [15, 16, 17, 18]. When

the luminance of the intersections of drifting square-wave plaids is chosen so that

they look transparent (as stationary patterns) the coherent percept decreases.

Stoner and colleagues speculated that this means that the visual system has access

to tacit knowledge of the physics of transparency and that it uses this knowledge

to segment a scene. They did not explain, or have not explained, how the system

would store or develop such knowledge. Nor have they described the mechanisms

by which the knowledge would influence which percept occurs. Moreover, the ef-

fect of the luminance of the intersections is highly speed dependent. If you slow

down the plaid, the effect starts to disappear (plaid becomes strongly coherent).

Therefore, the explanation in terms of luminance combinations that are consistent

with transparency is, at the very least, only partially correct.

The view advanced by Stoner and colleagues about the effects of luminance on

plaid perception evolved from the rules of transparency idea, to similar ones about

depth ordering and disparity [19]. Depth segregation and transparency increase

when a higher contrast component is presented so that it appears to be in front of

a lower contrast component. As is the case for many studies on plaid perception,
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the effects of luminance or depth were related to, or put in the context of, other

factors that influence how a plaid is perceived. In many cases, the other studies

are not even mentioned.

There have been a couple of reports by Farid and colleagues about the effects

of component and pattern speed in square-wave plaids [20, 21]. The plaids they

studied had matched components. They found that plaids are more transparent

when their pattern speeds are faster than a cutoff speed (about 5 deg/s), and

their component speeds are slower than the cutoff speed [20]. Plaids with pattern

speeds less than a cutoff speed were coherent. Plaids with component speeds

beyond a cutoff could not be perceived clearly, which may have meant that they

were neither coherent nor transparent. They suggested that the luminance of a

plaid’s intersections only affected the percept when the pattern speed was near a

cutoff speed.

Farid’s results conflict with the notion that angle is the primary determinant

of plaid perception. They suggest instead that the plaid’s speeds are of greater

importance. That the pattern of results was consistent with there being a cutoff

speed means that perception varies in a way other than by angle. They also

explored the effects of overall contrast and of the period of the components [21].

Their results in the followup study also suggested that there is a cutoff speed,

which they found depended on a plaid’s contrast and period. They found that

plaids with higher contrasts or which have a smaller period are more coherent.

0.1.3 MT neurons have a central role in motion processing

MT is a primary component of the physiological pathway for motion process-

ing. It was discovered concurrently by two groups [22, 23]. One was Dubner and
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Zeki, who were the first to report that MT neurons are direction-selective. They

suggested that MT has a columnar organization for direction and that it plays a

role in guiding pursuit eye movements [22]. These suggestions were supported by

later studies [24, 25]. The other group was Allman and Kaas, who reported that

MT neurons respond more to drifting bars than to flashed spots [23].

A number of more recent studies confirmed that MT is highly specialized for

representing visual motion. Some of the evidence in support of this includes that

MT has a high concentration of direction-selective neurons in New and Old World

Monkeys [26, 27, 28, 29, 30, 31, 32]. A current view is that MT responses are

determined not only by direction, but by these additional properties of a stimulus:

retinal position; speed of motion; binocular disparity; and size [33, 34, 35].

An important connection between the two-stage model and the physiological

mechanisms that implement it, came from electrophysiological results that showed

that some cells in MT are tuned for component directions of motion, whereas

others are tuned for the pattern direction of motion [9, 36, 37]. There are neurons,

in other words, that analyze 1D motion, as in the first stage, and neurons that

analyze 2D motion, as in the second stage. Component direction selectivity is like

orientation selectivity with direction selectivity. Component cells respond to 1D

motions that are part of a complicated 2D pattern of motion in the same way

as they do when the 1D motions are presented in isolation. Pattern direction

selectivity is like component direction selectivity, but for 2D motion. Pattern cells

respond to 2D motions in the same way as they do for 1D motions.

An important advance made by Movshon and colleagues, was to construct

hypothetical predictions from data for either type of tuning for each cell, which

allowed them to classify cells as component or pattern tuned. The pattern of
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responses to gratings moving in different directions would be the same as for a

plaid moving in different directions for a pattern cell. In contrast, the pattern of

responses of a component cell would be like those to drifting gratings, but would

be shifted with respect to the pattern direction so that the components would be

moving in the component cell’s preferred direction. Using these predictions all V1

cells were shown to be component cells, whereas some MT cells were shown to be

pattern cells [9].

An important followup study tested whether the V1 neurons that project to MT

are themselves direction-selective and whether they are component or pattern cells

[38]. They found that the V1 projection neurons are strongly direction-selective

and are component-tuned. They were typically ’special complex’ and they gen-

erally responded to a broad range of spatial and temporal frequencies. This is

consistent with the two-stage model. Similar work suggests that MT’s projection

neurons are tuned to speed and to binocular disparity [39, 40].

It has recently been asked how the responses of MT neurons differ from their

inputs, since they are largely tuned for the same properties. Another way to look

at it is to ask what MT adds.

One possibility is that MT computes motion over larger spatial scales. The

plausibility for this is increased by the observation that the receptive fields (RFs)

in MT are much larger than in V1. The standard ratio is about tenfold larger

in linear dimensions [41]. It has also shown that MT neurons are directional at

larger spatial separations than V1 neurons. The separations of MT neurons were,

nonetheless, more consistent with what has been termed short-range motion. And

a more recent set of measurements suggests that they actually have similar upper

limits for the spatial separation at which they are directional [42]. The short-range
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motion to which I referred, comes from evidence that humans have at least two

different motion processing mechanisms, which operate at different spatial scales

and have different characteristics [43, 44, 45].

Some unpublished results by Shadlen and colleagues tested the possibility that

besides inheriting a representation of short-range motion from V1, MT neurons

form, within themselves, a representation of long-range motion [46]. Their results

suggested that they do not represent long-range motion, an issue I explored.

The responses of MT neurons are critical to the perception of motion. Small ex-

citotoxic lesions of MT, for example, substantially elevate motion detection thresh-

olds [47]. Also, the motion sensitivity of MT neurons is sufficient to explain the

sensitivity of behaving monkeys [48, 49]. Results suggest that there is a statistical

association between MT responses to identical stimulus presentations and the be-

havioral choices that monkeys make on different trials [50]. Simulations of these

results suggest that responses from MT cells can be pooled to make perceptual

judgements of motion stimuli [51]. And modifying the activity of MT neurons via

microstimulation influences judgements of motion [52, 53, 54]. Injecting current in

MT is akin to adding certainty about the direction of a moving stimulus.

0.1.4 Estimating velocity in theory

The basis of many models of estimating motion is the observation that for any

moving rigid object the spatiotemporal frequency of all local motion estimates

must lie on a plane in frequency space [55]. In this context, V1 simple cells are like

space-time filters [56, 57]. Complex cells are similar in terms of being like filters,

but they include phase insensitivity [58]. So V1 neurons measure the amount of

motion energy in their passband [59]. They are incapable of representing the true
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pattern motion since they can only see that part which falls within their frequency

band.

In the model, an MT pattern cell can be formed by summing the responses of

V1 cells over a plane in frequency space [60, 61, 62]. This planar summation is

a way of implementing IOC. This model for MT cells can predict their responses

to plaids and random dot stimuli with varying levels of coherence. The model

makes some predictions about how MT cells should respond to different stimuli.

One is that component cells should have bimodal responses to dots moving at fast

speeds. Also, pattern cells should have bimodal responses to a grating moving at

slow speeds. These predictions have been confirmed by physiological measurements

of cells’ responses [63].

Psychophysical evidence that supports mechanisms that sum energy over a

plane includes detection experiments done with dynamic random noise patterns

[64]. Results with these patterns suggest that there is a static mechanism in

which energy is summed over an entire plane even when it is sub-optimal to do

so. Subthreshold summation of signal-contrast energy improves when the energy is

distributed broadly across many different orientations. Detection did not improve

when the energy extended into non-planar regions. In other words, detection

improves as more orientations are added to a moving pattern so long as they are

consistent with the overall velocity of the pattern.

0.1.5 Adapting to visual motion

There have been many studies on the effects of adaptation, which have shown

that it can cause repulsive shifts in the perception of different properties of a

stimulus. These properties include: spatial frequency [65, 66]; size [67]; direction
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[68, 69]; orientation [70, 71, 72, 73, 74]; and contrast [75]. Similar studies have

been done with moving adaptors. They have shown that adapting to motion

can cause: illusory motion of static tests (’Waterfall Illusion’) [76, 77]; illusory

motion of dynamic random dots [78]; and biases in perceived velocity or speed

[79, 80, 81, 82, 83, 84, 85, 86]. There have also been a few studies that have

examined the effects of adapting stimuli that appear to move transparently. They

have used the following as adaptors: transparent random pixel arrays [87, 88];

transparent random dots [89]; and transparent plaids [90]. One finding from these

studies is that the effect of adapting to transparent stimuli is unidirectional and in

the direction opposite of the vector sum of the motions in the stimulus. But this

issue has not been examined with respect to the direction of drifting tests. And the

relationship between adaptation effects on static, or zero speed, tests with those

on drifting tests is not known.

Most of the above-mentioned studies examined the effects of motion adaptation

separately, either in terms of the perceived DoM, temporal frequency or speed. But

Schrater and Simoncelli offer some insight into the perceptual consequences in 2D

velocity space of adapting to moving visual patterns [83]. They evaluated three

hypotheses: that adaptation effects are the result of sensitivity changes in spa-

tiotemporal frequency tuned mechanisms; that adaptation occurs in mechanisms

that encode direction and speed independently; or that it occurs in mechanisms

that encode 2D velocity. Their approach was to probe the representation of velocity

by measuring the pattern of perceptual shifts.

Their results show that adaptation causes shifts in the perceived direction of

plaids that are relatively independent of the spatial pattern of the adaptor [83].

The shift in the perceived DoM of a plaid after adapting to a grating is away from

14



the direction of the overall plaid pattern and not away from a plaid’s components.

In 2D velocity space, the shifts in perceived velocity radiate away from the adapted

velocity. The shifts are inseparable in speed and direction. These results are most

consistent with the third hypothesis they proposed, that adaptation occurs in

mechanisms that encode 2D pattern velocities.

Their experiments were based on a few simple assumptions, following those

that were expressed by Blakemore and colleagues [65]. One is that the visual

system represents a stimulus parameter using a population of neurons tuned for

that parameter. The perceived value of the parameter is determined by the relative

responses of those mechanisms within the population. Another assumption is that

prolonged exposure to a stimulus reduces the responsivity of those mechanisms

that represent it by an amount that is a monotonic function of their sensitivity to

it. Given these assumptions, the pattern of adaptation-induced shifts can be taken

as a representation of the parameter that is affected [67, 66, 65, 91].

Earlier work by Blakemore and colleagues made this connection. The perceived

spatial frequency of a sine-wave grating is shifted away from the frequency of an

adapting grating. They inferred from this that humans have mechanisms tuned for

spatial frequency. Similar work showed that DoM repulsion occurs with drifting

dots as adaptors and tests [68]. Also, repulsive speed effects had been shown [92].

Separate results by Thompson and Smith suggested that adaptation always causes

a decrease in the perceived speed of tests [93, 80]. Recent results by Stocker and

Simoncelli show that speed adaptation effects can be explained as a superposition

of two repulsive patterns, implying the adaptation of two underlying mechanisms

[86]. Other results by Smith and Edgar were consistent with repulsion for some

combinations of adaptor and test [81].
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0.1.6 Bayesian speed perception

Several Bayesian models for motion perception have been developed [94, 95,

96, 97, 98, 99, 100]. The approach of these models is to create an optimal Bayesian

estimator, also called an ’ideal observer’. The models are usually tested against

perceptual data gathered on simple stimuli (with a single motion), although the

models themselves generalize. Some of them can make predictions for rotation

and other smooth deformations, although not for occlusion boundaries or trans-

parency. Most of them make the assumption that all changes in the intensity of the

image over time are the result of smooth translational motion. The most impor-

tant assumptions, though, are that local image measurements are noisy and that

image speeds are usually slow. These last assumptions are represented in terms of

probability distributions. Bayes’ rule allows one to determine the ideal observer.

A recent Bayesian model for 2D motion estimation can account for a number

of perceptual phenomena [100]. The Bayesian model captures the influence of

contrast on perceived speed. The result is that lower-contrast patterns appear to

move more slowly than higher-contrast patterns [93, 101]. The Bayesian model

also captures the influence of contrast on the perceived direction of drifting plaids

[102]. The result is that the perceived direction of a plaid can be biased towards

the component with higher contrast when they are not the same. Finally, the

Bayesian model captures the biases in the perceived direction of type II plaids

towards the vector average solution [103].

A different Bayesian model accurately predicts human speed perception [104].

Stocker and Simoncelli estimated the shape of the prior for speed as well as the

contrast and speed dependence of the likelihood function from forced-choice psy-

chophysical experiments. The key to estimating these functions was to relate the
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shape of their distributions to the psychometric function, which is to say to the

variability across trials for different levels of the stimulus. Their results suggest

that the width of the likelihood function, which relates measurements of the mov-

ing stimulus to estimates of its speed, is proportional to the log of speed and falls

monotonically with contrast. The prior distribution falls off with speed as a power

law, with the exception that the slope becomes shallower at the slowest and (for

some subjects) fastest speeds.

0.2 Three sets of questions and three sets of re-

sults

I was interested in the scale of motion that is represented by MT neurons.

Following the above-mentioned reasoning, I knew that humans and monkeys can

see widely-separated apparent motion, which I took as evidence that there is a

neural representation of widely spaced motions. MT neurons are a candidate

for that representation since they have large RFs and may be able to respond

selectively to motion over larger spatial separations as compared to neurons in

upstream areas.

I tested the hypothesis that MT neurons not only inherit a representation of

motion at fine spatial scales, but that they compute a new motion signal that de-

pends on the direction of long-range motion. I used stimuli in which the directions

of local and global motion could be pitted against each other, meaning they could

be independently presented in the preferred or null direction of a cell. I made

electrophysiological recordings from MT neurons to local-global stimuli with many

different global speeds. My results suggest that MT neurons respond selectively
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only to local motion and are unaffected by global motion.

I have also addressed the problem of deciding whether to integrate or segre-

gate motions. In this introduction, I reviewed the effects of changes in different

parameters on how plaids appear to move. Like many of those studies I did a

series of psychophysical experiments in which subjects indicated their percept of

a moving plaid. I measured their responses for a range of component and pattern

speeds. My basis for exploring these parameters was the earlier work by Farid and

Simoncelli, although my results were quite different.

I found that plaids are transparent when their pattern speed is slightly faster

than their component speed, when their component speed is relatively slow. Plaids

with other combinations of component and pattern speed among those that I ex-

plored were coherent. I augmented a previous Bayesian model for speed perception

to create a model forming integrated or segmented plaid percepts. My model can

account for my results. The model was based on the assumption that measure-

ments of the component motions of a plaid are noisy, and that the human visual

system, which represents them, imparts preferences for slow and singular percepts.

Simulated percepts from the model suggest that subjects’ prior distributions for

speed and the values of their prior for seeing singular motions can explain their

pattern of percepts across trials.

The final set of questions that I addressed deals with the perceptual biases that

result from adapting to coherent or transparent plaids. The approach that I used

is similar to the one described by Schrater and Simoncelli [83]. I tested whether

the pattern of repulsion would depend on how the adaptor was perceived. I also

considered a second possibility, that the pattern of repulsion would be away from

the two component directions of motion, regardless of how the plaid appears. I
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assumed that there are mechanisms that estimate a plaid’s component and pattern

velocities, which can be thought of as component and pattern cells.

My results suggest that adapting to coherent and transparent plaids causes

repulsion away from their pattern directions. There may be some slight differ-

ences between the directional biases generated by coherent and transparent plaids.

But the locus of the adaptation is always consistent with the pattern direction.

My analysis suggests that the pattern of shifts can be explained as an additive

mixture of component and pattern adaptations. Control experiments with trans-

parently moving random dots suggest that repulsive biases in perceived direction

can be away from more than one direction, but that they are always away from

the directions represented by pattern-tuned mechanisms.
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Chapter 1

MT computes local but not global

motion

MT neurons receive direction-selective input from V1 and other extrastriate

areas. This input may give rise to MT’s directionality for motions with small

spatial separations, but not for motions with large separations. I assessed the

relative contributions of local and global motion on the directionality of MT neu-

rons in anesthetized macaques. I presented brief narrow ovular ’blips’ of drifting

grating at sequential locations along the preferred-null axis of the RF. When the

spatiotemporal frequency in each blip matched those preferred by a cell, responses

were entirely local. Global motion did not elicit directionality by itself or when

its separations were beyond approximately 1 deg. A simple model based on the

convolution of a stimulus’ motion energy with a cell’s sensitivity profile, predicts

these responses. These results suggest that directionality in MT is inherited from

its inputs. Global motion must, therefore, be represented in some other visual

area.
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1.1 Introduction

Sensory computations are executed incrementally by the sequential convergence

and divergence of populations of neurons, each of which plays a role in the broader

processing within a sensory modality. Advancing through subsequent stages of

convergent and divergent input and output is generally accompanied by increases

in the complexity of sensory representations. In vision, for example, neurons in the

LGN respond preferentially to small circular spots of light, whereas downstream

neurons in V1 respond better to drifting bars or sinusoidal gratings [105, 106].

Transformations in visual response properties continue through extrastriate areas.

Neurons in V4 and IT respond better to shapes, like those of objects or faces

[107, 108, 109, 110]. These transformations have been modeled as cascades of

linear and nonlinear processing steps [111].

As I described in the introduction, MT is central to the pathway for process-

ing and perceiving visual motion [9, 47, 52, 49, 112]. A simplified model of the

formation of MT’s processing is that it results from a two-stage process [9]. Di-

rection selectivity is established in V1, where approximately one quarter of the

neurons respond more strongly to motion in one direction and minimally to mo-

tion in the opposite direction [106, 113]. V1 neurons project, both directly and

through other areas, to MT, where the majority of neurons are direction-selective

[22, 26, 29, 114, 38].

One of the differences between V1 and MT processing is that some MT neurons

are tuned to the pattern direction of a plaid, whereas V1 neurons are not [9, 115].

Pattern direction selectivity is thought to be formed by a weighted combination of

neurons tuned to the component motion. In other words, it results from integration

over motion direction [62].
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Figure 1.1: A lateral view of a macaque monkey brain with the temporal sulcus
spread apart. Two visual areas that are central to motion processing are shown:
V1 (in blue) and MT (in green). Many small directional V1 RFs converge to form a
larger directional MT RF. I addressed whether the directionality of an MT neuron
is limited to the scale of its inputs or whether it possesses an additional, more
widely spaced, directionality. The arrows within the RFs represent the preferred
directions for those cells, which are the same in all cases for illustration only.

Another difference is that MT RFs are roughly tenfold larger than V1 RFs at

corresponding eccentricities [116]. This enlargement results from a tiling of visual

space with convergent input from smaller upstream RFs. But MT RFs are not

simply expanded V1 RFs. The preferred spatial frequency of an MT neuron is

likely to include multiple cycles of an elongated grating, whereas a single cycle

would be more likely preferred by a V1 neuron.

Motion processing in humans might be limited by the scale of directional tuning

in MT, but humans are capable of seeing motion even when it occurs over wide

separations of visual space, larger than the RFs of MT’s inputs. This begs the
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question whether directional responses in MT are limited by the scale of the RFs

of the inputs to it or whether it forms an additional representation (Figure 1.1).

To test these possibilities, I isolated motion content that could be processed by

V1 from that which might be processed in MT. I used a stimulus whose DoM was

independent at two spatial scales. I defined ’local motion’ to be that of a drifting

grating covering a subregion of an MT RF. I defined ’global motion’ to be that of

a sequence of small patches of local motion, which were flashed in sequence from

one side of the RF to the other at many different speeds.

1.2 Methods

1.2.1 Electrophysiology

I recorded from isolated single units in MT of six anesthetized paralyzed adult

Cynomolgus Monkeys (Macaca fasicularis) using previously described methods

[117]. All experiments were performed in compliance with the National Insti-

tutes of Health Guide for the Care and Use of Laboratory Animals and within

the guidelines of the New York University Animal Welfare Committee. Anesthesia

was maintained throughout the experiments with a continuous intravenous ad-

ministration of 4-30 µg/kg/hr of Sufentanil in dextrose-saline (4-10 mL/kg/hr).

Vecuronium bromide (Norcuron) was also infused at 0.15 mg/kg/hr to prevent

involuntary drifting of the eyes.

Gas-permeable contact lenses were used to protect the monkey’s corneas. Sup-

plementary lenses that were chosen by direct ophthalmoscopy were used to make

the retinas conjugate with a screen on which all stimuli were presented. Refractive

correction was checked by adjusting the lens power to maximize the resolution of
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recorded cells. During experiments, each monkey was artificially respirated and

body temperature was maintained with a heating pad. Vital signs (heart rate,

lung pressure, EEG, ECG, body temperature, and end-tidal CO2) were monitored

continuously.

I passed quartz-glass microelectrodes (Thomas Recordings, Giessen, Germany)

through a small durotomy within a craniotomy centered 15 mm lateral to the

midline and 4 mm posterior to the lunate sulcus. The electrode was advanced at

an angle of 20 deg from horizontal in a ventroanterior direction in the parasagittal

plane. RFs were centered between 3 and 28 deg from the fovea, although the

majority were between 4 and 12 deg. Signals were amplified, band-pass filtered

(300 Hz to 10 kHz), and fed into a time-amplitude window discriminator (Bak

Electronics, Mount Airy, MD). Spike arrival times and synchronization pulses were

recorded with a resolution of 0.25 ms.

After an experiment was completed, the monkey was euthanized with an over-

dose of sodium pentobarbital (60 mg/kg) and perfused with 4% paraformaldehyde.

I used standard methods for histological confirmation of the recording sites (Kohn

and Movshon 2003). Identification of the recording locations was made through

histological identification of electrolytic lesions that were made at suitable loca-

tions along the electrode tracks during the experiments. For that, I passed 1-2 µA

of current for 2-5 s through the tip of the electrode.

1.2.2 Stimuli

Stimuli were presented at a resolution of 1024x731 on a gamma-corrected Eizo

T550 monitor with a refresh rate of 100 Hz. The monitor was usually placed 80

cm from the monkey’s eye, where it subtended about 22 deg of visual angle. The
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mean luminance of the monitor was 33 cd/m2. I used a 10-bit Silicon Graphics

board to generate stimuli. They were presented to each neuron’s preferred eye.

The other eye was covered for the duration of the recording done with a given

neuron. Stimuli were centered as close as possible to the center of a neuron’s RF.

Local-global motion stimuli consisted of multiple local-motion pulses presented

in sequence (Figure 1.2a). Each pulse contained a small, brief, spatially and tem-

porally band-limited drifting grating. I used luminance-modulated raised-cosines

in the x and y direction for spatial windowing and a raised-cosine for the tem-

poral windowing. The long-axis of the local pulses was set to be orthogonal to

the preferred axis of direction selectivity for the neuron. Local and global motion

was presented in the preferred or null directions for the cell, giving four possible

combinations of directions (Figure 1.2b).

I chose the width and duration of a single local pulse by measuring the response

of a cell to stimuli where these parameters were parametrically varied. I chose

values for these at which responses were strongly directional. Normal values were

from 0.5 to 2 deg for width and 70 to 90 ms for duration. The spatial and temporal

offsets between local pulses were chosen such that the range of global speeds were

centered on the preferred speed of the neuron. Preferred speed was estimated in

preliminary experiments.

I did not measure the RF widths of the inputs to the cells that I recorded

from, which would have required significantly more work, and of a different sort.

In separate experiments, I would need to determine which cells are projecting to

an MT cell that I explored, perhaps with the low yield approach of determining

which V1 neurons are antidromically activated by electrical stimulation of MT.

It is possible to say something about this from the literature, though, and a
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Figure 1.2: (a) A diagram of a sequence of frames of an apparent motion stimu-
lus with local motion to the left (yellow arrows) and global motion to the right.
The MT neuron whose RF is represented by the dashed white lines could prefer
rightward motion, such that the motions of the stimulus are in the null direction
locally and in the preferred direction globally. (b) Space-time plots of the local-
global motion stimulus shows the four pairwise combinations of preferred and null
local and global motion. Notice that the orientations stimulus content within each
rectangular blip is either parallel to or orthogonal to the orientation of the overall
sequence. The white bar corresponds to 100 ms.
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simple, and often cited, relation is that MT RFs are tenfold larger than their V1

inputs [41, 118, 38, 119]. This is largely based on linear fits of the distribution

of sizes across eccentricity in the two areas. In other words, it is not clear which

of the cells with the smaller RFs in V1 are the inputs to the larger MT RFs at a

given eccentricity. Also, the existing data has yet to incorporate variation in the

relationship between the RF sizes of of the two areas across different cortical layers.

Nor is it clear how estimates of the relationship varies with the stimulus used, or

with regard to the extent of overlap in the input RFs. There is also asymmetry

in the length of the RF in different directions of visual space, which relates to the

tuning properties of the cell, which has not been considered.

That said, the width of the local pulse that I used was chosen in relation to the

spatial frequency tuning of a cell and to ensure that five of them, when presented

adjacent to one another, would fit within the cell’s RF. The width of the local pulse

was, therefore, likely to be on the order of one or two RF widths of the V1 neurons

projecting to MT, but more work would be needed to firmly establish that.

1.2.3 Data collection

I determined the optimal direction, spatial and temporal frequency, and size of a

high contrast drifting sine-wave grating for each neuron. I used optimal parameter

values for all subsequent local-global experiments. I included all responsive neurons

although I excluded a few that were unresponsive to spatial frequencies less than

approximately 2.8 c/deg. This ensured that I would be able to present at least five

local pulses within a cell’s RF since their spatial offset was equal to the optimal

spatial wavelength and I always presented at least one full cycle.

Next I varied the width and duration of a single local pulse in separate exper-
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iments. For these and all subsequent experiments, I collected five trials for every

condition, with five repeated presentations of the stimulus for each trial. I chose

parameters for the local pulses such that they were as narrow, long and brief as

possible.

In the main set of experiments, I varied the temporal offset between local

pulses. I presented stimuli with global speeds that were much faster and slower

than a cell’s preferred local speed. Within the series of eight global speeds were

three steps of doubling the speed and three steps of halving the speed from middle

point matched to the local speed. I included an internal control in which one of

the global speeds was zero, so that all blips were presented simultaneously. The

spatial separation for each blip in this series was equal to the blip width, so that

there was no spatial overlap between individual blips.

I followed up with two controls. In one, the temporal frequency of the local

pulses was set to zero, nullifying the local motion. With that difference, I ran the

same series of eight temporal offsets as before. In the second control, I replaced

the local motion pulses with a narrow black bar. In a matrix, I varied the spatial

and temporal offsets of these drifting bars. The temporal offsets were of 10, 20,

40 and 80 ms. The spatial offsets ranged from approximately 1 to 2.5 deg in four

roughly equivalent intervals. For the two smaller spatial offsets, I presented seven

pulses instead of the normal five.

1.2.4 Data analysis

I computed the mean instantaneous firing rate in 1 ms bins across passes

within a trial and across trials for all cells. I plotted peristimulus time histor-

grams (PSTHs) for all cells after smoothing them with a Gaussian filter with a
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3 ms standard deviation. In addition, I computed response rates for all cells as

the mean firing rate across passes and trials within brief temporal intervals. The

intervals were shifted relative to presentation of the stimulus. I used an onset la-

tency of 25 ms and an offset latency of 45 ms. When the global speed was slow

enough that the intervals did not overlap in time, I excluded the periods outside

of them. When they overlapped, I considered the window from the start of the

stimulus plus the onset latency to the end of the stimulus plus the offset latency,

a single period. I subtracted the spontaneous rate, which was drawn from a 600

ms blank period and averaged across all possible presentations.

1.2.5 Metrics

To quantify the extent of directionality at the two spatial scales, I initially

computed a simple directional index as

1− N

P

with summed response rates. For the local directional index, for example, I

summed response rates for the two directional conditions that contained null local

motion. I did the same for the conditions with preferred local motion. I computed

the corresponding global directional index using a similar ratio of response rates.

These were useful for getting a sense of the scale at which cells were directional,

but I sought a more sophisticated metric that captures the relative dominance of

directionality at one scale over the other.

I computed two metrics, one for each scale, and took the difference between

them. ’Locality’, one of the two, was the difference of the preferred local and null
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responses, where each of these is the average over the two global conditions, divided

by the sum of the absolute values of the same responses, the preferred and null

local responses. ’Globality’ was computed in the same way, as the difference of two

response rates divided by the sum of their absolute values. I termed the difference

between locality and globality ’local dominance’, which captures the strength of

directionality to the local motion over the directionality to the global motion.

Local dominance roughly corresponds to the directed distance from the equality

line for points in a space of local directional index versus global directional index.

But local dominance differs from that distance in that it is bounded from -2 to 2

since locality and globality are each bounded from -1 to 1. The absolute values

in their divisors negate the influence of suppression below baseline. For example,

response rates of 100 and -5 imp/s for preferred global and null local conditions have

a locality of 1. Response rates of 100 and -20 imp/s have the same locality. The

local directional index for these rates would be 1.05 and 1.20 respectively. Local

directional index, like global directional index, will scale with greater suppression

below baseline. Local dominance values greater than 1 can only result, therefore,

when there is significant directionality to the local motion and responses to the

global motion that are greater for null conditions than for preferred ones.

1.2.6 Model

I constructed a simple motion energy model to explore whether cells’ responses

were determined by the frequency content within the local-global stimuli. Pre-

dicted responses were computed by convolving a cell’s spatiotemporal RF with a

local-global stimulus. To get a cell’s sensitivity profile in the frequency domain,

I assumed separability and took the product of the cell’s spatial and temporal
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frequency tuning. There is some evidence that MT cells’ tuning is not separable,

that they are partly tuned to velocity. But I considered this approximation a rea-

sonable starting point, which should be able to predict responses to my stimuli. I

computed the same directional metrics for the simulated response rates as for the

physiological ones.

1.3 Results

1.3.1 Scale of directionality

I recorded from 50 neurons in MT of six anesthetized paralyzed macaque mon-

keys. I began my experiments with a single cell by defining the properties of the

local motion. I ran two experiments to parametrize a single centered patch of local

motion such that a neuron was directionally selective to it. From the following

experiment in which six different durations were presented, I chose the shortest,

or just longer than the shortest, duration that would elicit a directional response

(Figure 1.3a). Most neurons were directional for durations longer than 30 ms.

And although their responses to preferred local motion increased only slightly for

longer durations, their responses for null motion were increasingly suppressed up

to approximately 70 ms.

I reasoned that if there is selectivity for global motion it would be most easily

detected when there is a significant response to the local motion. I also assumed

that global motion would be more likely to have an effect when its speed is the

same as a neuron’s preferred local speed, although the actual relationship between

preferred local and global speeds might be quite different. I could not be sure

either way and I explored a broad range of global speeds.
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Figure 1.3: PSTHs of the responses of an MT neuron to a single local pulse with
six different durations and to a full set of local-global motions with eight different
global speeds. The space-time plots on the left are for the duration or global speed
condition highlighted in gray. The white bar in the space-time plots is for 100 ms.
(a) The top row is for motion in the preferred direction and the bottom in the null
direction. For all of the main local-global experiments, I set the duration from this
series, by choosing one for which there was a clear directional response. (b) The
four rows are for different directions of the stimulus. Rows 1 and 2 are for global
preferred. Rows 1 and 3 are for local preferred. Global speed decreases from left
to right. The cell responded strongly to conditions with preferred local motion at
all global speeds.
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The responses of a typical MT neuron to eight global speeds and four directional

conditions of local-global motion is shown in Figure 1.3b. Each column is a set

of PSTHs for the four directional conditions for a single global speed. Global

speed increases from right to left. For the slowest global speed (far right column),

the neuron responded when the local motion was in the preferred direction (first

and third rows), regardless of the direction of the global motion and was equally

suppressed otherwise (second and forth rows). The lack of influence of the global

motion for this condition might not be very surprising since the global speed was

very slow relative to the preferred local speed. The temporal offset in this case was

640 ms such that each blip was presented as essentially isolated in time, progressing

slowly from one side of the RF to the other.

In the condition where the global speed matched the neuron’s preferred speed

(26.3 deg/s), this neuron responded only to the local motion and was unaffected by

the global motion (Figure 1.3b, gray highlight). This neuron was like some others in

that its response to the first and second blips of local motion for one global motion

direction was similar to the forth and fifth blips for the condition for which the

global motion was in the opposite direction. This might result from the stimulus

being slightly off center with respect to the RF. There was also some variability

in latency across different directional conditions in some other neurons. Whatever

the explanations are for these subtleties they are not evidence of a representation

of global motion.

At the fastest global speeds (52.5-210 deg/s), the blips overlapped in time and

there was a continuous response to the preferred local motion. The responses at

those speeds were similar to the ones at slower global speeds: the enhancement and

suppression to preferred and null local motion was unaffected by the global motion.
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Also, the responses increased with global speed, which probably results from there

being a greater number of blips within the RF at a given time. It seems as though

there is incomplete summation of the responses. The control condition in which

five blips were shown at once (far left column) supports this. These responses,

like the others at fast global speeds, are less than what one would expect from

summing the response to each blip in isolation, such as at the slowest global speed

(far right column). In general, the responses of the neuron I have focused on were

similar to those of the population.

Figure 1.4a summarizes the response rates for the seven non-zero global speeds

for the example MT neuron. The response is much greater, and roughly equal,

for the conditions with preferred local motion. The response to preferred motion

increases as the global speed increases. I quantified the influence of global motion

by first comparing the response rates for local preferred and null motion with

preferred and null global motion. Then I computed a single metric based on

the difference between the directionality to the local or the global motion. Local

dominance ranges from -2 to 2 and is consistent with purely local directionality

at 1 and purely global directionality at -1. A value of 1 does not, however, mean

that the selectivity is only determined by the local motion since many different

combinations of the two metrics on which it is based can result in the same local

dominance. Figure 1.4b shows the local dominance values for these speeds for this

neuron. They are near 1, consistent with it being primarily influenced by local

motion.

Local dominance for all cells is nearly always greater than 0 and is centered near

0.7, meaning most cells are directional to the local motion (Figure 1.4c-e). There

are a small number of cases that have local dominance values near, or slightly less
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Figure 1.4: (a) Response rates for stimuli with local-global motion for the example
MT neuron I show throughout this chapter. The points are: black for preferred
local, red for null local; filled for preferred global, hollow for null global. Global
speed increases from left to right. The cell was directional for local motion. (b)
I computed ’local dominance’ from these response rates. It is more positive when
a cell is relatively more directional for local motion and more negative when it
is more directional for global motion. (c-e) Histograms of local dominance for
three groups of global speed for a population of MT cells. (f) For comparison, I
computed a simple directional index based on the ratio of the responses for null
and preferred motion for the control condition without global motion. At all global
speeds, nearly all cells were directional for local motion.
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Figure 1.5: Response rates for a population of MT neurons grouped by global
speed. The abscissa and ordinate are the response rates to null global motion and
preferred global motion respectively. The points are: red for null local, black for
preferred local. The responses to null and preferred local motion were unaffected
by the direction of the global motion for all global speeds.

than, zero. I reviewed the PSTHs of this subset of neurons and found them to

be essentially unresponsive to all of the conditions for global speed and motion

direction. This suggests that their local dominance values are primarily the result

of noise. Figure 1.4f is for the case where there was no global motion, so I show the

local directional index (LDI) instead of the local dominance, since the latter does

not make sense in this case. LDI, in contrast to local dominance, is unbounded.

Figure 1.5 shows scatter plots of the response rates for null versus preferred

global motion. Local preferred response rates are shown as black points and local

null response rates shown as red points. The four plots are for different groups

of global speeds across all neurons or all conditions for all neurons. Figure 1.5ab
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is for a single global speed for each neuron, whereas Figure 1.5cd includes several

cases that are within those speed ranges. It is clear that for all neurons, and at

all speeds, neither the preferred nor the null local responses are influenced by the

direction of the global motion.

1.3.2 Responses to global motion only

The absence of a response to global motion in MT could be explained by inabil-

ity to significantly drive a neuron and in a sense my results seem to support this

explanation. Another possibility is that the response to local motion dominates

the global one, that it masks an underlying response to it. To check for this, I

measured responses to global apparent motion without local motion. Figure 1.6a

shows PSTHs of the response to global motion in the example MT neuron. As for

Figure 1.3, each column shows PSTHs for a single global speed, which decreases

from left to right. The direction of the global motion is indicated by the orientation

of the content in the space-time plots.

The neuron responded equally to motion in either direction for all speeds. It

was not directional for global motion. This suggests that there is not an underlying

directionality for global motion that is masked by local motion. The responses for

these conditions were less than the responses to preferred global motion with pre-

ferred local motion, and greater than the responses to preferred global motion with

null local motion. This suggests that local motion enhances and suppresses what

would otherwise be non-directional responses. Also, the responses decrease as the

global speed decreases for the three global speeds that are faster than the condi-

tion matched to the preferred local speed, as they do for the two local preferred

conditions for the main local-global series.
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Figure 1.6: PSTHs of the responses of an MT neuron to for two control experiments
in which the stimuli contained no local motion. The space-time plots on the left
are for the conditions highlighted in gray. The white bar in the space-time plots
is for 100 ms. In both sets of PSTHs, the top row is for motion in the preferred
direction and the bottom in the null direction. (a) Global speed decreases from left
to right. The responses were not directional. (b) I varied the spatial and temporal
offsets between the apparent motion pulses. At these temporal offsets, the cell’s
responses were not directional at any spatial separations.
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I did a second control series in which only a single scale of motion was presented.

Low spatial frequency gratings (black bars) were presented at a broad range of

speeds. I did this to check whether there is any directionality in the range of the

spatial separations of the global motion I presented in the previous experiments.

These stimuli were similar to the ones used by Mikami et al. [120, 121, 122]. Figure

1.6b shows PSTHs for the example MT neuron for different spatial offsets at two

different temporal offsets. These were a subset of a larger grid of all combinations

of four temporal and four spatial offsets that I presented. Since the spatial offset

increases from left to right, the speed increases from left to right. The space-time

plots on the left show the direction of the motion. For this neuron and this range

of offsets, there was no clear directionality for any of these conditions. This further

affirms that directionality in MT neurons is limited in the spatial extent over which

it can occur.

MT neurons were generally not very directional for any of the spatial and

temporal offsets that I presented. Figure 1.7a-e shows histograms of directional

indexes for all neurons for these black bar stimuli and for the previous set which

were like the local-global stimuli but lacked local motion. In a few cases, there

was some weak directionality, which probably resulted from the stimuli being just

below the upper limits of offsets to which directionality exists. The median global

DI was 0.138 with the black bar stimuli, consistent with weak directionality. Any

directionality tended to occur when the spatial offset was between 0.5 and 1.5 deg,

with little to no directionality beyond this. These spatial offsets are less than the

ones typical of my local-global stimuli.
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Figure 1.7: (a-c) Histograms of directional index for three groups of global speed
for a population of MT cells. (d) A histogram of directional index for flashed local
pulses, so no local or global motion. (e) A histogram for the conditions of the black
bar stimuli in which the global speed was roughly equal to the local speed. At all
global speeds, cells were not directional for stimuli that lacked local motion.
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1.3.3 Motion energy model

The standard motion-energy model of MT neurons includes space-time filters

that estimate motion-energy in a specific direction [59, 95, 62, 123]. Motion energy,

therefore, drives the responses of MT neurons. I hypothesized that the pattern of

directional responses that I observed could be explained in terms of the overlap

of the motion energy of a stimulus with a cell’s spatiotemporal response profile.

I developed a simple model to test this. I do not attempt to simulate all of the

characteristics of MT neurons.

Figure 1.8a shows space-time plots for the condition in which the global speed

matched the preferred local speed. The direction of the global motion corresponds

to the orientation of the group of five local pulses. The plots to the right of the

space-time plots show the corresponding stimuli in the frequency domain. The

red overlay shows the neuron’s response profile to different spatial and temporal

frequencies. The rightward preferred motion in the first row of plots in Figure 1.8a

has circular blobs in the first and third quadrants with intensity striations within

them. These energies fall mostly within the neuron’s region of sensitivity. Global

motion is a sampling of the local pulses and it corresponds to the striations of the

local pulse energy. The orientation and spacing of these striations covaries with

the speed of the global motion. They are more vertical and more widely spaced

the faster the global speed.

The spectra for the case in which the stimuli are the same as the local-global,

but without local motion, are centered on the abscissa (Figure 1.8b). The black bar

stimuli should be more likely to result in directionality at the smallest temporal and

spatial offsets, where there is the greatest separation between the components in

the frequency domain (Figure 1.8c). In that case, orientations that correspond to
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Figure 1.8: The gray colored plots are space-time plots of stimuli shown in previous
figures. The white bar in the space-time plots is for 100 ms. The rightmost columns
of plots are the Fourier transforms of the stimuli to the left of them. They have a
red overlay that corresponds to the spatiotemporal frequency sensitivity of an MT
neuron. For the frequency space plots, the vertical segment of the white bar is for
20 Hz and the horizontal is for 4 c/deg. (a) Plots for the condition of the series
in which global speed was varied where global speed matched local speed. The
local motion loosely corresponds to the circular energy regions in cross-quadrants.
The global motion loosely corresponds to the striated sample lines within the
circular regions. (b-c) When there is no local motion, the energy is centered on
the abscissa. The direction of the global motion changes the orientation of the
striations, although the amount of energy in the cell’s RF remains about the same.

42



motions in different directions could result in different amounts of motion energy

in the sensitivity window, and therefore differential responses. These controls

make clear that the direction of the global motion corresponds to orientation,

which may not influence the amount of energy within the sensitivity region (Figure

1.8bc). Therefore, within this model, the responses are unlikely to differ with global

motion.
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Figure 1.9: Local dominance for a population of MT neurons from a motion energy
model and for actual data grouped by global speed. The model predicts the correct
sign of local dominance, but not the range of variability seen in the real data.

I computed simulated responses for all MT neurons. Local dominance was

computed in the same way as for the electrophysiological data. The model could

not predict negative response rates, in part because there is not a clear way to

simulate the baseline response. It also does not include suppression, such as from

null motion. The range for the predicted local dominance is 0 to 1, since the model

is selective for the local motion and does not give negative response rates, which can
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extend the metric higher than 1. Another possibility for extending the range is for

the globality to be negative from a greater response to conditions with null global

motion than those with preferred. The scatter plots in Figure 1.5 suggest that this

is not a general phenomenon. Figure 1.9 shows scatter plots for the simulated data,

grouped by global speed. For the condition in which there is no global motion, the

model generates reasonable predictions of slightly greater than 0.5. The data from

the physiology for this condition has some variation (orthogonal to the axis of the

predicted response). When the global speed matched the preferred local speed the

model also did a reasonable job of predicting the data.

Figure 1.9cd shows cases where the global speed is greater than and less than

the preferred local speed. The local dominance from the physiology data has

significantly greater variability. This is especially true for the set with faster global

speeds. It is unclear what underlies this. It is possible that there are not only

greater responses, but more variability in the responses when there is more stimulus

in the RF. This may be an issue of partial summation of the added stimulus, which I

mentioned previously. The speed of the global motion, and the amount of stimulus

in the RF at a given time, do not affect the model. In general, the predicted local

dominance values are similar, but less than the actual ones. Simulating trials and

velocity-tuning should improve the predictions.

An additional point to be drawn from the predicted local dominance values

is that they are mostly distributed in the same quadrant as the local dominance

values from the electrophysiological responses. The model predicts that responses

are directional for the local motion, which is consistent with what is found in MT

neurons.
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1.4 Discussion

My results show that MT neurons are unaffected by global motion. This im-

plies that MT does not integrate the representations of motion that make up its

RF. Instead it simply aggregates the feed-forward inputs it receives from V1 and

other areas. I was able to approximately predict a MT neuron’s directionality

by computing the convolution of my stimuli with each neuron’s spatial-temporal

response profile. A cell responded whenever there was energy within the region of

frequencies to which it was sensitive. This suggests that a neuron that is sensitive

only to the global motion would respond differentially to the striated peaks within

the circular patterns of energy for the local motion. These would be like large

oriented filters in space-time, which, as a result of their scale, would be insensitive

to smaller orientation changes within their slanted filter regions.

It would be interesting to know more about how the responses of MT neurons

are affected by global motion when the strength of the local motion signal is re-

duced. I did not explore combinations of global speed with local speed other than

the optimal one, which I estimated by finding the preferred spatial and temporal

frequency in separate experiments with different stimuli. As I explained previously,

I set the local speed to that which would elicit a maximal response. Choosing a dif-

ferent, non-optimal, local speed would reduce responses, although, doing so should

not induce a response to the global motion.

The mean local dominance that I observed was 0.7, which could result from

a partial influence of the global motion. I believe this to be unlikely, although

it cannot be ruled out from my present set of results. On this point, Figure 1.4f

shows a histogram of a simple directional index from the responses to the same

local-global stimulus, but without global motion for the subset of the neurons that
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I recorded from. Without global motion, all of the local pulses were presented

simultaneously. The mean of the directional index for this condition is less than 1

and is widely distributed, similar to the data for stimuli with global motion. There

do not seem to be any obvious differences between these distributions.

Also, nonzero responses to null motion will decrease local dominance. In other

words, incomplete suppression from null local motion could shift the distribution

of local dominance towards zero, regardless of the direction of the global motion.

The red dots in the scatter plots in Figure 1.5 are for null local motion. They are

not centered around zero, but extend out to slightly postive responses, even for

the condition without global motion. These scatter plots suggest that there is not

a general systematic influence from the direction of the global motion.

I believe that my results are not significantly influenced by the use of anesthesia

for my recordings. Previous studies with local-global motion stimuli led to similar

results with awake monkeys [46]. I have thouroughly analyzed the results of these

experiments, which were done with two awake monkeys [46]. I have not presented

those results here, although they are consistent with these results in that MT cells

are not influenced by the direction of the global motion.

It is unlikely also that changes in attention, such as attending to the global

motion, or completing a task that depends on it, would give rise to a selectivity for

the global motion. Again, additional work would be needed to rule that out. But

there seems to be no signal of global motion to amplify in order for there to be

an effect of attention. Training monkeys to report the direction of global motion

in local-global motion stimuli might be a first step in understanding this further.

This monkey psychophysical data would be useful also to determine whether other

brain areas form a representation to global motion and how those representations
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correlate with what is perceived on different trials.

There have been few published reports that I am aware of that describe physi-

ological responses to simultaneously presented visual motion in opposite directions

at different scales. Most earlier work made use of stimuli with a single scale of

motion, and looked at the spatial and temporal offsets at which cells were direc-

tional [120, 121, 122, 42]. That said, I would like to summarize a few observations

from previous studies that motivated my experiments, and which, in particular,

suggested that MT might represent global motion.

Humans (and monkeys) have at least two different motion-sensing mechanisms:

one that is capable of representing motion at spatial and temporal scales that are

larger than those of the other [124, 125, 44, 45]. Early support for this came from

apparent motion in foveal random-dot kinematograms. The standard cutoff for the

’short-range’ process was 0.25 deg and with interstimulus intervals of less than 100

ms [124]. Subsequent studies showed that this depended on eccentricity as well

as other factors, such as the size of the stimulus [125]. Regardless, the long-range

process from which humans can perceive motion can be separated by as much as 10

deg and as much as 300 ms. The ability to perceive motions at these scales suggests

that there are neurons whose responses are directly related to such motions.

MT neurons, in part because of their large RFs, seemed like a reasonable candi-

date for representing the long-range motion. Mikami and colleagues suggested that

MT could represent motion at spatial separations that are significantly larger than

those in V1 [122, 120, 121]. To be clear, these separations, although larger, were

nonetheless still associated with the short-range process. They suggested that,

among other things, the expansion in MT could facilitate directional selectivity at

faster speeds. The expansion could be formed in part by indirect projections, pos-
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sibly through V2 or V3, where the RFs are larger than those in V1. More recent

work by Churchland et al., however, suggested that there are not major differences

in the scale of directionality in V1 and MT [42]. This led them to conclude, as I

have, that directionality in MT is inherited from V1. Because the global motion in

my stimuli was defined by sampling the local motion, the motion energy of it had

a specific shape that could be distinguished from the local motion. This is not the

case for measurements of the maximum spatial and temporal offsets with random

dot stimuli.

Some unpublished psychophsyical results suggest that the presence of global

motion biases judgements of the direction of local motion. This suggests that

signals for both motions converge. There are also psychophysical results that show

that they can be cross adapted, which also suggests a shared representation. One

way for cells to represent global motion would be to form a motion detector from

inputs in which the directionality for local motion has been averaged out. This

would seem most likely to occur in a step from smaller RFs, such as ones capable of

representing the position of an individual blip in my stimuli, instead of larger RFs,

like those in MT. This seems unlikely to occur in one of the primary downstream

targets of MT [126]. Neurons in the ventral stream that are able to track objects

moving over large distances may represent global motion. Either these areas or

their targets could be points at which convergence with local motion could occur.

A study by Ilg and Churan is relevant to mine [126]. They trained rhesus

monkeys to do a direction discrimination task for three different types of motion:

Fourier motion, drift-balanced motion, and theta motion. In general, monkeys were

significantly above chance level in discriminating all of these types of motion. This

suggests that monkeys have mechanisms for representing second-order motion and
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that they can perceive it, both for drift-balanced motion and for theta motion.

This further supports the possibility that monkeys are capable of seeing global

motion, as I have defined it, which is a form of second-order motion.

Additional experiments could be done to establish that monkeys can see long-

range apparent motion, or what I have called global motion. There is little evidence

that suggests they cannot see this motion, although it has not been thoroughly ex-

plored. The global motion that I presented has spatial limits that are significantly

less than the upper limits for perceving long range motion, which operates over

many degrees [127, 44]. The temporal offset may also be up to 500 ms, which is

longer than nearly all of the temporal offsets that I explored [127, 44].

The perception of the direction of local and global motion seems to be influenced

by the eccentricity at which they are presented. It is not known why this is? My

data do not suggest that this variation with eccentricity is reflected in the tuning

properties of MT neurons. Local dominance, for example, is roughly constant

across cells whose RFs are at different distances from the fovea.

Ilg and Churan recorded responses from MT and MST during discrimination

of the different types of motion [126]. They found that neurons coded only for

stimulus movement if the motion stimulus was separated from the background by

luminance or flicker, Fourier and drift-balanced motion. If these cues were absent,

which was the case for theta motion, the neurons did not code for direction of

motion. They concluded that MT and MST are not the final cortical stages that

are responsible for forming percepts of motion.

I explored a different question, about the scale at which MT represents mo-

tion, and whether it computes a directionality beyond what is formed in V1. But

my results are consistent with theirs in that, if one assumes the monkey can per-
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ceive global motion, then the responses of MT neurons are not consistent with

the percept. The neurons that represent theta motion, for example, might also

represent long-range apparent motion. In both cases, they might be insensitive to

the fine-scale motion within the stimulus.

Majaj and colleagues also tested whether MT neurons integration motion sig-

nals across space witin their RFs [128]. They presented drifting gratings in two

separate patches, and compared the responses of cells to conditions in which the

drifting gratings were superimposed within the same patch. Cells lost their selec-

tivity to pattern motion when the gratings were separated in visual space. This is

consistent with my results, in that it suggests that MT is not integrating across

space within its RF. But my experiments tested not only whether signals are com-

bined across space, but whether MT neurons are sensetive to the temporal order

and speed at which activation in space occurs.
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Chapter 2

Speed-dependent plaid

perception, the interplay of two

preferences

A drifting plaid can be perceived as a coherently moving pattern or as two

overlapping transparent patterns sliding over one another. Previous studies have

identified different parametric manipulations that can affect which percept is more

likely to be seen, but they have not explained why. To learn more about the

way the system decides, I measured the perception of drifting square-wave plaids

with a forced-choice task. I presented plaids with 100 different combinations of

component and pattern speed. For a range of intermediate component speeds,

transparency was more likely for plaids whose pattern speeds were two to three

times their component speeds. In this range, the percepts seem to follow the

”angle rule,” which is to say that transparency dominates when the pattern speeds

are faster than some multiple of the component speeds. Plaids with faster or
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slower component speeds than the range at which they were sometimes transparent,

generally appeared coherent through the fastest pattern speeds. I hypothesized

that the influence of the speeds on the percept arises largely from a competition

between preferences to see slow and singular motion (i.e., coherent). I formulated

a Bayesian model that imparts these preferences as prior distributions. The model

has separate likelihood functions for each component. Simulated percepts from

the model were well-matched to my experimental data. Changes in either prior

influenced the pattern of percepts across speeds and may underlie inter-subject

variability.

2.1 Introduction

A system that represents visual motion encounters an ambiguity at the level of

local motions known as the ’aperture’ problem. It applies not only to the visual

system, which can represent only a finite region of visual space, but also to the

receptors within the system, whose RFs encode a small region of the space [2, 129].

Consider the motion of a grating drifting within a circular aperture. Its motion

is inherently ambiguous since any components of motion parallel to its orientation

produce no observable change in the image intensity pattern [7, 130, 3, 8, 4] (Figure

2.1a). This is illustrated in the plot of the three relevant velocities of a square-wave

plaid in 2D velocity space in Figure 2.1b. For each component, velocities along

the dashed ’constraint lines’ are possible given the visual input for the motions of

the square-wave gratings shown in Figure 2.1a. The green vectors emanating from

the origin are the shortest (slowest) possible that connect to the constraint lines.

These normal velocities are consistent with what is perceived for those gratings
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Figure 2.1: The perception of a drifting square-wave plaid and its velocity space
representations. The colored vectors represent motion in a direction given by the
vector’s angle at a speed given by the vector’s length. (a) An upward drifting plaid
is represented by an observer’s visual system. The plaid’s motion is ambiguous: it
can be perceived as a singular rigidly moving pattern (coherent percept in blue)
or as transparent gratings sliding over one another (transparent percept in green).
(b) Representations of the plaid’s motions in 2D velocity space. The dashed lines
indicate the possible velocities consistent with the windowed component and pat-
tern motions of the stimulus. IOC is a close approximation of what is seen in the
coherent case.

when viewed by themselves.

The aperture problem is resolvable by a global process when additional infor-

mation is available. For the square-wave plaid shown in Figure 2.1a, the perceived

velocity, when it is perceived to move coherently, is the one that is consistent with

the intersection of the constraint lines of the two components. This is the IOC

solution (Figure 2.1b). It is the unique 2D translational motion that is consistent

with the motion of both gratings. Results from many physiology and compu-

tational studies suggest that the human and non-human primate visual systems
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implement a similar integrative process for representing global motion. The ex-

istence of pattern direction-selective cells in MT supports this. The perception

of plaids with certain stimulus configurations may be inconsistent with the IOC

solution [131, 10, 132, 102]. For example, when the pattern direction is outside

of the narrowest sector formed by the directions of the component motions, the

perceived DoM may be biased towards the direction of the component motions.

Also, the perceived pattern speed is often slower than what is predicted by IOC

[133]. IOC is nonetheless a reasonable approximation of the pattern velocity for

many configurations of plaids, including those that I explored.

I have focused on integrated motion thus far, but the humans can form repre-

sentations of multiple overlapping objects in complicated real world scenes, which

can move in different directions and at different speeds. In computing the global

motions of overlapping objects, the visual system must not only integrate local

motion signals. It must also segment them when it infers that the motions are for

different objects. It must not simply ’solve’ the aperture problem whenever it has

sufficient constraints, but must decide what to integrate and what to segment on

the basis of the input it receives. Braddick offered an example of this, which is

that of a moving animal whose markings may provide it camouflage against the

vegetation of its habitat [134]. Normally any markings on the animal do not move

with respect to the background and, therefore, the animal is not detected. But the

effect of the camouflage would be lost were the markings to move independently

with respect to the background, in which case the animal would be detected as

a separate object. Independent motions in overlapping portions of the scene can

lead to the differentiation of one object from another, or from one object to other

portions of the scene.
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Plaid stimuli have been used to study the conditions for which segmentation or

integration occurs. For plaids with different stimulus configurations, such as dif-

ferent sizes, spatial or temporal windowing, these manipulations have been shown

to decrease coherence: increasing the speed of the components [7]; increasing the

angle between the directions of the component motions [7, 14]; increasing the

difference between the spatial frequencies, contrasts, or hues of the components

[7, 135, 136, 137, 13]; adjusting the luminance cues at the component intersections

so that they appear to overlap in depth [18, 15]; and increasing the duration of the

stimulus presentation [138, 136].

Known relationships between a plaid’s stimulus configuration and how it is

perceived to move are mostly based on measurements of which percept occurs in

forced-choice tasks for a few combinations of its possible parameter values. This

leaves open the possibility that within other regions of the parameter space the

relationship between a specific parameter and the likelihood of either percept could

be insignificant, or reversed. For example, increasing the speeds of a plaid’s com-

ponents has been shown to increase transparency, but is this true at all speeds, or

does it vary depending on other parameters, such as angle, spatial frequency, con-

trast, etc.? Is there still an effect if the angle between the directions of component

motions is very small, so that the pattern speed is only slightly faster than the

component speeds? Limiting the parameter space additionally makes it more dif-

ficult to unify the results of different studies into a coherent framework. I believe

these uncertainties should be addressed not only by expanding the parametric

region within which measurements are made, but by linking the psychophysical

observations to models of how motion percepts are formed.

That said, despite nearly 30 years of investigations of drifting plaids it is
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Figure 2.2: 2AFC protocol for measuring plaid perception and sampling in com-
ponent and pattern speed space. (a) An upwardly moving square-wave plaid was
presented for 1.5 s. This was followed by a 1 s response period during which sub-
jects indicated whether the plaid appeared coherent or transparent. (b) Plaids
were presented with 100 different combinations of component and pattern speeds.
Each combination corresponds to a square in this space. Plaids represented in
the lower left corner of this space, for example, have slow component and pattern
speeds. This is indicated by the small vectors in the inset of the plaid in the lower
left, for which length corresponds to speed and angle to direction. Four combina-
tions of speeds (the red squares) are highlighted by showing a representative frame
of the stimulus for the corresponding speeds.
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presently impossible to state the conditions under which either percept will occur.

Moreover, we cannot account for why a given manipulation effects the probability

of either percept. There is no general model for how the visual system forms either

percept. I conducted a set of psychophysical experiments to examine the joint

effects of component and pattern speed of drifting square-wave plaids on how they

appear to move. I measured how plaids appeared to move at many regularly spaced

combinations of these speeds. The experimental design that I used is illustrated in

Figure 2.2a. It was clear from my data that both speeds influenced the percept, so

that coherence or transparency was dominant within different regions of the space.

I hypothesized that the relationship between a plaid’s speeds and the dominance

of either percept is the result of the interplay between visual preferences to see a

single pattern of motion and to see slower speeds. These preferences arise naturally

in the context of a Bayesian decision model, which I developed to account for these

results.

Bayesian models of visual motion begin with the idea that our perceptions can

be explained as a combination of probabilistic inferences about motions in the world

with prior knowledge of the properties of those motions. Bayesian models have been

developed based on this combination of inference and prior knowledge, which can

account for many aspects of motion perception [95, 99, 100, 104]. These models

typically make two important assumptions: that local image measurements are

noisy and that velocities tend to be slow. These assumptions have been formulated,

in the context of the models, in terms of probability distributions.

The assumption that measurements of image motions are noisy, has been in-

stantiated in terms of a specific noise model for how the measurements are made.

A standard choice is to assume that the measurements are contaminated by addi-
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tive, independent, Gaussian noise with a known standard deviation [95, 99, 100].

For a single moving 1D pattern, there is a family of possible velocities that lie

along a constraint line, and the measurements fall along a constraint line, which

is ’fuzzy’ as a result of the added noise. The ’fuzziness’ of the constraint line is

related to the uncertainty in the measurements. This relationship is represented

as a conditional probability of the measurements given the actual velocities. The

noise model constrains a likelihood function, which is a conditional density over

the space of 2D velocities, for a particular measurement. The assumption that

velocities are typically slow has been supported by psychophysical measurements,

and is instantiated by a prior distribution that favors slower speeds [104]. This

prior distribution specifies the probability of encountering stimuli moving at any

specific speed.

My model is related to these, in that the initial stages involve estimating the

2D velocities of the component gratings, and combining those estimates with a

prior for velocity. Like them, my model includes measurements of velocities in the

world, which in my case are estimates of the normal velocities of the component

gratings of a plaid. I have included not only noise in the measurement of speed,

but also in direction, which corresponds to orientation in 2D velocity space. My

model also includes a likelihood function which relates the noisy measurements

to possible pattern velocities that are consistent with them, which I will describe

below. This function is a conditional probability function that is considered as

a function of the velocities with the measurements fixed. Having said this, my

model is not about estimating motion so much as selecting between two different

interpretations of the stimulus. The interpretations are that the plaid is moving

coherently or that the plaid is moving transparently.
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2.2 Methods

2.2.1 Psychophysical experiments

Four male subjects with normal or corrected-to-normal vision participated in

my psychophysical experiments. Experimental procedures were approved by the

human subjects committee of New York University and all subjects signed an

approved consent form. Three of the subjects (1-3) were not aware of the purpose

of the study.

Subjects were presented a centered circular patch containing an upward drift-

ing square-wave plaid for 1.5 s. Randomizing the direction of the plaid, instead

of presenting it only in the upward direction, would likely have minimized the

possibility of any influence of directional adaptation on the precept of the plaid.

This would have also likely minimized any possible influence of preferences to see

cardinal directions of motion [139]. The circular stimulus patch was 5 deg in di-

ameter and included a circular fixation mark composed of a black circle within

a larger white circle. The spatial frequencies of the component gratings were 1.5

c/deg. Their contrast was 0.4. The stimulus was spatially windowed with a cosine

function and temporally windowed with a raised cosine. The temporal windowing

increased the contrast to its maximum value by 1% of stimulus duration, 15 ms

after onset (in approximately two frames). After the presentation of a plaid, only

the central fixation mark was presented. While continuing to fixate during this

period, subjects indicated whether the plaid appeared to move coherently or trans-

parently by pressing a key. The response period lasted 1 s and was followed by a 1

s blank period. Brief sounds were presented at the onsets of the test period with

the drifting plaid and the response period to help subjects time their responses.
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My instructions to the subjects at the beginning of a block trials were brief

and straightforward. I reviewed the sequence of a single trial, by showing them

a slide of the task. I explained to them that the task consists of three periods:

for the presentation of the plaid, for a response to it, and for a brief blank period

before the start of another trial. The three naive subjects were generally aware

that plaids can appear to move in two different ways, but were unfamiliar with how

any particular parametric manipulation would influence the relative dominance of

either percept. If needed, I would allow them to practice the task for a minute or

two, during which they would experience the two percepts. The task seemed to

be easy for them to learn, and they picked it up quickly. I would restart the task

immediately thereafter to collect the data I have described here.

I presented plaids with component speeds from 0.5 to 5 deg/s in 0.5 deg/s

increments. Their pattern speeds were from 0.5 to 5 deg/s faster than a given

component speed in 0.5 deg/s increments. For example, plaids with the slowest

component speed of 0.5 deg/s were presented at pattern speeds from 1 to 5.5 deg/s.

The angle between the directions of the component motions was set according

to the relationship between the component and pattern speeds. For plaids with

a component speed of 0.5 deg/s, the half-angles between the directions of the

component motions ranged from 60 to 84.8 deg. For plaids with a component

speed of 5 deg/s, the half-angles ranged from 24.6 to 60 deg. The sequence of

trials was randomized within the ten by ten matrix of speeds. At least six trials

per condition were collected. Some subjects completed a small number of practice

trials prior to the start of a block of trials to become familiar with the task.
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2.2.2 Simulated percept for a single trial

I created an ideal observer model to simulate a subject’s percept as formed by

an optimal statistical inference process. I defined H ∈ [coh, trans] to be a discrete

variable that represents either the coherent or transparent percept and �m to be

the noisy measurements of the visual information that an observer has access to.

For a single trial, an ideal observer makes a decision Ĥ that is the most probable

interpretation (MAP) as a function of the measurement �m, thus

Ĥ(�m) = argmax
H∈{coh, trans}p(H|�m) (2.1)

where the conditional probabilities under each condition are computed as

p(Hcoh|�m1, �m2) ∝ p(Hcoh)

�
p(�m1, �m2|�v)p(�v)d�v (2.2)

and

p(Htran|�m1, �m2) ∝ p(Htran)

�
p(�m1|�v1)p(�v1)d�v1

�
p(�m2|�v2)p(�v2)d�v2 (2.3)

using Bayes’ rule. The first (coherent) term contains an integral over all possi-

ble 2D velocities �v that are consistent with normal velocity measurements arising

from both gratings. The second (transparent) term contains integrals over all

possible 2D velocities consistent with the normal velocity measurements of each

grating individually, and these are then multiplied (since they represent indepen-

dent probabilities). In order to simulate the model, one determines the form of

the likelihood (e.g. p(�m1|�v1)), as well as the form of the prior over velocity p(�v)

(which is assumed to be the same for �v1 and �v2), and the (scalar-valued) prior on
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coherence, p(H).

Note that 2.2 will depend on two pieces of ’prior’ information: the probability

of coherence, and the prior over velocity. Also, note that the m’s are measurements

of the normal velocity of each grating. The v’s are always 2D translational motions

in the image plane. I did not include a normalization constant because the decision

is computed by maximizing over H, and the normalization is only a function of �m.

I calculated the perceptual decision from the ratio of the two posteriors.

2.2.3 Likelihood function for 2D velocity

To formulate the likelihood, p(�m|H), I defined what visual information �m the

observer uses to make the decision and how this information is corrupted by noise

along the visual processing cascade. I assumed that �m depended on the exper-

imental setup and the stimulus parameters and wrote the pair �m = [�m1; �m2] to

represent the measurements of the two component normal motions. The compo-

nents had fixed spatial frequencies, and conjointly varied only in velocity, which I

wrote as �vc1 and �vc2, respectively. I assumed that on each trial, the observer made

a measurement of these two component vectors. This assumption allowed me to

formulate the model in a compact way and to constrain the likelihood, p(�mi|�vi),

by using the characterizations of previous studies [104]. �v represents the 2D veloc-

ities of a given component grating, which can include components parallel to the

grating’s orientation.

I defined the characteristics of the measurement for a single set of component

velocities. This measurement is an estimate of the normal velocity, and is related to

the orientation and speed of the drifting gratings. I assumed that the uncertainty

in the measurement of speed was proportional to speed [104]. I also assumed that
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uncertainty in the measurement of direction is constant with speed and roughly

one third of the magnitude of the uncertainty in speed [43]. Although speed and

direction have different units, this ratio can be implemented as the uncertainty in

direction being in the orientation perpendicular to the orientation of the vector for

the measurement’s speed. From these assumptions, I approximated the conditional

probability p(�m1|�vc) as a two-dimensional Gaussian distribution with standard

deviations that scale proportionally with component speed, but remain in a ratio

of one third. I formulated this elliptical Gaussian in Cartesian coordinates as

p(�m1|�vc1) =
1

2πσvσθ

×

exp
�
−[r(vc1;x −m1;x)

2

+ 2s(vc1;x −m1;x)(vc1;y −m1;y)

+ t(vc1;y −m1;y)
2]

�
(2.4)

where σv and σθ are the standard deviation in component and angular (perpendic-

ular) direction, respectively. The parameters r, s, t are necessary for the trigono-

metric transformation. They are

r =
cos2

α

2σ2
θ

+
sin2

α

2σ2
v

; s = −sin 2α

4σ2
θ

+
sin 2α

4σ2
v

; t =
sin2

α

2σ2
θ

+
cos2

α

2σ2
v

(2.5)

with α = arctan vc;x

vc;y
being the angle of the grating to the horizontal. 2.4 provides

a single measurement of normal velocity of one of the two component gratings.

It is drawn from the 2D Gaussian that I have described. Each measurement has

a corresponding constraint line, the next step is to work backwards from this,

to say something about the 2D velocities that could have given rise to such a
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measurement.

While 2.4 describes the forward conditional probability of the measurements

given the stimuli (i.e. the component velocities of the gratings), the formulation of

the likelihood (the backward or inference direction) needs some additional defini-

tion due to the aperture problem. Although the measurements of the component

velocities are uniquely defined, their inverses are not. I, therefore, integrated the

likelihood as defined in 2.4 over all possible component velocities to compute it

for any possible stimulus velocity. To be clear, I integrated over component nor-

mal velocities that are consistent with a proposed 2D velocity. The locus of such

component normal velocities is a circle with a diameter from the origin to the 2D

velocity [7]. This circle comes from the geometry of the intersecting constraint

lines. The speeds of the normal velocities are a function of the cosine of the differ-

ence between the direction of 2D velocity and the normal velocities. This is done

for each 2D velocity. For the numerical implementation of this integral, it was

important to integrate over identical segments along the circle, equivalent to equal

increments of the angle φ. φ is a variable of integration, for computing the integral

along the circle. I parameterized the possible component velocities and integrated

over φ,

p(�m|�v) =

�
p(�m|�vc(φ)) dφ . (2.6)

For a given 2D velocity, there is a family of possible normal velocities that

are consistent with that 2D velocity [7, 95]. These normal velocities lie along a

circle that passes through the origin and through the point of the 2D velocity. The

speed of the normal motions is a function of the cosine of the difference between
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the direction of the normal velocity and the 2D velocity. In addition, there is

uncertainty about the exact normal velocities, and therefore, the circle has some

width. In particular, this uncertainty has been shown to increase with speed [104].

As a result, the probability mass at points on the circle that are further away from

the origin is lower than at points near the origin.

Given a particular measurement there are velocities along a constraint line that

could have produced that measurement. For each point along this constraint line,

which is to say for each velocity, there is a circle that passes through the ori-

gin, through the point of the measurement, and through the point for the pattern

velocity. For pattern velocities just flanking the measurement, the circle is compar-

atively small. Similarly, for pattern velocities further away from the measurement,

and extending out along the constraint line, the circle gets larger. This means the

probability mass is distributed out over a larger area, and is comparatively flat-

ter and lower than the probability mass distribution for the smaller circles. This

would mean that the probability of the pattern velocities decreases extending out

along the constraint line away from the measurement. But there is a competing

influence. At faster pattern velocities, the circle is not only larger, but it is rotated

in such a way that there is a higher peaked mass of probability at the measure-

ment. A consequence of these competing influences is that the velocities flanking

the measurement tend to be more likely to have given rise to the measurement.

Having defined the likelihood, p(�m1,2|�v), of an arbitrary stimulus velocity caus-

ing the measurement of velocity for each of the components, I formulated the

likelihood for a coherent or transparent percept for a given plaid. The coherent

interpretation is consistent with both components having the same rigid velocity
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�v, thus

p(�m|H = coh) =

�
p(�m1|�v)p(�m2|�v)p(�v) d�v . (2.7)

Conversely, the transparent interpretation is consistent with both components hav-

ing independent velocities, thus

p(�m|H = tran) =

�
p(�m1|�v1)p(�v1) d�v1

�
p(�m2|�v2)p(�v2) d�v2 . (2.8)

2.2.4 Prior distributions

I assumed that the prior densities, p(�v), that I included in 2.8 to formulate the

likelihoods for the two interpretations were identical. I used a heavy-tail power-law

density that falls off with speed [104]. I assumed that the shape of this prior did

not depend on direction, that it was circularly-symmetric in 2D velocity space.

To this point, I had defined the main components of my ideal observer model.

The only undefined quantity was the prior on the interpretation, p(H). This prior

probability on interpretation was a free parameter. It was not known what the

value of this prior should be, although it should be possible to derive it from

an analysis of natural images. This prior on the interpretation may affect the

measurements, although there is no known results to suggest it does. Without any

evidence constraining how they relate to each other I assumed separability.

2.2.5 Simulated percept for many trials

The model did not provide a closed-form solution to the percentage of coherent

versus transparent percepts for a given stimulus configuration. It generated an
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interpretation based on a single set of noisy measurements �m. To simulate the

psychophysical experiments that my subjects completed over several trials of each

stimulus configuration I did the following: generated the measurements �m from

the component velocities and the noise model; computed the posterior from the

likelihoods and priors; generated Ĥ based on the posterior-ratio; repeated this

many times in order to have sufficient statistical power.

2.2.6 Comparison to other models

I compared the model to two previously described explanations for the effects

of speed and angle on plaid perception. I used maximum likelihood estimation to

determine parameters for a set of descriptive models that would best explain the

psychophysical data I collected.

Following the simplified model of plaid perception described by Farid and Si-

moncelli, I considered a model in which the pattern of percepts consists of three

regions in component and pattern speed space [20, 21]. In this ’speed’ model, trans-

parency dominates for pattern speeds faster than, and component speeds slower

than, a critical speed. I computed three probabilities for each of the three different

regions in the space of speeds that I explored. I computed the likelihood of the

psychophysical data for all possible arrangements of the three (or in some cases

two) regions as determined by varying the critical speed from slightly slower than

0.5 deg/s to slightly faster than 10 deg/s. I chose the arrangement from a single

critical speed for each subject that best explained the data.

I also simulated a model in which the percept is influenced only by the plaid

angle and is more transparent at broader angles (’angle’ model). I fit a 4-parameter

psychometric function to the perceptual data for each subject after collapsing it
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onto plaid angle. I used the psignif toolbox (version 2.5.6) for Matlab, which im-

plements the maximum-likelihood method described by Wichman and Hill [140].

I used the probabilities from each fitted psychometric curve to predict the proba-

bility of the percept at each combination of component and pattern speed.

I compared the likelihood of the data under three different models, along with

two ’bounding’ models. I used maximum likelihood to estimate a single probability

that best explained the pattern of percepts for all combinations of component and

pattern speeds (’coin-flipping’ model) as well as a set of such probabilities, one

for each combination of speeds (’omniscient’ model). I used the values of the

likelihood of the data from these coin-flipping and omniscient models as estimates

of the upper and lower bounds the likelihood of the data given the output of a

model. I normalized the values of this metric from the other models to these

bounds.

I used the mean log-likelihood for the data as a measure of the goodness of fit.

For this, I computed the probability of observing a particular set of percepts for

repeated trials for a single combination of component and pattern speed given a

probability from one of the models. I computed the binomial probability density

function (pdf) for observing n transparent responses in N trials for a given p. In

cases where the numerical value of this pdf was negative infinity, I replaced the

value of p with the expected value of p|n, N assuming a flat prior. I recomputed

the pdf using that alternative estimate of p. I computed the mean of the log

of a set of 100 probabilities from all speed combinations that I measured in my

psychophysical experiments.
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2.2.7 Determining parameter values

I optimized the values of a few parameters of the model such that its output

would closely match the psychophysical data. I could not use iterative optimization

methods, such as gradient descent, to determine the optimal values because of the

computational cost involved in doing so. I instead simulated the model at discrete

sample grids in which all possible combinations of a few values for a small number

of parameters were tried. In general, I confined this exploration to be within the

extreme values of each parameter as estimated from previous studies [104].

I focused on three parameters: the slope of the speed prior, the limit of the speed

prior at which the slope decreases for faster speeds, and the prior on interpretation.

Two parameters for the speed prior had been estimated with a different set of

subjects [104]. I chose values for the prior on interpretation so that the model

appeared to produce reasonable results. The model included five other relevant

parameters related to the 2D likelihood. I initially fixed four of these to be the

mean values from the previous estimates. The other was the ratio of uncertainty

in speed and direction, which I assumed to be 3:1.

The first grid that I ran was for a combination of 5× 5× 5 values for the three

parameters of the two prior distributions. In general, the maxima of the likelihood

surface seemed well centered and smoothly varying within this three-dimensional

space. Nonetheless, I wanted to check for other maxima at locations within the

5× 5× 5 grid. I computed interpolated likelihoods for a 105× 105× 105 grid. For

two of the four subjects, this produced slightly higher likelihoods after simulating

the model with parameter values near maximal in the interpolated set. At that

point, I chose whatever parameter values produced the highest likelihood, either

from the interpolated estimates or from the original 5× 5× 5 grid.
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I ran one additional simulation to determine whether different combinations

of the values of the likelihood parameters would allow for a better fit. I had not

explored these parameters up to that point. I varied four of the five parameters

with values in a 3×3×3×3 grid. I used values for the parameters of the two prior

distributions that gave maximal likelihoods for each subject as I had estimated

them through the previous explorations. I used the best pattern of simulated

responses from this grid for comparing to the other models.

2.3 Results

2.3.1 The effects of component and pattern speed

I have plotted my psychophysical and model results within a common space of

component versus pattern speed. Figure 2.2b shows examples of the plaid stimuli

represented in different regions of this space, as well as vectors for each whose

lengths correspond to the example plaid’s relevant velocities. Slow plaids are rep-

resented in the lower left, whereas faster ones are represented in the upper right.

Moving upward in this space corresponds to increasing the pattern speed, increas-

ing the plaid angle while holding the component speeds fixed. Extending radially

away from the origin along a line corresponds to maintaining the ratio of compo-

nent to pattern speed such that the plaid angle remains constant. I did not sample

in terms of fixed plaid angles, but in this space they increase radially in a counter-

clockwise direction away from the abscissa. The percepts for each subject, for each

combination of the two speeds, corresponds to the brightness within each of the

the box-shaped points shown in Figure 2.2b. The brightness relates to the ratio of

the two percepts across trials (black = 100% coherent, white = 100% transparent).
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Figure 2.3: Psychophysical results from four subjects with drifting square-wave
plaids at 100 different combinations of component and pattern speed. The white-
ness within each box represents the ratio of the two percepts across trials. For all
subjects, plaids appeared coherent for an intermediate range of component speeds
when the plaid’s pattern speed was slightly faster than its component speed.

The percept of a plaid was strongly influenced by its component and pattern

speeds (Figure 2.3). In that it covaries with the relationship between these speeds,

the angle between the directions of the component motions affects the percept.

At slow component speeds, transparency increased as pattern speed increased.

Plaids with pattern speeds faster than the pattern speed at which the percept

transitions from coherent to transparent appeared transparent through the fastest

pattern speeds. At the slowest component and pattern speeds, plaids appeared

coherent. At the fastest component speeds, faster than about 3 deg/s, plaids

appeared coherent through the highest pattern speeds. This corresponds to the

upper rightmost set of points, where there is a transition in the plots from left to

right from transparent to coherent. At the slowest component speed, 0.5 deg/s,

some subjects perceived plaids to move coherently for all pattern speeds, whereas

one saw plaids at these speeds to always be drifting transparently. This coherence

at slow component speeds corresponds to a ridge of darkened points at the leftmost
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edge of the plots within Figure 2.3. The shape of the transparent region varies

across subjects. For subject 3, for example, it is more angular through the range of

intermediate component speeds at which plaids were transparent for some pattern

speeds. In general, there was not a specific angle, or pattern speed, beyond which

transparency occurred for all subjects.

2.3.2 Bayesian observer model

The visual system of human observers has a preference to ’see’ slower speeds.

They are assumed to be more probable [95, 104, 100]. Plaids that are drifting

at fast speeds might, therefore, appear transparent because the speeds that are

consistent with the coherent percept are assumed to be less likely [20]. This might

account for the increased transparency for plaids at many of the combinations of

speeds for which I measured the percepts. But my results are inconsistent with

this explanation for some sample points. Plaids with fast component speeds, for

example, appeared coherent through the fastest pattern speeds. Plaids with these

speeds appeared coherent at pattern speeds at which the percepts for plaids with

slower component speeds appeared transparent. This could not be accounted for

if the coherent percept was simply dependent on level of improbability that results

from a faster pattern speed. The increased coherence that I observed may result

from a second preference to form singular perceptual interpretations, thus to see

one pattern of motion.

I constructed a Bayesian observer model to test this explanation for the effects

of speed on plaid perception. Figure 2.4 shows a graphical representation of my

model for a single presentation of a drifting plaid. The images within this figure

are from a plaid whose speeds are near the center of the parallelogram pattern
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Figure 2.4: Bayesian observer model for plaid perception. All plots with red over-
laid axes are for the same region of 2D velocity space. I illustrate the constituents
of my observer model for the perception of a single presentation of a drifting plaid
with a single component and pattern speed. First an observer forms independent
representations of the leftward and rightward component motions. The likelihood
functions formed by the components are the probabilities of the internal measure-
ments given any velocity. Two preferences of the visual system are represented
within the gray rounded rectangle in the center. The prior for velocity confers a
preference to see slow speeds and the lower prior for the hypotheses favors coherent
percepts, which are represented by the blue sector. The likelihoods are combined
with the prior for speed either together or separately depending on the hypothesis
of the percept. The product of the likelihoods and priors for speed are integrated
and multiplied by with their respective priors for the hypotheses. The hypothesis
whose posterior is greater is the predicted percept.
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of samples within the parameter space of the plaid’s speeds. The plaid in this

example has a component speed of 2.5 deg/s and pattern speed of 5 deg/s.

In the first stage of the model, an observer forms independent internal represen-

tations of the velocities of the components. The internal measurements for these

representations are imprecise. Stocker and Simoncelli showed that for 1D motion

of broadband patterns, the variability in measurements is proportional to a log-

arithmic function of speed [104]. I used estimates of the widths of distributions

of such measurements from that study to define the widths of the distributions of

measurements for the 2D motions in the model. In addition, I assumed that the

ratio of the major axes of the 2D Gaussian of measurements in velocity space is

3:1 for speed versus direction [43]. In other words, the measurements have greater

variance in speed than in direction.

The actual physical motions that generate a particular set of velocity mea-

surements is unconstrained. To determine the distribution of measurements given

all possible velocities in a probabilistic sense, I integrated across all possible pat-

tern motions at fixed directional separations. I also assumed that observers have

a circularly-symmetric prior for velocity that falls with speed as a power law

[95, 104, 100]. As with the likelihood, the shape that I initially assumed for the

prior for velocity was based on measurements from the set of psychophysical sub-

jects from that earlier study.

The prior for velocity was combined with the likelihoods jointly and separately

in separate pathways for determining the probability of the coherent and transpar-

ent percepts. I computed the product of the prior for velocity with both likelihoods

for the coherent hypothesis and with each likelihood for the transparent hypothe-

sis. Figure 2.4 shows this product. For the coherent hypothesis for this example,
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it is slightly spread out and curved along directions centered on the pattern di-

rection. It falls off towards faster speeds. Also, it is significantly shifted towards

slower speeds than those at which the likelihoods for the component motions inter-

sect. The products for each of the components in the pathway for the transparent

hypothesis are smaller and are centered near the directions of the component ve-

locities.

These three products are integrated and multiplied by a prior, of two constants,

which favors the coherent hypothesis. This is represented in Figure 2.4 by the green

and blue pie plot. The sector for the coherent hypothesis (in blue) is larger. At

this point in the flow of information, there are two values, a posterior for each

hypothesis. These do not sum to 1 since the probability of the measurements was

left out since the decision does not depend on it. The percept is set to be the

hypothesis for whichever is greater. The percept would be coherent, as it was

for the example trial in Figure 2.4, whenever the posterior for that hypothesis

is greater, regardless of how much greater it is than the posterior for the other

hypothesis.

2.3.3 The prior for velocity and the prior for perceptual

interpretation

Having formulated a model for the perception of drifting plaids, I explored how

varying a subset of its parameters affects the predicted percepts for plaids drifting

at different speeds. I ran a series of simulations to establish how the shape and

values of the priors affect the pattern of plaid percepts. Of course any changes that

favor faster speeds or the coherent percept directly should increase the amount of

coherence (shrink the transparent region). I initially ran all simulations at each of
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the sets of likelihood parameters from the other group of three subjects. I found

that the model predictions were about the same in terms of their similarity to the

psychophysical data regardless of the set of likelihood parameters I tried. There-

fore, I chose one set of parameters and used those for all subsequent simulations.

I simulated plaid perception for seven combinations of the parameters for: the

falloff speed and slope of the prior for velocity; and value of the prior for coherence

(Figure 2.5). The slope and falloff speed were set to the extremes of previous

estimates for 1D motion. I chose high and low values of the other prior that gave

results that looked reasonable by eye.

Figure 2.5a shows slices of the prior for velocity as well as the values for the prior

for coherence for each combination arranged in a hexagon. The simulated percepts

are arranged for illustration so that they are more coherent in the rightmost set

of plots. The value of each parameter was varied from its extremes along a line in

one of the three orientations within the group of plots. The red highlights are for

the parameter that was varied in each case. Figure 2.5b shows the corresponding

percepts.

Increasing the prior for coherence (from left to right in Figure 2.5b) shrinks

the transparent region. Coherence increases from what appears to be all sides of

the transparent region. Plaids are more coherent at the fastest pattern speeds, at

slower component speeds and at the slowest component speed with high pattern

speeds. The simulated percepts for the lowest and highest values of this prior have

more and less transparency than the percepts from my psychophysical subjects.

Decreasing the falloff speed of the prior for velocity (from lower-left to upper-

right in Figure 2.5b) increases coherence. The changes in the amount of trans-

parency and coherence that results from changing the falloff speed are different
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Figure 2.5: The effects of manipulations of the two prior distributions. (a) Each
plot shows a cross-section of the prior for velocity. Inset is the pie-shaped plot
whose sectors correspond to the values of the prior for the two percepts (blue
for coherent, green for transparent). Variations from low to high values for three
parameters: the falloff speed and slope of the velocity prior and the value of the
prior for coherence are shown. Combinations of these parameters are arranged in
a hexagon. The middle set is the default values. The prior for coherence increases
from left to right. The falloff speed decreases from lower left to upper right. The
slope increases from top to bottom. The red highlights whatever is changed in
the priors for a given position. (b) Simulated percepts for the combinations of
parameter values in the corresponding positions in (a). The size and shape of the
transparent region is affected.
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than for changes in the prior for coherence. When the falloff speed extends to

faster speeds there is more transparency, but the ridge of coherence at the slowest

component speed is increased. Plaids with those speeds are more likely to appear

coherent. When the falloff speed is low, there is more coherence, but also less of a

ridge. These effects are like a leftward shift in the transparent region for the plots

of the plaid percepts.

Increasing the slope of the prior for velocity (from upper-left to lower-right

in Figure 2.5b) increases coherence. The magnitude of the ridge of coherence

increases, but the main effect is that the transparent region shrinks significantly.

Plaids at many combinations of component and pattern speed that are transparent

in the default case are coherent when the slope is more positive, and vice versa

when it is more negative.

Model predictions with reasonable parameter values for these priors generate

percepts that are similar to my psychophysical data. The variability that results

through extreme values of these parameters parallels the variability in my psy-

chophysical subjects. Changing the values of these parameters affects the overall

pattern of percepts in predictable ways. For example, increasing the slope of the

prior for speed such that it favors faster speeds, increases coherence.

2.3.4 Fits of Bayesian and alternative models to data

I optimized for three model parameters of the two priors shown in Figure 2.5a

by hand-fitting them with discrete parameter grids and using spline interpolation

to estimate optimal parameter values within those grids. By comparing the results

of this optimization to other models it was possible to assess how well the model

could match the percepts. I included two extremal models for the upper and lower
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Figure 2.6: All plots are in the standard space of component and pattern speed
with variation in the percepts shown in white to black within each point. The
predicted percepts from five models of plaid perception were fit for each of the
four psychophysical subjects. The omniscient and coin-flipping models in the first
and fifth rows were the upper and lower bounds, for which 1 and 100 different p-
values were computed by maximum likelihood estimation for the 100 combinations
of plaid speeds. The angle model was determined for each subject by fitting a
psychometric function to their data when collapsed onto the plaid angle. The
speed model was determined by fitting 3 p-values in regions formed by all possible
cutoff speeds. The results from the Bayesian model that are shown are from only
a few trials. The model was run with parameters of the prior distributions that
were optimized by hand.
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bounds. For the ’omniscient’ model (the upper bound), I calculated a p-value from

the psychophysical data for each combination of speeds using maximum likelihood

estimation. These 100 p-values essentially matched the probabilities of the two

percepts from the trials for each condition for each subject (top row of plots in

Figure 2.6). The ’coin-flipping’ model (the lower bound) was fit by calculating a

single p-value that best explains all of the perceptual data for each subject, which

was also estimated by MLE (bottom row of plots in Figure 2.6). The coin-flipping

model captures almost none of the features of the real data. It only predicts that

there is a biased mixture of the two percepts so that all of the points from this

model are neither black nor white, but in between.

The second row of plots from the top in Figure 2.6 shows the results of my

optimization for the three parameters. This best fit of the model closely matches

the actual pattern of percepts for all subjects. As in the physiology data, plaids

appear transparent from 0.5 deg/s to about 3 deg/s for fast pattern speeds and are

coherent for other combinations of the two speeds. The model also captures the

overall shape of the pattern of percepts for each subject. This includes a ridge of

coherence at the slowest component speed whose intensity varies across subjects.

The data for subject 3 does not include this ridge, although the model that is best

matched for this subject includes it to some extent. The prediction of my model

also differs from the percepts for this subject in that it is less dependent on plaid

angle. The model predicts a transparent region that is more rounded.

The ’angle’ model was based on the hypothesis that plaid perception can be

explained in terms of angle only, larger angles being more transparent. The results

for the angle model are shown in the third row from the top in Figure 2.6. Not

surprisingly, they have angular-shaped transparent regions. Plaids with large an-
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gles between their directions of motion, on the left side of the plot, are predicted

to be more transparent. For most subjects, this is less transparent than for the

psychophysical data. The actual data is fully transparent for many of the plaids

with those combinations of speeds that are mixed in the simulated data, and fully

coherent for others. The angle model also fails to predict the ridge at the slow-

est component speeds and the rounding off of the transparent region at the faster

component speeds.

The ’speed’ model was based on the hypothesis that there is a critical speed

at which plaids with faster pattern speeds appear more transparent. The speed

model is similar to the angle model in that it does not predict fully transparent or

coherent perception for plaids that are one or the other in the real data. The results

from the model are gray at several points that are fully white in the real data and

for my Bayesian model. The speed model is correct, however, in predicting that

plaids are more transparent at faster pattern speeds. It also does not capture the

ridge or the rounding at faster component speeds, which my Bayesian model does.

Interestingly, Subject 3 has a fit for the speed model that becomes transparent

at pattern speeds that are slower than for the other subjects. The real data also

do not have abrupt transitions like this model, where the percepts shift from all

coherent, for example, to all transparent without samples which are a mixture of

these extremes. Smoothing these transitions by, for example, adding parameters

to fit that transition would, of course, allow for a better match to the real data.

It seems clear, nonetheless, that such a model would not fit the data as closely as

my model, which has fewer degrees of freedom.

To summarize, my Bayesian observer model captures many features of the

pattern of plaid percepts that neither of the two compared models did. I computed
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a metric to capture the goodness of fit for these models, which is explained in the

following section.
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Figure 2.7: Comparison of model performance. Normalized mean log-probability
of the psychophysical data for the three comparison models for the four subjects.
Probabilities for each subject were normalized to the probabilities from their coin-
flipping and omniscient models.

2.3.5 Comparison to alternative models

I quantified the quality of the fits for the models shown in Figure 2.6 by comput-

ing the mean log-probability of data for all trials and for all speeds for each subject

(Figure 2.7). For subjects 2 and 4, the Bayesian model fits the psychophysical data

nearly as well as the omniscient model and better than the other two models. For

subjects 1 and 3, the Bayesian model is slightly worse than for the other two sub-

jects, but it still performs well. For these subjects, the angle model performs better

than for the other subjects. The speed and angle models have 4 free parameters,

which are fit for each subject. The Bayesian model includes several parameters for

the likelihood that I did not fit, and my optimization was for only three parameters
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of the two priors. In addition, the goodness of fit for the Bayesian model is limited

in that the process for estimating optimal parameters was limited.

2.4 Discussion

My psychophysical results suggest that: (1) plaids with slow component speeds

and faster pattern speeds appear transparent; (2) plaids with fast component

speeds appear coherent, which is also the case for some subjects at very slow

component speeds; (3) covarying with these, plaids with greater angles between

the directions of the component motions appear transparent, with angle having a

greater influence for some subjects.

I have described a probabilistic model for forming a percept of a drifting plaid,

linking steps in this process to realistic preferences of human observers, and their

mechanisms for inferring motion, when presented with a sequence of moving vi-

sual patterns. My modeling results suggest that a Bayesian estimator that includes

two priors, which favor slow speeds and singular percepts, can account for the psy-

chophysical effects that I measured. The model consists of the following processing

stages: (1) a prior for slow speeds is combined with noisy internal measurements

of the motions of the components; (2) the products from step 1, are integrated

and combined with a prior that favors the coherent percept; (3) the single values

from step 2 are compared and the perceptual hypothesis for which there is greater

evidence is chosen.

By simulating the percepts for several trials for the same plaid speeds as in

my psychophysical task, I found that the shape of the prior for velocity or the

value of the prior for coherence, impacts the pattern of percepts in consistent and
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predictable ways. Coherence increases, for example, when the prior for velocity

is of higher probability through faster speeds. Coherence likewise increases with

greater values for the prior for coherence. I optimized the shape and value of

these priors to match my psychophysical data as closely as possible. Inter-subject

differences in how plaids appear to move can be accounted for in terms of the way

that a subject’s perceptual systems favors slower speeds and singular percepts.

2.4.1 Relation to previous results

Most of the earlier results on plaid perception differ from mine in terms of the

stimulus properties of the plaid that were explored, as well the task and measure-

ments that were used. This limits the extent to which these results can be directly

compared. That said, I would like to make a few observations about the earlier

findings and will compare my results to the extent possible.

Farid and Simoncelli’s results are similar to mine in terms of the effects of

plaid component and pattern speed on plaid perception [20, 21]. They measured

percepts for different combinations of component and pattern speed with square-

wave plaids. They found that plaids are coherent at slow component and pattern

speeds and transparent for faster pattern speeds. Importantly, they suggested

a link between the effects of speed on plaid perception with the preference of

the system to see slow motions. They recognized that results, such as those by

Thompson showing that low contrast gratings appear to move slower than they

actually are, apply to the perception of drifting plaids [93].

My results differ from their results in a few ways. I did not find that there is

a critical pattern speed beyond which plaids at all component speeds were trans-

parent. This difference may primarily be the result of differences in the speeds at
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which I sampled the percepts. Although they sampled at many combinations of

speeds, my sampling was more uniformly spaced, which might have made it easier

to see that there was not a single cutoff speed. Their data are more coherent at

slow component speeds. Their subjects transition to transparent percepts at faster

pattern speeds than my subjects. This could also be a result of sampling or that

there were different subjects in both cases. I also found that a model based on the

model that they suggested could not account for my psychophysical results as well

as a Bayesian model.

Earlier studies of plaid perception include those by Adelson and Movshon, who

measured the effects of changing the relative contrasts or spatial frequencies of

the components [7]. For sine-wave plaids with a fixed plaid angle and with one

component at a fixed contrast of 0.3, they measured which percept occurred during

brief presentations as the contrast of the other component was varied. They did not

provide much detail about these results and did not present them in full, but only

summarized their findings. From what they did publish, coherence increased as the

contrast of the component with varying contrast was increased, when it was more

similar in contrast to the other component. In a second set of experiments, they

used the relative contrast required for subjects to perceive coherent motion as a

measure of the effect of altering the relative spatial frequencies of the components.

The amount of contrast (similarity in contrast) required for coherence increased

as the differences in the spatial frequencies increased. So plaids were less coherent

when the spatial frequencies of their components were more different.

I did not explore plaids with components that differed in any way besides

having different directions of motion. I also used square-wave instead of sine-wave

components. I believe that sine-wave plaids are more coherent than square-wave
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ones. I do not know why the presence of higher frequency components in the

spectra of square-wave components makes them more transparent. I used square-

wave components in part because I wanted there to be a sufficient proportion of

transparent percepts in the region of the parameter space that I explored. My

results would likely be similar regardless of this difference.

My model could generate predictions for the ratio of the two percepts when the

components have different spatial frequencies, although I have not explored that.

Differences in the components should change the likelihoods. As it is, my model

might not be influenced by potentially important characteristics of the stimulus

in this case. For example, the number of cycles within the aperture might be

an important confound. Components with few cycles within the aperture might

significantly increase the variability in estimates of the velocities of the components.

This could affect the psychophysical results, but not be there in the model. A lower

limit on the number of cycles within the stimulus could be set, although it would

be impossible to dissociate its influence from the overall spatial frequency.

More recent work by Smith has focused on the perception of plaids with com-

ponents that differ in spatial frequency [13]. Subjects viewed drifting horizontal

plaids with a constant angle between the directions of the components. The com-

ponents had equal contrast. For five different overall contrasts, he determined the

spatial frequency difference (in octaves) at which coherence was reported on 50%

of the trials. This was done for plaids with five different component speeds. For

the three subjects, the coherence limit decreased in a roughly linear way for in-

creasing speeds. The limits were shifted towards smaller limits for lower contrasts.

The largest ranges of spatial frequencies for which coherence occurred on half of

the trials were for slower component speeds and higher contrasts.
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My results are consistent with this, in that plaids were less coherent at faster

component speeds, although in my data this was true within a limited range. I did

not explore the effect of overall contrast, although I would expect lower contrasts to

favor the transparent percept, in contrast to Smith’s results. The likelihoods in my

model should broaden from increased internal noise at low contrasts. Therefore,

the posteriors should be more influenced by the prior for slow speeds, which favors

transparency.

Unlike Smith, I did not observe greater variability in the percepts for plaids

at correspondingly narrow plaid angles. Smith used plaids with a half angle of 45

deg, less than most of the plaids that I explored. Plaids with similar angles are

represented in the the lower right region in my plots in the space of component

versus pattern speed. In my data, subjects consistently saw the coherent percept

through a similar range of component speeds. It is unclear what accounts for this

disparity. There may be other indicators in my model that would reflect increased

variability at narrow angles, such as differences in the posteriors. Variability in my

posteriors would not show up in terms of the probability of either percept across

trials, which is what I considered.

Studies that have focused on plaids for which the components are different in

parameters other than direction, such as the three I discussed above, have consis-

tently confounded the effects of the relative differences and the overall values of a

given parameter. For example, coherence may be more likely when the contrast

of the components are more similar, which is Adelson and Movshon’s interpreta-

tion, or more likely when the overall contrast is greater, these not being mutually

exclusive [7].

Another suggestions is that plaid angle has a greater influence on plaid per-
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ception than other parameters, including differences in the contrasts and spatial

frequencies of the components [138, 14]. Kim and Wilson showed that angle has

an influence, although their results are difficult to compare to since they measured

the probability of coherence for plaids with components that had very different

spatial frequencies and for only five angles at a one component speed. They did

not include a control in which the components had the same spatial frequencies.

They did not consider that their results might have been different at other speeds.

As I have pointed out, changing the angle corresponds to changing pattern speed

and their data could not differentiate between the effects of these parameters.

A plaid’s angle impacts the percept at some component speeds, including at the

component speed that Kim and Wilson explored [14]. Plaids are more transparent

at broader angles (at higher pattern speeds), consistent with their results. But at

the fastest component speeds in my data, angle did not have a significant effect;

plaids appeared coherent at those speeds for many different angles. My modeling

results suggest that plaid perception cannot be fully accounted for in terms of only

the effects of angle.

Differences between the above-mentioned studies further support the view that

the effects of a plaid’s parameters on how it appears to move depend on the pa-

rameter ranges within which any manipulations are explored. Claiming that any

parameter influences the percept in a particular way or that one manipulation has

a greater influence than any other is of lesser utility in this light. I do not suggest

that the relationships between speeds and percepts that I observed would extend

to all other speeds or would hold for very different stimulus configurations. I could

not conclusively predict, for example, what the percepts would be at different con-

trasts or for different spatial frequencies. One of my motivations in grounding any
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psychophysical data to a model of how the perception is formed is to solidify the

link between a broader region of the space and the perception of integrated or

segmented motion. Models will help to inform how far within any region of the

space any relationship should exit. Moreover, my model also facilitates linking the

psychophysics to the mechanisms that underlie it, which allows for extensions of

this sort.

2.4.2 How to estimate plaid percepts

I want to point to some of the drawbacks of tasks in which subjects indicate

whether a plaid appears coherent or transparent. In doing so, I am not suggest-

ing that better alternatives exist. One issue is that data from them depend on

subjects making consistent judgements. Variability across trials, as might result

from adaptation, including adaptations at different timescales, would make the

data more noisy. In my case, this variability would be lost in my measure of the

ratio of percepts across all trials. In performing my task, I did not notice any

consistent variability across trials of the likelihood of either percept, nor did any

subjects describe any such effects. But it is difficult to rule out, and it would

be difficult to detect, possibilities such as an increased probability of seeing the

other percept after having seen the alternative percept on many previous trials. I

know of no reason why this influence, if it exists, would not impact the pattern

of percepts equally across speeds, which are presented in a random sequence. It

should be relatively straightforward to check for these sequence effects. A better

understanding of them would be useful and they are interesting in their own right.

2AFC tasks additionally depend on there only being two possible percepts. If

subjects only saw one of the two drifting gratings, for example, would they have
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indicated that their percept was transparent, which in other cases would have

consisted of a clear percept of two gratings sliding over each other? I assumed

that whenever subjects see the percept consistent with the segmentation of the

motions, they also see them to move transparently.

Another source of variability could result from bistability [138]. The percept

could switch from one percept to the other, or to some other percept, during the

brief presentations that I used. I believe that this possibility is minimized by the

briefness of my presentations, which were significantly shorter than the average

durations to transition that have been previously reported. Those estimates are

roughly an order of magnitude longer than my presentation of a plaid in a trial. I

do not know how subjects would deal with transitions were they to occur. Might

subjects, for example, consistently pick one of the percepts, such as coherent, if

they perceive it at any point during a presentation? Might they instead choose

whichever occurred last during the presentation, or up to the point just before they

indicated their percept? They might apply some mixture of these sorts of rules

or biases. A similar set of uncertainties exist in terms of subjects performing the

task. Maybe they were not paying attention, or they simply pressed the wrong

key. These effects could be looked for by repeating my task and having subjects

continuously report their percepts.

A plaids speed could also be too fast to form a clear percept of whether it was

coherent or transparent. Were that to occur would subjects indicate that they saw

coherent motion even though they did not? Farid and Simoncelli included unclear

percepts in a region of the speed space where the component speed exceeded about

5 deg/s, which was the upper limit for my data [20]. I intentionally confined the

speeds of the plaids that I explored to reduce the possibility of other percepts. To
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define the region of speeds that I sampled, I ran a series of preliminary experiments

with one subject in which a third response in the task was included for indicating

that the motion was neither coherent or transparent. I found no such percepts with

one subject within or near the region of the parameter space that I considered in

this paper.

Subjective categorical judgements of plaids with components that differ in spa-

tial frequency may be especially complicated. When the components are different

in that way, there are fewer cues in agreement for the coherent percept [13]. The

plaid may appear to be of crossed gratings regardless of whether it appears to

move coherently, unlike when the components have matched spatial frequencies.

In addition, the plaid direction in the coherent case may perceptually differ from

the IOC direction, since the perceived velocities of each component should differ

when they have different spatial frequencies.

Alternative methods for measuring plaid perception address some of these lim-

itations, although they may include other drawbacks. Using the bistability mea-

sures developed by Hupe and Rubin, for example, would include many of the same

problems with choosing a singular percept, while adding significant time to a set

of measurements [138]. This would likely require a significant reduction of the

number of parameter combinations that could be explored.

2.4.3 Connection to other models of visual motion percep-

tion

Several Bayesian models for the perception of visual motion have been described

[141, 95, 104, 96, 99, 100]. These models can accurately predict the perception of

increasingly complicated and realistic patterns of visual motion. The first part
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of my model, which includes a prior for velocity, is an extension of these models.

Within the Bayesian framework, priors for velocity allow for the prediction that

objects appear to move more slowly at lower contrasts. They suggest further that

the likelihood has greater variance at low contrasts from increased internal noise, so

that the posterior on which the percept depends is effectively more shifted towards

slow speeds.

The shape of the prior for speed was most precisely defined in a recent study

by Stocker and Simoncelli [104]. They were able to estimate the shape of the prior

from their psychophysical data. My model extends this prior for slow speeds, by

assuming that it is circularly symmetric in 2D velocity space and that it is similar

for a different set of stimuli and for a different task. I have left out more sophisti-

cated possible features of this prior, such as radial extensions through higher speeds

along cardinal and intermediate directions. These would be star-like ridges, which

may explain biases towards those directions and orientations, consistent with the

’oblique effect’. I likewise did not include a concentric ring of higher probability at

very fast speeds, which might account for recent results that suggest that perceived

speed can be biased towards faster speeds for fast motions at low contrasts [142].

The inclusion of these rings may be of minimal importance to my results, where

the component and pattern speeds are comparatively slow.

The values for the priors and likelihoods that I used as a starting point for my

simulations were measured for a different set of subjects from the earlier Stocker

and Simoncelli study [104]. Obviously, my results would be improved by measuring

these distributions for the same subjects who complete my plaid task and show-

ing that they produce a close match when used in my model. These measured

values could be compared to the ones I found through optimization. Acquiring
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these measurements would be an opportunity, though, to extend the method for

estimating the priors and likelihoods for motion from 1D to 2D. This could be

done in sequential forced choice tasks in which the perceived speed and direction

is reported. Including these updated priors and likelihood would allow for further

extensions of the model to other aspects of visual motion perception.

My likelihoods were bow tie in shape in velocity space, which is to say that

they are wider at directions further away from their normal velocities. The like-

lihoods in Weiss and Fleet are similar to mine in that respect [99]. The shape

of their likelihoods resulted from the inclusion of noise in all derivatives (spatial

and temporal) in the representation of a moving edge. Mine have a bow tie shape

because I assume uncertainty in the measurements in speed and direction. I as-

sumed that the distribution of measurements had a specific aspect ratio for the

elliptical distributions and that that ratio was constant across speeds. This as-

sumes that subjects’ measurements are more variable in speed than in direction.

In early simulations, I explored likelihoods with very small amounts of uncertainty,

so that there was essentially a single narrow line along the constraint line for each

component. In that case, my model still produced reasonable patterns of percepts,

not entirely dissimilar to those in my final fits to each subject.

I noticed in plots of the final likelihoods that I used that they have higher

probabilities in directions flanking the normal velocities for the components. The

measurements, in other words, are higher for velocities not orthogonal to the ori-

entations of the component motions. As previously explained, this results from

the interplay two influences on how the possible pattern velocities along the con-

straint line relate to a given measurement. The probability mass along the circle

of possible pattern velocities for a given measurement is overall lower, since it is
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more spread out. But at the points near the measurement the probability mass

has a higher peak, since it is more concentrated at those velocities.

My model condenses all of the processing involved in forming separate likeli-

hoods into a single step. It would be more realistic to include a fuller representation

of that process, to expand out the steps involved. A reasonable starting point could

be with the formation of pixelated representations of the image sequence, akin to

the processing done by the retina. One could then extend from these early rep-

resentations through cascades of processing capable of representing the pattern

motions. This could include a realistic means of parsing the representations of the

leftward and rightward components, assuming that they are represented separately.

My model depends on these independent likelihood representations. They are

of particular importance to the pathway leading to the transparent percept, where

they are separately combined with the prior for velocity. One could imagine a

physiological correlate of those representations as component direction-selective

cells in striate and extrastriate areas. At the angular separations that I explored,

there should be minimal overlap in the responses of these populations to the two

components. That said, my preference would be to have a realistic front-end even

in cases where the angular separation is much narrower. I believe that those plaids

would be represented by the same process, which would need a cleaner way of

capturing their interaction.

A related issue for the likelihoods is directional repulsion. The perception of

the velocity of one component is affected by the presence of one or more additional

components. Their perceived directions may be pushed away from each other,

towards greater separations than for the real motions [143, 144, 145, 78, 146, 147].

These repulsive effects are minimal beyond about 40 deg. The inclusion of these
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repulsive effects, like an expanded front-end, would improve my model, perhaps

allowing for better predictions of plaid percepts over a wider range of stimulus

parameters. At the same time, these additions would make my model significantly

more complicated. And I believe that additional insight into these and other

perceptual effects is needed before building them in is warranted.

The products of the likelihoods with the prior for velocity form intermediate

distributions that show significant shifts towards slower speeds for the component

and pattern velocities. It would be interesting to know whether the perception

of these motions is similar to these distributions. In the subsequent steps of my

model, these products are integrated and multiplied by the prior for the percepts,

which is greater for the coherent percept. This bias to see singular motions was

mentioned by Hildreth, but further work is needed to confirm it [148]. It is possible

that experience of motions in the world reinforces that the motion of singular

rigid objects is more common than transparently overlaid ones moving in different

directions, which seems reasonable. But is the preference only to see one instead of

two motions or does it extend to higher numbers of motions, such as four instead

of six?

Before optimizing my model to match my psychophysical data, I determined

how variations in the two priors impact the simulated percepts. I summarized these

findings above, but would like to make a few additional observations. Extending

the flat portion of the prior for velocity at the slowest speeds increases transparency,

as I have explained. In contrast, increasing the slope of the prior for velocity

increases coherence. Although manipulations of either of these characteristics can

increase coherence, they show opposite effects at slow component speeds. When

the falloff speed is slower, coherence decreases at the slowest component speed
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while the overall amount of coherence increases. Conversely, when the slope is

increased coherence increases at the slowest component speed while the overall

amount of coherence increases. An explanation is that slower falloff speeds favor

the transparent percept by shifting the prior to slower speeds when the component

speed is slow. At faster component speeds, though, the effect is different because

the likelihoods consistent with the coherent percept are greater and there is not a

sufficient difference between the component speeds to overcome it. Higher slopes

instead simply boost the coherent percept, by increasing the weighting for faster

velocities.

2.4.4 Model performance and connection to underlying mech-

anisms

To determine the goodness of fit of my model, and the comparison models,

I computed a metric related to the log-likelihood of the data given the number

of trials and the p-values from the model. The first step was to determine the

binomial probability density of observing some number of transparent trials given

the total number of data trials and the probability of transparency as estimated

from the model. In most cases, including for all of the models besides my model,

I simply computed the mean of the log of those pdfs to get a single value of the

goodness of the fit.

For my model, however, I included an additional step, when necessary, which

was to replace the p-values to avoid infinite log probabilities of observing the data.

Since I estimated the p-values from the model by generating a sequence of trials

and determining the ratio of transparency across those trials it was possible to

get a probability of transparency that was 0 or 1. Of course the possibility of

96



either of these extremes is minimized, but not eliminated, by generating more

simulated trials. But there were still cases in which this occurred for the trials

that I simulated. If there was a 0 or 1 p-value from the model at a pair of speeds

and any trials in the actual data for the other percept, the likelihood would be

infinite. An example of this is when the model predicts 0 probability of transparent

and there is one of five trials that is transparent. It was important not to simply

remove data at these points, which would have given an unfair advantage to model

predictions in which this frequently occurred.

So only for the subsets of trials for which the p-value was 0 or 1 and the ratio

of observed percepts across trials was not 0 or 1, I replaced the p-value with a

different estimate. The replacement p was calculated as the number of transparent

trials from the model plus 1 divided by the number of model trials plus 2. For 0

transparent percepts in 10 trials, the replacement p would be 0.083. For 10 of 10,

0.917. Using the replacement p-value I computed the binomial pdf as before and

the mean of the log of that. For plots of several models, I normalized and flipped

these, which were more negative the worse the fit, by the values from the lower

and upper bound models.

One of my subjects did not show any coherence at the slowest component

speed. This meant, in comparison to the other subjects, that the angle model did

better because it predicts transparency at large angles. I do not know whether

this subject would have shown a ridge of coherence at a component speed slower

than 0.5 deg/s. It is possible that, in that case, my model would have been able

to have a closer fit, since it usually included a ridge of coherence, however slightly.

This raises a general point, which is that the extent to which any of these

models can fit the data depends heavily on the parameter space covered. If I had
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explored only a more restricted subset of plaid speeds the angle model might do

just as well, or better, than my model for all subjects. My model might instead

do significantly better than other models at a broader range of speeds. Similar to

what I mentioned with the earlier work on plaid perception, I cannot yet predict

with certainty how any model would fair in predicting the data for very different

plaids.

I believe that a useful approach for extending these results would be to test

specific aspects of my model with psychophysical measurements. I would generate

additional model predictions, perhaps for cases where there is existing psychophys-

ical data in the literature. It would also be useful to test specific elements of my

model directly, such as by measuring variability in the priors and likelihoods across

subjects and stimuli, as I have discussed.

My model does not connect to any specific set of mechanisms, although it

is based on known properties of those mechanisms and it suggests the nature of

the probabilistic computations that they perform. Linking Bayesian models to

physiology models is an important direction. Although this has been discussed

recently and some ideas have been described additional work is needed [149].

Another important direction, which has surprisingly not been thoroughly inves-

tigated to date, is what role cells with different tuning properties play in forming

plaid percepts. Are pattern or component cells neural correlates of coherence or

transparency? What is their activity during coherent or transparent percepts? Are

pattern direction-selective cells active only during coherent percepts, component

direction-selective cells only during transparent percepts? Relatedly, do cells with

particular tuning properties, and which are neural correlates of either percept,

have different projections to higher areas? Physiological studies could be done
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to address these questions. And experiments that involve altering neural activity

during plaid perception, as was done with the perception of drifting dots, could be

useful.

99



Chapter 3

Adaptation-induced repulsion is

away from pattern directions

Adaptation to moving patterns, biases the perceived DoM of subsequently

viewed patterns, away from that of an adaptor. How does this apply for a drifting

plaid, which contains motion in more than one direction? I considered these hy-

potheses: repulsion will be away from the DoM of both components, each of which

should activate distinct directional mechanisms; repulsion will be away from the

perceived DoM of the adaptor. The ”component” hypothesis is motivated by the

thought that perhaps it is individual component mechanisms (e.g., either direction-

selective V1 cells, or MT component cells) that are being adapted, and that are

responsible for subsequent judgments of grating direction. Then you would ex-

pect repulsion away from both plaid components. The ”perception” hypothesis is

motivated by the thought that what you perceive corresponds to the most active

units, which are thus the ones that adapt the most. I tested these hypotheses

in a series of psychophysical experiments in which subjects indicated the DoM of
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drifting square-wave tests after adapting to square-wave plaids and several related

stimuli separately. Subjects’ perception of the DoM of drifting tests was shifted

away from the pattern directions of the plaids, regardless of how they appeared to

move. The pattern of perceptual shifts could be explained by an additive mixture

of component and pattern adaptation. For some subjects, adapting to transpar-

ent random dots caused repulsion away from two different directions. I infer from

these results that mechanisms for representing pattern motions adapt regardless

of whether they are perceived.

3.1 Introduction

A simple model for visual adaptation is that it results from gain changes in

mechanisms that underlie the perception of a stimulus following prolonged expo-

sure to it. Physiologically this can be thought of as a population of neurons which

after representing a stimulus for a long time, reduce their responsivity. This re-

duction is thought to be in proportion to their sensitivity to the stimulus or to

particular parameters within it. The reduction shifts the value of the encoded

stimulus parameters away from those to which the system had been exposed.

Under these assumptions, repulsive perceptual shifts for a particular stimulus

parameter have been taken as evidence of the existence of mechanisms that encode

that parameter. Blakemore and colleagues, for example, found that the perceived

spatial frequency of a sinusoidal grating is shifted away from the frequency of

an adapting grating. They inferred from this that there are visual mechanisms

tuned for spatial frequency. Subsequent studies provided further details on these

spatial-frequency tuned mechanisms.

101



I explored the perceptual consequences of adaptation in mechanisms that rep-

resent the direction of visual motion. Much is known about these mechanisms. For

example, neural responses to plaid stimuli are frequently tuned to motion that is

orthogonal to the orientation of the components. A subset of MT neurons, though,

is tuned to the 2D pattern motion. Relatedly, plaids can be seen either as trans-

parent components sliding over each other in different directions or as a rigidly

moving coherent pattern.

A simple two-stage model arises from these observations in which V1 is thought

of as linear and incapable of representing the true motion. MT responses are

thought of as informative (nonlinear) and capable of representing the real mo-

tions [7, 114, 9, 60, 62]. A method for doing the integration involved in forming

a representation of pattern motion is IOC. Each component has a corresponding

constraint line in velocity-space. These represent the velocities consistent with

the component motions within a finite region of visual space. A theoretical im-

plementation of IOC involves summing the energy passed through a set of spatial

temporal filters, each of which represents a portion of a plane in frequency space.

Despite significant progress along these lines, I do not yet know how component

and pattern direction-selective neurons respond during the perception of a plaid.

I was interested in the perceptual consequences of adaptation to plaids that

are perceived to move in these different ways (Figure 3.1). I took advantage of the

effects of component and pattern speed on plaid perception in choosing adaptors

that appeared to move one way or another for long durations. I used methods

advanced by Schrater and Simoncelli, building on earlier work by Sekuler, Blake-

more and colleagues, to measure the pattern of shifts in perceived direction of

motion that results from adapting to a drifting plaid [66, 65, 68, 69, 83]. I ex-

102



transparentcoherent

component-

based

percept-

based

percept-

based

Figure 3.1: An upward moving plaid can be seen as moving coherently or trans-
parently. I considered two hypotheses for the effects of adapting to plaids that
are perceived as moving in these ways. One was that the pattern of directional
repulsions would follow the percept, such that it is away from the pattern direction
when the plaid is perceived to be moving coherently, and away from the compo-
nent directions when it is perceived to be moving transparently (the outside plots).
The second hypothesis was that the directional repulsions would be away from the
component directions (the middle plot).

plored adapting not only to coherent and transparent square-wave plaids, but also

their components, and to patterns of transparent random dots. My results from

these psychophysical experiments, along with a simple least squares analysis, led

to a surprising conclusion about the connection between what is perceived and

what is adapted, when viewing moving stimuli.

My results are complimentary to previous results on the perceptual conse-

quences of adapting to transparent stimuli [150, 87, 151, 152, 153, 88, 90, 89].
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These studies have, in general, considered the problem in terms of the classical

movement aftereffect (MAE). A central finding from them is that adapting to a

transparent stimulus with motions in different directions causes the perceived di-

rection of the MAE to be unidirectional, and in the direction opposite of the vector

average direction of the adaptor [151]. But it is not possible to predict, from this,

or other previous results, what the effects of all transparently moving adaptors

will be on the perceived direction of drifting tests. Without a clear framework for

how adaptation effects with tests with speeds of zero relate to those with positive

speeds, predictions of one from the other cannot be made.

3.2 Methods

3.2.1 Apparatus

Stimuli were generated on a dual quad-core 3 GHz Intel Xeon Apple Mac

Pro using Expo (version 1.5.1.390) and displayed on a Totoku Procalix 21” color

CRT. The monitor refresh rate was 100 Hz and it had a resolution of 1024x768.

Its maximum luminance was 80.8 cd/m2. It was calibrated and gamma-corrected.

The subject’s viewing distance was fixed at 61 cm and head position was stabilized

using a chin rest. At this distance, monitor pixels subtended 0.035 deg.

3.2.2 Stimuli

My main stimuli were upward drifting foveal square-wave plaids. They were

4 deg in diameter with centered circular fixation marks. The spatial frequency

of both components was 1.4 c/deg. The overall contrast of the stimulus was 0.8,
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with 0.4 for each component. Stimuli were cosine-windowed in space and time.

The stimulus would smoothly transition to full contrast within 1% of the time for

epoch in which it was presented.

3.2.3 Subjects

Two male and two female subjects (from 26 to 30 years of age) with normal

or corrected-to-normal vision participated in my experiments. They were chosen

without regard to gender, race, or ethnicity and were compensated for their par-

ticipation. Three subjects were unaware of the questions being explored in these

experiments, but had previously participated in similar psychophysical tasks. One

subject was an author. All subjects viewed stimuli binocularly. My experiments

were approved by the human subjects committee of New York University. All

subjects signed an approved consent form.

3.2.4 Choosing plaid adaptors

The first step in my experiments was to select two plaids for each subject, one

that appeared to move coherently and one that moved transparently. Some sub-

jects were not familiar with these percepts and I showed them a brief demonstration

of plaids that strongly favored one or the other of them. I did two experiments

with a simple forced-choice design in which subjects indicated whether a full con-

trast upwardly moving plaid looked coherent or transparent. In the task, a plaid

appeared for 3 s after which there was a 1 s response period, during which the

fixation mark remained and subjects pressed ’C’ or ’T’, followed by a 2 s blank

period.

I chose a slow component speed for which subjects saw plaids to be coherent.

105



I measured responses for plaids with a fixed plaid angle of 130 deg and with com-

ponent speeds from 0.5 to 5 deg/s in 0.5 deg/s increments (10 component speeds).

I anticipated that in the next series, in which I varied the pattern speed, percepts

would transition from coherent to transparent at faster pattern speeds (larger plaid

angles). In other words, I attempted to chose a component speed that was highly

coherent, but still close to the transition from coherent to transparent along the

angle from slow to fast component speeds. This allowed me to choose a transparent

plaid when I made measurements along the plaid’s pattern speeds. One subject

did not see the plaids at the slowest component speeds as being highly coherent,

so I chose a slow component speed, assuming that the subject’s responses might

be coherent at slower pattern speeds. I acted as if their transition along that angle

occurred at slower speeds than the ones I explored.

In the second experiment, I chose two different pattern speeds, one for each

percept. For the component speed I set in the previous experiment, I measured a

subject’s percepts at plaid angles from 30 to 150 deg in 30 deg increments (5 plaid

angles). Since I measured at fixed angles for all subjects, the pattern speeds they

were shown were not the same. The fastest pattern speeds that I showed were for

subjects with faster component speeds. As much as was possible, I chose pattern

speeds that were close to the transition from coherent percepts at slow speeds to

transparent ones at fast speeds. To some extent, I biased the pattern speed for the

coherent adaptor to be slower than it could have been. I wanted to ensure that the

plaid would appear strongly coherent for the full duration of my presentations of

it. In some cases, I repeated these measurements on different days with the same

subject. This allowed me to confirm that plaids with the parameters I had chosen

still evoked the intended percepts.
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time

60 s adapt

0.5 s

1.5 s test

2 s respond

0.5 s

5 s top-up

Figure 3.2: A diagram for my method of adjustment task for measuring the di-
rectional repulsions. Time flows from the upper left to the lower right. Subjects
viewed an upward drifting square-wave plaid for 60 s. After a brief blank, they
viewed a square-wave test grating moving in some direction around the circle. They
indicated the direction they perceived the test grating to be moving by adjusting
the orientation of an arrow. Shortly after that the adaptor was repeated for 5 s
and the sequence repeated.

3.2.5 Measuring directional repulsion

I used a method of adjustment task to measure the directional repulsion that

results from prolonged viewing of plaids and other stimuli (Figure 3.2). The task

began with an initial adaptation period for which the adaptor stimulus (i.e. an

upwardly moving plaid) appeared for 60 s. After 0.5 s of blank, a drifting square-

wave test grating appeared for 1.5 s. Immediately thereafter an adjustable arrow

appeared for 2 s, which the subjects rotated to indicate the direction that they

perceived the test grating to have moved. The starting orientation of the arrow was

randomized from trial to trial. They were instructed to indicate the direction of the

motion in particular and not, for example, the direction orthogonal to what they

perceived the orientation of the test to be. The spatial windowing on the drifting

test may have minimized the possibility that they could have simply indicated

the point at the edge of the aperture where the gratings converged. They could
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adjust the pointer until the end of the 2 s, the time from which I recorded their

response. This response period was followed by a 0.5 s blank and then a 5 s ’topup’

repeat of the adaptor. This was a full trial. The sequence would repeat thereafter,

starting with the 0.5 s blank. A small circular fixation mark was presented during

all periods of the adaptor, the test grating and the response. It was not presented

during the blank periods.

Psychophysical responses from all subjects were collected for eight different

adaptors: the coherent and transparent plaids; the components for those plaids

(four square-wave gratings); upward drifting coherent random dots; and transpar-

ent random dots. For all of these adaptors, I used drifting square-wave gratings

as test stimuli. The coherent and transparent plaids differed only in their plaid

angles. The speeds of their components were the same. The pattern speeds were

different, however, and were faster for the transparent plaid. I presented test grat-

ings with only two different speeds, one was equal to the component speed and the

other was equal to the pattern speed. For the coherent plaid and its component

adaptors, the pattern speed that I matched in the tests was that of the coherent

plaid. For the transparent plaid, its components, and all random dot adaptors, the

pattern speed that was matched for the tests was that of the transparent plaid.

The directions of the tests spanned the circle in 15 deg increments (24 different

directions). Also, the dot adaptors that I presented had speeds slightly less than

those of the plaids. They were faster for those subjects with faster plaid adaptors.

3.2.6 Analysis

To quantify the extent of the perceptual shifts in direction, I computed the

difference between the mean resultant of the reported perceived directions across
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trials, with the actual test direction. This gave a single value of the shift for each

test direction. I also computed confidence intervals for these shifts by bootstrap-

ping the difference between the mean resultant and the actual test DoMs. I have

not shown these intervals in my circle-shaped plots, although I used them in as-

sessing the data. I mostly considered the direction of the repulsive centers, the

directions for which repulsive shifts switched from clockwise to counterclockwise

or vice versa, in evaluating my hypotheses. For the coherent plaid, for example, if

there was only a repulsive loci away from the upward direction, this supported my

hypothesis that the adaptation was consistent with the percept, and not with the

directions of the component motions.

I also evaluated how well the pattern of perceptual shifts could be explained as

an additive superposition of component-based and pattern-based shifts. The pre-

dictors for this analysis were derived from psychophysical data for each subject.

Component predictions for the coherent plaid and transparent plaid adaptors were

determined by adding the shifts for the components for those plaids. This loosely

resulted in what one might expect, repulsive shifts away from both component di-

rections. The pattern prediction that I used was from the upward drifting coherent

random dots, which likewise caused repulsion away from the upward direction, the

extent of which varied across subjects. I used least squares to separately determine

the weights for each prediction that, when summed, best explained the plaid data.

I used a standard calculation of the coefficient of determination to evaluate the

goodness of fit of these models. I have shown the best predictions of the data

from these models by simply multiplying the weights that I determined by the

component and pattern predictions.
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Figure 3.3: Percepts from two different forced-choice tasks, from which I chose the
coherent and transparent plaids. Each square represents the ratio of percepts for a
plaid with a given component and pattern speed. (a-d) Plaids with the same angle
between the direction of their component motions were presented at 10 different
component speeds. The square with the red highlight is for the component speed
that I selected for the the subsequent plaids. The dashed rectangle is the region of
speeds represented in the plots e-h. (e-h) Plaids with the same component speed
and with five different plaid angles are shown. The squares with red highlights are
for the plaid adaptors.
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3.3 Results

3.3.1 Coherent and transparent plaids

Subjects’ percepts varied with component speed (Figure 3.3a-d). The whiteness

of the squares in these plots corresponds to the ratio of percepts across trials, with

white squares corresponding to all transparent, black to all coherent. Two subjects

saw plaids at nearly all component speeds as coherent. One subject saw some as

transparent for the middle of the range of speeds. The other remaining subject saw

those plaids with slow component speeds as coherent. As mentioned previously,

these data were quite variable across subjects, and it was not possible to follow

a strict rule in choosing the component speed for subjects’ plaids. As much as

possible, I tried to chose one that was in a region of some transparency or just

slower. The red highlighted squares in these plots are for the component speed

that I selected for plaid adaptors. When all responses were coherent, I chose a

component speed that was slightly faster than what was chosen for other subjects.

In the next experiment, which I collected immediately after the previous one,

I varied the pattern speed (Figure 3.3e-h). Transparency always increased with

faster pattern speeds. The two red highlighted squares in these plots are for the

two pattern speeds that I used for the plaid adaptors. In all cases, I was able to

choose a plaid that was strongly coherent and another that was strongly transpar-

ent. Curiously these data show inconsistencies in the percepts for matched speeds

with the previous component speed series. For example, subject 4 saw plaids as

transparent at pattern speeds in the second series, which were seen as coherent in

the previous one. I do not know the origin of this variability.
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Figure 3.4: Results of my method of adjustment task in a circle-shaped plot. Some
elements of the plot are shown to the right. The blue line indicates the DoM of the
adaptor. The red dot is the actual DoM of a drifting test grating. The arced black
segment shows the extent of the difference between the actual direction of the test
and the perceived direction. That these segments extend out is for illustration
purposes and does not, for example, indicate any change in the perceived speed of
the tests.

3.3.2 Component and pattern predictions

Figure 3.4 shows some of the results of my method of adjustment experiments

in a circle-shaped plot. The red dots show the direction of the moving square-wave

tests. The arced black segments show the path from the actual test DoM to the

perceived one (which is the mean resultant of the pointer directions). The blue

line segments at the center of these plots indicate the directions of the adaptor.

Where there is a single direction, such as for the upward drifting dots, there is one

segment. Where there is more than one direction, such as for the coherent plaid,

all directions are shown. For that plaid, the directions of the component and the

pattern velocities are shown. I use solid segments for elements of the adaptor that

are perceived and dashed ones for those that are not. For the least squares fits, I

show all three segments as solid, since they are formed from the component and

pattern predictions.

I formed predictions for the component adaptation and the pattern adaptation

by measuring the directional biases with different adaptors (Figure 3.5a-h). I did
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Figure 3.5: (a-d) The component predictions from the sum of adapting to different
component motions. (e-h) The pattern predictions from adapting to upward drift-
ing random dots. (i-l) The superposition of the two predictions that best matches
the real data for adapting to a coherent plaid. The numbers are the weights of the
component and pattern predictions from that superposition. (m-p) Adapting to a
coherent plaid caused repulsion away from the pattern direction.
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not know how the plaid adaptation data would relate to these predictions. The

predictions provided a baseline of what the underlying adaptations might be like.

There are different component predictions for the coherent and transparent plaids.

For all subjects, I measured the perceived directions for each component by itself

as an adaptor. I summed the responses for the leftward and rightward components.

The component prediction for the coherent plaid generally has repulsion away

from the DoM of both components (Figure 3.5a-d). The exception for this was

subject 4, where the plaid angle was only 30 deg. For that subject, there was

repulsion away from the upward direction. There is variation in the scale of the

shifts across subjects, with some being much larger than for the others. The shifts

are often quite large and sometimes cross over oblique directions. There are also

some cases in which the shifts are insignificant. They are generally symmetric,

although they are sometimes larger for clockwise or counterclockwise shifts for a

subset of the tests. The coherent plaid component prediction for subject 1, for

example, has larger shifts for rightward tests, which are shifted in a clockwise

direction.

The component prediction for the transparent plaid also has repulsion away

from both component motions (Figure 3.6a-d). These repulsions are generally

more significant than for the component prediction for the coherent plaid. There

are large shifts away from both component directions, which are quite spread

apart. For three of the subjects, the DoM of the components were only 15 deg

above straight left and right. There are also larger downward shifts for the test

directions in the lower quadrants for two of the four subjects as compared to the

coherent adaptor. The first subject seems to have slightly smaller downward shifts.

I used upwardly moving coherent random dots for the pattern prediction. I
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used the same pattern prediction for the coherent and transparent plaids. They

caused repulsion away from the upward direction for all subjects (Figure 3.5e-h).

This repulsion is comparatively not very large, but they are always away from the

upward direction. Most of the repulsion from this adaptor is confined to upwardly

moving tests. Subject 4, for example, has minimal shifts for downwardly moving

tests. Subject 2, though, has clear attraction towards the downward direction.

3.3.3 Coherent plaid adaptation

Adapting to coherent plaids caused repulsion away from the upward direction

(Figure 3.5m-p). The locus of the adaptation is the same as the perceived pattern

direction of the plaid. None of the subjects has clear repulsion away from the

component directions. Subjects’ percepts are shifted to a greater extent for upward

directions, especially those that are close to the upward direction. This is clear

with Subject 4 where the three closest directions to the upward direction are shifted

nearly to straight left and right. The downward drifting tests are also shifted. They

appeared to be moving in a downward direction, although not quite as much.

Most subjects had biased percepts of DoM for all directions. This differs from

their pattern prediction with upward drifting dots, which has less of an effect for

downward tests. There are some tests which are inconsistent with this. Subject 2,

for example, has upward shifts for two tests, one leftward and one rightward. These

shifts do not conform to either prediction. They might result from an attraction

that is reversed from the upward repulsion.

The combination of the predictions that best matches the data are very similar

to them (Figure 3.5i-l). Like the actual data, there is repulsion away from the

upward direction. This results from a significant weighting of the pattern predic-
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tion. The downward shifts might result from some weighting of the component

prediction. The shifts are larger for the rightward downward shifts for subject 3

in both the psychophysical data and the predicted data.

For this adaptor, the shifts are away from the perceived direction of the stimu-

lus, which supports the hypothesis that biases from adaptation follow the percept.

I did not see evidence for the component-based hypothesis, although the attractive

shifts towards the downward direction may be consistent with it. An alternative

possibility, is that coherent plaids affect more directions than my prediction for

the upward pattern adaptation. They may affect the opposite direction differently

than my prediction. They might generate greater disinhibition for opposite di-

rections than the upwardly moving dots. My modeling results, which I turn to

in a subsequent section, suggest that a mixture of the component and pattern

predictions can account for these results.

3.3.4 Transparent plaid adaptation

Surprisingly, transparent plaids caused repulsion away from the upward pattern

direction (Figure 3.6m-p). The data for all subjects includes repulsion away from

the upward direction even when the component directions are quite far apart.

This means that there is adaptation for the pattern direction even when it is not

perceived. This result is inconsistent with both of my hypotheses. There is little

or no repulsion away from the component directions. There are, however, a few

test directions which do not show shifts away from the upward direction. It is not

clear whether these could be the result of component-based repulsion.

The pattern of DoM biases is similar to those for the coherent plaid adaptor,

even though the DoM of the components are different. There are shifts in the
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Figure 3.6: (a-d) The component predictions from the sum of adapting to different
component motions. (e-h) The pattern predictions from adapting to upward drift-
ing random dots. (i-l) The superposition of the two predictions that best matches
the real data for adapting to a transparent plaid. The numbers are the weights of
the component and pattern predictions from that superposition. (m-p) Adapting
to a transparent plaid caused repulsion away from the pattern direction.
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perceived direction for tests in nearly all directions, including those in the lower

quadrants. There are larger shifts for tests that have some upward directional

component, and which are proximal to the repulsive center. The shifts are smaller

for tests with a downward component. Whatever the origin of this attraction to

downward directions, it is not significantly greater for the transparent plaid.
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Figure 3.7: The normalized coefficient of determination of the component and
pattern predictions for coherent and transparent plaid adaptors. Solid dots are
for the coherent plaid; open dots for the transparent plaid. For all subjects, the
component and pattern predictions account for roughly equal amounts of variance.
For two subjects, the predictions explain less variance for the transparent plaid.
For the other two subjects, the pattern prediction accounts for even more variance
than in the coherent case.

For two of the subjects, the least squares fits show that the weight of the pattern

prediction is greater, and the component prediction is less, for the transparent case

(Figure 3.7). For the other two, the relative weights of the two predictions remain

about the same, although the goodness of the fit decreases (they are closer to

the origin). The component-based predictions do not predict the data well for
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either plaid adaptor. They wrongly contain repulsive shifts towards the upward

direction, not away from it. They are especially poor predictions in the transparent

case since the component DoMs are further spread apart. They have even larger

shifts towards the upward direction for more tests. I tried a different transparent

adaptor to evaluate whether there is a limitation on the number of repulsive loci.

This could be a constraint of the system for there to be a single such locus of

repulsion. This constraint could account for the repulsion for the transparent

plaid.

3.3.5 Transparent dots adaptation

I collected a set of data for an adaptor of transparently overlaid drifting random

dots. The DoMs of the dots were the same as for the component motions of

the transparent plaid. Two of the subjects had repulsive biases away from both

directions of random dots (Figure 3.8). In these subjects, there is, for example,

perceptual biases towards the upward direction. In one other subject, there is no

clear pattern of biases. There may be some repulsion away from the directions of

both sets of dots as well as some repulsion away from the upward direction. Results

for this subject seem generally noisy and there are several tests for which there

was no effect. The last subject had repulsion away from the upward direction.

The shifts for this subject were smaller than for the upwardly moving plaids. Also,

these shifts did not show clear attraction toward downward directions, and may

actually have some repulsion away from them.

The results from the two subjects that showed similar repulsive shifts away

from both transparent dot directions are consistent with my previous results, in

that they are consistent with adaptation in pattern-tuned mechanisms. In this
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Figure 3.8: Adaptation-induced biases from transparent random dots. (a-b) In
two subjects, adapting to transparent random dots causes repulsion away from the
directions of both sets of dots. (c-d) In the other subjects, there is less repulsion
away from those directions.
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case, the percept of the adaptor that is likely to be formed by those pattern-tuned

mechanisms is the same as what is adapted. The results from the forth subject are

inconsistent with those for the other subjects. This subject may have adaptation

for the component motions that is masked by stronger adaptation in mechanisms

representing the upward direction. Their repulsion away from the upward direction

could also be the result of both components having significant upward components

of motion. I could have acquired additional confirmation that this subject saw these

dots to be moving transparently, although I believed they did and they did not

indicate otherwise. This result confirms that there is not a limit on the number of

repulsive loci in general. It provides additional support that adaptation to moving

stimuli causes adaptation in pattern-direction tuned mechanisms. The repulsion

coincides with the perceived directions when those directions are the same as the

pattern directions.

3.4 Discussion

My results suggest that mechanisms for representing pattern motion adapt, and

affect subsequent perception, regardless of the way in which adapting stimuli are

perceived. I have shown that: (1) adaptation to plaids that are perceived to move

coherently or transparently cause repulsion away from their pattern directions; (2)

adaptation to these stimuli is inconsistent with hypotheses that the pattern of

perceptual shifts is always away from the component directions of motion or away

from the perceived DoM; (3) the overall pattern of shifts can be explained by an

additive mixture of component- and pattern-based adaptation; (4) the ratio of the

weights for the pattern prediction and the component prediction that best explain
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the data are either approximately equal, or increase, which is to say they become

more pattern-like, for transparent plaids relative to coherent ones; (5) adaptation

to transparent random dots causes repulsion in perceived direction away from the

directions of the two populations of dots for some subjects. It is possible that

there are more subtle differences between adaptation to coherent and transparent

plaids, such as the amplitude of the shifts or the extent of the effects in different

directions, although they did not stand out in my data.

Neurons that represent pattern motion might adapt in ways that component

direction-selective ones do not. The same can be said of neurons that decode

representations of those motions, which might adapt for representations of pattern

motions, but not component motions. I know of no evidence that supports either

of these possibilities and question how such differential adaptability could arise.

I believe that the specificity of stimulation evoked by a visual pattern partly

influences the magnitude of the adaptation it causes. Following that, the repulsion

away from pattern directions could be explained by there being less uncertainty

about it. But component direction-selective mechanisms should be activated with

a specificity similar to the pattern direction-selective ones. And variability of mea-

surements for the component motions is likely to be less than that for pattern

directions. They may inherit uncertainty for both components, although the rep-

resentation of the pattern motion may also involve overlapping representations

formed by a broader population of cells. In the case of the transparent plaid adap-

tor especially, there is no reason to believe that the pattern direction, which is

unseen, would evoke a more specific representation.

The connection between the mechanisms for representing visual motions and

perceiving them is relevant to these results. If, for example, only pattern direction-
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selective mechanisms connect to, or are a component of, networks for whom neural

activity corresponds to perception, adaptation in them only, would give rise to

changes in perceived direction and speed. In other words, mechanisms which rep-

resent component motions might be adapting, but not transmitting their modified

responses to mechanisms that form the percept of the DoM of the tests.

Electrophysiological or neuroimaging studies could help to disentangle these

possibilities. An obvious, but challenging, first step might be to work towards a

better model for neurons in MT, and other relevant visual areas, that respond

during the perception of plaids, gratings and dots. It could be that only the

responses of pattern direction-selective neurons correlate with the percept. Studies

in which those responses are manipulated, as was done in other studies of MT,

might be able to establish a causal link between neurons with certain sorts of

tuning and the perception of visual motion.

In interpreting my results, I have assumed a simple model of motion adapta-

tion, in which mechanisms selective for something have the gain of their responses

reduced following prolonged exposure to it. This assumption was applied in earlier

studies, such as those which showed repulsion in the perception of spatial frequency

and direction, and inferred that there exists channels selective for those properties.

In my case, I knew that there were mechanisms tuned for component and pattern

motion and wanted to know the reverse, which was whether the repulsion would

be consistent with one or the other of them.

That said, the means by which adaptation occurs, is likely to be significantly

more complicated and may not be limited to gain changes. Recent studies on

adaptation in MT suggest that neurons whose tuning is centered on an adaptor,

narrow their tuning at the point of the adaptor [154]. The same occurs for neurons
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with tuning flanking the adaptor. These neurons also have attractive shifts in their

tuning towards the adaptor, so the centers of their tuning curves change [154].

Simulations of these neurons suggested that these changes, not gain changes, are

capable of generating the associated perceptual effects.

It is likely that preferred and flank adaptation of component- and pattern-

tuned mechanisms plays a role in the perceptual effects that I measured with

drifting plaids. It is not yet possible, though, to say which sorts of adaptation are

contributing. For sine-wave gratings there are significant flank adaptation effects

for directions further than 90 deg away from the preferred direction of an MT cell

[154]. To constrain these possibilities, it should be useful to measure the responses

of MT cells after adapting to drifting plaids. What is the shift in the preferred

directions of pattern and component cells after adapting to plaids moving in the

preferred, flank, end-of-flank, and null directions? How is the bandwidth of the

tuning of the cells affected by adaptation in those relative directions?

The levels at which adaptation occurs within the visual system has only re-

cently been considered. How do changes in one population of neurons propagate

to others in downstream areas? For the coherent plaid adaptors that I presented,

for example, there could be adaptation in mechanisms tuned to a variety of differ-

ent properties of the stimulus, such as its contrast, orientation, size or color. The

task that subjects are asked to do, and the test stimuli used, should constrain the

relevance of some stimulus properties, and therein minimize the consequences of

adaptation from them. But if several properties are represented simultaneously

they may be adapting in parallel. What are the interaction effects of parallel

adaptation in different channels?

The motion aftereffect (MAE) has been shown to depend on the type of test
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stimuli used to measure it. The classical MAE, in which a stationary test is seen

to move as a result of motion adaptation in the opposite direction, is different

than the effect that is observed with flickering or moving test stimuli. The MAE

with stationary tests is spatial- and temporal-frequency tuned, whereas it is mostly

independent of spatial-frequency, and is tuned for speed, with flickering or moving

tests. These differences have been taken as evidence that the two types of tests

are probing the adaptation of different mechanisms.

I have not focused on a singular consequence of adaptation, such as inducing

motion in stationary tests, which is the norm in studies of the MAE. I was in-

terested in adaptation as a way to uncover representations of the perception of

different sorts of visual motion. Since adaptation frequently causes perceptual

changes throughout the 2D velocity space that the visual system represents, there

seems to be little reason to consider the effects only on tests with zero speed. The

effects may be of greater variety or consequence elsewhere in the space.

Previous studies have found that transparently moving adaptors cause singular

aftereffects for stationary or flickering tests. These shifts might be singular in their

DoM, for example away from the vector average of the adaptor. This could result

from repulsion in velocity space away from that direction (along the path from the

pattern direction through the origin).

For the stimuli I explored, uncovering repulsion in more than one direction

may be less likely with stationary or flickering tests. It is unclear how multiple

repulsions could be seen with them. I do not know if it is possible for them to

appear to simultaneously move in different directions. They might move in one

direction on some trials and a different one on others, switching back and forth

between two different directions. Since my measurements were for tests moving
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in many different directions, at speeds related to those of the adaptors, multiple

repulsive loci should have caused clear patterns of perceptual biases if they are

generated. My results with transparently moving random dots demonstrate that

adaptation can cause multiple repulsive loci.

Part of my motivation in using drifting square-wave tests was that I believed

that if component-based adaptation results from plaid adaptors I was most likely

to see it with tests that are similar to those components. It actually seems like

the type of moving tests used may not matter very much, and I believe that

my results would be similar with some other types of tests. Adaptation causes

repulsion in coherent plaids–they are shifted away along a vector eminating from

the adaptor’s position, through the test’s pattern direction. I do not know what the

effects would be with transparent plaid tests or other transparently moving tests,

although it would likely result in repulsion away from their pattern directions. I

have speculated about several issues related to these results and I conclude by

suggesting some specific studies that could follow them. I also highlight some tests

of my interpretation.

An important goal is to develop a fuller and more general normative model

for adaptation from moving stimuli. These psychophysical results, and others,

should be incorporated into Bayesian models for motion perception. Current work

on adaptation in this context has shown that adaptation causes changes in the

likelihood function, which is an internal inference of a parameter or a stimulus

given some sensory input. As might be expected, adaptation causes increases in

the signal-to-noise ratio of measurements by adjusting the operational range of the

measurement stage so that it conforms to the input range of the stimuli. It might

be possible to add to this sort of model by working backwards from the pattern
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of perceptual effects that I observed to changes in tuning for localized regions of

velocity space.

More precise measurements of changes in speed and direction for drifting grat-

ings, plaids and dots should be made. These could address whether adaptation

to gratings, for example, causes circular repulsion in adjacent velocities along the

gratings constraint line. Transparent dots should cause repulsion away from both

dot velocities, so that gratings near those loci with faster speeds appear to move

at higher speeds and vice versa. The perceptual effects for directions opposite

the pattern direction of the adaptor are also of interest. Disinhibition likely con-

tributes, as the amount of inhibition is decreased by a reduction in the responses

for the opposite direction.

Finally, an important test of my interpretation, that pattern direction-selective

mechanisms adapt regardless of what is perceived, could be made with adaptors

that are designed to reverse the effects of the initial adaptation. Stimuli in which

energy is subtracted in specific locations from a block with energy in many direc-

tions at many different frequencies could be used to nullify the effects of different

adaptors. The effects should depend on the strength of the reverse-adaptors. An

important prediction from my results is that these hole-adaptors would negate the

effects of plaid and random dot adaptors when subsequently presented adaptors

lack energy in the pattern-directions. They should have minimal effects when their

holes are centered on other locations, including those for the component motions.
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Chapter 4

Conclusions and future work

To this point, I have described my investigations of three issues related to the

integration of visual motion. In the chapters associated with each of these, I have

included summaries of my results as well as a discussion of what they mean and

how they might be improved upon. I will conclude by briefly restating my findings,

and by suggesting a few proximal directions that could be pursued in future work.

To me, the latter is particularly important. My research has provided only partial

answers to the questions I set out to explore–though it also creates more questions.

4.1 The scale of visual motion

My first set of results showed that MT neurons do not represent long-range

apparent motion, which is to say that the neurons’ responses are unaffected by such

motion. This is consistent with their retaining the scale of the directionality found

in their upstream inputs. Thus, when a person’s percept of a stimulus is of widely

spaced motion, MT’s responses will be uncorrelated with their sense of motion.

This may seem puzzling given the view that responses in MT underlie a sense of
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motion. This begs the question why MT neurons are computing something that

is unnoticed, or is disconnected, from any obvious function? Also, if MT neurons

are not representing long-range motion, what I have called global motion, which

neurons are?

To find out, one might record from many other visual areas, including areas in

the ventral stream, with local-global motion stimuli. It would be advantageous to

have some idea of where to look. And the number of possible areas to consider

could be constrained in part by the general characteristics of the neurons in the

area, such as their RF size. It is possible that neurons which represent global

motions have little or no directionality for local motions, and therefore might be

thought of as not playing a role in representing motions.

Another approach for identifying areas that represent global motions might

involve measuring the effects of adapting to local-global stimuli with fMRI. Stimuli

could be used in which the direction of either the local or the global motion is

randomized. Adaptation effects from different combinations of directed, random

or static, local and global motion could be used to isolate regions that are selective

for either scale of motion. A series of nested differencing metrics, based on changes

in responses, could be used. These would be similar to the ones I used to quantify

the scale of directionality in neurons. MT+, and other dorsal stream areas, might

be selectively adapted only by local motions.

If there are individual neurons that are representing global motion, how are they

doing so? One possibility is that insensitivity to local motion is made by averaging

the responses of sets of many different directionally-tuned neurons. These could

overlap in the portions of visual space which they represent. From the output of

these, could be added enhancement for a particular sequence of excitations, and an
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inhibition for the opposite sequence. This would form large, oriented, space-time

filters, which would be sensitive to the detailed, oriented content of global motions

in the frequency domain.

Representing local and global motions is a subset of the general issue how hu-

mans see motions at different scales. Although there has been some progress on

what those scales are and how representations of them are formed, more work is

needed. Remaining questions include, what are the boundaries of those scales and

what establishes the boundaries? What is the origin of representing different scales

of motion, which is related to the functions they subserve? Relatedly, what are

the correlates of different scales of motion in natural scenes, or in the experience

of everyday life? It will be important to know more about how motions at dif-

ferent scales interact in the images themselves, and how perceptions of them are

interrelated.

4.2 To integrate or to segment

My second set of results showed that the perception of drifting plaids is influ-

enced by their component and pattern speeds. In addition, a Bayesian observer

model that includes two priors, which impart preferences to see slow and singular

motions, can account for the relationship between a plaid’s speeds and whether its

motions are integrated or segmented.

Improvements in my model might include an expanded, and more realistic,

front-end, as I have described. By front-end, I mean the transformations involved in

moving from the stimulus to the likelihoods. Also, a better estimate of both priors,

the one for velocity and for singular precepts, is needed. Better estimates would
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mean fewer assumptions have to be made. Experiments done with estimating the

speeds of 1D motions provide a defined method for how to estimate the priors and

likelihoods throughout velocity space. These could be extended to measure the 2D

velocity prior. It would also be useful to have estimates for that prior with other

stimuli, such as square-wave gratings, and at different eccentricities. Additional

questions include whether these priors extend to other tasks. Is the prior to see

singular motions, for example, based on a preference to see the fewest motions in

all possible cases, or is it a preference only to see one instead of two motions?

These questions have to do with the sorts of computations involved in combining

different motions, and more work could be done on how those computations are

implemented. There is some evidence that the processing that corresponds to

forming likelihoods of motions can done by neurons in MT, that it follows the

standard motion energy model of MT. But what about the other steps in the

model I described? For example, how are likelihood representations combined

with a prior for velocity? Is that, or could it be, done in separate pathways? How

are probabilistic estimates integrated and compared in neural terms?

It has been suggested that Bayesian priors are related to the sum of the tuning

curves among a population of neurons. These tuning curves are thought to relate

to the distribution of properties in the natural environment. These ideas need to

be tested further. The relation to tuning curves could be explored in simple model

organisms, perhaps by studying a simple behavior and manipulating the responses

of cells with optogenetic techniques.

A final direction, somewhat distinct from those utilizing Bayesian models, is to

establish the relationship between pattern-tuning and the perception of integrated

motion. The large body of work that established the link between MT and motion
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perception can be looked to for possible experiments, which will help to clarify how

motion integration or segmentation is implemented. Are cells with a particular

pattern of tuning for component or pattern motions, active or inactive, during one

or the other percepts? Could the probability of the coherent percept be increased

by increasing the responses of pattern cells? What is the role of unclassified cells?

What are the perceptual consequences of inactivating cells with different tuning

properties? Could the responses of some subset of cells, with a particular pattern

of tuning, be used to form accurate judgements of motion, assuming the organism

had access to them?

4.3 Adapting to visual motion

My third set of results showed that adapting to coherent and transparent plaids

causes repulsion in the perceived directions of drifting tests away from the plaids’

pattern directions. This suggests that pattern-tuned mechanisms are responding

and adapting to a visual stimulus regardless of what the percept is.

This finding is puzzling and there are a number of follow up studies that could

be done which might provide some clarification. These include the studies I de-

scribed that relate to the physiological mechanisms for motion representation with

different motion percepts. But, more to the point, what underlies the specific adap-

tation in pattern-tuned mechanisms? As I discussed, it is unclear whether this has

to do with pattern cells having different dynamics with respect to prolonged ex-

posure to a stimulus. It is also possible that only cells with pattern tuning impact

subsequent perceptions of motion, but why would that be? To address this, I have

suggested presenting stimuli that would reverse the adaptation effects of a drifting
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plaid. For example, a stimulus in which energy in the pattern direction of a plaid

has been removed could be presented after adapting to a plaid. This could be done

with both coherent and transparent plaids.

It would also be useful to have better estimates of the full pattern of adaptation

effects for plaids, and other standard visual stimuli. I mean, for example, to

use forced-choice experiments to measure speed and direction biases throughout

velocity space, which are a consequence of adaptation. There are some interesting

possibilities that may or may not emerge from such experiments, such as whether

there are repulsions away from velocities along the velocity constraint line of a

drifting grating. There may also be interesting things occurring in the opposite

direction of a moving stimulus, where disinhibition is likely having an effect.

Temporal dynamics are generally omitted from models of motion processing,

mostly for lack of systematic measurements and principles. One thought on adap-

tation is that it relates to the intensity of the representation of the stimulus. There

is also a more recent view that it is related to the specificity of excitation elicited by

a stimulus for a sub-population of cells. These principles, although quite general,

should be developed and tested further. As they are coupled with additional sets of

measurements, fuller models of how visual motions are represented and perceived

will be developed.
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