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Targeted V1 comodulation supports task-
adaptive sensory decisions

Caroline Haimerl 1,2 , Douglas A. Ruff3, Marlene R. Cohen3,
Cristina Savin 1,4,6 & Eero P. Simoncelli1,4,5,6

Sensory-guided behavior requires reliable encoding of stimulus information in
neural populations, and flexible, task-specific readout. The former has been
studied extensively, but the latter remains poorly understood. We introduce a
theory for adaptive sensory processing based on functionally-targeted sto-
chastic modulation. We show that responses of neurons in area V1 of monkeys
performing a visual discrimination task exhibit low-dimensional, rapidly fluc-
tuating gainmodulation,which is stronger in task-informative neurons and can
be used to decode from neural activity after few training trials, consistent with
observed behavior. In a simulated hierarchical neural network model, such
labels are learned quickly and can be used to adapt downstream readout, even
after several intervening processing stages. Consistently, we find the mod-
ulatory signal estimated in V1 is also present in the activity of simultaneously
recorded MT units, and is again strongest in task-informative neurons. These
results support the idea that co-modulation facilitates task-adaptive hier-
archical information routing.

Humans and animals are able toflexibly adapt theirbehavior according
to ever-changing sensory input and goals. In the brain, sensory infor-
mation is transformed through hierarchical stages of computation,
building increasingly complex feature maps1,2. However, decisions can
rely on local stimulus attributes, which requires not just preserving this
information as it ascends the processing hierarchy, but also selecting
those aspects of the representation to read out3. Consider a decision
about local visual orientation. This information is explicitly repre-
sented in primary visual cortex (V1), where neurons respond selec-
tively to specific orientations at specific locations in the visual field4.
However, decisions are not made in V1—visual orientation signals
undergo a sequence of transformations, presumably mixing with task
irrelevant information (other features of the stimulus or information
from other spatial locations) before reaching decision areas. How do
areas downstream of V1 access the task-relevant sensory information
to flexibly guide behavior?

The problem of flexible sensory decision making has been stu-
died from different perspectives. First, within the traditional “ideal
observer” framework, statistically optimal decoders can be con-
structed from a complete description of response properties of the
encoding population, as they pertain to the task. These provide
performance upper bounds for behavior5–11, but fail to explain how a
downstream circuit—with limited knowledge of each upstream
neuron’s stimulus–response and noise properties—can construct
such a readout12. Second, attentional boosts in the activity of the
relevant neurons are believed to highlight task-informative sensory
information for downstream processing13–15. However, this early-
stage encoding selection may be insufficient to ensure the pre-
ferential transmission of task-specific information across a complex
processing hierarchy16. Some have argued that the behavioral ben-
efits of attention are largely due to effective contextual readouts17,
which may explain instances where behavioral-level benefits can be
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experimentally dissociated from increases in firing rates18. Finally,
recurrent dynamics in prefrontal cortex can support context-
dependent selection and integration of visual stimuli19. This has
been demonstrated for cued switching between anatomically seg-
regated stimulus features (such as color and motion), but it is not
clear how this mechanism could generalize to the task of making
decisions based on different local orientations and in the absence of
an explicit cue. We also don’t know how the brain could learn the
dynamics required for such late selection, from limited task
experience.

Here we put forward a theory in which a stochastic modulatory
signal induces shared variability in neural responses, which then serves
as a label for task relevance.We examine its implications in the context
of a change detection experiment in non-human primates20,21, with
blocked task switching. We show that V1 neural responses exhibit
fluctuations that can be captured with a shared modulator that pre-
ferentially targets task-informative neurons. This task-dependent co-
variability acts as a functional label that canbeused to guide decoding,
and can be learned within a handful of trials, facilitating fast readout
from the population. By studying stochastic modulation in an artificial
neural network model of the visual hierarchy, we find that the mod-
ulatory label can propagate through additional stages of processing,
and facilitate readout of task information, with minimal amounts of
task-specific feedback. As predicted by the model, the V1 modulatory
signal is also present in MT units, againmost strongly in those that are
task-informative. These results support the hypothesis that task-
specific labeling propagates through the visual hierarchy in parallel
with stimulus information, facilitating downstream decisions and
actions.

Results
Monkeys were trained to detect a small change in orientation of a
Gaussian-windowed drifting sine grating (Fig. 1A), and spiking
responses of neurons in their primary visual cortex (V1) and middle
temporal areaMTwere recorded simultaneously (Fig. 1B). Two to three
gratings were present simultaneously, at high or low contrast levels,
and spontaneously changed their orientation after a variable number
of repeated presentations (stimulus on for 200ms, off for
200–400ms). The animals were rewarded only for responding to
changes of one of these, with the others acting as distractors. The
location of the relevant stimulus was fixed within each block of trials,
switching randomly between blocks throughout an experimental ses-
sion. The two possible orientations of the stimulus also switched
between blocks. Monkeys were able to quickly adjust to these
switches21, reaching asymptotic performance levels after a handful of
trials (Fig. 1C, D). We aim to explain how the brain achieves this
impressive combination of accuracy and flexibility.

Encoding of local visual orientation in a V1 population
Neurons in V1 respond selectively to the local orientation of visual
stimuli, and the selectivities of the full population span all orientations
and visual field locations, in a topographical organization on the cor-
tical sheet. In the experiment, individual grating stimuli are roughly
matched to V1 receptive field (RF) sizes at the eccentricity at which
recordings are performed, and orientation changes are relatively small
(10–45°, see ref. 21), which restricts relevant stimulus information to a
small subset of V1 neurons whose responses change with the stimulus
orientation. As nearly all visual information passes through V122, the
behavior of the monkey must rely on the responses of this subset (the
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Fig. 1 | An orientation discrimination task with distractors. A In each block of
trials, 2–3 drifting gratings flash on and off on screen and can change their
orientation. One stimulus location is selected as relevant, and the monkey must
report changes in its orientation with a saccadic eye movement. B The recorded
population of V1 neurons has receptive field centers (gray) within the receptive
field of a simultaneously recorded MT unit. Two of the three stimuli locations are
within the MT unit’s receptive field (“relevant”—purple circle, matched to average
V1 RF size) and one is in the opposite hemifield (“control”—black).CDistribution of
behavioral performance across blocks, quantified by the % hits (67 blocks in total).
D Behavioral performance as a function of time within a block, binned using 5
consecutive trials; the boxes mark 25 and 75% quantiles, horizontal line indicates

the median, points indicate different blocks and the red star indicates a significant
difference in means (relative two-sided t test with 90 test blocks from 24 sessions
and 2 monkeys, p =0.015 for pairwise comparison between <5 and <10 groups,
p >0.05 for all other comparisons). E The distribution of firing rates over all sti-
mulus presentations, to each of the two task stimuli for three example neurons
with different d0 values. F jd0 j distribution, over all blocks of relevant tasks and all
V1 neurons (shade). Lines indicate sub-distributions of neurons with significant
informativeness (purple), and neurons in the control task (black). G Relationship
between the informativeness values in relevant and control tasks.A and B adapted
from ref. 21. Source data provided as a Source data file.
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same throughout a block), while ignoring the chatter of background
activity from the remainder of the population. Moreover, since
downstreamdecision-making areasdo not have access to V1 responses
directly, the relevant information must be traced as it progresses
through various stages of visual processing.

Two of the three stimulus locations were chosen so as to overlap
the RFs of the recorded V1 population (Fig. 1A). When one of those
locations is task-relevant, we expect a subset of the recorded neurons
to provide information for the animal’s decision (“relevant tasks”). In
contrast, the neurons shouldbe uninformativewhen the third stimulus
location is task-relevant, since it lies in the opposite hemisphere
(“control task”; Fig. 1A).We quantified the task-informativeness of each
V1 unit as the absolute difference in mean responses for the two
orientations relative to response standard deviation (jd0j). Figure 1E
shows the relationship between informativeness and responsiveness
for three representative examples. First, a large number of units are
weakly responsive to both stimulus orientations (for instance, because
their RFs did not overlap the stimulus location or because their pre-
ferred orientation was too different from the relevant stimuli) and
consequently cannot be informative about stimulus identity (Fig. 1E,
left). Second, someunits respond strongly but similarly to both stimuli
(Fig. 1E, middle), showing that responsiveness is necessary but not
sufficient for task-relevance. Third, some units respond strongly to
only one of the two stimuli and hence have high informativeness
(Fig. 1E, right). Overall, for each relevant task block, a modest pro-
portion of the recorded V1 units are significantly informative (monkey
1: 25.8%, monkey 2: 18.4%; non-parametric test, see Methods; note that
the experimental stimuli are optimized to drive the recorded sub-
population). Only 2.4% and 6% of units are significantly informative in
the control task (Fig. 1F). Neurons that aremost informative in either of
the relevant tasks have low jd0j in the control task, reflecting their task-
specificity (Fig. 1G). Across the two relevant tasks, unit informativeness
is more similar (61% of significant neurons are informative in both
relevant tasks) because of the close proximity of the two relevant sti-
mulus locations. Data sample sizes for each analysis are provided in
Supplementary Table S1. The impact of including multiunits in the
analysis is discussed in Supplementary Note S9.

Within each task block, a different subset of V1 neurons carries
task-relevant information. This subset will be partially overlapping for
the two relevant tasks but almost entirely distinct between relevant
and control tasks (see Supplementary Note S14). In order to make
accurate decisions, a downstream circuit has to read out selectively
from those, ignoring the rest. Moreover, the determination of this
relevant subpopulation happens quickly: the monkey’s performance
reaches asymptotic levels roughly 5 trials after each task change
(Fig. 1D). How can this flexible routing of information be achieved?
Since basic response statistics such as mean or variance do not differ
much between informative and uninformative neurons (Supplemen-
tary Note S1 and Supplementary Fig. S1A), they cannot guide this
selection. Instead, we propose that task-specific structure in the joint
statistics of neuronal responses20,23,24 are key to understanding flexible
readout.

A targeted shared stochastic modulator in V1
Neural responses fluctuate from trial to trial. Some of this variability is
neuron-specific, but some is correlated across neurons, driven by cir-
cuit dynamics25–27. To determine the structure of co-variability, we fit-
ted a modulated stimulus response model (“modulated-SR model”) to
the recorded population of V1 neurons in each block, using a Poisson
latent dynamical system (PLDS, see “Methods” and ref. 28), which
jointly estimates the stimulus drive to each unit and the shared, within-
trial variability across the population (Fig. 2A, B). The stimulus
response component (“SR model”) accounts for stimulus-induced
transients across multiple time bins of 50ms, with time-specific para-
meters for each contrast condition (see Methods for details) and

independent Poisson noise. The shared, within-trial variability is
assumed to arise from a low-dimensional dynamic stochastic signal,
which multiplicatively modulates the stimulus responses of all units,
with neuron-specific modulator coupling strengths. This statistical
framework allows us to probe the existence, dimensionality, and
structure of shared modulation in each block, in a way that simpler
dimensionality reduction methods cannot achieve (Supplementary
Note S2).

We found that 91% of blocks are better fit by the modulated-SR
model than by the SR model alone (Fig. 2C). Moreover, varying the
dimensionality of the modulator reveals that 72% of blocks are best
described by a one-dimensional modulator (Fig. 2D; see “Methods”).
For consistency, we restricted subsequent analyses to these blocks.
The extracted modulator is unrelated to contrast variations in the
stimulus (Supplementary Note S3) and fluctuates within and across
trials at a fairly rapid timescale (Fig. 2B), with no evidenceof oscillatory
structure. The average estimated time scale of the fluctuations is 75ms
(Fig. 2E)—faster than the average trial duration (3s) as well as the
individual stimulus duration (200ms), and approaching the time
resolutionof spike count binning (50ms).This fast time scale, together
with the unimodal marginal statistics of the estimated modulator
(Supplementary Note S4), differentiate it frompreviously reported on-
off dynamics29.

The improvement in fit quality obtained by including the
modulator varies across units (Fig. 2C), but is most prominent in
task-informative neurons (Fig. 2F), suggesting that they may be
more strongly modulated. A non-parametric comparison revealed
that task-informative neurons have larger coupling weights (i.e.
stronger modulation) than uninformative neurons (Fig. 2G).
Although informativeness is correlated with themean firing rate of a
unit (Supplementary Note S5), a partial correlation analysis con-
firmed that firing rate differences cannot explain the inferred
modulation targeting, as firing-rate-corrected informativeness and
modulator couplings are significantly correlated in 84% of blocks
(Spearman r, α = 0.05; Fig. 2H–J). The increased variability in the
task-relevant neurons (Supplementary Note S1) is primarily due to
the modulation; residual variability unexplained by the modulated-
SR model is generally not correlated with informativeness (Spear-
man r with α = 0.05; Fig. 2J); only 9% of blocks have significantly
positive correlations between residual variability and informative-
ness (19% significantly negative). While most of this residual varia-
bility is neuron-specific, we also findweak, structured correlations in
pairs of units which suggest additional sources of shared noise not
captured by the model (Supplementary Fig. S2).

Themodulator coupling is dissociable from traditional attentional
effects on mean firing rate (Supplementary Note S7), which have been
suggested to improve encoding precision of particular attended
stimuli30, and it cannot be explained by neural adaptation, as the
degree of adaptation was uncorrelated with the quality of the fit of the
modulated-SRmodel (Supplementary Note S8). Finally, themodulator
structure cannot be explained by the fact that the response measure-
ments are in the form of multiunit spike counts (Supplementary
Note S9). Overall, our analysis reveals that V1 responses aremodulated
by a common fluctuating signal, and that the strength of this mod-
ulation in each unit reflects its task-informativeness. From anencoding
perspective, this seems counter-intuitive (Supplementary Note S10).
Why would the brain inject noise specifically in the few neurons that
matter most?

Targeted modulation can facilitate decoding
The modulator fluctuates rapidly, allowing any task information it
provides to be accessed quickly, potentially on the time scale of single
trials. We hypothesize that the modulation serves to “label” the
responses of the task-relevant V1 subpopulation, so that downstream
circuits can easily identify and use these signals.
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To analyze the decoding process, we simulated an encoding
model that captures the essenceof the responseproperties observed in
the V1 data. For this, we use a variant of the modulated-SR model with
static stimulus-dependent firing rates, and one shared, temporally-
independent stochastic modulator mt (see “Methods,” and ref. 12):

kn,tðsÞ∼Poisson λnðsÞ expðcnmtÞ
� �

, ð1Þ

where kn,t(s) is the spike count of neuron n at time t in response to
stimulus s; the modulator mt is drawn independently from a Gaussian
distribution with zero mean, and influences neuron n with coupling
weight cn, which is set to be proportional to the neuron’s task-
informativeness. Finally, since the degree of modulation affects not

only variability but also mean responses, we explicitly correct for the
mean increase to isolate the effects of modulator-induced co-
variability (see “Methods”).

Given this encoding model and a binary discrimination task,
s∈ {0, 1}, the ideal observer’s optimal decoder compares a weighted
sum of the neural responses with a modulator-specific decision
threshold, q(mt) (see “Methods”):

X
n

aðoptÞ
n kn,tðsÞ > qðmtÞ, ð2Þ

where aðoptÞ
n = logðλnð1ÞÞ � logðλnð0ÞÞ denotes the optimal decoding

weights. These are independent of the modulator and equivalent to
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the modulator. C The distribution of pseudo-R2 values over all neurons in blocks
that were best fitted by a 1-dimensional modulated-SR model. D Summary of the
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modulated-SR model. F Distribution of the correlations between the individual
unit’s model fit (pseudo-R2) and their informativeness (78% of blocks have

significant positive correlations between informativeness and model fit, measured
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those derived from an independent Poisson model. The decoding
weights are non-zero only for the small subpopulation of informative
neurons (Fig. 3A, purple), with their signs indicating preference
between the two stimulus alternatives. Zero weights eliminate active
but uninformative (Fig. 3A, black) or inactive (Fig. 3A, gray) neurons.

The optimal decoder provides an upper bound on decoding
performance given the encoding model, and motivates the use of a
linear-threshold functional form for the readout. However, it uses
weights that rely on full knowledge of each neuron’s mean responses
to the stimuli of the current task. The challenge for a downstream
circuit is to find a way to approximate these weights, when provided
only with incoming spikes, the task feedback, and potentially the
modulator, but without explicit knowledge of the stimulus encoding
model. How can the brain achieve this? The conventional means of
learning decoding weights is regression. Although this is feasible for a
small set of mostly informative neurons, the number of training
examples needed for accurate weight estimation grows significantly
with population size31,32. So the behavioral flexibility exhibited by the
monkeys precludes such a solution. Instead, we seek a heuristic that
can be estimated quickly.

Consider first a decodermotivated by early work on neural binary
discrimination33. The idea is to split all neurons into two sub-
populations (“preferred” and “anti-preferred”) and then compare
their average responses. This solution only assigns decoding signs
(aSO

n 2 f�1,1g), which indicate relative stimulus preference, but ignores
the relative importance of different neurons (there are no zero
weights); we refer to this approach as the sign-only (SO) decoder. It can
be learnedquickly (SupplementaryNote S10), but its performance falls
as the fraction of informative neurons decreases (Supplementary
Note S10): Since all neurons must be included, the noise from the
uninformative neurons corrupts the decision signal. For realistically

small fractions of informative neurons5,30, the SO decoder cannot
match monkey performance (Supplementary Note S10).

To improve performance, the readout needs to consider the
relative importance of individual neurons. A decoder can achieve this
by estimating the amplitude of individual decoding weights. Since the
relative strength of modulation of each neuron reflects the relative
informativeness (by design cn / jd0j), we can define a modulator-
guided (MG) decoder that sets its decoding weight amplitudes from
temporal correlations of the modulator with each neuron’s activity,
which provide a simple estimate for cn:

��aðMGÞ
n

�� / 1
T

X
t

mtkn,t ðsÞ: ð3Þ

The MG decoder does not rely on knowledge of the response prop-
erties of the encoding population, but it assumes access to the mod-
ulator (e.g., it is a broadcast signal). This has important implications for
learning the decoder; the MG weight estimates converge rapidly, on
the time scale of the modulator fluctuations which are much faster
than a trial (see “A targeted shared stochastic modulator in V1”). Once
the informative neurons have been identified, their decoding sign is
determined based on explicit trial feedback, which only requires a
handful of trials for small populations (Supplementary Note S10). For
simplicity, the amplitude and sign were estimated separately here.
Nonetheless, the two can also be learned jointly using a form of local
online learning based on eligibility traces34,35 (Supplementary
Note S11).

We compared the performance of different decoders in a binary
discrimination task, based on simulated responses of a large popula-
tion of V1 neurons with a small fraction of informative neurons (5%,
Fig. 3A; see also SupplementaryNote S10D for variations in percentage
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of informative neurons). The statistically optimaldecoder corresponds
to the ideal observer’s solution, and thus provides an upper bound on
achievable performance; the SO decoder provides a lower bound. The
optimal decoder’s accuracy deteriorates as the modulator increases in
amplitude, corrupting the encoded signal (Fig. 3C). This reinforces the
point that, unlike other forms of noise correlations32,36, the targeted,
multiplicative noise is strictly detrimental for encoding (Supplemen-
tary Note S10).While the performance of theMGdecoder is limited by
this corruption as well, it also benefits from a stronger label in the
informative neurons (Fig. 3B). Its performance follows an inverted
U-shape as a functionofmodulation amplitude, reflecting the trade-off
between these two opposing effects (Fig. 3C). MG decoding perfor-
mance is maximized at an intermediate modulation amplitude, where
it attains an accuracy close to that of the ideal observer, a result that is
robust to variations in population size (Supplementary Note S10).
Finally, the MG decoder outperforms classical regression-based
approaches in their speed-accuracy trade-off, allowing for quick
learning with limited data and asymptotically near-optimal perfor-
mance in large datasets (see Supplementary Note S10 and “Learning
modulator targeting in a hierarchical circuit”).

In practice, the performance of the MG decoder could depend on
how strongly correlated the modulator couplings, cn, are with task-
informativeness. To test the robustness of the MG decoder, we wea-
kened the correlation between the modulator couplings, cn, and task-
informativeness by adding noise to cn. We found that although per-
formancedecreases overall, the nonmonotonic dependenceof theMG
decoder performance on modulator strength is preserved (Fig. 3D).
Given thatourmeasurementsmostly includemultiunits, we also tested
their impact on decoding and found that the results are qualitatively

robust to such measurement noise (Fig. 3E). Interestingly, the optimal
modulation amplitude generally shifts towards the range estimated
from the data, suggesting that physiologically, the degree of modula-
tion may be well-matched to the precision of the modulator targeting.

V1 modulator is task specific and facilitates decoding
In our experimental context, the theory predicts that the co-variability
of neural responses should change based on whether they are task-
informative. Given that the recorded V1 population is informative in
the relevant tasks but not the control task (Fig. 1G), we expect differ-
ences in overall modulator strength across tasks and in individual
modulation strengths across neurons. Indeed, the overall strength of
the estimated modulation significantly decreases in the control task,
both in absolute terms and relative to stimulus induced variations
(Fig. 4A and Supplementary Note S12). In comparison, the two relevant
task conditions have indistinguishable statistics of overall modulation
strength (Fig. 4B). Our theory explains this difference as a change in
labeling, from the recorded subpopulation that is informative for the
relevant tasks, to a different (unrecorded) subpopulation that is
informative in the control task.

The comparison between the two relevant tasks is limited by the
proximity of the two relevant stimulus locations, as only few units are
exclusively informative in one task (see “Encoding of local visual
orientation in a V1 population”). However, despite the reduced sample
size, we find a significant correlation between the difference in infor-
mativeness in the two relevant tasks and the difference in coupling
(Spearman correlation, r = 0.16 with p <0.05), showing that units that
are more informative in one of the two tend to also have higher cou-
pling in that task.

co
un

ts

0

5

10

C

-1 10

fin
al

 le
ar

ne
d 

w
ei

gh
ts

# training stimulus presentations

ac
cu

ra
cy

 (
%

)

# samples to reach criterion

pe
rf

or
m

an
ce

0 0.5 1

weights early in learning

1

0.5

0
0 0.5 1

A B

corr. w. behavior

fr
eq

ue
nc

y

F

relevant task
control task

relevant 

relative modulator strengthrelative modulator strength

fr
eq

ue
nc

y

*

10 1010
-1 1 3

10 1010
-1 1 3

E

0

0.1

0.2

0

0.1

0.2

D

residual variance
modulator coupling

*

0 0.5 1

task 1
task 2

10
-3 10

-3

4 10
50

60

70

80

*

*

4 10 20 40 60
40

50

60

80

100
optimal decoder
modulator-guided
regression

Fig. 4 | V1modulator is task-specific and facilitates decoding. A The distribution
of relative modulator strengths across all relevant task blocks (purple) and all
control task blocks (black). The star indicates significant difference between the
two distributions (two-sided U-test, p =0.0008). B Same as (A), but comparing
across the two relevant tasks (two-sided U-test, p =0.45). C The distribution of
correlation coefficients between modulator coupling (green) or residual response
variance (blue) and the residual behavioral relevance of a unit’s activity (correlation
with behavior), obtained by regressing out informativeness and mean firing rate.
D Decoding from the recorded V1 population: performance of different decoders
or logistic regression for an example block population with increasing number of

training samples (mean ± SEM); star indicates significant differences between the
optimal and the MG decoder (two-sided t test, p < 1e − 12). E Performance with
minimal training against minimal number of training samples (stimulus presenta-
tions) needed to reach above chance (50%) performance, for each block; stars
indicate significant differences between the optimal and the MG decoder (two-
sided t test, p <0.0001 for minimal training, p =0.0116 for performance).
F Decoding weights estimated with maximum training (90% of all stimulus pre-
sentations) versus with minimal training (1%) for various decoders; same colors as
(D, E). Source data are provided as a Source data file.

Article https://doi.org/10.1038/s41467-023-43432-7

Nature Communications |         (2023) 14:7879 6



In our framework, decoding weights are approximated by esti-
mating coupling strengths, and thus neurons with large coupling (and
thus strongly modulated) should have a stronger influence on beha-
vior. Despite V1’s early position in the visual processing stream,wefind
this to be true in our data; 91% of blocks show significant correlations
(Spearman r, α =0.05) between modulator coupling and a unit’s cor-
relation with the monkey’s behavior computed as a d0 of neural
responses, with categories defined by the animal’s choices rather than
stimulus identity (see “Methods”). Potential confounds in this analysis
are not only overall firing rates, but also the informativeness of a unit,
as themost informative neuronswould be expected to have a stronger
influenceonbehavior37,38. Nonetheless, even after controlling for these
confounds, it remains the case that units that are moremodulated are
the ones that are also more predictive of behavior (Fig. 4C). This
relationship is not present for the residual response variance (Fig. 4C).
Furthermore, we do not find a relationship with behavioral correlation
in other shared noise sources (Supplementary Note S13), which sug-
gests that the shared modulator-induced fluctuations are particularly
relevant for downstream processing.

The most direct prediction of the theory is the ability of the MG
decoder to set appropriate decoding weights for the recorded V1
responses, and to do so rapidly, with limited data. To test these pre-
dictions, we decoded the stimulus identity from V1 responses using
our heuristic MG decoder and compared its performance with that of
the ideal observer for the estimated (modulated-SR) encoding model.
When all available data is used for estimation, the MG decoder per-
formance is close to that of the optimal decoder (~80% correct, which
suggests that the strength and targeting precision of the estimated
modulator is sufficient to guide decoding).

The optimal decoder provides an upper bound on decodability
assuming perfect knowledge of the V1 response properties, but it can
still perform poorly when the model is estimated from limited data; in
fact, its performance is at chance in the low-data regime (Fig. 4D).
Similarly, learning decoding weights directly through logistic regres-
sion requires many training trials before performing above chance
(Fig. 4D). In contrast, the modulator-guided (MG) decoder finds
informative units after only a few training examples, as it estimates the
modulator coupling on the time scale of themodulator itself insteadof
that of trials. It outperforms the learned optimal decoder and logistic
regression in the small training sample regime (comparing MG against
either learned optimal or regression-based decoder significant; t test,
p <0.0001, see Fig. 4D).We quantify this effect across all data and find
that the MG decoder reaches above-chance performance significantly
faster than the learned optimal decoder (t test, p <0.0001, Fig. 4E) and
that the performance attained with minimal training is significantly
higher relative to that of the learned optimal decoder (t test, p =0.01).
TheMG decoder also reaches above-chance performance significantly
faster than a regression-based decoder (t test p <0.001) and learned
optimal and regression-based decoder do not differ significantly (t
test, p >0.05 for minimal training and performance). A different
approach would be using support vector machines (SVM) which are
known to provide good weight estimation for limited data. Indeed, an
SVM decoder performs similarly to the MG decoder on our data,
although it lacks biological plausibility as a decodingmechanismof the
brain (see Supplementary Fig. S1E, F). Our theory predicts that the
advantage of the MG decoder lies in its ability to accurately estimate
the decoding weights quickly. Indeed, we find a strong correlation
between theMGdecodingweights obtainedwithminimal training and
those estimated from all available data, but this relationship does not
hold for the learned optimal decoding weights or the regression
weights (Fig. 4F).

Although significant, the difference in the number of trials
required for above-chance performancemay seem small. Nonetheless,
it is likely that the benefits of modulation are substantially under-
estimated due to two experimental limitations. First, the recorded

subpopulation is biased towards informative neurons since the stimuli
are placed so as to drive these neurons. The animal must decode the
information present in the entire V1 population, with a much lower
percentage of informative neurons. Under such conditions, finding the
few informative neurons from task feedback becomes even harder
(Supplementary Note S10), and the benefits of modulation stronger.
Second, the modulator may vary on a time scale faster than the
stimulus-presentations of the experiment and model, which would
allow an even faster estimation of the decoding weights (Eq. (3) could
also be applied to single spikes). Finally,we foundadditional sourcesof
co-variability not considered in the theory (measured as residual
pairwise correlations, see Supplementary Note S6) which are con-
sistent with previously documented effects of the task condition noise
correlations21. These do not seem to interfere with the ability of the
targeted modulator to facilitate decoding, suggesting that the theory
is robust to deviations from the exact model assumptions. Overall, the
benefits of the MG decoder for the V1 data provide strong support for
the hypothesis that the brain could use task specific modulation to
enable flexible task switching.

Learning modulator targeting in a hierarchical circuit
Visual information processing is hierarchical, and task-relevant infor-
mation needs to propagate through several stages before reaching
decision-making areas. Moreover, since receptive field sizes increase
across stages of processing1, localized task-specific information will
diffuse in subsequent visual layers, making the task of identifying the
subpopulation of relevant readout neurons even harder. Thus, the
decoding problem identified in V1 persists, and likely worsens, in
downstreamareas. As a separate issue, while thus farwe have assumed
the correctmodulator targeting tobe alreadypresent in the circuit, the
right degree of modulation for each neuron in a task needs to also be
learned from experience. Can the modulator-guided readout still
facilitate flexible and accurate task performance under these
conditions?

To answer this question, we use an artificial neural network to
model the visual processing hierarchywith a stochasticmodulator and
learned targeting. The first layer of the network consists of a V1-like
encoding population with localized oriented filters, whose responses
are then propagated through two processing layers of neurons with
increasing RF size, and finally read out by a decision stage (Fig. 5A;
details in “Methods”). To reflect previous experience, connections
between stages are pre-trained (via backpropagation), to solve a gen-
eral image classification task (identifying handwritten digits39 ran-
domly positioned in different locations; Fig. 5B, C), in the absence of
themodulator. As a result of this optimization, themodel is capable of
discriminating complex visual features.

Analogous to the V1 experiment, we use stochasticmodulation to
fine-tune this network to the task of discriminating the orientation of
local gratings (Fig. 5D, E). After adjusting thedecision circuit to thenew
data (see Methods for details), the network needs to perform a binary
discrimination task involving two orientations at a fixed location
(Fig. 5E). As in the actual experiment, distractors are placed at other
locations in the image, something which the network has not
encountered during the previous episodes of learning. We introduce
shared, stochastic gain modulation with neuron-specific coupling
parameters in the primary encoding layer of the network (with the
same functional form as the original encoding model in Eq. (1), but
without the Poisson noise; see “Methods” for details). This injected
variability accompanies the stimulus information across the proces-
sing layers. The responses of neurons in the last layer are combined
with gain terms gn, which tune the readout of the decision circuit to the
specific task (Fig. 5D). As for the MG decoder in Eq. (3), these gains are
adaptively computed using the correlations between the individual
neural responses and the modulator, which is again assumed to be
available at the decision stage. We optimize the modulator coupling
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strengths to maximize behavioral performance on the task, using
explicit trial feedback (via backpropagation). The general rationale is
that if task-informative neurons can be modulator-labeled in the V1
stage, then this labeling will be inherited downstream by exactly those
neurons that receive their signal. Thus their co-variability can guide
decoding at the decision layer.

We assess the efficiency of the modulator-based solution by
comparing it to two alternative models, both of which adapt based on
experience within the task, but which differ in their parameter com-
plexity. At one extreme, we consider a system that relearns the con-
nection strengths between all layers de novo (“retraining”). This
approach corresponds conceptually to the regression model in Fig. 4.
At the other extreme, we consider a fixed network that only relearns
the final readout weights (“readout only”). Retraining all network
weights requires many training examples to reach good performance
(defined as > 80% accuracy; Fig. 5G), likely due to the high dimen-
sionality of the parameter space. Retraining only the decision layer
results in poor performance, because the presence of distractors
renders the pre-trained representation insufficient for effective cate-
gory discrimination. Compared to alternative models, fine-tuning the
network via the modulator substantially reduces the amount of task-
training required to reach criterion performance (Fig. 5G).

The improvement in performance of the modulator solution over
regression-based relearning corresponds qualitatively to what we
found when decoding from the data in Fig. 4D). Nonetheless, one
important distinction between this hierarchical model and the pre-
viousMGdecoder is that themodulator affects both themean and the
variance of the V1-like encoding layer (see “Methods”). To dis-
ambiguate the effects of modulation on neural variability vs. mean
responses, we introduce a third model, which is parametrized and
trained in the same way, but deterministically boosts the gain of initial
stage neurons16, in the absence of stochastic modulation. We find that
targeting of deterministic gain modulation can be learned faster than
retraining all the connections, but it does not reach the same perfor-
mance as the stochastic modulator given limited training. This sug-
gests that the separation of stimulus information and task relevance
into the mean and variance of neural activity, respectively, further
enhances the identifiability of the stimuli at the decision stage.

When investigating the properties of the learned solution, we find
that the learned couplings are highest for task-informative neurons (5%
highest jd0j) in the primary encoding layer (Fig. 5H), as in the data
(2F–J). Although the modulator only affects the responses of these
neurons directly, we find that informative neurons in the downstream
processing layer are also preferentially correlated with the modulator
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(Fig. 5I). This suggests that task relevance propagates along the hier-
archy in parallel to the stimulus information.

Modulator label is preserved in MT activity
The model predicts that task-specific modulation introduced in
V1 should label task-informative neurons in downstream areas. We
look for signatures of such labeling in simultaneously recorded MT
activity. MT neurons are known to receive direct input from V140 and
selectively combine these afferents to construct their receptive field
properties, such as motion selectivity1,41. Their receptive fields are
larger and more complex, responding to localized gratings with dif-
ferent combinations of position, speed and orientation41,42. Given
anatomical considerations, we expect correlated activity in V1 to drive
MT to some extent.What is specific to our theory is the prediction that
the degree of inherited modulation should reflect the task informa-
tiveness of individual MT units.

We find that responses of MT units that cover the two relevant
stimulus locations (Fig. 1A) vary in their task-informativeness (Sup-
plementary Fig. S6A) and show different degrees of supra-Poisson
variability (Fig. 6A), suggesting different levels of modulation43. The
two measures are correlated across the MT units, with informative
units having higher Fano factors (correlation coefficient of 0.48,
p <0.008). To test whether the excess variability arises due to V1
modulation, we compared twomodels ofMTactivity. The first is based
on the visual stimuli alone (“SR”); it resembles the V1 SR model, but
includes stimulus drift direction (consistent with previous literature41,

drift direction did not have predictive power for the V1 units, see also21,
but has a strong effect on MT activity). The secondmodel additionally
conditions on the modulator estimated from the simultaneously
recorded V1 units (“SR+V1 modulation”; Fig. 6B). The SR model pro-
vided a good fit for all MT units (Supplementary Fig. S6A), which is
expected given that experimental stimuli were optimized to drive MT
units. The inclusion of the V1-estimatedmodulator improved the fit for
73% of the MT units (measured as difference in pseudo-R2, see
“Methods”; Fig. 6C). This effect is preferentially observed in task-
relevant units, which showa significantly largermodelfit improvement
relative to the uninformative units (t test, p =0.01; Fig. 6D). Interest-
ingly, this relationship was present only if the estimated V1 modulator
showed significant targeting structure (significant Spearman correla-
tions between coupling and informativeness); the few outlier blocks
without structured V1 targeting could not explain MT variance (Sup-
plementary Note S16).

The fact that both V1 andMT units are co-modulated as a function
of their task informativeness is consistent with our theory, but does
not exclude alternative patterns of information flow, such as
top–down influences of MT on V1, or independentmodulation of both
areas from an external signal. To more directly address the nature of
the modulation in MT we take advantage of a smaller set of MT
population recordings (partly published in ref. 21). Despite the tech-
nical differences in recording procedure, this data recapitulates the
same overall statistics, with 60% of the MT units having a significant
part of their variability explained by the V1-estimated modulator.
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When independently extracting a modulator from the joint MT
population responses (“SR+MT modulation”), we find that this popu-
lation model better explains individual unit responses than the SR
model (in 72 out of 73 blocks, Supplementary Note S17). The extracted
modulator has consistent statistics across stimulus contrast variations
(in 72% of blocks; Supplementary Note S17) and has similar time con-
stants as those separately extracted in V1 (mean 61ms, s.d. 20ms).
Lastly, there is a significantly positive correlation between modulator
coupling and informativeness across blocks (Pearson r =0.24,
p <0.0001, Fig. 6E), suggesting that the samekindorganization seen in
V1 is qualitatively replicated in MT responses. Are these properties
inherited from V1? We find that the cross-correlogram of the V1 and
MT-extracted modulators is maximal at a time lag that is consistent
with feedfoward propagation from V1 to MT (Fig. 6F), although addi-
tional data and finer temporal precision will be required to more
definitively understand this relationship. Altogether, our analysis of
MT responses supports the idea that the modulation of task-relevant
neurons in V1 is passed on to task-informative neurons inMT, allowing
the propagation of labeling information towards decision areas.

Discussion
Humans and animals are impressive in their ability to respond
rapidly and precisely to a variety of sensory stimuli, but the neural
mechanisms supporting this flexibility remain poorly understood.
We have presented a theory for flexible information readout, in
which a modulatory signal induces shared response fluctuations in
task-relevant cells, accompanies the task-relevant information as it
propagates through subsequent stages of neural processing, and
facilitates accurate decisions. We uncovered evidence for this
labeling scheme in neural recordings from primate areas V1 and MT,
obtained while the animals switch between local orientation dis-
crimination tasks at different spatial locations. In particular, tar-
getedmodulation in V1 is sufficient to decode stimulus identity from
neural responses after observing only a few trials. We also found
evidence for the propagation of this modulator to informative
neurons in downstream area MT.

The computational challenges faced by downstream circuits
involved in decoding have been explored in seminal work by Shadlen
and colleagues33, who enumerated three potential factors that could
reduce an animal’s behavioral performance compared to predictions
of an optimal decoder (the “ideal observer”) operating on a hypothe-
tical population of independent neurons: “suboptimally stimulated
neurons” (in which the decoder includes irrelevant neurons in com-
puting its decision), “correlated noise” (which worsens performance
since it cannot be averaged out by the decoder), and “pooling noise”
(additional noise in downstream circuits, whose contribution appears
to be small44). The first factor has likely been underestimated in
experimental data, since the recorded subset of neurons are typically
not representative of the full population. As such, our conclusions
regarding the benefits of targeted modulation for downstream read-
out are likely understated. The second factor, correlated noise, can
either facilitate or impede stimulus encoding26. In particular, differ-
ential correlations, such as those reported in mouse V145, are
information-limiting. They restrict the encoding benefits that would
otherwise arise from increasing population size36 (but might support
coding robustness46). Irrespective of correlation structure, identifying
appropriate decoding weights using regression requires many trials47,
so flexible decoding remains a problem. In contrast, although our
modulator-induced correlations are also information-limiting, their
robustness to averaging enables the propagation of task relevance
labels. Furthermore, their rapid time scale allows for fast estimation of
task-specific readouts. Finally, the changes introduced via the mod-
ulation are task-specific and ephemeral, allowing the circuit to
instantly disengage from the task and revert to its original state, by
simply reducing the strength of the modulator.

Top-down attention can facilitate sensory encoding, and has been
shown to selectively affect neural responses, including increases in
mean response13–15, decreases in response variability48, and decreases
in noise correlations30,48,49, all of which increase the signal-to-noise
ratio (SNR) of the local sensory representation. These benefits for
encoding are distinct from the modulatory effects we have explored
here. They operate on the time scale of task conditions (minutes) or
stimulus presentations (seconds), whereas the modulator that we
estimate here fluctuates on a time scale of tens of milliseconds or
faster. In addition, while attentional gainboosts are tuning-specific49–51,
we do not find evidence that they are specific to task-informative units
(Supplementary Note S7). Moreover, the estimated modulator cou-
pling is unrelated to the strength of attentional changes of the mean,
suggesting that it may arise from separate mechanisms. This is con-
sistentwith effects of superior colliculus (SC) inactivation18, and results
documenting a similar dissociation between increases in mean and
improvements in behavior over learning in V452. In the context of our
theory, wehypothesize that SC inactivationmay selectively disrupt the
strength or targeting ofmodulation, affecting the propagation of task-
relevant information to decision areas, a prediction that can be tested
experimentally.

Our modulator is distinct from slow multiplicative, low-
dimensional noise reported in other contexts 53,54, which may serve
other functional roles such as encoding uncertainty in visual areas. It is
also distinct from gain changes due to fluctuations in attention which
operate on the time scale of seconds55. Such signals are too slow to
serve as a labeling mechanism of the type proposed here. Choice-
related feedback signals have also been shown to modulate neural
activity on a trial-by-trial basis, but they also occur on a slower time
scale of several hundreds of milliseconds or seconds24,56. All of this
suggests that the modulatory process of our theory does not replace,
but coexists with these additional forms of gain modulation.

Shared oscillatory structure induces low-dimensional covaria-
bility and has been proposed as a mechanism for binding information
across neurons57. The “communication through coherence” (CTC)
theory58,59 formalizes this idea in an encoding-decoding framework, in
which a top-down oscillatory modulator projects to both encoding
neuronswith the same feature selectivity, and to thedecodingnetwork
that needs to read themout. Themodulatorswe’ve extracted fromour
population recordings fail to show significant periodic structure.
Beyond this, the CTC theory differs from our own in two important
ways. First, oscillations target feature-selective rather than task-
informative neurons58. These could be the same for a detection task,
but differ for a discrimination such as that used in our experiment.
Second, the CTC decoder uses a fixed (as opposed to a modulator-
dependent) threshold, which we’ve shown to be suboptimal. Overall,
the CTC framework describes a fixed labeling strategy based on tuning
properties, while our theory proposes modulatory labeling adapted to
task structure.

Some tasks, such as the context-dependent sensory evidence
integration experiments byMante and Sussillo19, can achieve flexibility
through the reorganization of late decision stages. We believe these
mechanisms cannot explain flexibility in a low-level sensory dis-
crimination task, such as the one presented here. First, numerical
experiments using our hierarchical model demonstrate that it is par-
ticularly hard to achieve good performance in our task when adapting
the readout alone. In addition, the recurrent dynamics supporting task
switching are trained through extensive optimization19 and although
several proposals exist for the biological implementations of such
learning60, all require vast amounts of task experience. A final dis-
tinction is that our approach does not rely on an explicit context cue:
the task relevance of sensory features is communicated solely through
task feedback. Overall, multiple mechanisms for task-specific readout
are likely to coexist in thebrain andbe engaged in a context dependent
manner.
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Our theory is agnostic to the source of the modulator and the
circuit mechanisms underlying its task-specific targeting, but some
previous studies provide potential clues. Changes in noise correlations
across tasks could arise through either local circuit dynamics27 or top-
down mechanisms24,61, and later propagate to downstream regions.
Given the sparsity of top-down connections relative to the full popu-
lation size (at least, in V1), the reorganization of noise correlations
likely needs to involve local recurrent dynamics, potentially taking
advantage of its topographic organization. If this kind of spatially
localized modulation was indeed an organizing principle of neural
activity, it would predict that flexible decoding is most effective for
tasks relying on sensory features that are localized in some brain area.
Consistent with this idea, Nienborg and Cumming found that V1 neu-
rons’ choice probability was significantly larger for orientation dis-
crimination than for disparity discrimination, suggesting that V1 shows
decision-related activity only if the task features are localized in the
columnar organization37. Moreover, in a task involving higher order
features, Koren et al. found neural variabilitywas high inV4, but not V1,
suggesting that the modulator could target later stages of processing
depending on the task62. The spatial extent over which the presence of
distractors may engage the V1 modulator is unclear, as the task-
relevant stimuli are always placed close to one another in the experi-
ment. However, in the additional dataset of exclusivelyMT recordings,
stimuli were spaced further apart to accommodate the larger RFs, and
the cells still exhibit modulation (Fig. 6). Furthermore, results from
Rabinowitz et al. analyzing neurons in area V4 suggest that similar
modulation is present in tasks with spatially distant distractors.
Regarding the physiological origins of our modulator, one potential
source for low-dimensional broadcast signals could be thalamic nuclei
that integrate sensory and top-down information63,64. Alternatively, it
may be possible to eliminate the need for a copy of the modulator at
the readout stage, by estimating the signal directly from the obser-
vable correlations in population activity.

The lack of a biologically plausible theory of neural decoding is a
fundamental shortcoming in current understanding of neural com-
putation. Resolving the puzzle of how sensory information is routed
through brain regions and extracted to perform specific tasks is critical
for the study of sensory and cognitive dysfunction, including clinical
applications such as brain-computer interfaces (BCI)65. Moreover,
flexible task-dependent information routing poses a fundamental
obstacle for the development of adaptive artificial intelligence sys-
tems. The framework presented here proposes a solution for this
problem, supported by both physiological data and computational
theory.

Methods
Theoretical framework for decoding from a neural population
We simulated a binary discrimination task analogous to the experi-
ment, which requires discriminating stimuli s = 0 from s = 1 on the basis
of the activity of a population of N neurons. Neural responses are
modeled as Poissondrawswith a stimulus-dependentfiring rate, which
is itself modulated by a time-varying noisy signal, mt, shared across
neurons:

kn,tðs,mtÞ∼Poisson λnðsÞ exp cnmt

� �� �
, ð4Þ

where λn(s) is the stimulus response function of the neuron, and t
indexes time within a stimulus presentation. The modulator mt is
1-dimensional i.i.d. Gaussian noisewith zeromean and variance σ2

m; the
nonlinearity expð�Þ ensures that the final firing rate is positive. The
degree of modulation is neuron specific, parametrized by modulation
weights cn, which we take to be proportional to the n-th neuron’s
ability to discriminate the two stimuli, c= j logðλnð1ÞÞ � logðλnð0ÞÞj. We
normalize responses by the expected increase in mean rate due to the
modulator, exp σ2

mc
2
n

2

� �
to compensate for systematic differences in

mean firing rate due tomodulation. The relativemodulator strength is
defined as the ratio betweenmodulator-induced and stimulus-induced
variance.

Given this modulated Poisson encoding model, an ideal observer
decides the stimulus based on the sign of the log odds ratio, which
reduces to comparing a weighted linear combination of the observed
neural spike counts against a modulator-dependent time-varying
threshold (see also ref. 12):

X
n

aðoptÞ
n kn,t > qðoptÞðmtÞ, ð5Þ

with weights

aðoptÞ
n = log λnð1Þ

� �� log λnð0Þ
� �

, ð6Þ

and time-varying threshold

cðoptÞðmtÞ= �
X
n

expðmtcnÞ λnð1Þ � λnð0Þ
� �

: ð7Þ

The modulator-guided heuristic decoder assumes access to the
modulator mt and the neural responses kn,t, and learns approximate
decoding weights based on co-fluctuations of the two within a trial:

��aðMGÞ
n

��= 1
T

X
t

mtkn,t : ð8Þ

The sign of the decoding weight is separately estimated by comparing
responses to the two stimuli (trial feedback; see also ref. 12 and Sup-
plementary Note S10).

The sign-only decoder subtracts the summed responses of two
subpopulations (i.e., a linear decoder with weights ±1):

aðSOÞ
n = sign λnð1Þ � λnð0Þ

� �
: ð9Þ

Decoders were trained on simulated data of 10,000 stimulus pre-
sentations (unless otherwise specified). To equate the amount of data
available to all decoders, the modulator fluctuated at the same time
scale as the stimulus.

Hierarchical information propagation with learned stochastic
modulation
We use a 4-layer artificial neural network that maps an image stimulus
with 3136 pixels into categories, corresponding to 10digits or different
orientations. The first encoding layer includes neurons with fixed
Gabor receptive fields.

Themodulator affects encoding neurons through coupling terms
cn, which modulate the neuron’s responses:

hð0Þ
n,t = exp wð0Þ

n s+mtcn
� �

, ð10Þ

where hð0Þ
n,t is the activity of neuron n in the encoding layer,wð0Þ

n are the
weights from the input to this neuron. Neurons in the top layer include
a multiplicative gain gn ≥0:

hð2Þ
n,t = gn b wð2Þ

n hð1Þ
t +bð2Þ

n

� �
, ð11Þ

where bð2Þ
n is a neuron-specific bias, optimized together with the

weights wð2Þ
n during pre-training. The gain gn is learned using the MG

correlation rule:

gn =
1
T

X
t

mth
ð2Þ
n,tðsÞ, ð12Þ
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where hð2Þ
n,tðsÞ denotes the activity at time t of neuron n in the last

processing layer, in response to stimulus s.
There are three stages of learning. (1) Pre-training optimizes all

network weights to natural image statistics using a digit classification
task (locally placed MNIST digits39) with image presentation and pixel
specific i.i.d. additive Gaussian noise, L1 regularization on the weights
with regularization strength 0.001 optimized for classification accu-
racy on a separate validation dataset of size 10,000 datapoints, while
mt =0 and gn = 1. (2) Learn an orientation discrimination readout from
the neural responses of the fixed pretrained network (10 categories),
when the input consists of single, local oriented gratings at various
positions (14 × 14 positions). (3) Optimize the modulator targeting for
an orientation discrimination task at one fixed task location, in the
presence of distractors. The task involves binary discrimination of two
oriented gratings with distractor gratings at other locations. At the fast
time scale t, the modulator varies with 100 time points per stimulus
presentation, i.i.d.mt ∼Nð0,0:1Þ, which drives gain changes in the last
layer (Eq. (12)). At the slow scale (stimulus presentations)m = 1 and the
coupling strengths cn are optimized by backpropagation.

We compare the performance of our model (“stochastic mod-
ulator”, 2560 parameters for backpropagation, 7840 parameters
including MG gain adjustment) to three controls: (1) full retraining of
all connections (“weight retraining”, 256,690 parameters, with L1
regularization as in pretraining), (2) retraining the decision layer
weights (“decision layer retraining”, 78,410 parameters, with L1 reg-
ularization as in pretraining), (3) all network weights are fixed, but the
modulator is activemt = 1, but constant, and themodulator coupling cn
are optimized for the task (“deterministic modulator”, 2560 para-
meters). In the first two approaches mt = 0 and gn = 1.

Population recordings in V1 and single units from MT
In experiments by Ruff and Cohen21, two adult male rhesus monkeys
performed amotion direction change detection task on one out of 2–3
oriented drifting gratings at high or low contrast on a screen. The task-
relevant grating is indicated by a few instructional stimulus presenta-
tions, selected randomly for each block within the session (3–6 blocks
per session). Most recording sessions analyzed use a 10 by 10 micro-
electrode array (Blackrock Microsystems) in area V1 and a recording
chamber with access to area MT, allowing simultaneous recordings in
the two areas (multiunit activity, details in refs. 21).

Two stimuli werepositioned todrive theMTunit similarly andone
stimulus was positioned outside of theMT RF.Within a block, changes
in one out of the three stimuli had to be reported. In each trial, grating
stimuliflashon (200ms)andoff (200–400ms) at the sameorientation
(repeated, stimulus 0) until a change occurs at an unknown time
(target, stimulus 1). Stimuli vary in both contrast and orientation, at
each presentation, randomly interleaved. We analyzed 67 blocks of 20
recording sessions across two monkeys where the task-relevant sti-
mulus was positioned in the RF of the population (relevant tasks) and
20 blocks of 20 sessionswhere the stimulus outside of the RFwas task-
relevant (control task). Control and relevant task blocks were inter-
leaved within a session. Neural populations may overlap across
sessions.

We analyze 21–109 trials per block, where the monkey either
detected the target (hit) or failed to detect it (miss). We discard trials
where the monkey did not finish the task in a hit or miss and trials
where one of the distractors changed orientation. This yields an
average of 54 trials per block, each with several stimulus repeats and
completed by a target presentation (s = 1, orientation-change).Weonly
include blocks with a minimum of 20 valid trials (77 out of 90 blocks),
as numerical simulations suggest 20 trials to be the minimum neces-
sary to estimate informativeness reliably. Varying this criterion does
not qualitatively change the results. The first stimulus in a trial was
always removed to eliminate adaptation effects30. We only include

units whose response to either one of the stimuli (presented indivi-
dually) was at least 10% larger than baseline, to avoid inclusion of noise
channels. On average 88 units (~90%) in a block showed stimulus
modulation for one of the two stimuli placedwithin theMTRF (min 52,
max 95). We further exclude units with a Fano factor >5 standard
deviations above the population average as this suggested especially
many/diverse neurons in the unit, and firing rates < 1Hz (in total 0–3
units were excluded per block).

MT population recordings
An additional set of sessions (14 sessions with a total of 73 task blocks)
in the same task had either exclusively MT recordings (24 channel
probes) or simultaneous V1 andMTpopulation recordings. The stimuli
were placed to optimally drive the MT units (but not necessarily V1)
with the center-to-center distance of the two adjacent stimuli typically
between 2 and 3 degrees of visual angle (in contrast, in the V1 data the
center-to-center distance was always around 0.5 degrees).

Informativeness of a unit

The informativeness of a unit is quantified by d0 = μ0�μ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5 σ2

0 + σ2
1ð Þ

p
����

���� where
μ0 and σ2

0, μ1 and σ2
1 are the means and variances of a unit’s responses

to the task-relevant stimulus 0 and stimulus 1, respectively. We com-
pute informativeness across all stimulus presentations in behaviorally
correct trials of the same block. Significance is assessed w.r.t. a null-
distribution of d0 values, constructed by comparingmean and variance
of random subsets of stimulus 0 responses ðp<0:01Þ.

SR model
Stimulus effects are modeled with Linear-Nonlinear Poisson (LNP),
taking into account effects of repeated stimulus presentations of sti-
mulus 0, timevarying in 50ms time bins and the effects of contrast (V1)
or contrast+direction (MT). Orientation is not one of the stimulus
dimensions as it does not change during the repeated stimulus pre-
sentation. Responses to target stimulus 1 are used only to compute
informativeness and for decoding. Stimuli are parametrized by a one-
hot encoding vector with 4 time windows during 200ms stimulus
presentation; this yields 8 stimulus dimensions for the contrast-
specific V1 model, with one additional dimension indicating the sti-
mulus drift direction in MT. We add one after-stimulus dimension to
capture potential delayed effects of the stimulus presentation, and an
offset for base firing:

kn,t ∼Poisson exp βnst
� �� � ð13Þ

with spike counts measurements kn. Parameters βn are obtained by
maximizing the log-likelihood of the data, separately for each block:

LðβnÞ=
X
t

�ðβnstÞTkn,t + expð1TβnstÞ+αβn
Tβn: ð14Þ

The extendedMTSRmodel includes the (normalized) V1modulator as
an additional predictive variable.

Modulated SR model
We use the framework of Poisson Linear Dynamical Systems (PLDS,
refs. 23,28), to model the temporal dependencies within a trial while
treating different trials as independent. The modulator terms of the
PLDS are shared across the population and influence each unit’s
activity through a linearmapping functionC (equivalent inmeaning to
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the coupling c in the theory). This joint model has the form:

kt ∼PoissonðexpðCmt +BstÞÞ ð15Þ

mt + 1 =Amt + ϵ

ϵ∼Nð0,QÞ
m0 ∼Nð0,Q0Þ

ð16Þ

where the modulator mt at time t (within a trial across both stimulus
presentation and inter-stimulus windows), is D-dimensional and the
mapping C is N ×D, with latent dimensionality D≪N. Parameter A
implicitly defines the modulator’s time constant (τ = � 1

logðAÞ, for 1d
latents), whileQ andQ0 define the noise covariance of the modulator.
The full model is fitted to data using the EM algorithm with a Laplace
approximation for the E step (see ref. 28); latent dimensionality is
determined by model comparison (D =0–4).

Models validation and comparison
All models are 10-fold cross-validated, withmodel quality evaluated by
(1) log-likelihood of test data (or the corresponding leave one neuron
out predictions from 66 for the PLDS, averaging over latent posterior
uncertainty by sampling), (2) variance explained by the model and (3)
the pseudo-R267 which gives “the fraction of the maximum potential
log-likelihood gain (relative to the null model) achieved by the tested

model”
log L ŷð Þ�log Lð�yÞ
log LðyÞ�log Lð�yÞ , where ŷ is the estimation of the hypothesized

model and �y is the null model. The null of the SR model had no
stimulus-related dimensions with average firing as the only explana-
tory variable. The SR model served as null for the PLDS.

For a fraction of the population the SR model (30% of neurons)
does not improve prediction over a constant rate model, suggesting
that those neurons are not modulated by the stimulus. As expected,
informative neurons show significant improvements in fit quality from
the SR model relative to the null (only 5% of informative neurons do
not show improvements).

Modulator targeting
For Fig. 2G, we computed the rank of each modulator coupling in its
own block-specific population and compare the distribution of sig-
nificantly informative to uninformative units. In Fig. 2H–J, we used
partial correlations to test for a relationship between unit’s modulator
coupling and task-informativeness in each block not explained by
differences in overall firing rate. Specifically, we report the Spearman
correlation between residual informativeness (after linearly regressing
firing rate) and modulator coupling.

Modulator strength
When assessing the overall modulation strength, both the mapping C
and the modulator variance need to be considered jointly (as scaling
up the mapping and decreasing the variance leaves results unchan-
ged).We quantify the overallmodulator strength as the varianceof the

modulator multiplied by the coupling norm
ffiffiffiffiffiffiffiffiffiffiffiffiffiP

nC
2
n

q
. The relative

modulation strength is obtained by comparing to the stimulus drive,
given by∑n,iVar(siBn,i) for eachneuron n, where i indicates the stimulus
dimension.

Linking behavioral choice to neural activity
We compute the difference in target-response between trials with
correct target detection and those where the monkey missed the tar-

get, normalized by their variance μ1�μ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5�ðσ2

1 +σ
2
2Þ

p
����

���� where μ1,2 and σ2
1,2 are

the means and variances of activity corresponding to the two choices,

respectively. This provides an estimate of how involved a unit was in
the choice of the animal. To asses the relationship with modulator
strengthweuse apartial correlationwith two covariates,firing rate and
informativeness (by multivariate linear regression).

Decoding
We train each decoder on data that includes a balanced number of
stimulus 0/1 presentations at high and low contrast, varying the size of
the training set from the minimum 4 (one for each stimulus-contrast
pair) to all available data (32 blocks, analyzed individually, each with
18–178 stimulus presentations, average 90). Decoder performance is
tested on held out data. The optimal decoder uses maximum like-
lihood estimates (as in theory, with a 200ms decoding window), but
based on estimated instead of ground truth parameters. It uses a
constant threshold which is optimized on the training data. This is
known to be suboptimal (Eq. (2)), but ismore robust to the noise in the
data and therefore better in the limited data regime. The modulator-
guided (MG) decoder estimates readout weights by taking the inner
product between the unit’s activity and the modulator values (Eq. (8),
using 50ms bins), with signs determined from trial-level feedback, and
a constant threshold. Logistic regression learning used L2 regulariza-
tion and a regularization strength of α = 1 optimized for performance
accuracy on the held-out data (10% of total available stimulus pre-
sentations in each block)68. SVM decoding used the off-the-shelf linear
kernel SVM implementation from the scikit-learn library68.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data used for the analysis described in Figs. 1, 2, 4, and 6 has
previously been published in ref. 20 and is available upon reasonable
request. An example dataset to illustrate fitting of the PLDS model is
available on figshare https://doi.org/10.6084/m9.figshare.
24299131. Source data are provided with this paper.

Code availability
The analysis was done in python and the following packages were
used: numpy 1.26.069, matplotlib 3.7.270, scikit-learn 0.21.368, pandas
2.0.371, SciPy 1.3.172, pickle 0.7.573, Pytorch 2.0.174. The code for repro-
ducing themodeling results in Figs. 3 and 5 and Supplementary Fig. S4
is publicly available on https://github.com/CarolineHaimerl27/
modulator_guided_decoding.
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