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Abstract	
Two-photon	 imaging	of	 calcium	 indicators	 allows	 simultaneous	 recording	of	 responses	of	

hundreds	of	neurons	over	hours	and	even	days,	but	provides	a	relatively	indirect	measure	

of	their	spiking	activity.	Existing	“deconvolution”	algorithms	attempt	to	recover	spikes	from	

observed	 imaging	data,	which	are	then	commonly	subjected	to	the	same	analyses	that	are	

applied	to	electrophysiologically	recorded	spikes	(e.g.,	estimation	of	average	firing	rates,	or	

tuning	curves).	Here	we	show,	however,	that	in	the	presence	of	noise	this	approach	is	often	

heavily	biased.	We	propose	an	alternative	analysis	that	aims	to	estimate	the	underlying	rate	

directly,	 by	 integrating	 over	 the	 unobserved	 spikes	 instead	 of	 committing	 to	 a	 single	

estimate	of	 the	 spike	 train.	This	 approach	 can	be	used	 to	 estimate	average	 firing	 rates	or	

tuning	curves	directly	from	the	imaging	data,	and	is	sufficiently	flexible	to	incorporate	prior	

knowledge	about	tuning	structure.	We	show	that	directly	estimated	rates	are	more	accurate	

than	 those	 obtained	 from	 averaging	 of	 spikes	 estimated	 through	 deconvolution,	 both	 on	

simulated	data	and	on	imaging	data	acquired	in	mouse	visual	cortex.	
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Introduction	
Neurons	 convey	 information	 using	 spikes.	 For	 example,	 sensory	 neurons	 emit	 different	

numbers	 of	 spikes	 with	 different	 timings	 in	 response	 to	 different	 stimuli.	 Yet	 these	

responses	are	often	described	as	 ‘noisy’	since	the	responses	to	 identical	stimuli	vary	 from	

one	 trial	 to	 the	 next	 even	 when	 external	 factors	 are	 carefully	 controlled.	 Therefore,	 it	 is	

common	to	summarize	neural	responses	 in	 terms	of	average	spike	counts	across	multiple	

trials,	acknowledging	the	stochastic	nature	of	spike	generation.	

Estimating	 firing	rates	 is	a	ubiquitous	 form	of	analysis	 throughout	neurophysiology.	Well-

known	 examples	 include	 spike	 count	 histograms	 and	 tuning	 curves.	 The	 spike	 count	

histogram	represents	the	average	response	over	a	fixed	time	interval	across	many	repeats	

of	the	same	experimental	condition,	relative	to	some	stimulus	or	behavioral	response,	while	

the	 tuning	 curve	 is	 a	 measure	 of	 the	 firing	 rate	 under	 different	 experimental	 conditions	

(typically,	 stimuli	or	actions	 that	vary	along	some	parametric	axis).	Estimating	 rates	 from	

spikes	 thus	 requires	 combining	 spike	 counts	 across	 repeated	 measurements,	 and	 is	

relatively	 straightforward	 when	 spikes	 are	 recorded	 directly,	 as	 is	 the	 case	 in	

electrophysiology	experiments.	

Imaging	 techniques	 provide	 an	 appealing	 means	 of	 measuring	 neural	 activity	 across	

populations.	 Two-photon	 imaging	 of	 calcium	 indicators,	 in	 particular,	 allows	 one	 to	

measure	 up	 to	 thousands	 of	 neurons	 simultaneously	 at	 single-cell	 or	 even	 sub-cellular	

resolution.	 Moreover,	 imaging	 techniques	 are	 readily	 combined	 with	 genetic	 and	 opto-

genetic	methods	to	record	and	stimulate	specific	cell	types.	But	in	comparison	to	electrical	

recordings,	calcium	imaging	provides	a	less	direct	measure	of	spiking	activity:	the	acquired	

image	 represents	 the	 intensity	 of	 a	 fluorescence	 signal	 that	 depends	 on	 the	 intracellular	

calcium	 level,	 which,	 in	 turn,	 is	 driven	 by	 the	 spiking	 activity.	 Consequently,	 it	 is	 not	

straightforward	 to	 estimate	 firing	 rates	 from	 calcium	 imaging	 data	 --	 simple	 averaging	

across	trials	is	not	sufficient.	

The	most	 intuitive	method	of	obtaining	spike	rates	 from	imaging	data	 is	 to	 invert	 the	two	

steps	of	the	observation	process:	estimating	the	spike	trains	from	the	fluorescence,	and	then	

averaging	 the	 estimated	 spike	 counts	 to	 infer	 the	 rate.	 Estimating	 spike	 trains	 from	

fluorescence	 is	 commonly	 referred	 to	 as	 deconvolution,	 reflecting	 an	 assumption	 that	

intracellular	calcium	levels	are	the	outcome	of	a	convolution	of	the	spike	train	with	a	known	
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temporal	 filter	 -	 deconvolution	 seeks	 to	 undo	 this	 process.	 Several	 algorithms	 have	 been	

proposed	to	perform	this	deconvolution	step	(Vogelstein	et	al.	2010;	Oñativia,	Schultz,	and	

Dragotti	2013;	Dyer	et	al.	2010;	Grewe	et	al.	2010),	and	have	been	successfully	applied	to	

estimate	spike	rates	and	tuning	curves	from	imaging	data	(Smith	and	Häusser	2010;	Ko	et	

al.	2013).	

Despite	 the	 successes	 of	 deconvolution	 methods,	 it	 is	 important	 to	 recognize	 that	 spike	

counts	 estimated	 from	 the	deconvolution	process	 are	 only	 approximate.	Moreover,	 as	we	

show,	 errors	 can	be	 substantial,	 and	more	 importantly	may	depend	 systematically	on	 the	

firing	 rate.	 As	 such,	 these	 errors	 are	 not	 reduced	 as	 one	would	 expect	 by	 averaging	 over	

repeated	trials.	Furthermore,	deconvolution	methods	do	not	take	into	account	the	structure	

of	the	experiment	(specifically,	the	timing	and	sequence	of	stimuli	or	behavioral	responses),	

although	 these	 factors	 may	 have	 a	 significant	 impact	 on	 spiking	 activity.	 And	 even	 if	

subsequent	 stages	 of	 analysis	 attempt	 to	 incorporate	 such	 experimental	 details,	 the	

decisions	made	during	 the	deconvolution	stage	typically	cannot	be	undone:	missed	spikes	

are	 irretrievably	 lost	 and	 falsely	 detected	 spikes	 cannot	 be	 distinguished	 from	 their	

correctly	identified	neighbors.	

Here,	we	introduce	an	alternative	approach	to	estimating	rates,	spike	count	histograms,	or	

tuning	 curves	 directly	 from	 calcium	 fluorescence	 measurements,	 without	 the	 need	 for	

deconvolution.	 This	 direct	 approach	 mitigates	 the	 biases	 associated	 with	 sequential	

estimation	 schemes	 (deconvolution	 followed	 by	 averaging	 or	 tuning	 curve	 estimation),	

especially	 when	 measurements	 are	 noisy.	 Our	 method	 operates	 by	 maximizing	 the	

likelihood	 of	 a	 simple	 model	 for	 the	 fluorescence	 generation,	 integrating	 over	 the	

distribution	 of	 unobserved	 spike	 counts.	We	 demonstrate	 the	 effectiveness	 of	 this	 direct	

estimation	 method	 on	 both	 model-simulated	 data	 sets,	 and	 real	 calcium	 imaging	 data,	

including	 data	 for	 which	 ground-truth	 spiking	 activity	 was	 obtained	 with	 simultaneous	

electrophysiological	measurements.		
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Methods		
Our	 estimation	 procedure	 is	 derived	 from	 an	 observation	 model	 that	 expresses	 the	

relationship	 between	 the	 calcium	 fluorescence	 signal	 and	 the	 underlying	 firing	 rate.	 Each	

component	of	this	observation	model	 is	simple	and	has	appeared	in	the	literature,	but	the	

particular	combination	and	methodology	we	present	is,	to	our	knowledge,	novel.	

Generative	model	for	imaging	data	

A	 graphical	 diagram	 of	 the	 model	 is	 shown	 in	 Fig.	 1.	 We	 assume	 spikes	 arise	 from	 an	

inhomogeneous	Poisson	process,	with	an	unknown	rate.	The	 rate	 is	 either	assumed	 to	be	

constant	 for	 the	 duration	 of	 each	 experimental	 condition,	 or	 expressed	 as	 a	 parametric	

function	 of	 external	 covariates	 (e.g.,	 sensory	 stimuli,	 or	 behavioral	 responses).	 We	 also	

assume	 that	 each	 spike	 causes	 an	 instantaneous	 rise	 in	 calcium	 level	 followed	 by	 an	

exponential	decay	to	baseline	(Vogelstein	et	al.	2010;	Oñativia,	Schultz,	and	Dragotti	2013;	

Smith	 and	 Häusser	 2010).	 Moreover,	 we	 assume	 that	 the	 calcium	 arising	 from	 each	

incoming	 spike	 is	 additive.	 Thus,	 the	 calcium	 signal	 arises	 from	 the	 spike	 train	 via	

convolution	with	an	exponentially	decaying	filter.	Finally,	we	assume	that	the	fluorescence	

measured	by	the	microscope	is	a	scaled	version	of	the	calcium	level,	corrupted	with	additive	

Gaussian	noise.	The	latter	assumption	is	appropriate	because	calcium	signals	from	neurons	

are	 typically	 averaged	 over	 multiple	 pixels.	 Even	 if	 the	 noise	 of	 each	 pixel	 were	 better	

described	as	Poisson	due	to	 the	nature	of	photons,	 the	noise	 in	 their	sum,	per	 the	Central	

Limit	 Theorem,	 is	 approximately	 Gaussian	 (Wilt,	 Fitzgerald,	 and	 Schnitzer	 2013).	 For	

smaller	structures	such	as	spines,	however,	this	assumption	may	need	to	be	replaced	with	

one	of	Poisson	noise.	

Fitting	the	model	

We	 fit	 the	 model	 by	 finding	 the	 firing	 rate	! ! 	that	 maximizes	 the	 likelihood	 of	 the	
observed	fluorescence	trace	! ! .	More	generally,	given	a	stimulus	or	behavioral	response	
! ! ,	we	 find	 the	 parameters	!	governing	 its	mapping	 into	 firing	 rate,	!(! ! , !).	We	 treat	
our	data	as	discretely	sampled	in	time	intervals	of	!",	the	sampling	rate	of	the	experimental	
measurements.	We	denote	the	vector	of	all	samples	up	to	time	T	by	! 0… ! ,	and	likewise	

for	the	rate	! 0… ! .	Since	the	probability	of	the	observed	fluorescence	depends	only	on	the	

instantaneous	firing	rate,	and	on	the	value	at	the	previous	time	step	(due	to	the	exponential	

decay	of	 the	 calcium	 level),	 and	 since	 the	 transformations	 from	stimuli	 to	 firing	 rate,	 and	
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from	 spikes	 to	 calcium	 are	 assumed	 to	 be	 deterministic,	 the	 likelihood	 function	 may	 be	

factorized:	

(1)	

!(!(0…!)|! 0…! ) = ! ! ! ,! ! !(!, ! ! ,!),!(0… ! − !")
�

! ! !!!

= ! ! ! !(!, ! ! ,!) ! ! ! |! ! ,!(! − !")
�

! ! !!!
	

The	 expression	 on	 the	 first	 line	 relies	 on	 the	 instantaneous	 dependency	 on	 the	 rate	

(dependencies	 on	 stimulus	 history	 are	 mediated	 through	 the	 rate),	 and	 an	 explicit	

integration	(marginalization)	over	the	unobserved	spike	counts,	! ! .	The	second	line	stems	
from	 our	 assumptions	 that	 the	 fluorescence	 at	 time	 t	 is	 independent	 of	 the	 spiking	 and	

fluorescence	history	given	the	calcium	level	at	the	previous	time	interval	(assumed	to	decay	

exponentially).	Since	we	cannot	directly	measure	the	calcium	level	we	approximate	it	with	

the	 fluorescence	 at	 the	 previous	 time	 interval.	 The	 firing	 rate	 that	 we	 wish	 to	 infer	 is	

notated	!(!, ! ! , !),	 allowing	 for	 an	 explicit	 dependency	 on	 time,	 stimulus	 or	 behavioral	
response,	 and/or	 tuning	 parameters.	 We	 assume	!(! ! |! !, ! ! , ! ),	 the	 distribution	 of	
spike	counts	given	the	rate,	is	Poisson,		

Since	we	assume	exponential	decay	of	calcium	levels	and	Gaussian	measurement	noise,	the	

fluorescence	at	time	t	given	the	spike	count	and	the	fluorescence	at	the	previous	time	step	is	

normally	 distributed	 with	 an	 expected	 value	! ! = !" ! − !" exp − !"
! + ! ∙ !(!) 	and	

variance	 (due	 to	 measurement	 noise)	!!,	 where	!(!)	represents	 the	 intracellular	 calcium	
level,	!	is	a	scaling	factor,	!	is	the	decay	time	constant	of	the	calcium	signal,	!	is	the	increase	
in	 calcium	 level	 caused	 by	 a	 single	 spike.	 Since	 calcium	 levels	 are	 not	 observed	 in	 the	

experiment,	 we	 approximate	 the	 scaled	 calcium	 level	 in	 the	 previous	 time	 step	 with	 the	

fluorescence	 level	 in	 the	 previous	 time	 step.	 Thus	!(! ! |! ! ,! ! − !" )	is	 Normal	 with	

variance	!!	and	mean		! ! − !" exp − !"
! + ! ∙ !(!).	Although	the	Markov	assumption	on	

which	we	rely	is	also	the	critical	assumption	underlying	well-known	sequential	estimation	

procedures	 such	 as	 the	 Kalman	 filter,	 note	 that	 our	 solution	 is	 described	 in	 terms	 of	 the	

previously	 measured	 fluorescence	 and	 not	 the	 previously	 estimated	 calcium	 level.	 If	 we	

assume	that	the	initial	calcium	level	has	a	Gaussian	prior,	then	due	to	the	sum	in	eq.	(1),	the	

posterior	 would	 be	 a	 sum	 of	 increasingly	 many	 Gaussians	 in	 each	 step.	 This	 is	
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computationally	 prohibitive,	 and	 thus	we	 chose	 to	 use	 the	measured	 fluorescence,	which	

provides	an	unbiased	and	cost-free	estimate	(given	our	assumptions)	of	calcium	level	(up	to	

scaling).	

In	order	to	maintain	convexity	of	the	 likelihood,	the	parameters	!!, !, !	must	be	estimated	
independently	from	the	data	(we	used	basis	pursuit	to	do	so,	as	described	below).	

Since	we	cannot	compute	the	infinite	sum	in	eq.	(1),	we	can	either	approximate	the	Poisson	

spike	 count	 distribution	 with	 an	 exponential	 distribution	 (changing	 the	 sum	 over	 spike	

counts	to	an	integral	e.g.	Vogelstein	et	al.	2010),	or	truncate	the	sum	at	some	maximal	value	

!!"# ,	 ignoring	 the	 contribution	 of	 greater	 spike	 counts.	We	 find	 that	 the	 latter	 approach	
yields	substantially	more	accurate	results	for	the	frame	rate	of	most	imaging	experiments.	

In	particular,	spike	counts	in	a	single	imaging	frame	of	duration	~100	ms	are	bounded	and	

tend	 to	 be	 low,	 and	 thus	 truncation	 does	 not	 result	 in	 a	 substantial	 loss	 in	 accuracy	 (see	

Appendix	for	more	details).	We	define	the	log-likelihood	of	the	model	as		

(2)	

! ! 0…! ;!, !(0…!)

= log !(!(!)|!(!, ! ! ,!))! ! ! |! ! ,!(! − !")
!!"#

!(!)!!!
	

For	sequential	estimation,	we	infer	a	rate	for	each	point	in	time,	namely	!(!, ! ! , !)) = !! .	
For	direct	non-parametric	estimation	we	fit	a	rate	to	each	one	of	a	discrete	set	of	stimuli,	i.e.	

! !, ! ! , ! = !! !!!" .	And	for	direct	parametric	estimation	of	Von	Mises	tuning	curves	the	

rate	 was	 defined	 as	! !, ! ! , ! = ! ∙ !!∙!"#(!(!!!")!!) 	and	! = (!, !, !) .	 In	 all	 cases	 an	
additional	 baseline	 term	 was	 included	 in	 the	 model	 to	 account	 for	 periods	 where	 no	

stimulus	 was	 presented.	 To	 impose	 a	 positive	 rate	 without	 introducing	 constraints,	 the	

parameters	 defined	 the	 logarithm	 of	 the	 rate	 instead	 of	 the	 rate	 itself,	 for	 example	 –	

log ! !, ! ! , ! = !! + ! ∙ cos(!(! − !") − !).	

The	inferred	parameters	were	those	that	maximized	the	log-likelihood	L.	Optimization	was	

performed	using	a	 trust-region	algorithm	 in	MATLAB.	Note	 that	 for	 sequential	 estimation	

and	direct	non-parametric	estimation	(not	for	parametric	Von	Mises	tuning),	the	likelihood	

is	convex	in	the	parameters	and	therefore	the	solution	is	a	global	maximum.	See	Appendix	

for	more	details.	



	 8	

To	 implement	 a	 smoothness	 prior	 we	 added	 a	 term	 penalizing	 the	 sum	 of	 squared	

differences	 between	 neighboring	 pixels	 in	 the	 rate	 map	 (8	 neighbors	 per	 pixel;	 toroidal	

boundary	 conditions)	 to	 eq.	 (2).	 We	 implemented	 this	 prior	 in	 the	 relevant	 section	 of	

Results.	For	all	other	sections	no	smoothing	or	post	processing	was	performed.	

	
Figure	 1.	 Graphical	 representation	 of	model	 assumptions	 and	 dependencies.	 The	 only	 observable	

variables	are	 the	 stimulus	s(t)	 and	 the	 fluorescence	 f(t)	 ,	 the	 rest	are	hidden.	All	dependencies	are	

instantaneous	 and	 simultaneous	 in	 time,	 except	 calcium	 levels	 which	 depend	 on	 values	 at	 the	

previous	time	step	(through	exponential	decay),	and	(potentially)	the	stimulus	history.		

		

Surrogate	data	

Surrogate	data	were	generated	following	the	scheme	in	fig.	1:	(1)	A	rate	was	chosen,	either	

by	sampling	from	a	Gaussian	distribution,	or	as	a	deterministic	(tuning	curve)	function	of	a	

time-varying	 stimulus,	! ! = !(!, ! ! ),	 where	!	are	 the	 parameters	 defining	 the	 tuning,	
and	!(!)	represents	the	stimulus.	! ! 	may	be	multidimensional	and	can	include	history	up	
to	 (but	not	 including)	 time	 t.	When	neural	 coupling	was	 inferred,	we	 simply	 replaced	 the	

stimulus	 with	 the	 fluorescence	 of	 the	 coupled	 neuron,	 i.e.	 ! ! = !(!,!! ! ) .	 !! ! 	
represents	the	fluorescence	of	the	coupled	neuron,	and	may	include	history	up	to	(but	not	

including)	time	t.	(2)	Spike	counts	were	generated	by	sampling	from	a	Poisson	distribution	

with	 the	 given	 rate	! ! ~!"#(! ! ).	 (3)	 A	 calcium	 level	was	 generated	 by	 convolving	 the	
spike	 count	with	 an	 exponentially	 decaying	 filter,	 (i.e.	 spikes	 in	 each	 time	 bin	 caused	 an	

instantaneous	 increase	 in	 calcium	 proportional	 to	 the	 spike	 count,	 followed	 by	 an	

exponential	 decay).	 (4)	 Finally,	 the	 fluorescence	 trace	was	 generated	 by	 adding	 Gaussian	

stimulus (or other!
external covariates)

firing rate

spike count

calcium concentration

measured fluorescence  
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measurement	noise.	Unless	noted	otherwise,	50	 randomly	generated	 repeated	 trials	were	

used	in	each	experiment.	

Linear	Model	

For	 comparison	 we	 also	 fit	 the	 data	 with	 a	 linear	 model,	! = ! ∗ (! ∙ !),	 where	 F	 is	 the	
fluorescence	trace,	A	is	a	coefficient	matrix	(containing	tuning	parameters),	S	is	the	stimulus	

matrix,	and	k	is	the	exponential	decay	filter	that	captures	the	calcium	dynamics.	This	model	

predicts	 a	 fluorescence	 level	 for	 each	 stimulus	 value.	 The	 equation	 is	 linear	 in	 the	 tuning	

curve	 (contained	 in	 A),	 which	 can	 thus	 be	 estimated	 using	 conventional	 (least-squares)	

regression.			

Experimental	Procedures	

All	experimental	procedures	were	conducted	in	accordance	with	the	UK	Animals	Scientific	

Procedures	Act	 (1986).	 Experiments	were	performed	at	University	College	London	under	

personal	 and	 project	 licenses	 released	 by	 the	 Home	 Office	 following	 appropriate	 ethics	

review.	

Surgical	procedures	and	expression	of	calcium	indicator	

Experiments	were	performed	either	in	Camk2a-tTA;	EMX1-Cre	;	Ai93(TITL-GCamp6f)	triple	

transgenic	 mice	 (Madisen	 et	 al.	 2015),	 expressing	 calcium	 indicator	 GCaMP6f	 in	 all	 the	

cortical	Camk2a-positive	excitatory	neurons,	or	in	wild	type	C57BL6/j	mice	where	GCaMP6f	

was	expressed	in	all	neurons	of	a	local	region	using	a	virus	injection.	

Using	aseptic	techniques,	mice	were	implanted	with	a	cranial	window	over	the	right	visual	

cortex	as	previously	described	(Andermann,	Kerlin,	and	Reid	2010;	Andermann	et	al.	2011).	

An	 analgesic	 (Rimadyl,	 5	mg/Kg,	 SC)	was	 administered	 on	 the	 day	 of	 the	 surgery	 and	 in	

subsequent	 days,	 as	 needed.	 Dexamethasone	 (0.5	 mg/kg,	 IM)	 was	 administered	 30	 min	

prior	to	the	surgery	to	prevent	brain	edema.	The	animal	was	anesthetized	with	Isoflurane	

(1-2%	 in	 100%	Oxygen),	 body	 temperature	was	monitored	 and	 kept	 at	 37-38	 °C	 using	 a	

closed-loop	 heating	 pad,	 and	 the	 eyes	 were	 protected	 with	 ophthalmic	 gel	 (Viscotears	

Liquid	Gel,	Alcon	Inc.).	The	head	was	shaved	and	disinfected,	the	cranium	was	exposed	and	

covered	with	biocompatible	cyanoacrylate	glue	(Vetbond).	A	stainless	steel	head	plate	with	

a	7	mm	round	opening	was	secured	over	the	skull	using	dental	cement	(Super-Bond	C&B,	
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Sun	Medical	Co.	Ltd.,	Japan).	Then,	a	3-4	mm	craniotomy	was	opened	over	the	visual	cortex	

(centered	at	 -3.3mm	AP,	2.8	ML	 from	bregma).	 Finally,	 the	 craniotomy	was	 sealed	with	 a	

glass	cranial	window,	attached	to	the	skull	using	cyanoacrylate	glue	and	dental	cement.	The	

window	was	assembled	from	a	5	mm	outer	round	cover	glass	cured	to	1-2	smaller	inserts	(3	

mm,	Warner	Instruments,	#1	thickness)	with	 index-matched	UV	curing	adhesive	(Norland	

#61).	 The	 animal	was	 allowed	 to	 recover	 for	 at	 least	 4	 days	 before	 further	 experimental	

procedures.		

For	 the	 wild	 type	 animals,	 before	 sealing	 the	 craniotomy	 we	 injected	 an	

AAV1.Syn.GCaMP6f.WPRE.SV40	 virus	 (100	 nl,	 titer	 of	 2.4e12	 GC/ml,	 UPenn	 Vector	 Core)	

250-300	µm	below	the	V1	surface.	Virus	reached	expression	 level	suitable	 for	 imaging	~2	

weeks	after	the	injection.	

Two-photon	calcium	imaging		

For	the	imaging	experiments	mice	were	head-fixed	under	a	resonant-scanning	two-photon	

microscope	(B-Scope,	Thorlabs).	Mice	were	 free	 to	run	on	an	airflow-suspended	spherical	

treadmill	during	the	imaging	sessions.	The	microscope	was	controlled	using	ScanImage	v4.2	

(Pologruto,	 Sabatini,	 and	 Svoboda	 2003).	 A	 low	magnification	 (x16)	 high	 NA	 (0.8)	 water	

immersion	 objective	 lens	 (Nikon)	 was	 mounted	 on	 a	 piezoelectric	 z-drive	 (PIFOC	 P-

725.4CA,	Physik	Instrumente)	allowing	multi-plane	imaging.	Excitation	light	(970	nm,	30-60	

mW	at	 the	 sample)	was	provided	by	 a	 femtosecond	 laser	 (Chameleon	Ultra	 II,	 Coherent).	

Images	 (512x512	 pixels,	with	 field	 of	 view	 of	 340-500	microns)	were	 acquired	 at	 30	Hz.	

This	 high	 imaging	 rate	 was	 temporally	 divided	 into	 3-5	 different	 depths	 spaced	 50-60	

microns	apart,	resulting	in	an	acquisition	rate	of	6-10	Hz	per	imaging	plane.		

Visual	stimulation	

Visual	 stimuli	 were	 generated	 in	 Matlab	 (MathWorks)	 using	 the	 Psychophysics	 Toolbox	

(Brainard	 1997;	 Kleiner	 et	 al.	 2007)	 and	 displayed	 on	 3	 gamma-corrected	 LCD	monitors	

(refresh	rate	60Hz)	arranged	at	90	degrees	to	each	other.	The	mouse	was	positioned	at	the	

center	of	this	U-shaped	arrangement	at	the	distance	of	20	cm	from	all	three	monitors	so	that	

the	monitors	 spanned	 ±135	 degrees	 of	 horizontal	 and	 ±35	 degrees	 of	 the	 vertical	 visual	

field	 of	 the	 mouse.	 For	 rate	 mapping	 experiments	 we	 used	 sparse	 spatial	 white	 noise	

stimuli.	Patterns	of	sparse	black	and	white	squares	(4.5-7.5	degrees	of	visual	field)	on	gray	
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background	were	presented	at	5	Hz.	The	probability	of	each	square	to	be	not	gray	was	2-5%	

and	 independent	of	other	squares.	For	orientation	tuning	experiments	we	presented	0.5	s	

long	drifting	gratings	(size	60	degrees,	contrast	50%,	spatial	frequency	0.05	cpd,	temporal	

frequency	2	Hz,	4	different	phases).	The	position	of	 the	grating	was	selected	 to	match	 the	

retinotopic	location	of	the	imaged	region.	

Data	preprocessing	

We	removed	the	baseline	from	fluorescence	traces	using	robust	local	regression	estimation	

(Ruckstuhl	et	al.	2001).	This	procedure	also	provides	an	estimate	of	the	measurement	noise	

standard	 deviation	!.	 The	 spikes	 were	 estimated	 using	 basis	 pursuit	 denoising	 (van	 den	
Berg	and	Friedlander	2008)	and	the	magnitude,	a,	was	set	 to	be	 the	95th	percentile	of	 the	

coefficient	 values	 in	 the	 solution	 of	 the	 sparse	 inverse	 problem.	 Calcium	 decay	 times,	!,	
were	 generally	 set	 to	 0.5	 s.	 All	 aforementioned	 values	 were	 inspected	 manually	 and	

adjusted	if	necessary.	
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Results	
Given	 fluorescence	measurements,	 and	 stimuli,	 behavior,	 or	 other	 external	 covariates,	we	

estimate	rates	directly	by	maximizing	the	likelihood	given	in	Eq.	(2)	(see	Methods).	Unlike	

deconvolution	 approaches,	 which	 aim	 to	 explicitly	 infer	 spikes,	 our	 approach	 integrates	

over	the	unobserved	spikes,	directly	inferring	the	underlying	rate.		

To	deconvolve	or	not	to	deconvolve?	

As	an	 illustrative	example,	consider	the	ubiquitous	task	of	estimating	the	mean	firing	rate	

across	repeated	trials.	The	intuitive	approach	would	be	to	first	estimate	the	spike	count,	in	

each	trial,	and	then	average	these	counts	across	repeated	trials	to	obtain	rates.	We	refer	to	

this	approach	“sequential	estimation”.	Alternatively,	our	method	aims	to	estimate	the	rate	

directly	from	the	calcium	measurements	across	all	repeated	trials.	We	refer	to	this	as	“direct	

estimation”.		

	
Figure	 2.	A	Simulated	example	of	 temporal	signals	 in	 the	 fluorescence	generation	process.	At	each	

point	 in	 time	 at	most	 one	 of	 9	 discrete	 stimuli	 is	 ‘on’	 (1st	 row).	 Each	 stimulus	 is	 deterministically	

associated	with	a	rate	(2nd	row).	Spike	counts	are	samples	from	a	Poisson	process	with	the	given	rate	

(3rd	row).	Calcium	levels	are	a	convolution	of	 the	spike	counts	with	an	exponential	 filter	–	 i.e.	each	

spike	causes	an	instantaneous	rise	in	calcium	followed	by	an	exponential	decay	(4th	row).	Finally,	the	

measured	 fluorescence	 is	 a	 scaled	 version	 of	 the	 calcium,	 corrupted	 with	 Gaussian	 measurement	
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noise	 (5th	 row).	 The	 goal	 is	 to	 estimate	 the	 relationship	 between	 stimulus	 and	 rate,	 given	 the	

observed	fluorescence	signal.	
	

To	 compare	 the	 two	 approaches,	 we	 generated	 data	 as	 illustrated	 in	 Fig.	 2.	 Fifty	 noisy	

repeats	with	 the	 same	 underlying	 rate	were	 randomly	 generated.	 The	 log	 of	 the	 rate	 for	

each	time	bin	was	drawn	from	a	Normal	distribution	(! = −4,! = 1.5).	We	then	estimated	
the	rate	 in	one	of	 three	ways:	(a)	By	 fitting	eq.	 (2)	 from	Methods	simultaneously	 to	all	50	

repeats;	(b)	By	fitting	eq.	(2)	to	each	individual	repeat	and	averaging	across	repeats;	and	(c)	

By	using	the	deconvolution	method	of	(Vogelstein	et	al.	2010)	to	estimate	spike	count/rate	

on	 each	 repeat,	 and	 averaging	 these	 across	 repeats.	 As	 can	 be	 seen	 in	 fig.	 3A,	 fitting	 all	

repeats	simultaneously	substantially	improves	the	estimate	of	the	rate.	Moreover,	estimates	

based	on	averaging	single	 trials	do	not	converge	 to	 the	 true	value	of	 the	rate.	This	occurs	

because	 low	rates	are	 systematically	overestimated	–	 for	very	 low	(or	zero)	 spike	counts,	

the	 effects	 of	measurement	 noise	 are	 asymmetric,	 generally	 leading	 to	 an	 increase	 in	 the	

number	of	estimated	spikes,	since	the	number	of	spikes	must	remain	non-negative.	

We	also	note	that	even	if	the	goal	of	the	analysis	is	to	estimate	the	spike	count	in	each	time	

bin,	 our	 approach	 provides	 a	 more	 accurate	 estimate	 of	 the	 spike	 count	 than	 the	

deconvolution	approach	(fig.	3B).	This	is	a	consequence	of	the	fact	that	we	explicitly	model	

a	time	varying	rate,	and	assume	that	spike	counts	follow	a	Poisson	distribution	(which	is	the	

true	distribution	for	the	simulated	data).	Therefore,	for	the	remainder	of	this	article,	we	will	

use	the	rate	estimates	from	eq.	(2)	averaged	across	trials	to	perform	sequential	estimation,	

rather	than	averaging	spike	count	estimates	provided	by	deconvolution.	

	
Figure	 3.	 Estimating	 rates	 and	 spike	 counts	 from	 simulated	 calcium	 fluorescence	 data.	 A.	 50	

fluorescence	 traces	with	 the	 same	 underlying	 rate	were	 randomly	 generated	 (measurement	 noise	
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! = 0.5).	The	rate	or	spike	count	in	each	repeat	was	estimated	using	eq.	(2)	(red)	or	a	deconvolution	
algorithm	(yellow;	Vogelstein	et	al.	2010),	respectively,	and	then	averaged	across	repeats	(sequential	

estimation).	 Alternatively,	 the	 rate	was	 simultaneously	 fit	 to	 all	 repeats	 using	 eq.	 (2)	 (blue;	 direct	

estimation).	The	root	mean	squared	error,	relative	to	the	true	underlying	rate	used	to	generate	the	

data,	 is	 shown	 as	 a	 function	 of	 the	 number	 of	 repeats	 used	 in	 the	 estimation	 process.	 Though	

unintuitive	at	first,	estimating	the	spike	counts	and	then	averaging	is	not	the	same	as	estimating	the	

average	 count	 directly.	 The	 latter	 proves	 to	 be	 more	 accurate.	 B.	 Estimating	 spike	 counts	 from	

fluorescence.	We	used	eq.	(2)	to	estimate	the	rate,	or	the	deconvolution	algorithm	of	Vogelstein	et	al.	

2010	to	estimate	the	spike	count/rate	at	each	point	in	time.	Our	estimate	of	the	rate	(red;	error	bars	

represent	standard	deviation	across	inferred	rates)	proves	a	better	estimate	of	the	true	spike	count	

than	that	provided	by	the	deconvolution	algorithm	(gray).	

	

Estimating	tuning	curves	

One	 of	 the	 shortcomings	 of	 deconvolution	 approaches	 is	 that	 they	 are	 oblivious	 to	 the	

experimental	structure.	That	is,	they	do	not	take	into	account	which	stimulus,	behavior,	or	

experimental	 condition	 was	 present	 at	 each	 point	 in	 time.	 While	 subsequent	 stages	 of	

analysis	may	take	the	experimental	structure	into	account,	they	cannot	correct	errors	made	

during	 the	 deconvolution	 stage.	 Since	 our	 method	 assumes	 that	 the	 stimulus	 or	

experimental	 condition	 influences	 the	 rate	 directly,	 rather	 than	 the	 spike	 count	 (which	

arises	 from	the	rate)	 it	 is	able	 to	 leverage	 the	structure	of	 the	experiment,	yielding	better	

estimates.	

To	quantify	the	advantage	of	the	direct	approach	over	sequential	estimation,	we	generated	

data	 from	the	generative	model	described	 in	 fig.	2,	where	the	rate	was	determined	by	the	

stimulus	condition	at	the	previous	time	step.	At	each	point	in	time	there	was	at	most	one	of	

9	different	stimuli	present.	We	estimated	a	 tuning	curve	by	either	estimating	 the	count	at	

each	point	 in	 time	and	 then	averaging	 these	counts	over	each	of	 the	9	stimuli	 (sequential	

estimation),	 or	 by	 directly	 fitting	 a	 stimulus	 dependent	 rate	 to	 all	 data	 simultaneously	

(direct	estimation).	

When	measurement	noise	levels	were	low,	the	deconvolution	process	produces	an	accurate	

estimate	 of	 spike	 counts,	 and	 both	 estimates	 are	 accurate.	 But	 at	 higher	 noise	 levels,	 the	

deconvolution	 process	 becomes	 substantially	 less	 accurate,	 and,	 consequently,	 the	

sequential	 estimation	 of	 firing	 rates	 becomes	 less	 accurate	 (fig.	 4A,B).	 As	 an	 additional	
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comparison,	we	also	 show	estimates	derived	 from	 linear	 regression	 (see	methods).	While	

linear	estimates	are	 less	sensitive	 to	noise	 they	are	substantially	 less	accurate	 than	either	

sequential	or	direct	estimation.	

Robustness	 to	 noise	 is	 of	 particular	 importance	 in	 imaging	 experiments,	 which	 are	 often	

designed	 for	 high	 throughput	 simultaneous	 measurements	 from	many	 cells.	 The	 field	 of	

view	of	a	 typical	 imaging	experiment	may	easily	contain	 thousands	of	neurons,	and	while	

some	may	be	relatively	‘clean’	many	are	noisy.	To	harness	the	potential	of	calcium	imaging	

one	would	 like	 to	 ‘dig’	 as	 deeply	 into	 the	 data	 as	 possible.	 To	 this	 end,	we	 note	 that	 the	

direct	estimation	method	requires	fewer	samples	(shorter	experiment)	to	achieve	the	same	

accuracy	 as	 sequential	 estimation	 (fig.	 4C).	 This	 is	 of	 particular	 importance	 for	 imaging	

experiments	 carried	 out	 in	 awake	 head-fixed	 animals	 in	 which	 animal	 welfare	

considerations	dictate	strict	limits	on	experimental	duration.	
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Figure	 4.	 Estimating	 tuning	 curves	 from	 simulated	 data.	 A.	 Fluorescence	 traces	 were	 generated	

following	 the	 generative	 model	 (fig.	 1),	 with	 stimulus-driven	 rates	 determined	 by	 a	 tuning	 curve	

(shown	in	black),	for	two	levels	of	measurement	noise	!.	The	rate	associated	with	each	stimulus	was	
estimated	in	three	ways:	(1)	By	first	estimating	the	rate	at	each	point	in	time	and	then	averaging	the	

rates	 following	 each	 stimulus	 (sequential	 estimation;	 red	 crosses);	 (2)	 By	 fitting	 a	 stimulus	

dependent	rate	directly	to	the	data	(direct	estimation;	blue	circles);	and	(3)	Using	linear	regression	

(yellow	triangles).	B.	Root	mean	squared	error	of	the	estimated	tuning	curve	is	plotted	as	a	function	

of	 measurement	 noise.	 Error	 bars	 represent	 standard	 deviations	 across	 50	 randomly	 generated	

fluorescence	 traces.	 As	 measurement	 noise	 increases	 the	 advantage	 of	 direct	 estimation	 becomes	

more	pronounced.	C.	Estimation	error	as	a	function	of	experiment	duration	(color	legend	as	in	panel	

B).	Direct	estimation	requires	less	data	to	achieve	the	same	accuracy.	

Application	to	data	

Thus	far,	we’ve	compared	the	performance	of	the	sequential	and	direct	approaches	applied	

to	simulated	data,	which	obeys	all	of	the	model	assumptions.	Real	neural	data,	on	the	other	

hand,	is	unlikely	to	obey	these	assumptions.	In	the	following	section	we	apply	our	method	

to	calcium	imaging	data	obtained	from	mouse	visual	cortex.	

Recovering	firing	rates	

As	before,	we	begin	with	the	basic	task	of	estimating	firing	rates	from	imaging	data.	We	

used	a	dataset	described	in	(Chen	et	al.	2013),	and	publicly	available	on	CRCNS.org.	This	

dataset	includes	simultaneous	imaging	and	loose-seal	cell-attached	electrical	recordings,	

under	repeated	visual	stimulation.	The	electrical	recordings	provide	a	ground-truth	

measurement	of	the	true	spike	counts.		

The	data	set	consists	of	11	cells	recorded	for	6	trials	of	40	s	each	(multiple	recordings	per	

cell).	During	each	trial	a	visual	stimulus	was	presented	for	2	s.	We	estimated	firing	rates	

from	the	imaging	data	either	directly	or	sequentially	(example	in	fig.	5A).	Sequential	

estimation	performed	particularly	poorly	in	low	firing	rate,	substantially	overestimating	the	

baseline	firing	rate.	For	almost	all	cells,	direct	estimation	outperformed	sequential	

estimation	by	roughly	a	factor	of	two	(fig.	5B).	
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Figure	5.	Estimating	firing	rates	from	simultaneous	imaging	and	electrical	recordings.	A.	The	mean	

firing	rate	across	repeats	for	an	example	cell	was	estimated	either	by	averaging	electrically	recorded	

spike	counts	across	40	repeated	trials	(black),	by	averaging	spike	counts	inferred	from	individual	

trials	of	imaging	data	(bottom;	red;	sequential),	or	by	directly	estimating	the	rate	across	trials	from	

imaging	data	(top;	blue;	direct).	B.	Root	mean	squared	error	(relative	to	the	rate	estimated	from	

electrical	recordings)	of	the	sequential	method	is	plotted	against	that	of	the	direct	method	(black	line	

indicates	equality).	Each	point	corresponds	to	estimates	for	a	single	cell,	obtained	on	40	repeats	of	a	

6s	stimulus	(n=24	recordings).	Red	point	corresponds	to	the	example	in	panel	A.	

	

Estimating	rate	maps	

Next,	we	applied	our	approach	to	estimate	the	rate	maps	of	neurons	in	mouse	visual	cortex.	

Mice	were	head-fixed	on	a	 floating	ball	and	viewed	sparse	noise	stimuli	on	a	screen	while	

calcium	activity	(reported	by	GCaMP6f)	was	recorded	using	a	two-photon	microscope	(see	

Methods	 for	details).	The	stimulus	was	a	10x36	square	pixel	grid,	where	each	pixel	had	a	

2.5%	chance	of	being	either	white	or	black	and	a	95%	chance	of	being	gray.	The	goal	of	the	

analysis	was	to	identify	the	region	in	the	visual	field	in	which	changes	to	the	light	affect	the	

neuron’s	response.	

As	 in	 the	 previous	 sections,	 we	 estimated	 the	 rate	 associated	with	 a	 pixel	 either	 by	 first	

estimating	 the	rate	 in	each	 time	bin,	and	 then	averaging	all	 time	bins	 for	which	 that	pixel	

was	black/white	 (sequential	 estimation),	or	by	directly	 fitting	a	pixel-intensity	dependent	

rate	to	the	data	(direct	estimation).	

Figure	6A	shows	the	 inferred	rate	maps	 for	an	example	neuron.	This	corresponds	 to	each	

model’s	expected	rate	given	each	pixel	being	black,	 independent	of	other	pixels.	 Since	 the	

stimulus	 is	 sparse	 (see	 methods)	 interactions	 between	 pixels	 are	 negligible.	 Visual	
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inspection	reveals	that	the	sequential	approach	produces	a	noisier	estimate	of	the	rate	map.	

We	quantified	the	noise	 level	 in	the	rate	map	using	the	median	absolute	deviation	(MAD).	

We	 chose	 the	 MAD	 over	 the	 standard	 deviation	 as	 a	 measure	 of	 variability/noisiness,	

because	it	is	less	sensitive	to	outliers	arising	at	the	extrema	of	the	rate	maps.	For	all	cells	in	

this	 data	 set	 exhibiting	 clear	 rate	map	 structure,	 fitting	 the	 data	 directly	with	 a	 position-

dependent	rate	resulted	in	less	noisy	rate	map	estimates	compared	to	a	sequential	estimate	

or	linear	regression	(fig.	6B).	
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Figure	 6.	 Estimating	 rate	 maps	 from	 data.	 A.	 Rate	 maps	 of	 mouse	 visual	 cortical	 neurons	 were	

estimated	 using	 direct	 estimation	 (top),	 sequential	 estimation	 (middle)	 and	 linear	 regression	

(bottom;	 see	 text	 for	 details).	 The	 intensity	 of	 each	pixel	 represents	 the	 rate	 (rescaled)	 associated	

with	 that	 pixel	 being	 black	 (this	 is	 an	 off	 cell).	 The	 direct	 estimation	 approach	 provides	 the	 least	

noisy	estimate	of	 the	 rate	map	(no	smoothing	or	 regularization	was	applied).	B.	The	quality	of	 the	

rate	map	estimate	was	quantified	using	the	median	absolute	deviation	(MAD)	of	the	entire	rate	map.	

The	MAD	 for	 the	 sequential	 estimates	 (red)	 and	 linear	 regression	 (yellow)	 are	 plotted	 against	 the	

MAD	for	the	direct	estimates	(n	=	9	neurons;	circled	data	points	correspond	to	the	example	in	panel	

A).	For	all	cells	the	direct	estimate	proved	least	noisy.	

	

Above	we	measured	 the	 ‘goodness’	 of	 the	 rate	maps	by	measuring	 their	 smoothness.	Our	

framework	 is	 sufficiently	 general	 that	we	 can	 explicitly	 incorporate	 this	 prior	 knowledge	

about	 the	 smoothness	of	 rate	maps	 into	 the	model.	This	 can	be	done	by	adding	a	penalty	

proportional	 to	 the	 sum	 of	 squared	 differences	 between	 neighboring	 pixels	 to	 the	 log	

likelihood.	 In	 fig.	 7	 we	 show	 the	 impact	 of	 adding	 a	 smoothness	 prior	 on	 rate	 map	

estimation.	Note	 that	here	 for	clarity	we	show	the	 linear	portion	of	our	model,	before	 the	

nonlinearity,	and	thus	a	log-rate	map.	

	
Figure	 7.	 Estimating	 rate	maps	with	 a	 prior	 preference	 for	 smoothness.	A.	 The	 linear	 spatial	 filter	

portion	of	the	model	estimated	for	an	example	neuron	from	responses	to	a	sparse	noise	stimulus.	B.	

The	same	as	panel	A,	but	with	the	smoothness	prior	imposed.	

	

Estimating	parametric	orientation	tuning	

We	 now	 turn	 to	 the	 problem	 of	 estimating	 orientation	 tuning	 curves	 from	 responses	 to	

drifting	 grating	 stimuli	 (same	 neurons	 as	 in	 previous	 section;	 see	 Methods).	 Orientation	

tuning	 curves	 are	 often	 summarized	 by	 a	 scaled	 Von	 Mises	 probability	 density	 function	
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(Swindale	1998),	which	 is	defined	by	only	three	parameters	–	mean,	width	and	scale.	The	

mean	of	the	Von	Mises	fit	is	the	preferred	orientation	of	the	neuron.	

This	widely	used	parametric	form	of	the	tuning	curve	allows	us	to	highlight	another	feature	

of	 our	 model.	 Since	 we	 explicitly	 model	 the	 relationship	 between	 the	 stimulus	 and	 the	

response,	the	parametric	form	may	be	incorporated	into	the	objective	function,	allowing	us	

to	directly	estimate	the	parameters	(note	that	the	parametric	form	can	impact	the	convexity	

of	 the	 likelihood,	 and	 thus	 the	 complexity	 of	 the	 optimization	 problem;	 see	 appendix	 for	

more	 details).	 For	 comparison,	 we	 also	 consider	 a	 sequential	 scheme,	 in	 which	 we	 first	

estimate	rates	on	individual	trials,	then	average	them,	and	finally	fit	a	Von	Mises	function	to	

these	averages.	

To	assess	the	quality	of	the	fitted	tuning	curves,	we	measured	the	variability	of	the	estimate	

across	 randomly	 selected	 subsets	 of	 the	 data.	 A	 better	 estimator	 should	 exhibit	 less	

variability	across	the	different	subsets.	

With	 limited	 data	 (less	 than	 5	minutes)	 estimating	 the	 parameters	 defining	 a	 Von	Mises	

tuning	 curve	 directly	 from	 the	 data	 proves	more	 reliable	 (fig.	 8)	 compared	 to	 sequential	

estimation.	This	is	because	we	are	only	fitting	3	parameters	to	the	entire	trace,	and	we	are	

taking	 into	consideration	any	uncertainty	 that	we	have	 in	 the	estimates	of	 the	rate.	 In	 the	

sequential	approach,	each	stage	 is	oblivious	 to	any	uncertainties	 in	 the	previous	stage.	As	

the	 amount	 of	 data	 increases,	 both	 approaches	 perform	 consistently,	 but	 this	 is	 partially	

because	the	overlap	between	the	randomly	chosen	subsets	necessarily	increases.	

	
Figure	 8.	 Estimating	orientation	 tuning	 curves	 from	data.	A.	Orientation	 tuning	curves	of	 a	mouse	

visual	 cortical	 neuron	was	 estimated	 either	 sequentially	 (estimating	 rates	 and	 then	 averaging	 the	

rates	associated	with	each	orientation;	red	circles),	or	by	directly	fitting	a	parametrically	defined	Von	
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Mises	 shaped	 tuning	 curve	 directly	 to	 the	 fluorescence	 data	 (blue	 curve).	 B.	 Subsets	 of	 data	 of	

different	lengths	were	randomly	selected	and	the	tuning	of	the	neuron	was	estimated.	The	standard	

deviation	 of	 these	 estimates	 is	 plotted	 as	 a	 function	 of	 the	 length	 of	 the	 subset	 used	 for	 the	

estimation.	The	direct	parametric	approach	provides	a	more	reliable	estimate	of	the	tuning	for	any	

given	amount	of	data.	

	

Inferring	neural	coupling	

Previous	 work	 has	 demonstrated	 the	 value	 and	 importance	 of	 modeling	 the	 coupling	

between	neurons	(Pillow	et	al.	2008;	Gerhard	et	al.	2013;	Okatan,	Wilson,	and	Brown	2005).	

Neural	coupling	is	predominantly	mediated	through	spikes	and	the	ensuing	synaptic	events.	

Our	direct	inference	approach,	however,	does	not	provide	an	estimate	of	the	spikes.	Is	it	still	

possible	to	infer	neural	coupling?	

Though	 actual	 spike	 times	 are	 never	 inferred	 throughout	 our	 analysis,	 the	 observed	

fluorescence	trace	provides	a	noisy	filtered	version	of	the	spikes.	Therefore	we	investigated	

whether	 coupling	 between	 neurons,	 at	 the	 level	 of	 spikes,	 can	 be	 inferred	 using	 the	

fluorescence	 signal.	 Note	 that	 this	 analysis	 can	 only	 infer	 interactions	 occurring	 at	 the	

relatively	 slow	 sampling	 rate	 of	 the	 experiment	 (~10	Hz),	 and	not	 those	occurring	 at	 the	

time	scale	of	synaptic	transmission	(>100	Hz).	

To	 test	 whether	 neural	 coupling	 can	 be	 inferred	 from	 fluorescence,	 we	 simulated	 two	

neurons,	 in	 which	 the	 spikes	 of	 neuron	 2	multiplicatively	 influence	 the	 rate	 of	 neuron	 1	

through	 a	 predefined	 temporal	 filter,	 cs.	 We	 then	 inferred	 the	 rate	 of	 neuron	 1	 from	 its	

fluorescence	trace,	using	the	fluorescence	trace	of	neuron	2	as	a	covariate	(as	if	it	were	an	

external	 stimulus).	 This	 procedure	 provides	 us	 with	 a	 maximum	 likelihood	 estimate	 of	

neuron	1’s	rate	and	an	estimate	of	 the	coupling	between	the	neurons.	We	will	denote	this	

inferred	filter	cf.	One	must	keep	in	mind	that	cs	and	cf,	are	not	expected	to	be	identical,	as	the	

former	operates	on	spikes	while	the	latter	operates	directly	on	the	fluorescence	signal.	Yet,	

it	is	easy	to	see	that	if	we	want	to	generate	a	filter	which	will	mimic	cf’s	output	when	applied	

to	 spikes,	we	 simply	 need	 to	 convolve	 cf	with	 an	 exponential	 filter,	 the	 same	 convolution	

process	that	converts	spike	trains	to	calcium	traces.	We	denote	this	filter	!!.	

As	expected,	while	the	inferred	filter	cf	does	not	match	the	coupling	filter	used	to	generate	

the	data,	once	we	convolve	it	with	an	exponential	decay	to	obtain	!!	produces	a	very	good	
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estimate	of	the	true	coupling	between	the	neurons	(fig.	9).	This	suggests	that	our	approach	

enables	 inference	 of	 spike	 based	 coupling	 between	 neurons,	 although	 spikes	 are	 never	

inferred	in	the	process.	

	
Figure	9.	Inferring	spike	based	coupling	from	fluorescence.	A.	The	rate	of	neuron	1	(top)	is	directly	

influenced	by	the	spiking	activity	of	neuron	2	through	a	coupling	filter	cs,	yet	our	task	is	to	infer	this	

coupling	 by	 observing	 fluorescence	 alone.	 B.	 We	 generated	 surrogate	 fluorescence	 data	 using	 a	

known	coupling	filter	cs	(black	line).	We	then	estimated	the	neural	coupling	!!	by	inferring	the	rate	of	
neuron	 1	 using	 the	 fluorescence	 of	 neuron	 2	 as	 a	 covariate	 (a	 fluorescence	 dependent	 rate).	 The	

inferred	coupling	cf	was	convolved	with	an	exponential	decay	to	obtain	!!	(blue	circles;	see	text	 for	
details).	
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Discussion	
We	have	shown	that	sequential	estimation	of	neural	firing	rates	from	calcium	imaging	data,	

by	 first	 estimating	 spike	 counts	 and	 then	 averaging	 these	 to	 obtain	 firing	 rates	 and/or	

tuning	 curves,	 can	 produce	 strongly	 biased	 results.	 As	 an	 alternative,	 we’ve	 developed	 a	

direct	method	that	operates	by	integrating	over	the	unobserved	spike	counts.	Our	analysis	

shows	that	direct	estimation	outperforms	sequential	estimation	in	simulation,	as	well	as	on	

imaging	data.	The	method	is	flexible,	allowing	estimation	of	firing	rate	dependencies	on	any	

measured	covariate	(e.g.,	movement	direction,	location	in	space,	task	condition,	behavioral	

state),	 using	 calcium	 imaging	 obtained	 from	 either	 repeated	 trials,	 and/or	 by	 assuming	 a	

parametric	relationship	between	covariates	and	firing	rates.		

Calcium	trace	deconvolution	

The	term	“deconvolution”	stems	 from	the	assumption	that	 intracellular	calcium	levels	can	

be	described	as	a	convolution	of	the	spike	train	with	a	linear	filter.	Deconvolution	provides	

a	natural	preprocessing	 stage	 for	 the	analysis	of	 imaging	data,	 extracting	estimates	of	 the	

underlying	spikes,	after	which	standard	methods	may	be	used	to	analyze	the	spike	counts.	

Deconvolution	 algorithms	 are	 based	 on	 a	 variety	 of	 different	 methodologies	 including	

Bayesian	 inference	 (Vogelstein	 et	 al.	 2010;	 Theis	 et	 al.	 2015),	 basis	 pursuit	 (Grewe	 et	 al.	

2010),	matching	pursuit	 (Dyer	et	 al.	 2010),	 among	others	 (Oñativia,	 Schultz,	 and	Dragotti	

2013).	The	method	of	(Vogelstein	et	al.	2010),	in	particular,	is	based	on	the	same	generative	

model	we	have	used	 in	 this	 article.	 	But	our	direct	method	differs	 in	 that:	 (a)	 it	 explicitly	

includes	a	 stimulus-dependent,	 time	varying	 rate,	whereas	 in	 (Vogelstein	et	 al.,	 2010)	 the	

rate	 is	 fixed	 and	 is	 used	 as	 a	 sparse	 prior	 on	 spike	 counts;	 (b)	 it	 integrates	 over	 the	

unobserved	spike	counts,	rather	than	attempting	to	explicitly	estimate	them;	(c)	it	assumes	

a	 Poisson	 spiking	 process,	 rather	 than	 substituting	 a	 more	 computationally	 tractable	

exponential	distribution.		

These	 differences,	 while	 seemingly	 minor,	 result	 in	 substantial	 improvements	 in	 the	

accuracy	of	rates	inferred	from	calcium	data	(see	fig.	3).	In	particular,	the	presence	of	noise	

in	 the	 imaging	 process	 ensures	 that	 the	 deconvolution	 results	 will	 be	 imperfect,	 but	

subsequent	 analyses	 generally	 ignore	 the	 uncertainty	 associated	 with	 the	 spike	 count	

estimates.	As	we	have	shown	this	can	lead	to	biases	when	estimating	firing	rates	and	tuning	

curves	from	the	data,	especially	for	low	firing	rates.	By	integrating	out	the	spike	counts	we	
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are	 able	 to	 take	 the	uncertainty	 associated	with	 spike	 count	 estimation	 into	 account,	 and	

consequently	 provide	 a	 procedure	 that	 is	more	 tolerant	 to	 noise.	 Furthermore,	 the	 direct	

approach	 proves	 more	 statistically	 efficient,	 which	 in	 practice	 can	 translate	 into	 shorter	

experiments.	

Similar	arguments	in	favor	of	direct	estimation	have	been	made	in	the	past	with	regard	to	

spike	sorting.	Namely	it	has	been	shown	that	it	may	be	preferable	estimate	tuning	curves	

directly	from	raw	voltage	traces,	rather	than	to	first	sort	the	spikes	and	then	fit	the	tuning	

curves	(Ventura	2009b;	Ventura	2009a).	Recently	it	was	shown	that	an	animal’s	position	in	

space	can	be	decoded	with	better	accuracy	directly	from	hippocampal	spike	waveforms,	

than	by	a	sequential	scheme	in	which	spikes	are	first	sorted	and	then	used	for	position	

estimation	(Kloosterman	et	al.	2014;	Deng	et	al.	2015).	

For	both	spike	sorting	and	deconvolution	it	is	important	to	remember	that	the	output	of	any	

algorithm	is	only	an	estimate	of	spike	times/counts,	and	should	be	treated	as	such.	

Subsequent	analyses	that	ignore	the	uncertainty	in	these	estimates	may	accumulate	errors	

and	biases.	This	is	not	a	problem	when	the	signal	to	noise	ratio	is	very	large	and	spikes	can	

be	recovered	with	high	accuracy,	yet	these	cases	are	increasingly	rare	as	high-throughput	

physiological	recordings	are	becoming	more	prevalent.	

Model	assumptions	

The	elements	of	our	model	are	commonplace	in	the	literature,	and	are	not	unique	to	our	

approach,	such	as	Poisson	spiking	(Dayan	and	Abbott	2001)	or	Gaussian	measurement	

noise	(Wilt,	Fitzgerald,	and	Schnitzer	2013).	

An	additional	assumption,	central	to	most	deconvolution	approaches,	is	that	calcium	levels	

are	the	result	of	a	linear	convolution	of	the	spike	train	with	an	exponential	decay	filter.	In	

general,	peak	calcium	levels	are	not	directly	proportional	to	spike	count,	and	decay	time	can	

vary	with	spike	count	(Akerboom	et	al.	2012;	Badura	et	al.	2014;	Chen	et	al.	2013).	These	

observations	may	be	explained	by	non-linear	summation	of	spike	‘signatures’	(Nauhaus,	

Nielsen,	and	Callaway	2012),	which	is	most	pronounced	for	high	firing	rates.	It	is	not	

immediately	clear	how	to	incorporate	a	nonlinearity	into	the	convolution	process	in	our	

generative	model	while	maintaining	computational	tractability,	thus	it	may	be	advisable	to	

remain	near	the	linear	operating	regime	of	the	indicator.	Further	we	assume	that	the	spike	
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‘signature’	includes	an	instantaneous	rise.	Although	this	is	an	idealization,	for	imaging	

experiments	with	the	latest	calcium	indicators	the	rise	time	is	typically	on	the	order	of	the	

sampling	rate.	Thus	we	do	not	expect	this	assumption	to	greatly	affect	the	model.	

Region	of	interest		

A	seemingly	independent	problem	when	analyzing	imaging	data	is	that	of	Region	Of	Interest	

(ROI)	detection	(Mukamel,	Nimmerjahn,	and	Schnitzer	2009).	Recently	several	groups	have	

noted	that	the	ROI	detection	and	deconvolution	problems	are	in	fact	related.	Knowledge	of	

spike	times	can	clearly	guide	ROI	detection	and	vice	versa.	Consequently	some	authors	have	

explored	the	combination	of	these	two	analysis	steps	into	a	single	optimization	problem,	

trying	to	solve	for	the	ROIs	and	spike	times/counts	simultaneously	(Diego	Andilla	and	

Hamprecht	2014;	Pnevmatikakis	et	al.	2014).	Following	our	insights	from	the	current	work,	

we	suggest	that	when	the	goal	of	the	analysis	is	rate	(or	tuning	curve)	estimation,	it	may	

prove	beneficial	to	estimate	the	rate	directly	from	the	raw	images.	This	may	prove	to	be	a	

computationally	prohibitive	task	and	we	defer	this	for	future	research.	

Conclusion	

As	imaging	methods	become	an	increasingly	popular	way	to	measure	brain	activity,	it	is	

important	to	develop	algorithms	to	analyze	these	data.	We	chose	to	focus	on	experiments	in	

which	the	goal	of	the	analysis	is	a	firing	rate,	an	average	spike	count	histogram,	or	a	tuning	

curve.	Although	this	does	not	encompass	all	possible	analyses,	it	is	sufficiently	broad	to	

include	a	wide	range	of	experiments.		

We	argue	that	the	‘correct’	approach	to	this	estimation	problem	is	to	integrate	out	the	

unobserved	spikes	to	obtain	the	quantities	of	interest.	Analogous	proposals	have	been	made	

in	the	context	of	electrophysiological	data	(Ventura	2009b;	Ventura	2009a;	Kloosterman	et	

al.	2014;	Deng	et	al.	2015).	Properly	integrating	over	“nuisance	variables”	is	a	well-known	

theme	in	the	statistical	estimation	and	machine	learning	communities,	but	is	notorious	for	

being	computationally	expensive.	Our	direct	method	of	estimating	firing	rates	and	tuning	
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curves	from	imaging	data	provides	state-of-the-art	estimates	of	rates	by	integrating	out	the	

spike	counts,	yet	is	efficient	enough	to	run	on	a	standard	computer.		
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Appendix	

Properties	of	the	model	likelihood	

As	shown	in	the	methods,	the	log-likelihood	of	our	model	can	be	written	as	

(A.1)	
! ! 0…! ;!, !(0…!) =
log !(!(!)|!(!, !(0… !)))! ! ! |! ! ,!(! − !")!!"#

!(!)!!! 	.	

	

Our	 task	 is	 to	 find	 the	 set	 of	 tuning	 parameters	!	that	 maximize	 the	 likelihood.	 These	
parameters	may	 explicitly	 represent	 the	 rate	 in	 response	 to	 different	 stimuli	 or	 define	 a	

parametric	form	like	the	Von	Mises	function.	

Since	 the	 rate	 must	 be	 non-negative	 it	 is	 convenient	 to	 work	 with	 the	 log-rate.	 We	 will	

express	the	derivative	in	terms	of	the	derivative	of	the	log-rate,	which	may	depend	on	time,	

stimulus,	or	be	a	parametric	 function	of	 the	stimulus.	We	use	 the	notation	!(!, !)	to	mean	
either	!(!)	when	 are	 estimating	 rate	 directly	 or	!(!, ! ! )	when	 the	 rate	 depends	 on	 the	
stimulus	through	parameters	!.	For	brevity	we	denote	the	complete	fluorescence	trace	and	
stimulus	by	F	and	S	respectively.		

Incorporating	the	Poisson	spiking	assumption,	the	log	likelihood	is	equal	to	

! !; !, ! = log ! !, ! !!!!(!,!)
!! ∙ ! ! ! |! ! ,!(! − !")

!!"#

!!!!
	

The	gradient	of	the	likelihood	with	respect	to	the	ith	parameter	can	be	written	as	

! log ! !; !, !
!!!

= ! log !(!, !)
!!!

! ! !, !
!

!! ! ! ! |! ! ,!(! − !")!!"#
!!!

! !, ! !
!! ! ! ! |! ! ,!(! − !")!!"#

!!!

− !(!, !)
!

	

Multiplying	the	numerator	and	denominator	by	!!!(!,!)	this	can	be	written	as	–		

!" !;!,!
!!!

= ! !"#!(!,!)
!!!

!" ! ! !(!,!) ! ! ! |! ! ,!(!!!")!!"#
!!!

! ! ! !(!,!) ! ! ! |! ! ,!(!!!")!!"#
!!!

− !(!, !)! 	.	
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The	entries	of	the	Hessian	are	therefore	

!!! !;!,!
!!!!!

= − ! !"#!(!,!)
!!!

! !"#!(!,!)
!!!

!(!, !) − !!! ! ! !(!,!) ! ! ! |! ! ,!(!!!")!!"#
!!!

! ! ! !(!,!) ! ! ! |! ! ,!(!!!")!!"#
!!!

+!

!" ! ! !(!,!) ! ! ! |! ! ,!(!!!")!!"#
!!!

! ! ! !(!,!) ! ! ! |! ! ,!(!!!")!!"#
!!!

!
+

!!!"#$(!,!)
!!!!!

!" ! ! !(!,!) ! ! ! |! ! ,!(!!!")!!"#
!!!

! ! ! !(!,!) ! ! ! |! ! ,!(!!!")!!"#
!!!

− !(!, !)! 	.	

Note	 that	 if	!
!!"#$(!,!)
!!!!!

= 0	(which	 is	 the	 case	 for	 sequential	 estimation	 or	 direct	 non-

parametric	estimation)	then	the	negative	Hessian	is	positive	semi-definite	and	the	negative	

log-likelihood	 is	 thus	 convex.	 To	 see	 this,	 let	 us	 denote	 the	 term	 in	 square	 brackets	 k(t),	
! !"#!(!,!)

!!!
= q!(!),	 and	! ! = ! ! q(!).	 Thus	 we	 can	 write	 !

!!
!!!!!

= −! !(!)!(!)! ,	 i.e.	 a	

sum	 of	 outer	 products	 of	 a	 vector	 with	 itself.	 Therefore	 the	 negative	 Hessian	 is	 positive	

semi-definite.	

Exponential	approximation	

As	noted	in	the	main	text,	it	is	possible	to	substitute	the	assumption	of	Poisson	spiking	with	

exponentially	 distributed	 ‘counts’	 (these	 are	 not	 truly	 counts	 since	 they	 are	 no	 longer	

integers).	 In	 this	case	 integrating	out	 the	spikes	can	be	done	more	efficiently.	Namely,	 the	

sum		

! ! ! , ! ! !(!),!(0… !)
�

! ! !!
	

in	eq.	(1)	in	Methods	is	replaced	by	an	integral	–		

! ! ! , ! ! !(!),!(0… !) !"(!)
�

!
	

	

In	addition,	now	! ! ! ! ! = ! ! !!! ! !(!).	
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Though	we	did	not	achieve	good	results	with	this	approximation,	we	present	the	equations	

for	the	log-likelihood,	gradient,	and	Hessian	for	completeness.	For	brevity	we	will	drop	the	

explicit	dependence	of	!	on	!.	

	

! !; ! = log ! ! − ! ! ! ! + log!!(!)
!

	

!" !; !
!!!

= ! log ! !
!!!

1 − ! ! ! ! − ! ! !" !!!(!)
+ ! ! ! !

!
	

!!! !; !
!!!!!

= ! log !(!)
!!!

! log !(!)
!!!

−! ! ! ! + 2!!! !
!

− !" ! ! !!!(!)
! ! ! ! + !" ! ! !

!! !
− !"(!) + 1

+ !!!"#$(!)
!!!!!

1 − ! ! ! ! − ! ! !" !!!(!)
+ ! ! ! !

!
	

Where	we	define	the	following	intermediate	quantities	–		

! ! = 1
! ! ! − !! !!

!"
! − ! ! 	

!! ! = !
2 exp

! ! ! !

2 ∙ erfc
! ! ! − !!

2
	

! ! = exp − 12
!(!)
!

!
+ ! ! !(!) 	

	

Implementation	considerations	

There	 are	 3	 keys	 to	 making	 the	 task	 of	 integrating	 out	 the	 spike	 count	 computationally	

efficient:	(1)	The	assumption	that	Fluorescence	is	conditionally	independent	of	the	spiking	

history	given	 the	 fluorescence	at	 the	previous	 time	step	and	the	current	spike	count.	This	
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allows	us	 to	avoid	a	combinatorial	explosion,	 since	we	only	need	 to	sum	over	all	possible	

spike	 counts	 at	 the	 current	 time	 step	 alone.	 (2)	 The	 observation	 that	 probability	 of	

observing	 a	 certain	 fluorescence	 value	 at	 time	 t,	 given	 the	 spike	 count	 at	 time	 t	 and	 the	

fluorescence	 at	 the	 previous	 time	 step,	! ! |! ! ,! ! − !" ,	 does	 not	 depend	 on	 the	
parameters	 being	 optimized.	 This	 means	 that	 we	 can	 calculate	 this	 quantity	 once	 for	

different	values	of	n(t)	and	do	not	need	to	reevaluate	it	during	optimization	iterations.	(3)	

The	 truncation	 of	 the	 sum	 in	 eq.	 (1)	 of	Methods,	which	 ignores	 the	 contribution	 of	 large	

spike	counts.	Since	the	spike	count	 tends	to	be	small	 for	our	choice	of	 time	bins,	 this	sum	

can	be	safely	truncated	at	an	appropriate	number,	which	we	designate	as	nmax.	

A	 proper	 choice	 of	 nmax	 depends	 on	 the	 preparation	 and	 the	 sampling	 rate.	 The	 data	

analyzed	in	this	study	comes	from	neurons	in	the	superficial	layers	of	mouse	visual	cortex.	

Electrophysiology	suggests	that	such	neurons	rarely	spike	at	rates	that	exceed	~20Hz	(Niell	

and	Stryker	2008).	At	a	sampling	rate	of	6Hz	(as	in	our	data)	this	means	less	than	4	spikes	

per	bin.	We	used	a	nmax	value	of	~10	spikes/bin,	which	is	equivalent	to	~60	spikes/s.	To	be	

on	the	safe	side	though,	we	increased	the	value	of	nmax	from	6	to	25	spikes/bin,	but	did	not	

observe	as	substantial	effect	on	the	rate	map	estimate	(fig.	A.1A).	

To	achieve	the	best	run	time	nmax	should	be	set	as	low	as	possible,	but	as	can	be	seen	in	fig.	

A.1B,	fitting	a	10x36	rate	map	using	our	method	takes	about	0.1	seconds	for	a	wide	range	of	

nmax	values	(on	a	2014	Apple	MacBook	Pro	laptop).	
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Figure	A.1.	Setting	the	maximal	spike	rate	and	its	effect	on	run	time.	A.	The	same	rate	map	as	in	fig.	6	

was	fit	using	different	values	of	nmax.	Changing	nmax	from	36Hz	to	150	Hz	has	no	visible	effect	on	the	

inferred	 rate	map.	B.	 The	 time	 it	 takes	 to	 fit	 the	10x36	 rate	map	 shown	 in	panel	A	 is	 plotted	 as	 a	

function	of	nmax.	For	nmax	values	of	up	to	150Hz	the	run	time	is	around	0.1	seconds.	
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