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SUMMARY

Neurons in visual cortex vary in their orientation
selectivity. We measured responses of V1 and V2
cells to orientation mixtures and fit them with a
model whose stimulus selectivity arises from the
combined effects of filtering, suppression, and
response nonlinearity. The model explains the diver-
sity of orientation selectivity with neuron-to-neuron
variability in all three mechanisms, of which vari-
ability in the orientation bandwidth of linear filtering
is the most important. The model also accounts for
the cells’ diversity of spatial frequency selectivity.
Tuning diversity is matched to the needs of visual
encoding. The orientation content found in natural
scenes is diverse, and neurons with different selec-
tivities are adapted to different stimulus configu-
rations. Single orientations are better encoded by
highly selective neurons, while orientation mixtures
are better encoded by less selective neurons. A
diverse population of neurons therefore provides
better overall discrimination capabilities for natural
images than any homogeneous population.

INTRODUCTION

Orientation selectivity is the best-known property of neurons in
primary visual cortex (Hubel andWiesel, 1959). But the precision
of this selectivity is diverse: some neurons are highly selective
for orientation, while others are more broadly tuned (Rose and
Blakemore, 1974; Schiller et al., 1976;Ringach et al., 2002; Scholl
et al., 2013). This diversity is maintained in downstream cortical
areas (Albright 1984; Levitt et al., 1994).Many studies haveexam-
ined the origins of orientation selectivity, andmany theories have
been proposed to explain its functional role, but the origin and
function of its diversity has received relatively little attention.
Orientation selectivity arises from the organization of excit-

atory LGN input (Hubel and Wiesel, 1962; Chapman et al.,
1991; Reid and Alonso, 1995; Jin et al., 2011). It is further
sculpted by intracortical inhibitory circuits (Sillito, 1975; Ringach
et al., 1997; Xing et al., 2011) and by the nonlinear transduction of
membrane voltage to spiking activity (Carandini and Ferster,
2000). To dissociate the contributions of these different mecha-

nisms, wemeasured responses to mixture stimuli that vary in the
distribution of their orientation content. We fit these responses
with a linear–nonlinear-linear–nonlinear (LN-LN) cascade model,
which has its roots in the work of Hubel and Wiesel (1962) and
has been refined by many others (Movshon et al., 1978; Heeger,
1992; Carandini et al., 1997; Touryan et al., 2002; Sharpee et al.,
2004; Rust et al., 2005; Vintch et al., 2015). The initial linear
filtering stage creates basic orientation tuning, which is then
modified by subsequent nonlinearities that capture the effects
of untuned suppression and spike threshold. The model pro-
vides a good account of the diverse orientation selectivity of
V1 and V2 cells. Diversity arises from neuron-to-neuron vari-
ability in all three model components, but the primary source is
the initial filtering stage.
Functionally, this diversity permits the efficient encoding of

different kinds of stimulus information. Narrowly tuned neurons
transmit more information about uniquely oriented stimuli, while
broadly tuned neurons transmit more information about orienta-
tion mixtures. This specialization may be an adaptation to the
diverse orientation content found in the natural environment.
Specifically, we show that a population of neurons with mixed
orientation selectivity provides better discrimination capabilities
for a set of natural images than homogeneous populations of any
particular selectivity. These results suggest that tuning diversity
originates from variations in the organization of excitatory inputs
and improves the ability of the cortex to encode the visual infor-
mation in nature.

RESULTS

Diversity of Orientation Selectivity in V1 and V2
The diversity of orientation selectivity in visual cortex can be
appreciated by considering the responses of V1 cells to sinu-
soidal gratings drifting in different directions, as shown for three
example neurons in Figure 1A. For each example, the mean
response varied with drift direction. Some neurons responded
exclusively to a narrow range of stimulus orientations, but others
were less selective. The tuningmay be conveniently summarized
with an orientation selectivity index (OSI)

OSI=

!!!
PJ

j =1Rjei2qj

!!!
PJ

j = 1

!!Rj

!! ;

where qj is the orientation and Rj is the response magnitude (with
baseline subtracted) for the jth stimulus (Leventhal et al., 1995).
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This index varies between 0 and 1 and does not depend on
direction selectivity. Orientation selectivity is broadly distributed
over the range from 0 to 1 for both simple and complex cells (Fig-
ures 1B and 1C), with a slightly larger median in V2 than in V1
(p = 0.047, Wilcoxon rank-sum test).

To examine the computations underlying this diversity of
orientation selectivity, we used an LN-LN cascade model (Fig-
ure 1D). In the model, the stimulus is processed in two chan-
nels, each consisting of a linear filter—one orientation selective
and one untuned—followed by rectification. The oriented filters
were spatial derivatives of a 2D Gaussian (Figure 1F; see also

Figure S4). The channel responses are subtracted, subjected
to divisive normalization, and transformed with an instantaneous
response nonlinearity whose output drives the firing rate of an
inhomogeneous Poisson process.
In this model, tuning for orientation arises from the combined

action of three different model components. To illustrate this,
we simulated tuning curves under changes of each of these
components (Figure 1E).
First, changes in the orientation selectivity of the linear filter

can cause corresponding changes in the overall model orien-
tation tuning (Figure 1E, left). The linear filters in our model are
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Figure 1. Diversity in Orientation Selectivity
(A) Responses of three example V1 neurons, stimulated with gratings drifting in different directions. Responses were computed by counting spikes in a 1,000 ms

window following response onset. Dashed lines show baseline activity.

(B) Distribution of OSI (oneminus normalized circular variance of tuning curve) for a population of V1 simple (white) and complex (black) cells. Cells were classified

based on the temporal modulation of the response to the preferred stimulus.

(C) Distribution of orientation selectivity for cells in V2.

(D) The LN-LNmodel. The stimulus is processed in two parallel channels: one orientation-selective (top left) and one untuned (bottom left). Within each channel, a

linear filtering stage is followed by rectification. The channel responses are combined linearly andmodified by a divisive gain control set by the pooled response of

other neurons. The normalized response is passed through a nonlinearity to obtain a firing rate, which drives an inhomogeneous Poisson process.

(E) Orientation tuning for three families of model neurons. Within each family, one model component that controls orientation selectivity was varied (left: filter

selectivity; middle: sign and strength of the untuned component; right: nonlinearity exponent).

(F) Example Gaussian derivative filters, with different derivative order (left to right: 1, 2, 4) and aspect ratio (bottom to top: 1, 2, 4).

(G and H) Orientation tuning and spatial frequency tuning of the corresponding example filters shown in (F).
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derivatives of a Gaussian and are parameterized by the aspect
ratio of the Gaussian and the derivative order (Figure 1F). Both
parameters have an effect on the orientation selectivity (Fig-
ure 1G). The latter parameter also governs spatial frequency
selectivity—the more cycles of modulation within the receptive
field, the narrower the spatial frequency selectivity (Figure 1H)
(Tolhurst and Thompson, 1981).
Second, the nonlinear function that is applied to the untuned

component can either increase or decrease overall orientation
tuning specificity relative to that of the linear filter (Figure 1E,mid-
dle) without changing receptive field structure. Specifically, over-
all tuning width depends on the baseline value of the untuned
component, which (depending on its sign) either facilitates or
suppresses responses to non-optimal stimuli. Untuned suppres-
sion can sharpen orientation tuning (Xing et al., 2005) while un-
tuned facilitation can broaden it.
Third, changes in the final response (transduction) nonlinearity

have a direct effect on the model orientation tuning (Figure 1E,
right), again without changing the receptive field structure. For
our model, which uses a power law nonlinearity, exponents
larger than one yield an accelerating nonlinearity that sharpens
model orientation tuning, whereas smaller exponents broaden
it. Since intracellular recordings indicate that spike threshold
exclusively sharpens tuning (Carandini and Ferster, 2000; Priebe
et al., 2004), we constrain our model fits to use exponents
greater than one.
Finally, it is worth noting that divisive normalization in our

model does not alter stimulus selectivity but simply rescales re-
sponses, since we assume a normalization signal that is untuned
for orientation (Heeger, 1992).

Modeling Responses to Orientation Mixtures
How can the contributions of these mechanisms to orientation
selectivity be isolated? The initial filter is linear and must obey
the principle of superposition: the response to a sum of stimuli
is equal to the sum of responses to the individual stimuli. The
other two model components are nonlinear and will cause
deviations from superposition. Responses to linear mixtures of
oriented stimuli therefore offer a way to separate the effects
of linear and nonlinear mechanisms. To distinguish the effects
of the nonlinear model components, we consider their operation
in detail. Inhibition and nonlinear transduction both refine selec-
tivity by vetoing weak filter responses. But a crucial difference is
that the vetoing power of inhibitory mechanisms scales with
stimulus contrast, while a threshold imposes a contrast-inde-
pendent veto. Responses to mixture stimuli that vary in contrast
therefore offer a way to disentangle the specific contributions of
excitation, inhibition, and transduction to orientation selectivity.
For a subset of our cells, we measured responses to mixtures

of incoherently drifting sinusoidal gratings whose orientations
were spaced at 20! intervals and whose orientation-dependent
contrasts followed a circular Gaussian profile centered on a
particular orientation (spread 0!–55!, Figure 2A). We presented
each stimulus at 16 center orientations and at high and low total
contrast (100%and 33%, respectively). To fully identify the linear
filter (Figure 1F), we also characterized spatial frequency selec-
tivity by measuring responses to a collection of high-contrast
single gratings of different spatial frequency presented at the

preferred orientation. For each cell, we fit the LN-LN model to
the full set of responses to the orientation mixtures and single
component gratings, adjusting model parameters to maximize
the likelihood under a modulated Poisson spiking model (Goris
et al., 2014) (see Experimental Procedures). We verified that
this set of measurements yields data that are sufficiently rich to
unambiguously identify the different model components (see
Figure S5).
The mixture stimuli revealed differences between cells that

were not evident from grating responses alone. Consider the
actual and predicted responses for two example V1 cells (Fig-
ure 2B). These neurons had nearly identical tuning when stimu-
lated with single gratings (OSI = 0.94 for neuron 1 and 0.95 for
neuron 2). But their responses to mixture stimuli differed mark-
edly. Neuron 1 responded selectively to all high-contrast mixture
stimuli, though its response magnitude fell with stimulus spread.
In contrast, neuron 2 responded only to stimuli with spread of 20!

or less (Figure 2B). Moreover, reducing the contrast of a single
grating to 33% rescaled the responses of neuron 1 but silenced
neuron 2 (Figure 2B). The fitted model (solid colored lines) accu-
rately captures the behaviors of both neurons and explains why
they differ (Figures 2C and 2D): neuron 1’s model has a more
selective filter than neuron 2’s (filter OSI: 0.86 versus 0.47), but
weaker inhibition (gain untuned channel: 0.05 versus –0.48)
and a slightly milder response nonlinearity (power law exponent:
3.8 versus 4.6). These differences in mechanism are also re-
flected in the spatial frequency tuning, which was narrow for
neuron 1 but broad for neuron 2 (Figure 2E). Neuron 1’s model
fit is rather extreme in the selectivity of its filter; neuron 2’s fit is
rather extreme in the strength of untuned suppression. Addi-
tional example neurons and model fits are shown in Figure S1.
The fitted model predicts tuning curves for the different

mixture stimuli that are in excellent agreement with themeasured
responses in V1 (r = 0.93, median correlation between the pre-
dicted and measured mean spike counts for hold-out data in a
10-fold cross-validation analysis; see Experimental Procedures)
and V2 (r = 0.88). Although small, this difference is significant
(p = 0.0013, Wilcoxon rank-sum test), indicating that the model
better captures V1 responses than V2 responses. To assess
the model’s goodness of fit more explicitly, we compared the
log-probability of the data with a simulated reference distribution
(see Experimental Procedures). This test indicates the degree to
which the model-predicted spike count distributions capture the
observed responses on a trial-by-trial basis. For 73 of 80 neu-
rons, the model fit cannot be rejected at a significance level of
5%. We elected not to remove the remaining cells from the
data-set, although doing so does not affect any of the following
results.

Contributions of Different Mechanisms to Selectivity
The full model explains 86% (V1) and 55% (V2) of the diversity
of orientation selectivity across the population (Figure 3A). Our
measure of explained diversity is analogous to explained vari-
ance in a regressionmodel, but it captures both the overall corre-
lation between observed and predicted values of OSI and the
systematic errors in the prediction (see Experimental Proce-
dures). We wondered how much each recovered model compo-
nent contributed to the tuning diversity of the population. We
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examined the relationship between each of the three compo-
nents—the selectivity of the filter, the gain of the untuned compo-
nent, and the steepness of transduction—and the observed
orientation selectivity.

Recall Figure 1E, in which we illustrated three families of tuning
curves created by changing different mechanisms. In Figure 3B,
we plot three parametric families showing the effects of these
manipulations. The upper curves each pass through points cor-
responding to the OSI values of the tuning curves in Figure 1E.
The other curves in each panel of Figure 3B show the effects
of changing the values of the unvaried mechanisms (over the
range of values fit to the data), revealing the complex interdepen-
dence of the effects of these parameters on the OSI.

Now compare these patterns with the relationships between
the three model components and the observed OSI (Figure 3C).
In V1 (upper panels), filter selectivity and orientation selectivity
are well correlated (r = 0.59, p < 0.001, Spearman correlation).
But the other two model components also correlate with
OSI: r = –0.55 (p < 0.001) for the untuned component, and
r = 0.46 (p < 0.001) for the response exponent. Results from V2

(lower panels) largely recapitulate those from V1: variation in
the filter stage has the strongest association with tuning diver-
sity (r = 0.52, p < 0.001), followed by the untuned component
(r = –0.45, p < 0.01), and the response nonlinearity (r = 0.32,
p = 0.051).
Though the three components have similar correlations with

OSI in V1 and V2, their actions are not all identical. In V1, the un-
tuned component excites most neurons and therefore reduces
orientation selectivity (0.067 ± 0.033, mean gain of untuned
component ± SEM); in V2, it mostly inhibits responses (–0.10 ±
0.044) and consequently sharpens tuning. This difference re-
mains significant when controlling for the different distributions
of orientation selectivity in these samples of V1 and V2 neurons
(ANCOVA, F1,76 = 6.5, p = 0.013).
To compare the explanatory power of each component, we fit

restricted versions of themodel in which only one parameter was
allowed to vary, while the two other parameters were held fixed
at the median of values estimated across all neurons under the
full model (filter aspect ratio = 2.1, filter derivative order = 0.75,
gain untuned component = 0, response exponent = 2.15).

A B

C ED

Figure 2. Characterization of the LN-LN Cascade Model
(A) Each stimulus consisted of a windowed sum of drifting sinusoidal gratings, with drift directions drawn from one of five unimodal distributions (colored his-

tograms), centered around a randomly selected primary direction. All gratings had the same spatial frequency, optimized for the cell. An example movie frame is

shown, corresponding to each distribution.

(B) Measured and predicted responses of two example V1 neurons plotted against modal stimulus direction for high- and low-contrast stimuli. Colored points

indicate mean spike counts, colored lines indicate predicted responses of the fitted model. As a reference, thin gray lines reproduce the model responses to a

single high-contrast grating.

(C and D) Recovered model components for the two example neurons. Left: best-fitting Gaussian derivative filter (white dashed line illustrates the stimulus size).

Middle: orientation tuning of the filter (dashed black line) and gain of the untuned component (thick red line). Right: response nonlinearity.

(E) Comparison of model-predicted spatial frequency tuning curves to data, for both example neurons.
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Consider the goodness of fit of the different models (Figure 4A).
The full model (ordinate) predicts the measured tuning curves for
the different mixture stimuli better than any of the restricted
models (top row). This means that tuning diversity in V1 and V2
originate from multiple sources. Among the restricted models,
the one in which the filter width is allowed to vary (abscissa)
has the highest predictive accuracy (left column). This model is
also the one that best explains the measured diversity in orienta-

tion selectivity (Figure 4B), which suggests that variability in
the filtering stage is the main source of tuning diversity. The
restricted model in which the untuned component is allowed to
vary comes close in performance to the best restricted model
in V1 (81.6% versus 87% explained diversity) but not in V2
(33.7% versus 55.5%). This likely results from the different ac-
tions of the untuned component in the two areas (Figure 3C).
We conclude that the tuning diversity in visual cortex is due to
multiple factors, of which the most important is variability in the
filtering stage.

Model-Based Analysis of Spatial Frequency Selectivity
In the LN-LN model, selectivity for orientation and spatial fre-
quency both emerge from a linear filter (Figures 1F–1H), and
both are modified by the untuned component and the response
nonlinearity. Cortical neurons differ in the sharpness of their
spatial frequency tuning (Figure 2E) (De Valois et al., 1982; Xing
et al., 2004). Our experiments primarily probed orientation tun-
ing, but we also measured spatial frequency tuning, and we
wondered whether our model could also account for its diversity.
For single gratings, the spatial frequency tuning of the unre-
stricted model was strongly correlated with the measured tuning
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(C) Orientation selectivity plotted against filter selectivity (left), the untuned
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(top) and V2 (bottom) neurons. Open circles indicate simple cells, filled circles
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(A) Comparison of fit quality of the full model against various restricted models,
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captured with the correlation of model-predicted and measured responses for
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(B) Fraction of tuning diversity in V1 (dark gray) and V2 (light gray) populations

that is explained by full and restricted models. Explained diversity expresses

the fraction of across-neuron variance in OSI that is accounted for by the

model. It is bounded below 100% because neural responses are variable (see

Experimental Procedures). Confidence intervals, where visible, illustrate the

inter-quartile-range of the fraction of explained diversity. n.s., not significant.

*p < 0.05; **p < 0.01, ***p < 0.001 (Wilcoxon signed-rank test).
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in V1 (r = 0.95, median correlation between the predicted and
measured mean spike counts) and V2 (r = 0.92, Figure 5A). The
spatial frequency bandwidth at half height computed from
the unrestricted model therefore reasonably approximates the
observed bandwidth in V1 (Figure 5B, 61.5% of diversity ex-
plained). The model gives a poorer account of V2 diversity
(30% explained), in part due to noisy data (the level of explain-
able diversity in V2 is low, as indicated by the reduced bound
in Figure 5C). By analogywith the procedurewe described earlier
for orientation, we also asked how well restricted versions of the
model account for spatial frequency tuning diversity. In V1 and
V2, the restricted models all explain a similar fraction of the
measured diversity (Figure 5C). In V1, restricted models explain
less diversity than the full model (Figure 5C), suggesting that dif-
ferences in spatial frequency tuning arise from multiple sources.
With the caveat that we only made measurements with single
gratings and not spatial frequency mixtures, we conclude that
spatial frequency tuning diversity in visual cortex arises from
the same factors that create diversity in the orientation domain.

As others have previously reported, selectivity for both orien-
tation and spatial frequency are also related to other elements
of receptive field structure, such as preferred spatial frequency,
size, and phase sensitivity (‘‘simple’’ versus ‘‘complex’’ cells)
(De Valois et al., 1982; Xing et al., 2004). In our sample, the stron-
gest of these effects—and the only one to achieve statistical
significance—was the relationship between orientation selec-
tivity and preferred spatial frequency. Interestingly, the variation
in orientation selectivity with preferred spatial frequency seems
to result from two distinct mechanisms, one captured in the
model by its linear filter and one captured by the transduction
nonlinearity (Figure S2).

Quantifying Orientation Information Carried by
Individual Neurons
Neurons with different degrees of selectivity may be adapted
to signal information from particular types of image content.
Consider the responses of a broadly tuned example neuron to
stimuli with different orientation dispersion (Figure 6A). This cell
responded less selectively but more robustly to orientation mix-
tures than the narrowly tuned example cells shown in Figure 2B.
This suggests that there exists a trade-off between selectivity
and robustness that might enable less selective neurons to
transmit more information about orientation mixtures.

To quantify how much orientation information individual
neurons transmit, we estimated Fisher information from the

observed responses (Figure 6A; see Experimental Procedures).
This statistic expresses the accuracy with which stimulus orien-
tations are represented and provides a lower bound on discrim-
ination thresholds of an observer whose decisions are based
solely on this neuron (Seriès et al., 2009). We computed how
much information each neuron carries, taking into account the
number of neurons needed to cover the entire orientation domain
(see Experimental Procedures). We refer to this statistic as Fisher
information per neuron (FI/N).
The relationship between FI/N and orientation selectivity is

shown in Figure 6B for five values of orientation dispersion. For
simple gratings (left, red), as one might expect, FI/N increases
with selectivity, so that more selective neurons convey more in-
formation about orientation (r = 0.41, p < 0.001). For broadly
dispersed stimuli (right, purple), however, the relationship is
reversed—the less selective neurons carry more information
about orientation (r = –0.30, p = 0.006). The reasons are twofold.
First, the response of highly selective neurons falls when the
orientation distribution is broad (Figure 2B). Less selective neu-
rons, on the other hand, remain responsive and more or less
equally selective for all values of orientation dispersion (Fig-
ure 6A). Second, narrow populations require more cells to cover
the orientation domain than broad populations. For broadly
dispersed stimuli, the Fisher information for narrow and broad
populations is similar, but the FI/N decreases with orientation
selectivity. We conclude that narrowly tuned neurons transmit
more information about the orientation of simple oriented stimuli,
while broadly tuned neurons transmit more information about
orientation mixtures.

Diversity of Orientation Information in the Natural
Environment
What perceptual role might tuning diversity serve? Consider the
distribution of image energy across the Fourier spectrum in small
image patches sampled from artificial and natural stimuli (Fig-
ures 7A and 7B). For a sine wave grating, all energy is concen-
trated around a single orientation; for a random noise sample,
the energy is typically distributed across many orientations (Fig-
ure 7B). In the natural environment, local image energy is some-
times concentrated at a single orientation (e.g., at the edge of an
object) but is often more broadly distributed (e.g., at a corner or
an isolated bright or dark spot). To characterize this with a single
number, we computed an orientation concentration index (OCI)
using the same formula we used to measure orientation selec-
tivity for cortical neurons. Across a large number of local patches
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of the correlation of the model-generated and the

measured spatial frequency tuning curves, plotted

on a Fisher transformed axis.

(B) Measured spatial frequency bandwidth (full
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intervals, where visible, illustrate the inter-quartile-range.
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drawn from natural images, orientation concentration is approx-
imately uniformly distributed and strikingly similar to the distribu-
tion of orientation selectivity in V1 (Figure 7C).

Tuning Diversity and Visual Coding
Is the similarity between the diversity of the visual environment
and the tuning of neurons in primary visual cortex mere coinci-
dence? Theoretical studies have shown that natural scenes
can be described with sets of elementary functions whose linear
representation of image information is statistically independent
(Bell and Sejnowski, 1997) and sparse (Olshausen and Field,
1996); these functions are often oriented and resemble cortical
simple cell receptive fields. These analyses do not, however,
predict filters with the same kind of diversity evident in biological
measurements (Ringach, 2002). Perhaps tuning diversity gives a
coding advantage that is not revealed by maximizing indepen-
dence or sparseness but relates instead to the perceptual useful-
ness of the image representation.
We asked how well differently composed populations of

model neurons represent differences in local image patches
drawn from the same three stimulus families (Figure 8A). Our syn-
thetic populations were composed of LNP neurons and equated
with respect to the number of neurons (45 neurons), total spike
rate (average of ten spikes per neuron per image), the distribution
of preferred orientation (uniform), and the response nonlinearity
(a power law with an exponent of 3.3, the mean value found in
a study on the nonlinear properties of spike threshold) (Priebe
et al., 2004). The populations consisted of neurons that varied
in orientation bandwidth; we created this variation by changing
the linear filter (Figure 8B). We considered three homogeneous

populations of 45 broad, medium, or narrowly tuned filters
and one diverse population with 15 broad, 15 medium, and 15
narrowly tuned filters. The images to be discriminated were a
randomly sampled patch from a particular image family (grat-
ings, noise, natural images) and its nearest neighbor in the
population of random samples of that family (n #10,000). We
estimated discriminability between these stimuli from the square
root of Fisher information, a generalization of the d0 statistic used
in signal detection theory (see Experimental Procedures).
As expected, the allocation of resources (neurons and spikes)

affects the efficiency of visual coding for different stimulus
families. For example, discrimination of sine wave gratings is
best supported by a homogeneous population of narrowly tuned
neurons (Figure 8B). This makes sense given that the tuning
properties of this population bestmatch the high degree of orien-
tation concentration characteristic of grating stimuli (Figure 7C).
Likewise, discrimination of noise images is better supported by a
homogeneous population of broadly tuned neurons than by a
population of narrowly tuned neurons (Figure 8B). For the latter
task, the performance of the diverse population is similar to
the best homogeneous population (Figure 8B). But for natural
images, the diverse population outperforms all homogenous
populations (Figure 8B).

DISCUSSION

Cortical neurons differ substantially in the precision of their orien-
tation tuning, and we have undertaken a systematic exploration
of the origins and consequences of this diversity. Our results
are expressed in terms of a functional model of a kind that has

A

B

Figure 6. Tuning Diversity and Orientation Coding
(A) Firing rate (bottom) and Fisher information (top) are plotted against stimulus orientation for an example V2 neuron, for stimulus ensembles with five different

dispersion values (s). Only data from the high-contrast conditions are shown. Top: dashed lines indicate mean Fisher information. Bottom: colored points are

data; colored lines are model-predicted responses. For reference, the thin gray line reproduces the model responses to a single grating.

(B) Fisher information per neuron is plotted against grating orientation selectivity for all V1 and V2 neurons. Black lines show the best-fitting linear relationship. The

three example cells from Figures 2 and 6A are highlighted.
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proved capable of explaining much of the response behavior of
cortical cells (Priebe and Ferster, 2012), consisting of a tuned
linear filter, an untuned input, and an output nonlinearity. Inter-
preting neuronal responses with this model leads to the conclu-
sion that tuning diversity arises from neuron-to-neuron variability
in each of these components, with the most important role
ascribed to variability in the linear filter.

All models are approximate (Box, 1976). Moreover, the
mapping from model components to underlying biophysical
mechanism is uncertain, and speculations about specific circuit
elements are necessarily tentative. There is some reason to
believe that the filter stage of our model is instantiated by the
aggregated feedforward, excitatory input (Chapman et al.,
1991; Reid and Alonso, 1995; Jin et al., 2011). More complex in-
terpretations are possible, because recurrent cortical networks
may also act as linear filters (Wielaard et al., 2001; Tao et al.,
2004), and there is some evidence that the required pattern of
specific cortico-cortical connections exists (Nauhaus et al.,
2009; Cossell et al., 2015). As we have noted, the mechanistic
interpretation of the untuned component depends on its sign,
because it can signify either a broad pool of excitatory input
or an untuned suppression of the kind described by Xing et al.
(2005). We must also acknowledge that our decision to make
this model component perfectly untuned is open to question,
especially in light of experimental evidence for tuned suppres-
sion (Xing et al., 2005). We elected to use untuned suppression
in part because the added complexity was not needed for the
model to fit our data (73 of our 80 cells pass an absolute good-
ness of fit test; see Results) and in part because the key elements
of our findings are not likely to be sensitive to the exact choice of
model architecture. The essence of a functional model is to find
an economical formulation that explains the data, and our model
meets that test. Perhapsmost straightforward, the output nonlin-

earity presumably captures the final relationship between excita-
tion and firing rate (Priebe and Ferster, 2012).
The origins of orientation selectivity remain a topic of vigorous

debate. At issue is the question of whether cortical neurons
derive their selectivity from simple feedforward filtering or
from a more complex feedback process that encompasses in-
tracortical inhibition. Our work offers a novel perspective by
asking, in functional terms, what causes the selectivity of cells
to differ from one another? We find that the dominant source
of variation is the linear filter in our model. Indeed, a restricted
model in which only the linear filter varied gave a good account
of tuning diversity. Our results thus support the view that neurons
primarily derive their stimulus selectivity from the way they
gather their inputs.
The model was designed to account for orientation selectivity

but also provides a natural account of variations from neuron
to neuron in spatial frequency tuning. Orientation selectivity cor-
relates with spatial frequency selectivity and with spatial fre-
quency preference (De Valois et al., 1982; Xing et al., 2004)
(see also Figure S2). Our experiments were designed to probe
orientation selectivity. Nevertheless, our results and our model
suggest that the linear filter and the output nonlinearity jointly
drive the relationship between preferred spatial frequency and
orientation selectivity (see Supplemental Information). Future
work could investigate this in more detail by fitting the model
to responses elicited by both orientation and spatial frequency
mixtures.
Tuning diversity is not limited to V1 (Albright 1984; Levitt et al.,

1994). It seems likely that V2 largely inherits this diversity from its
V1 inputs. We compared the recovered distribution of model
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components in V1 and V2 and found them similar, except for the
untuned component (Figure 3C). In V1, the untuned component
on average has an excitatory role, reflecting the fact that many
neurons respond above baseline to all orientations. In V2, the un-
tuned component is on average inhibitory. A straightforward
interpretation is that the untuned component of early cortical
response is gradually removed by inhibitory cortical mecha-
nisms, which also explains the slight increase in orientation
selectivity from V1 to V2.
Tuning diversity is not an inescapable consequence of

selectivity. For example, directional selectivity in area MT is
remarkably uniform (Zeki, 1974; Maunsell and Van Essen,
1983; Albright, 1984). This raises the question of why diversity
exists. Previous work suggests that diversity can be used to
overcome the harmful effects of collective noise fluctuations in
neural populations, an advantage for stimulus encoding by neu-
ral populations (Shamir and Sompolinsky, 2006). Other con-
straints and objectives may also contribute to the diversity of
V1 selectivity. For example, V1 computations are presumably
constrained by the need to minimize cortical wiring and meta-
bolic cost (Attwell and Laughlin, 2001; Chklovskii et al., 2002).
In addition, V1 neurons encode variables other than orientation,
such as spatial frequency, speed, spatial position, phase, and
size. Simultaneous encoding of these attributes might interact
with the representation of orientation information and might
thus contribute to its diversity.
Here we have presented evidence that tuning diversity in

visual cortex supports efficient sensory coding for a variety of
inputs. Stimuli containing a single orientation are better encoded
by highly selective neurons, while orientation mixtures are better
encoded by less selective neurons (Figure 6B). Our synthetic
stimuli mirror a neglected feature of the visual environment—
small patches of natural images exhibit notable diversity in
orientation content (Figure 7). We therefore asked whether the
diversity we measured in our neural populations confers any
advantage and discovered that populations of neurons with
dispersed tuning indeed convey more information about the
local content of natural images than uniform populations (Fig-
ure 8C). Our results suggest that diverse sensory mechanisms
are the brain’s solution to the challenge of processing informa-
tion from a diverse sensory world.
There is an ongoing debate about the use of natural images

to probe mechanism in visual neuroscience. Our understanding
of visual function is expressed in the models we formulate,
and developing those models in an efficient and principled
manner requires carefully designed and well-controlled stimuli,
yet the ultimate test of such models is their ability to predict
responses in the natural world (Felsen and Dan, 2005; Rust
and Movshon, 2005). Here, we used well-specified artificial
stimuli, tailored to each cell, to answer a specific question
about neural computation—something we could not have
achieved easily with natural stimuli. Then we used natural stim-
uli to determine how this neural computation plays against the
richness of the natural world—something we could not have
done with artificial stimuli. This combination of artificial and
natural stimuli offers an effective way to study the brain in its
natural context through the dynamic interplay of theory and
experiment.

EXPERIMENTAL PROCEDURES

Surgical Preparation
We recorded from six anesthetized, paralyzed, adult macaque monkeys (one

female Macaca nemestrina and five male M. cynomolgus). Surgical prepara-

tion of animals and single-unit recordings have been reported in detail previ-

ously (Cavanaugh et al., 2002). Briefly, experiments typically lasted 5 to

6 days, during which we maintained anesthesia with infusion of sufentanil cit-

rate (6–30 mg kg"1 h"1) and paralysis with infusion of vecuronium bromide

(Norcuron; 0.1 mg kg"1 h"1) in isotonic dextrose-Normosol solution. Wemoni-

tored vital signs (heart rate, blood pressure, lung pressure, end-tidal pCO2,

EEG, body temperature, urine flow, and osmolarity) and maintained them

within appropriate physiological ranges. Pupils were dilated with topical atro-

pine. The eyes were protected with gas-permeable contact lenses and re-

fracted with supplementary lenses chosen through direct ophthalmoscopy.

All procedures were conducted in compliance with the NIH Guide for the

Care and Use of Laboratory Animals and with the approval of the New York

University Animal Welfare Committee.

Unit Recording
Extracellular recordings were made with quartz-platinum-tungsten microelec-

trodes (Thomas Recording), advanced mechanically into the brain through a

craniotomy and small durotomy. We distinguished V1 from V2 on the basis of

depth from the cortical surface and changes in the receptive field location of

the recordedunits.Wemade recordings fromeverysingleunitwitha spikewave-

form that rose sufficiently above noise to be isolated. Stimuli were presented in

random order. Data are reported from every unit for which isolation could be

maintained for at least three stimulus repetitions (median: ten repetitions).

Visual Stimulation
We presented visual stimuli on a gamma-corrected CRT monitor (Eizo T966;

mean luminance, 33 cd/m2) at a resolution of 1,280 3 960 with a refresh rate

of 120 Hz. Stimuli were presented using Expo software (http://corevision.

cns.nyu.edu). For each isolated unit, we first determined eye dominance and

occluded the non-preferred eye.We then presented suitably vignetted sinusoi-

dal grating stimuli to map each cell’s receptive field and determined its

preferred size and drift rate. We characterized neuronal selectivity for spatial

frequency. Thereafter, we presented the mixture stimuli at optimal spatial fre-

quency in a window of the preferred size. Stimuli were presented in random

order, each for 1,000 ms interleaved with a blank screen for 500 ms.

We generated mixture stimuli by summing nine sinusoidal gratings whose

orientations were spaced at 20! intervals and whose contrasts followed a cir-

cular Gaussian profile (illustrated in Figure 2A). The drift rate of each stimulus

component was selected at random from a Gaussian distribution centered on

the preferred rate, with an SD equal to 1/5 of this value, resulting in an incoher-

ently driftingmixture. Single-frame images of example stimuli are shown in Fig-

ure 2A. The spatiotemporal luminance profile of the stimulus is fully specified

by spatial frequency, u; mean temporal frequency, mut
; and peak, dispersion,

and amplitude of the contrast profile in the orientation domain (mq, sq, and cq,

respectively):

S
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Here, x and y are spatial coordinates, t is time,w(x,y) is a soft-edged window

that tapers contrast over 1/8 of the aperture diameter, f is a circular Gaussian

weighting function, and nk are random samples drawn from a normal distribu-

tion of unit variance. The complete stimulus set contained all combinations of

16 peak orientations (mq = pk/8, k ˛ {0, 1, ., 15}), five orientation dispersions

(sq ˛ {0.05, 0.1, 0.2, 0.35, 1}), and two contrasts (cq ˛ 0.33, 1}).

Analysis of Neuronal Response
We counted spikes in a 1,000-mswindow following response onset. We chose

a latency for each cell by maximizing the stimulus-associated response
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variance (Smith et al., 2005). For each cell, we computed an OSI, defined in

Results. We estimated the variability of the OSI through a bootstrap analysis.

For each iteration of the bootstrap, we computed the OSI for a randomly

resampled dataset. For model-predicted responses, we computed the OSI

from simulated spike counts, sampled from amodulated Poissonmodel (Goris

et al., 2014). The number of simulated spike counts was matched to the num-

ber acquired experimentally. Any bias in the OSI resulting from trial-to-trial

variability is thus approximately matched for actual and model-predicted

estimates.

We computed the full bandwidth at half height of the spatial fre-

quency tuning curve from a suitable descriptive function fit to the

mean response. We estimated the variability of the bandwidth estimate

through a bootstrap analysis, using the same procedure as described for

the OSI.

LN-LN Model
We fit a simplified two-stage feedforward model to data from individual V1

and V2 neurons (Figure 1D). The model describes how a mixture stimulus

composed of superimposed drifting gratings is transformed into the firing

rate of a cortical cell. Stimuli are processed in two parallel channels, each

composed of a linear filter whose output is half wave rectified. Both channels

are tuned for temporal frequency, but only one channel is tuned for orientation

and spatial frequency.

The linear filter’s spatial profile is given by a derivative of a 2DGaussian func-

tion (specific examples shown in Figure 1F; construction of the filter is ex-

plained in detail in the Supplemental Information). At the preferred orientation,

the spatial frequency selectivity of the filter solely depends on the order of the

derivative, b (Figure 1H):

ruðu;u0;bÞf
h
ðu=u0Þe"1

2ðu=u0Þ2
ib
;

where u is stimulus spatial frequency and u0 the filter’s preferred spatial

frequency. At the preferred spatial frequency, the orientation selectivity of

this filter depends on the aspect ratio of the Gaussian, a; the order of the

derivative, b; and the directional selectivity, d (Figure 1G):

rqðq; q0;a;b;dÞf
$
1+

d

2
ðsgnðcosðq" q0ÞÞ " 1Þ

%
$
h
cosðq" q0Þ

3 e"1
2ð1"a2Þcos2ðq"q0Þ

ib
;

where q is stimulus orientation, q0 the filter’s preferred orientation, and param-

eter d ˛ [0,1] determines the direction selectivity. The function sgn($), com-

putes the sign of its argument (returning –1 for negative and +1 for positive),

and the initial parenthesized expression serves tomultiply the half of the tuning

curve in the non-preferred direction by (1 " d).

If the Gaussian kernel is circularly symmetric (a = 1), orientation tuning is

simply described with a cosine function raised to a power; such functions

can perfectly tile the orientation domain. We exploited this property to

compute the normalization signal. The untuned channel has a linear filter

whose amplitude is uniform over orientation and spatial frequency. For both

channels, temporal frequency tuning is described with a function of the

same form as the spatial frequency tuning function and is six octaves wide

at half height. The time-varying responses of the tuned and untuned chan-

nel, CT(t) and CU(t), are obtained by computing the half-rectified linear filter

response for every movie frame.

The second stage of the model consists of a linear combination of the two

channel responses, followed by divisive normalization:

NðtÞ=CT ðtÞ "wCUðtÞ
s+ 1

k

P
kCkðtÞ

;

where w controls the gain of untuned channel. The normalization signal con-

sists of the sum of a stimulus-independent constant, s, and the pooled activity

of a diverse set of neurons with spatially distributed receptive fields, whose re-

sponses,Ck(t), are computed in the sameway as the tuned channel responses.

The normalization pool includes both orientation- and direction-selective cells,

drawn from five bandwidth families (25!, 40!, 60!, 90!, and 120! at half height),

each tiling the orientation domain. The normalization pool was fixed for all

model cells and was not fit to the data.

Finally, the normalized response is transformed into a firing rate. This re-

quires the inclusion of a spontaneous discharge. For some cells, spontaneous

activity can be suppressed by stimuli that fail to excite the neuron. But for other

cells, the spontaneous discharge simply adds to the stimulus-driven response.

We therefore included two forms of spontaneous discharge, governed by two

separate parameters (ε1 and ε2). The final firing rate is computed using a po-

wer-law nonlinearity:

RðtiÞ= ε1 + b

$
ε2 +CT ðtiÞ "wCUðtiÞ

s+ 1
k

P
kCkðtiÞ

%q

:

Estimating Model Parameters for Individual Cells
In total, the LN-LN model has 11 free parameters: five filter parameters

(orientation preference q0, spatial frequency preference u0, spatial aspect ra-

tio a, derivative order b, and directional selectivity d), one untuned channel

parameter (gain w), one parameter for the nonlinearity (exponent q), and

four parameters controlling response range and amplitude (semi-saturation

constant s, response scale b, and maintained discharge ε1 and ε2). The

exponent q captures the translation from excitation to firing rate. Priebe

et al. (2004) estimated exponents from intracellular recordings from cat V1

and reported values between 1.5 to 6.5 (mean: 3.3, SD: 0.9). We incorpo-

rated this knowledge in the form of a log-normal prior distribution on the

exponent (mean: 3.3, SD: 1). For each cell, we optimized the model param-

eters by maximizing the product of the prior on the exponent and the likeli-

hood over the observed data, assuming spike counts arise from a modulated

Poisson model. One additional free parameter, s2G, describes across-trial

fluctuations in neural response gain (Goris et al., 2014). We computed the

model response for every presented movie frame and took the average

over the one second stimulus movie as its predicted firing rate. We used a

simplex algorithm and multi-start fitting procedure with randomized starting

values to find the best fitting parameters. The distributions of the fitted model

parameters that directly control visual response properties are shown in

Figure S3.

The model contains three mechanisms (governed by four parameters) that

control orientation selectivity (the spatial aspect ratio a, the derivative order b,

the gain of the untuned channel w, and the response exponent q). To test

the explanatory power of the corresponding mechanisms directly, we fit

restricted versions of the model to the data (Figures 4 and 5). In this analysis,

two of the three selectivity mechanisms were not fit to the data but were

assigned a value that reflected the median estimate under the full model.

The third component was fit to the data. Changing the nonlinear selectivity

parameters typically affects the model’s response scale. To maximize the

model’s ability to capture the data, we simultaneously optimized the param-

eters controlling maintained discharge and response scale. The values of

preferred direction of motion and the variance of the gain were not refit—

instead we used the values fit under the full model.

Goodness of Fit
We assessed model performance in three different ways. First, we evaluated

the model’s absolute goodness of fit. We fit the unrestricted LN-LN

model to the full set of responses and compared the log-probability of

the observed data under the fitted model with a reference distribution,

obtained by computing the log-probability of 1,000 synthetic datasets,

sampled from the fitted model (Goris et al., 2014). Each synthetic dataset

contained the same number of responses as the experimentally acquired

data. The reference distribution thus characterizes the expected distribution

of log-probability if the model correctly describes the cell’s response

characteristics.

Second, we evaluated the models’ relative goodness of fit. We compared

the unrestricted and restricted versions of the model in a 10-fold cross-valida-

tion analysis. We fit each model to a subset of the data (all the trials that make

up the tuning curves for nine out of tenmixture stimuli) and predicted the tuning

curve for the remaining stimulus type. We repeated this procedure ten times,

once for each stimulus type, to obtain a full set of predictions. The training
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set always included the spatial frequency tuning curve. We expressed model

performance as the correlation between the predicted and observed mean

spike counts (Figure 4A).

Third, we evaluated how well the models explain diversity in orientation

selectivity (Figures 3A and 4B). We used the predicted tuning curve for the

high-contrast, single-component grating obtained in the cross-validation anal-

ysis and computed a statistic (explained diversity) that expresses the fraction

of across-neuron variance in OSI that is accounted for by themodel. Explained

diversity, s2E , is defined as

s2
E = 1" SSR

SST
;

where SSR is the residual sum of squares of the predicted single grating OSI

andSST is the total sum of squares of the observedOSI. If themodel prediction

were perfect for every cell, this diversity measure would equal 100%. To obtain

confidence intervals, we computed explained diversity for 1,000 randomly

resampled and model-simulated datasets. Because the observed OSI is

variable, not all diversity is explainable. We estimated the explainable diversity

by calculating how much diversity is explained by an ‘‘oracle’’ model in which

each neuron’s OSI is predicted from a set of randomly sampled responses

generated by that neuron (the number of sampled responses matched the

number acquired experimentally). We used the same procedure to evaluate

how well the model explains diversity in spatial frequency bandwidth

(Figure 5C).

Estimation of Fisher Information for V1 and V2 Neurons
In the orientation domain, Fisher information can be simply written as a func-

tion of the measured tuning curve, h(s):

If ðsÞ=
h02ðsÞ
hðsÞ

;

where h0(s) is the derivative of the tuning curve (Seung and Sompolinsky,

1993). We estimated how much information each neuron transmits in a hypo-

thetical population of neurons composed of shifted copies of the recorded

neuron, each responding independently. To make it easier to compare the

effect of selectivity across neurons, we normalized responses by the largest

observed response; we verified that there was no systematic relationship be-

tween selectivity and peak firing rate (r = –0.16, p = 0.15). We computed the

average Fisher information across stimulus orientations and divided this

average by the number of neurons needed to tile the orientation domain.

To estimate tiling density, we derived the relation between the circular vari-

ance of the stimulus-driven response (the observed response with the weak-

est stimulus-response subtracted), V, and the full bandwidth of the tuning

curve at half height, B, under a simple descriptive model of orientation tun-

ing. In particular, for a tuning curve given by h = [cos(q " qp)]
2b, the circular

variance of the responses only depends on the exponent: V = 1/(1 + b).

This is also true of the full bandwidth at half height: B = 2cos"1(0.51/2b).

Combining these gives a simple formula relating bandwidth to circular vari-

ance: B = 2cos"1(0.5V/(2 " 2V)). For every cell, we estimated V from the raw

data, used this formula to obtain a value for B, from which we defined the

tiling density to be 2p/B.

Orientation Distribution in Images
We measured the orientation distribution in families of natural and synthetic

images. We drew natural images from a publicly available database (Olmos

and Kingdom, 2004) containing 653 2,5603 1,920 TIF photographs of natural

scenes, with a pixel size of 0.0028 deg. We linearized the natural images in

RGB color space using camera parameters provided with the database, aver-

aged the three color channels, and normalized the image by the mean lumi-

nance. We randomly selected 20 patches of 21 3 21 pixels from each image

and excluded a small number of patches whose contrast was too low to evoke

reliable filter responses.

These natural image patches constituted one family. We created two other

families: sinusoidal gratings that varied in orientation and spatial frequency,

and 1/f noise. We calculated the inner product of each image with 180 odd-

symmetric Gaussian derivative filters (derivative order: 3, aspect ratio: 4,

peak spatial frequency: 6 c/deg), which perfectly tiled the orientation domain.

We computed image energy as a function of orientation by taking the squared

filter responses (Figure 7B) and defined an OCI as one minus the normalized

circular variance of the energy profile.

Discriminability of Images for a Population of Independent LNP
Neurons
Wemeasured discriminability of pairs of similar images for populations of LNP

neurons designed tomirror the properties wemeasured in V1 and V2 (Figure 8).

Our populations contained 45 neurons whose preferred orientations covered

the entire domain evenly. The filter was a Gaussian derivative (order 2), with

preferred spatial frequency of 6 c/deg. Its aspect ratio controlled orientation

selectivity and was set to 0.25, 1, or 2. The nonlinearity was an exponent of

3.3. The images to be discriminated were a randomly selected patch of

213 21 pixels and its nearest neighbor (in terms of Euclidean norm of the pixel

values) in the population of random samples drawn either from a collection of

gratings, 1/f noise images, or the natural image data base. All populationswere

equated with respect to ‘‘metabolic cost,’’ taken as the average firing rate per

image, which was set to 10 spikes/image. We capture the average discrimina-

bility of pairs of similar images using a metric based on the Fisher information

matrix:

D
&
s1
!; s2

!'
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
&
s1
!" s2

!'T

2

4
IF
&
s1
!'

+ IF
&
s2
!'

2

3

5
&
s1
!" s2

!'
;

vuuut

where the f s!1; s
!

2g are two stimuli (images) and the Fisher information matrix,

IF ð s!Þ, is computed as the expected value of the covariance of the gradient of

the log likelihood of the population response

IF ð s!Þ=Er

n
V
!

s log pð r!j s!Þ$V!
T

s log pð r!j s!Þ
o
; (1)

where Erf$g is the expectation over the vector r!, representing the response of

the neural population (i.e., a vector of spike counts). For an LNPmodel with in-

dependent responses, the log likelihood function is

log pð r!j s!Þ=
X

k

½rk log fkð s!Þ " fkð s!Þ " logðrk !Þ'; (2)

where the firing rate function is

fkð s!Þ=
"
w!T

k s!
#pk

H
"
w!T

k s!
#
; (3)

with wk the receptive field (weight vector) for the kth neuron, pk the exponent

describing its nonlinear response, and H($) the Heaviside step function (equal

to one when its argument is positive, zero otherwise). Combining Equations 2

and 3 and taking the gradient gives

V
!

s log pð r!j s!Þ=
X

k

pk

w!T

k s!
½rk " fkð s!Þ'w!k ;

where we have assumed that the actual responses rk are zero whenever w!T
k s!

is negative. Plugging this into Equation 1 gives the Fisher information:

IFð s!Þ=
X

j;k

pjpk&
w!T

j s!
'"

w!T

k s!
#Er

)
½rj " fjð s!Þ'½rk " fkð s!Þ'

*
w!j w

!T

k

=
P
k

p2
k"

w!T

k s!
#2 Er

n
½rk " fkð s!Þ'2

o
w!k w

!T

k

=
P
k

p2
k"

w!T

k s!
#2 fkð s

!Þw!k w
!T

k ;

where the j s k terms have vanished because the responses are assumed in-

dependent and the j = k terms have been simplified by noting that the response

variance of a Poisson process is equal to its mean, fkð s!Þ.
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