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Supplementary Figure 1. Construction
of spatial pooling regions using filters
that are separable in log eccentricity and
polar angle. (a) Filters have a flat top
and raised cosine transition regions, and
are constructed to evenly tile log eccen-
tricity, which yields filters that grow in
size with eccentricity according to a
fixed scaling (ratio of size to eccentricity).
Filters are shown for two scalings, 0.46
and 0.87. Filters are constructed to have
approximately 50% overlap. (b) Similarly
constructed filters are spaced evenly to
tile polar angle. Larger scalings yield
broader polar angle filters, to ensure that
the resulting two-dimensional spatial
filters have a fixed ratio of width in
eccentricity to width in polar angle (see
Methods). (¢) The two separable com-
ponents are combined to obtain two-
dimensional spatial filters. Contours
indicate the full-width half-maximum of
each filter. Actual filters have soft edges
and overlap by approximately 50%, as
shown for the separable components in
(a) and (b). The full set of filters tile
evenly, and sum to a constant.
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Supplementary Figure 2. V1 model and stimuli. (a) In each spatial pooling region, the image is repre-
sented with a bank of model V1 complex cells, varying in their preferred orientation and spatial frequency.
Model responses are averages of the squared filter responses over the pooling regions. The model cap-
tures local spectral energy, but not local correlations across orientations and scales. (b) An original photo-
graph of the Brunnen der Lebensfreude fountain in Rostock, Germany (courtesy of Bruce Miner). (¢) and
(d) Image samples, randomly selected from the set of all images that generated V1 model responses
identical to the original (panel b). The value of the scaling parameter (used to determine the pooling regions
of the model) was selected to yield 75% correct performance in discriminating such synthetic images
(Fig. 4). While fixating the center (red circle) the two images should appear nearly identical to the original
and to each other.
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Supplementary analysis

We performed a meta-analysis to estimate the relationship between physiologically measured re-
ceptive field size and eccentricity in non-human primates. Measurements of receptive field sizes
are variable across different experiments because different labs use different stimuli and mapping
procedures [12, 13, 4]. To compare our psychophysics to physiology, we considered a wide range of
data sets: four in V2 [8, 9, 3, 1], five in V1 [8, 10, 4, 7, 2], and three in V4 [9, 11, 5]. Two of these
data sets are from owl monkey [1, 2], one from capuchin [10], and the rest are from macaque.

For each visual area, we combined data across experiments and estimated variability by pooling
the raw data (rather than the fits), matching sample sizes, and resampling multiple times to obtain
a 95% confidence interval on the slopes. Specifically, we determined the minimum number of cells
across the data sets, and on each iteration of a bootstrap, resampled that number with replacement
from each data set, and reestimated the slope of size versus eccentricity from the pooled data. We
fit the data with a two-parameter hinged line, with a constant minimum size over some small range
of eccentricities, followed by a linear relationship with some slope. For consistency, we used this
“hinged line” model to estimate all slopes, but we obtained similar results when using a linear
fit through 0. We also considered a straight line with variable intercept and slope [6], but the
hinged line fits the data well (error was comparable for the two fits) and is better matched to the
parameterization of our model. Variability across data sets tended to be largest at far eccentricities,
and given that our visual stimuli only extended to 12.25 deg, we restricted our analysis of the
physiology data to this range. In some of the cited studies [8, 10, 9, 7, 3, 5], rectangular receptive
field sizes were mapped using a minimum response field procedure. To convert these numbers to
diameters of circular receptive fields, and partially compensate for the bias toward smaller values
inherent in this mapping technique [13, 4], we took the average of the diameter associated with
the corners and sides of the squares (i.e., we multiplied the reported diameters by (1 + v/2)/2).
Small modifications to any of these aspects of the data analysis did not qualitatively change the
comparison between our psychophysics and the physiology (Figure 5).
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