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Neurons transmit information with sequences of action potentials.  
These responses are variable—repeated measurements under  
identical experimental conditions give different spike trains—but 
the origins of this variability are unknown. If spike generation  
were variable, it might account for response variability, but in vitro 
measurements indicate that it is highly reliable1. Variability in  
synaptic transmission is another possible source2, but its magni-
tude is also believed to be insufficient to account for the observed 
variability in spiking responses3,4. A more likely explanation is that 
the variability arises from the accumulation and amplification of 
small amounts of noise as signals flow through neural circuits5. And 
recent theories propose that the substantial variability in neural 
responses may arise from the dynamics of recurrent but largely 
deterministic networks6,7.

Regardless of its source, characterizing variability with simple 
stochastic models has proven useful in understanding the nature of 
neural coding. The simplest stochastic model is a Poisson process, 
in which spikes occur independently of one another. A hallmark of 
the Poisson model is that the variance of the spike count in any time 
interval is equal to the mean. In visual cortex, the spike-count vari-
ance typically equals or exceeds the mean but rarely falls below it8,9. 
This suggests that Poisson-like behavior is a ‘floor’ state of cortical 
variability and raises the question of the origin of the excess variance. 
Arousal, attention, adaptation and other contextual factors are known 
to modulate sensory responses10–12. In typical electrophysiological 
experiments, some of these may be well controlled, but many are 
not. The idea that fluctuations in excitability can inflate estimates of 
neuronal variance has a long history8,9, and we wondered whether a 
more directed analysis of single-neuron responses might reveal the 
effect of these factors.

We formalize this hypothesis in a doubly stochastic response 
model in which spikes arise from a Poisson process whose rate is the 
product of ‘drive’ and ‘gain’ (the ‘modulated Poisson model’; Fig. 1a).  

The drive is a reproducible firing rate response to a sensory stimulus;  
the gain represents modulatory influences on excitability and can 
vary across repeated measurements. Under this model, trial-to-trial 
variability in spike counts can be partitioned into a sum of Poisson 
point-process variance and variance arising from fluctuations in 
gain. Likewise, spike-count covariation can be partitioned into 
point-process covariance and covariance arising from correlated 
gain fluctuations.

We found that this model provides an excellent account of single-
neuron response distributions in macaque visual thalamus and cortex. 
Inferred gain fluctuations are correlated over long timescales (minutes), 
are larger in anesthetized than in awake animals and (in anesthetized 
animals) increase in strength along the visual hierarchy. They are also 
shared across wide areas of primary visual cortex, while point-process 
variance is more localized. Together, these results suggest that much 
of the response variability of sensory neurons arises from fluctuations 
in excitability that are correlated over time and between neurons and 
that increase in strength along the visual pathway.

Portions of these results have been presented at conferences (R.L.T. 
Goris, J.A. Movshon and E.P. Simoncelli, Soc. Neurosci. Abstr. 311.01, 
2013; Cosyne Abstr., I-37, 2012), and two other groups have recently 
presented models similar to the modulated Poisson model (ref. 13 
and I.-C. Lin, M. Okun, M. Carandini and K. Harris, Cosyne Abstr., 
III-11, 2014), though their application and conclusions are somewhat 
different from our own.

RESULTS
Modulated Poisson framework
Consider the most commonly used rate model, in which the spike 
count, N, follows a Poisson distribution:
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Responses of sensory neurons differ across repeated measurements. This variability is usually treated as stochasticity  
arising within neurons or neural circuits. However, some portion of the variability arises from fluctuations in excitability due  
to factors that are not purely sensory, such as arousal, attention and adaptation. To isolate these fluctuations, we developed  
a model in which spikes are generated by a Poisson process whose rate is the product of a drive that is sensory in origin and 
a gain summarizing stimulus-independent modulatory influences on excitability. This model provides an accurate account of 
response distributions of visual neurons in macaque lateral geniculate nucleus and cortical areas V1, V2 and MT, revealing 
that variability originates in large part from excitability fluctuations that are correlated over time and between neurons, and 
that increase in strength along the visual pathway. The model provides a parsimonious explanation for observed systematic 
dependencies of response variability and covariability on firing rate.

http://www.nature.com/doifinder/10.1038/nn.3711
http://www.nature.com/natureneuroscience/


©
20

14
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

�  advance online publication nature neurOSCIenCe

a r t I C l e S

where µ is the mean spike rate and ∆t the duration of the counting 
window. Assume that the rate arises from the product of two posi-
tive-valued signals:

m = f S G( )

where f(S) is some function of the stimulus and G is a stimulus- 
independent gain (Fig. 1a). In this case, the mean and variance of the 
spike count in a time interval ∆t are both equal to f(S)G∆t.

If the gain signal is unobserved and varies over repeated trials, the 
observed spike counts over those trials will have a variance larger 
than predicted by the Poisson model. Assume the gain has a mean 
value of 1 but fluctuates randomly on a timescale that is slow rela-
tive to the interval over which spikes are counted. In this case, the 
net distribution of spike counts is a mixture of Poisson distributions 
(Online Methods) whose variance can be decomposed into two com-
ponents:

var[ | , ] ( ) ( ( ) )N S t f S t f S tG∆ ∆ ∆= + s 2 2  

The first term is the expected variance of the Poisson distribution 
conditioned on a gain value of 1, which is equal to the mean count 
f(S)∆t. The second term is the variance of the expected spike count 
conditioned on the stimulus drive14 and is proportional to the square 
of the first term, with a proportionality factor equal to the variance 
of the gain signal, sG

2 . Thus, in the presence of gain fluctuations, the 
spike-count variance exceeds the mean by an amount that is propor-
tional to the square of the mean. Note that the spike-count variance 
does not depend on the firing rate or duration of the counting window 
per se, but on their product, f(S)∆t.

The variance-to-mean relationship expressed in equation (3) is 
inherent in systems with modulatory effects and depends on gain only 

(2)(2)

(3)(3)

through its variance: all gain distributions with the same variance will 
produce the same variance-to-mean relationship. To fit the model to 
data, the form of the gain distribution must be specified. If we assume 
that the gain follows a gamma distribution, the overall spike-count 
distribution will follow a negative binomial (Online Methods):
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where Γ(.) represents the standard gamma function. This distribution 
is parameterized by the variance of the gain sG

2  and the mean spike 
count f(S)∆t, and is readily fit to neural data.

Gain fluctuations increase along the visual hierarchy
We measured responses of neurons in the lateral geniculate nucleus 
(LGN) and areas V1, V2 and MT to drifting sinusoidal gratings  
of the preferred size and speed, varying either in spatial frequency  
(12 spatial frequencies, ranging from 0 to 10 cycles/deg) or in drift 
direction (16 equally spaced directions). Each grating was presented 
for 1,000 ms and repeated at least five times. Responses were computed 
by counting spikes in a 1,000-ms window after response onset. We fit 
both the Poisson and modulated Poisson models to the responses of 
each individual neuron.

The variance-to-mean relationship of an example V1 cell is well 
described by the modulated Poisson model (Fig. 1b). As predicted  
by equation (3), this relationship does not depend on firing rate or meas-
urement interval per se (inset, Fig. 1b). Comparing histograms of the 
measured spike counts with the predictions of the models reveals that 
the modulated Poisson model captures the full response distributions  
much better than the standard Poisson model (Fig. 1c). When the 
mean spike count is low, both models produce similar distributions. 
But as the mean spike count grows, model predictions diverge and the 

(4)(4)
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Figure 1 The modulated Poisson model 
accounts for spike count variability. (a) Model 
diagram. Spikes are generated by a Poisson 
process whose rate is the product of two 
signals: a stimulus-dependent drive, f (S), and a 
stimulus-independent gain, G, that is assumed 
to fluctuate slowly relative to the duration 
of experimental trials. (b) Variance-to-mean 
relation of the neural responses of a single V1  
neuron stimulated with gratings drifting in  
different directions (gray dots), compared with  
predictions of the Poisson model (red line) 
and the modulated Poisson model (blue line). 
Responses were computed by counting spikes  
in a 1,000-ms window following response onset. 
Means and variances were calculated over 125  
repetitions of each stimulus. The inset shows 
this relation measured over variable-duration 
windows for three drift directions (green, black 
and orange). Each data point is obtained from a  
randomly selected epoch of the corresponding 
raster with duration drawn uniformly from  
the range 1–1,000 ms (the orange data  
are taken from the inset raster). (c) Spike count 
distributions (gray histograms) measured for 
different stimulus drift directions compared 
to the best-fitting probability densities of the 
Poisson (red) and gamma-modulated Poisson 
(blue) models. (d) Log-probability of the cell responses under the Poisson model (red triangle) and the modulated Poisson model (blue triangle). 
Histograms illustrate the expected range of the log-probability statistic (computed with a 1,000 run parametric bootstrap) for the Poisson model (red) 
and the modulated Poisson model (blue). (e) Variance-to-mean relations predicted by the modulated Poisson model and an additive model for weak  
(light gray) to strong (black) fluctuations in gain.
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Poisson model fails to account for the shape of the count distributions. 
In contrast, the data are well described by the modulated Poisson 
model, suggesting that a substantial part of the response variance 
arises from fluctuations of modulatory inputs, whose distribution is 
well described by a gamma distribution.

This visual impression is confirmed by statistical analysis. To  
quantify their relative goodness of fit, we fit each model to a sub-
set of the data and then computed the log-probability of observing 
the remaining data under each fitted model (Online Methods). For  
the example neuron, the value for the modulated Poisson model is 
much higher than that of the Poisson model. To assess the model 
fits in absolute terms, we compared the log-probability of the data  
with a distribution of log-probabilities of simulated data sets of 
identical size (Online Methods). For the example neuron, the fit of 
the Poisson model is very poor (P < 0.001, absolute goodness-of-fit  
test; Fig. 1d) but the modulated Poisson model cannot be rejected 
(P = 0.91; Fig. 1d).

In sum, the variable discharge of this V1 cell is well described 
as originating from three different sources: the stimulus attributes 
(direction of motion), a Poisson point process and gamma-distributed 
fluctuations in excitability. To estimate the relative contribution of 
each source, we used the modulated Poisson model to partition the 
spike-count variance (Online Methods). Surprisingly, Poisson noise 
accounts for only a small fraction of the total variance (5.5%). The 
gain fluctuations account for nearly half of the variance (47.5%),  

a share comparable to the fraction due to variations in the stimulus 
drive (47%). The latter is dependent on the set of stimuli and the tun-
ing properties of the neuron. To focus our analysis on the variability 
across repeated measurements, we consider the portion of within-
condition variance that is explained by the excitability fluctuations. 
For the example neuron in Figure 1, this fraction is 89.6%.

In our model, stronger gain fluctuations lead to a more rapidly 
accelerating variance-to-mean relationship, which deviates more and 
more from the Poisson expectation as spike count grows (Fig. 1e). 
This accelerating relationship implies that the ratio of variance to 
mean (the Fano factor, commonly used to quantify point process vari-
ability) can vary within a single spike train and over short time scales. 
As such, a single Fano factor provides an incomplete and potentially 
biased measure of neuronal variability.

In the modulated Poisson model, the rate arises from the product 
of two positive-valued signals, one a function of the stimulus and 
the other arising elsewhere. An alternative model adds these signals 
rather than multiplying them. Under this additive model, if the two 
signals are statistically independent, the expected spike-count vari-
ance is given by the sum of the point-process variance and a constant 
equal to the variance of the drive fluctuations, yielding a variance-to-
mean relationship (Fig. 1e) unlike that in our data.

Fluctuations in excitability modulate neuronal activity through-
out visual thalamus and cortex. Neurons in LGN, V1, V2 and MT 
all exhibit super-Poisson variability (Fig. 2a). Within each area,  

V2
n = 189

MT
n = 137

0.01 1.0 10 100 1,000

0.1

1.0

10

100

1,000

Mean (spikes)

V
ar

ia
nc

e 
(s

pi
ke

s2 )

0.01

0.1

LGN
n = 63

a
V1
n = 396

< 0.01 0.1 1.0 10
Gain (coefficient of variation)

c
***

***

***

LGN

V1

V2

MT

d
***

***

***

0 25 75 100
Gain share of variance (%)

50

LGN

V1

V2

MT

b

–0.4 –0.3 –0.2
Log-likelihood
Poisson model

Lo
g-

lik
el

ih
oo

d 
m

od
ul

at
ed

P
oi

ss
on

 m
od

el

0

0

–0.1

–0.2

–0.4

LGN

V1

V2

MT

–0.1

–0.3

Figure 2 Comparison of neural response variability for cells in different visual areas. (a) Variance-to-mean relation for 63 LGN cells (orange), 396 V1 
cells (dark green), 189 V2 cells (blue) and 137 MT cells (violet). Each data point illustrates the mean and variance of the spike count in a 1,000-ms 
window of one cell for one stimulus condition. (b) Comparison of the predictive accuracy of the Poisson and modulated Poisson models. Models are 
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the variance-to-mean relationship is consist-
ent with the predictions of the modulated 
Poisson model (compare Fig. 2a to Fig. 1e), 
but proceeding along the visual processing 
stream, the fitted gain variance increases in 
strength. Specifically, the modulated Poisson 
model systematically outperforms the stand-
ard Poisson model for all areas (Fig. 2b), and 
the proportion of neurons for which this model is selected increases 
from LGN to V1 (P < 0.001, t test), from V1 to V2 (P = 0.004) and 
from V1 to MT (P = 0.004). The strength of fluctuations in excit-
ability, as measured by the coefficient of variation of the gain, grows 
from LGN to V1 (P < 0.001, Wilcoxon rank-sum test), from V1 to V2  
(P < 0.001) and from V1 to MT (P < 0.001) (Fig. 2c). As information 
propagates through the visual hierarchy, fluctuations in excitability 
not only increase in strength but also account for a larger share of vari-
ance. When stimulated with drifting gratings, within-condition vari-
ance primarily reflects Poisson-like noise in LGN (P = 0.02, Wilcoxon 
signed-rank test) but becomes progressively more dominated by excit-
ability fluctuations in cortex (LGN to V1, P < 0.001, Wilcoxon rank-
sum test; V1 to V2, P < 0.001, V1 to MT, P < 0.001; Fig. 2d).

Response correlations in the modulated Poisson framework
Trial-to-trial response fluctuations are often correlated among simul-
taneously recorded neurons15. Pairwise response correlations can 
arise when neurons receive shared sensory input5, but also when they 
are subject to correlated modulatory influences that are not sensory in 
origin16,17. Our model provides a vehicle for separating the effects of 
these two contributions. Specifically, for doubly stochastic processes, 
the spike-count covariance can be decomposed in a manner that is 
analogous to the variance decomposition introduced in equation (3) 
(Online Methods):

cov[ , | , ] ( ) ( ) ( ) ( )N N S t r f S f S t r f S f S ti j Pij i j Gij Gi Gj i j∆ ∆ ∆= +2 2s s

where rPij indicates the point-process correlation (assumed to be inde-
pendent of stimulus S) and rGij  the gain correlation. The first term 
is the expected covariance for the spike counts of neurons i and j 
conditioned on a gain value of 1. The second component is the covari-
ance of the conditional expectations that arises from correlated gain 
fluctuations and can generate spike-count correlations even when 

(5)(5)

the two point processes are independent. Equation (5) reduces to the 
expression for spike-count variance (equation (3)) when i = j. The 
spike-count correlation is obtained by dividing this equation by the 
square root of the product of the spike-count variances of neurons i 
and j, as expressed in equation (3), yielding a complicated dependence 
of spike-count correlation on stimulus drive and on the variance of 
the gain signals in the two neurons.

Studies of response correlation typically combine normalized 
responses across conditions to estimate a single spike-count correla-
tion for a pair of neurons18,19. But equation (5) implies that, even if 
the point-process and gain correlations are both stable properties of a 
given cell pair, measured spike-count correlations can vary dramati-
cally with stimulus drive. Specifically, when the geometric mean of 
the stimulus-driven response of the two neurons is low, the spike-
count correlation will approximate the point-process correlation  
rPij . In contrast, when this geometric mean is high, the spike-count 
correlation will be dominated by the gain correlation rGij . If rPij  and 
rGij  differ, the spike-count correlation will depend on the stimulus 
conditions, and any single estimate will provide an incomplete and 
potentially biased measure of neuronal covariability.

We analyzed the responses of four populations of simultaneously 
recorded neurons in the superficial layers of macaque primary visual 
cortex20. The recordings were made over 2.5 h, during which gratings 
drifting in 72 equally spaced directions were presented for 1,280 ms 
each, interleaved with a 1,280 ms blank screen and repeated 50 times 
in random order. We analyzed 379 well-isolated units (62, 94, 87 and 
136 from the four data sets). We fit the modulated Poisson model, 
including the values of the underlying point-process and excitability 
correlations rPij  and rGij , to the joint responses of pairs of neurons in 
each data set (Online Methods).

In the actual and predicted response correlations for three exam-
ple pairs of V1 cells (Fig. 3), the mean spike count of each neuron 
depended on the direction of motion of the stimulus (Fig. 3a–c), 
and the overall spike-count correlation estimated for each pair from 

Figure 3 Response correlation analysis  
for three example pairs of simultaneously 
recorded V1 neurons. (a–c) Mean response to 
drifting sinusoidal gratings as a function of 
direction (72 stimulus conditions, 50 repeats, 
1,280-ms count window). (d–f) Spike-count 
correlation as a function of the geometric  
mean of the mean spike counts of the two 
neurons. Each data point corresponds to a 
different stimulus condition. The blue line 
shows the correlations predicted by the best-
fitting modulated Poisson model, and the  
surrounding light blue region indicates ± 1 s.d.  
of the distribution of estimates computed from 
50 repeats. (g–i) Spike-count correlation as 
a function of the mean response of the two 
neurons, as predicted by the modulated Poisson 
model. Color indicates correlation and points 
indicate response means for different stimulus 
conditions, as depicted in the two tuning curves 
shown in a–c.
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the combined normalized responses (rsc) was small and positive.  
But estimates of spike-count correlation computed separately for  
different response levels reveal a variety of different behaviors, 
including a decrease with mean response strength (Fig. 3d), an  
independence of response strength (Fig. 3e) or an increase with 
response strength (Fig. 3f). The modulated Poisson model can  
mimic each of these behaviors and, more generally, can predict 
the spike-count correlation as a function of the mean responses of  
the two neurons (Fig. 3g–i).

The structure of correlations in primary visual cortex
V1 spike-count correlations have been shown to depend on cortical 
distance and tuning similarity19, but, as revealed by the examples in 
Figure 3, this measure mixes two underlying sources of correlation. 
We wondered whether these two sources might be differently struc-
tured across the neuronal population.

We examined how point-process correlation and excitability  
correlation depend on electrode separation and on the similarity  
of tuning (Fig. 4 and Online Methods). Point-process correlations 
were on average smaller than excitability correlations (P < 0.001,  
F1,34 = 24.16, analysis of covariance) and fell more rapidly with  
electrode distance (P < 0.001, F1,34 = 18.05). Note that neurons 
recorded on the same electrode (the leftmost datum in Fig. 4a,b) 
might have inflated the significance of the latter difference, since they 
are vulnerable to spike-sorting errors that can alter the measured  
correlation15,17,21. Nevertheless, we found that excluding this datum 
did not alter the conclusion (P < 0.001, F1,32 = 41.17). Analysis of tun-
ing similarity effects (Fig. 4c) revealed that the average point-process  
and excitability correlations both decrease gradually with tuning  
correlation (P = 0.6, F1,14 = 0.28) (Fig. 4d).

In summary, we find that the relationship between response cor-
relations and mean responses in V1 depends on both interneural dis-
tance and tuning similarity: spike count correlations are most likely to 

decrease with response strength for nearby neurons with similar tuning 
(Fig. 3d). As interneural distance or tuning dissimilarity grows, response 
correlations initially tend to be independent of the mean responses  
(Fig. 3e) and eventually exhibit an increasing relation (Fig. 3f).

The temporal structure of gain fluctuations
We assume that the Poisson point-process variance is independent 
across trials, so all temporal structure in neural responses that is not 
explained by the stimulus must arise from structure in the gain signal. 
As normalized spiking activity evolved over 2.5 h for three simultane-
ously recorded neurons (Fig. 5a), response strength rose and fell on a 
time scale of minutes, suggesting that excitability varies slowly. This 
is consistent with the slow decay of the autocorrelation of the gain 
(Fig. 5b), computed from temporal correlations in the trial-by-trial 
responses (Online Methods). At a time lag of 5 s, 307 of 379 neurons 
had a positive autocorrelation (t-test, P < 0.05). For longer time lags, 
this fraction gradually decreased (at a time lag of 2 min, r > 0 for 185 
of 379 neurons; at a time lag of 10 min, this fraction dropped to 81 
of 379). Although the average profiles for the four data sets differ in 
detail, they share a slow falloff, indicating that changes in excitability 
persist for many minutes (Fig. 5c).

Trial-to-trial changes in excitability are often correlated across neu-
rons (Fig. 4). It might therefore be expected that the slow component 
of excitability fluctuations is also shared across neurons. However, 
across neurons, excitability correlations decreased dramatically at all 
time lags exceeding 0 s (Fig. 5d). The slow component of excitability 
fluctuations thus appears to be local.

Effects of anesthesia
We have shown that neural response variability in visual cortex of 
anesthetized macaques originates largely from excitability fluctuations 
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that are correlated over time. To what degree does this arise from 
fluctuations in the state of anesthesia? To address this, we analyzed 
data recorded in area MT of awake monkeys performing a psycho-
physical task involving random dot kinematogram stimuli18,22. We 
fit both the Poisson and modulated Poisson model to the responses 
of 307 individual neurons. As in anesthetized animals, MT neurons  
in awake monkey typically exhibited super-Poisson variability  
(Fig. 6a), and the modulated Poisson framework successfully accounts 
for this variability. The inclusion of gain fluctuations improves  
goodness of fit for 224 of 307 neurons (cross-validation analysis). At 
a significance level of 5%, the Poisson model is accepted for only 28 
of 307 of neurons, while the modulated Poisson model is accepted 
for 294 of 307 of cells (absolute goodness-of-fit test). Fluctuations  
in excitability were the main source of within-condition variance  
(P < 0.001, Wilcoxon signed rank test; Fig. 6b). Finally, the average 
autocorrelation function revealed that gain fluctuations in awake  
animals exhibited a slow temporal structure similar in timescale to 
that seen under anesthesia (Fig. 6c).

Qualitatively, there is thus an excellent agreement between  
these data sets. However, comparing the coefficient of variation of 
the excitability signal revealed that its fluctuations were significantly 
stronger in the anesthetized cortex (compare Fig. 2c with Fig. 6b). It 
is also notable that the time course of this correlation was substantially 
shorter in the awake data set, suggesting that the fluctuations in gain 
seen under the two conditions may have different origins.

DISCUSSION
The distinction between inputs that drive the responses of a neuron 
and those that modulate its response is well known23. But while both 
factors influence the mean response, response variance is usually 
treated as if it arises solely from noise in driving inputs. Our analysis 
suggests instead that variability of modulatory signals may underlie 
much of the response variability in visual cortex. We have shown that 
a Poisson spiking model whose rate is multiplied by a fluctuating gain 
signal can explain why the variance of spike count generally grows 
faster than the mean and that an additive noise model cannot account 
for this basic behavior. The modulated Poisson model also explains 
why the covariance of spike counts in pairs of neurons can exhibit a 
diversity of behaviors, depending on their means. Fitting the model to 
individual neurons from a variety of visual areas reveals that gain fluc-
tuations account for a substantial fraction of spike-count variability  
and that, at least in anesthetized animals, this fraction increases as 
one ascends the visual hierarchy.

Poisson spiking models have been com-
mon in neuroscience since the 1950s  
(refs. 24–26) and are implicit in all analyses 
in which responses are summarized solely 
with mean spike counts. They provide the 
simplest statistical description of the data, 
are readily fit to data and capture the basic 
fact that spike-count variances grow with the 
mean. Poisson processes can mimic the spik-
ing behaviors of integrate-and-fire models4,  
as well as the responses of model neurons 
embedded in cortical networks with balanced 
configurations of excitatory and inhibitory 
inputs5–7. But neuronal responses generally 
exhibit super-Poisson variability5,7–9,27,28, 
and the model presented here provides a 
simple but effective means of explaining this 
behavior. Some authors have reported sub-

Poisson variability, especially in brief time bins immediately after a 
sudden stimulus onset29–32. This is likely a consequence of neuronal 
refractoriness33,34, which could be naturally incorporated into our 
modeling framework through modulatory spike-feedback terms in a 
generalized linear model35,36.

Our work complements recent work on the temporal dynamics of 
firing-rate variability14,28. One study used the mean-matched Fano 
factor as a proxy for firing-rate variability, but it did not explore 
the dependence of this value on the mean28. Another estimated fir-
ing rate variability by subtracting an estimate of the point-process 
variance from the measured spike-count variance14. The estimate of 
point-process variance is taken from the minimum of an ensemble 
of experimental measurements and is therefore vulnerable to the 
well-known problems associated with estimating extreme values of 
sample distributions. In contrast, we found it useful to make explicit 
distributional assumptions: specifically, that gain is drawn from a 
gamma distribution and that the spikes arise from a Poisson process. 
The resulting negative binomial spike-count distribution (a particular  
continuous mixture of Poisson distributions) is easily fit to data and 
validated (Fig. 1d; see also ref. 37), and its parameterization as a 
modulated Poisson distribution provides a natural interpretation in 
terms of excitability fluctuations. The spike-count distribution bears 
some resemblance to the discrete mixture-of-Poissons model that has 
been successfully used to account for super-Poisson variability38, but 
it has the added advantages that it has far fewer parameters and pro-
vides an interpretation in terms of modulatory input. It is important 
to note, however, that our analyses of joint behaviors are based solely 
on correlations. A full model for joint neural responses would allow 
better fitting and validation, but it requires an explicit description of 
both the joint point-process distribution and the joint distribution 
of gain signals.

Our analyses indicate that correlated fluctuations in gain account 
for a substantial portion of spike-count correlation. This has been 
long suspected, but it has been difficult to segregate the effects of 
shared sensory inputs from shared modulatory influences16. Our 
model provides an explicit method for achieving this (equation (5)). 
In V1, this analysis revealed that point-process correlation and excit-
ability correlation had different structures. Point-process correlations 
decreased rapidly with cortical distance, while excitability correla-
tions changed less. Both point-process and excitability correlations 
increased with tuning similarity. Together, these patterns suggests 
that point-process correlations are caused by inputs that are shared 
within local functional circuits while excitability correlations likely 
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arise from fluctuations in modulatory signals that are shared across 
larger populations of neurons (for example, sensory adaptation, meta-
bolic resource availability, attentional signals, reward signals).

The analysis in Figure 2 indicates that the portion of spike-count 
variability attributable to modulatory fluctuations increases as one 
ascends the visual hierarchy. This presumably depends on the context 
in which responses are measured, including the choice of stimuli, 
the presence or absence of anesthesia and the cognitive state of the 
animal. For example, attentional mechanisms are widely believed 
to act by increasing the gain of neurons involved in a task. Relative 
to conditions of uncontrolled attention, we might expect that this 
would lead to a net increase in the mean, but a decrease in the vari-
ance, of the modulatory input. Under the modulated Poisson model, 
this would result in an increase in spike count, accompanied by a 
decrease in Fano factor, as has been reported in area V4 (ref. 39). 
The corresponding predictions for spike-count correlation are more 
complicated, since the relative contributions of the point-process and 
gain correlations depend on the stimulus drive to each cell, as well 
as the variance of the gain of each cell (equation (5)). But if the gain 
correlation is larger than the point-process correlation and the two 
cells are receiving similar stimulus drive, our model predicts that a 
reduced modulatory variance would decrease spike-count correlation, 
as has also been observed39.

The modulated Poisson model has broad implications for the char-
acterization of neuronal response variability. It is common practice 
to summarize variability with the Fano factor (the ratio of the spike-
count variance to its mean). This measure is highly dependent on the 
conditions under which responses are measured. For example, the 
Fano factor for the neuron in Figure 1b would be near 1 if estimated 
from trials in which the response was low (less than 1 spike per time 
bin), but would be significantly higher if estimated from trials with 
larger responses. Thus, the Fano factor, by itself, does not provide a 
reliable summary of neural variability. In contrast, spike-count vari-
ability of the modulated Poisson model may be decomposed into a 
sum of two distinct values, one corresponding to the Poisson com-
ponent (which is always equal to the mean) and the second arising 
from unobserved modulatory influences, which grows as the square 
of the mean (equation (3)). The amplitude of this second term, which 
corresponds to the variance of the gain, provides a compact summary 
of variability exceeding that of the Poisson model.

An analogous issue arises with the common practice of summariz-
ing the covariation of pairs of neurons with spike-count correlation. 
This measure can depend critically on the conditions under which 
responses are measured and thus provides a potentially biased sum-
mary of covariability. Indeed, previous studies have noted that neural 
correlations can increase with firing rate15 and that this behavior can 
be explained by models in which spikes arise when a Gaussian-dis-
tributed membrane voltage crosses a threshold15,40,41. Our model is 
quite different but accounts for this phenomenon, as well as the more 
diverse range of behaviors seen across different cell pairs, by sum-
marizing covariation with two distinct values. One value represents 
the point-process correlation (which could arise from noise in com-
mon sensory inputs42) and the other the correlation of the modula-
tory influences. Whether response correlations primarily reflect the 
former or the latter depends on both the magnitude of the stimulus 
drive and the variance of the gain signals in the two neurons.

This insight suggests a resolution for a recent controversy regarding 
the nature and magnitude of cortical correlations. Despite decades of 
experimental evidence that cortical cells exhibit modest but signifi-
cant spike-count correlations, on the order of 0.1–0.3 (ref. 15), a recent 
study in macaque V1 found correlations to be much closer to zero 

and concluded that previously reported values arose from confound-
ing experimental effects17. However, owing to modest firing rates 
and short counting windows, spike counts were rather small in this 
study and Fano factors were closer to 1 than in most other studies13.  
The interpretation arising from our model and data is that the cor-
relation values reported in ref. 17 primarily reflect point-process cor-
relations, which are dominant at low spike counts and fall rapidly 
with cortical distance, whereas most previously reported values reflect 
correlated modulation, which is only evident at high spike counts 
but is generally more substantial and falls more slowly with corti-
cal distance. Consistent with this, ref. 17 also reported substantially 
larger spike count correlations for the subset of neuronal pairs with 
the highest responses.

Our analysis suggests that fluctuations in gain are correlated over 
long time scales within but not across neurons. This implies that the 
mechanisms underlying slow drifts in response gain differ from the 
mechanisms that give rise to instantaneous gain correlations. The 
local nature of these drifts rules out the possibility that they result 
simply from global state changes induced by factors such as anesthesia 
or arousal. That said, comparison of responses in area MT of behaving 
and anesthetized macaque revealed that cortex is less stable under 
anesthesia: fluctuations in gain were significantly stronger and slower 
in the anesthetized cortex.

What are the implications of our findings for understanding the 
representation of sensory information in the brain? We believe that 
the gradual increase in the strength of modulatory fluctuations along 
the visual pathway reflects the gradual transformation and combina-
tion of visual signals with information from other sources, such as 
other sensory inputs and top-down signals representing attention,  
arousal, metabolic state, reward expectations, emotional state and so 
forth. Regardless of the source of modulatory variability, its increasing 
weight as information ascends cortical pathways raises the question 
of why it does not overwhelm the sensory information encoded in 
higher-level visual areas5, with deleterious effects on the accuracy 
of behaviors that arise from decoding those neural responses43,44. 
It is perhaps worth noting that information encoded in the rela-
tive responses of groups of neurons will not be affected by common 
modulatory changes, such as those resulting from attentional focus11. 
Resolving this mystery is a critical step in understanding how stable 
perception of the visual world can arise from apparently volatile neu-
ral activity, a step that should be made easier by the principled and 
proven analysis presented here.

METHODS
Methods and any associated references are available in the online 
version of the paper.
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ONLINE METHODS
surgical preparation. We recorded from 18 anesthetized, paralyzed, adult 
macaque monkeys of either sex (3 Macaca nemestrina, 1 M. mulatta and 14  
M. cynomolgus). Our standard procedures for the surgical preparation of  
animals and single-unit recordings have been reported in detail previously45. 
Briefly, experiments typically lasted 5–6 d, during which we maintained anesthesia 
with infusion of sufentanil citrate (6–30 µg kg−1 h−1) and paralysis with infusion 
of vecuronium bromide (Norcuron; 0.1 mg kg−1 h−1) in isotonic dextrose-
Normosol solution. We monitored vital signs (heart rate, lung pressure, end-tidal 
pCO2, EEG, body temperature, urine flow and osmolarity) and maintained them 
within appropriate physiological ranges. Pupils were dilated with topical atropine.  
The eyes were protected with gas-permeable contact lenses and refracted with 
supplementary lenses chosen through direct ophthalmoscopy. At the conclusion 
of data collection, the animal was killed with an overdose of sodium pentobarbital.  
All procedures were conducted in compliance with the National Institute of 
Health Guide for the Care and Use of Laboratory Animals and with the approval 
of the New York University Animal Welfare Committee.

Unit recording. Extracellular recordings were made with quartz-platinum- 
tungsten microelectrodes (Thomas Recording), advanced mechanically into 
the brain through a craniotomy and small durotomy. Electrode insertion angle  
and location varied across experiments, depending on the targeted area. We  
distinguished V1 from V2 on the basis of depth from the cortical surface and 
changes in the receptive field location of the recorded units. Area MT was identi-
fied from the brisk direction-selective responses of isolated neurons. We made 
recordings from every single unit with a spike waveform that rose sufficiently 
above noise to be isolated. Stimuli were presented in random order. Data are 
reported from every unit for which we completed at least five repetitions.

Visual stimulation. We presented visual stimuli on a gamma-corrected CRT 
monitor (Eizo T966; mean luminance, 33 cd/m2) at a resolution of 1,280 × 
960 with a refresh rate of 120 Hz. Stimuli were presented using Expo software 
(http://corevision.cns.nyu.edu/expo/) on an Apple Macintosh computer. For each 
isolated unit, we first determined its ocular dominance and occluded the non-
preferred eye. We presented circularly windowed sinusoidal grating stimuli to 
map each cell’s receptive field, determined its preferred size and speed, and then 
measured selectivity for orientation or spatial frequency.

Analysis of single-electrode recordings. Responses were computed by counting 
spikes in a 1,000-ms window following response onset. We estimated latency 
for each cell by choosing the latency that maximized the variance of the tuning 
curve46. The modulated Poisson model describes a doubly stochastic process (also 
known as a Cox process47), in which spiking responses are generated by a Poisson 
process whose rate is the product of drive and gain (equations (1) and (2)). To 
make the model identifiable, we assume that the gain, G, is constant within trials 
and is distributed across trials according to a gamma distribution with a mean 
of one and variance of sG

2 :
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with shape parameter r G= 1 2/s  and scale parameter s G= s 2 . The mean spike 
count of the modulated Poisson model is the product of the gain, G, the stimulus 
driven rate, f(S), and the bin duration, ∆t, and is thus also distributed accord-
ing to a gamma distribution, with parameters r G= 1 2/s  and s f S tG= s 2 ( )∆ . 
The spike-count distribution is a gamma mixture of Poisson distributions, and  
marginalizing over the gain variable yields a negative binomial distribution48  
(equation (4) for the spike count):
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With parameters r and s described above, this distribution has a mean of  
rs = f(s)∆t and a variance of rs rs f S t f S tG+ = +2 2 2 2( ) ( )∆ ∆s , as expressed 
in equation (3). The negative binomial can also be derived as a Pólya-gamma  
mixture of Gaussian distributions49, a form that allows efficient inference37 but 
lacks the modulatory interpretation provided here.

We fit both the ordinary and modulated Poisson models to the responses of 
each individual neuron. The maximum likelihood estimator of the parameter µ 
that characterizes a Poisson distribution is the sample mean, which we estimate 
separately for each stimulus condition. The modulated Poisson model has two 
parameters (r and s) that are related to the stimulus drive and the variance of the 
gain (see above). We used a simplex algorithm (the Matlab function ‘fminsearch’) 
to search for the value of {r, s} that minimized the negative log likelihood of the 
full set of observed spike counts.

To assess the models’ relative goodness-of-fit, we performed a 100-fold cross- 
validation. We fitted both models to a data set consisting of all trials except for 
one randomly chosen trial per stimulus condition and compared the average 
log-probability of the held-out data under each model (Fig. 2b). To evaluate the 
models’ absolute goodness of fit, we compared the log-probability of the data 
with that of a large number of simulated data sets drawn from the fitted model. 
Each simulated data set had the same number of repeats as the observed data. We 
consider a model fit acceptable if the log-probability of the real data lies within 
the central 95% of the distribution of log-probability of the simulated data. This 
test can detect both underdispersion and overdispersion.

We used the modulated Poisson model to estimate the fraction of spike-count 
variance that arises from the gain signal. As is standard in ANOVA, one can parti-
tion the sum of squares into components arising from variations in the stimulus 
(Sstim), the gain signal (SG) and the point process (Spp):
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where Nk is the spike count on the kth trial, Nk  is the spike count averaged 
over those trials in which the presented stimulus was the same as that of the kth 
trial, and N  is the spike count averaged over all trials. The second line follows 
from the first given the spike-count variance of the modulated Poisson model, as 
expressed in equation (3). The fraction of within-condition variance that arises 
from excitability fluctuations is given by SG/(SG + Spp).

Analysis of multielectrode array recordings. Full details regarding these data sets 
may be found in ref. 20. Briefly, an array containing 96 fixed electrodes was used to 
record from single units in the superficial layers of macaque primary visual cortex. 
The animal was anesthetized and stimulated with sinusoidal gratings. We included 
all units that could be tracked throughout the entire experiment and whose mean 
response exceeded 2 spikes/s for at least one stimulus condition. We opted to 
leave out one set of array recordings (data set 3 in ref. 20) because the responses 
exhibited uncharacteristically strong correlations across time and neurons; we 
suspect the cortical surface was still recovering from array insertion. In our mod-
eling framework, pairwise response correlations can result from both correlated 
point processes and correlated gain fluctuations. To separate these two sources, we 
used the covariance decomposition formula in equation (5) and searched for the 
point-process correlation and gain correlation that maximized the likelihood of 
the observed response relations. Rather than fitting response correlations directly, 
we performed the optimization on z-transformed spike-count correlations:

z
r
r

=
+
−











1
2

1
1

ln

where r is the spike-count correlation and ln the natural logarithm. The advan-
tages of this Fisher transformation include a quicker convergence to normality 
and variance stabilization. We used a simplex algorithm to find the [rPij , rGij ]  
values that maximized the likelihood of the observed response correlations 
under a normal residual distribution. This approach worked well for most neu-
ronal pairs (Fig. 3), but the model parameters are not always well constrained. 
For instance, when the modulation of the direction tuning curve is weak for both 
neurons, many parameter combinations will yield a similar likelihood. For the 
population analysis (Fig. 4), we therefore took the uncertainty associated with 
the parameter estimates into account. We modeled the population distribution of  
the mean parameter values with a bivariate normal distribution and searched 
for the parameter values that maximized the likelihood across all neuronal 

http://corevision.cns.nyu.edu/expo/
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pairs. Poorly constrained pairs of neurons have a flatter likelihood function 
and are therefore down-weighted in this analysis. Although we consider this 
approach statistically preferable, simple averaging of the parameter estimates 
yielded similar results.

To study the temporal structure of the gain signal, we estimated its auto-
correlation function. We first removed the stimulus-induced temporal struc-
ture by subtracting the appropriate stimulus-elicited mean response from the 
observed responses. We then estimated the remaining covariance between pairs 
of responses separated by different time lags. To obtain the autocorrelation of 
the gain signal at a given time lag, this covariance is normalized by the estimated 
variance of the gain signal, SG/(N − 1).
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