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The ventral visual stream is a series of cortical areas that represent 
spatial patterns, scenes and objects1. V1 is the earliest and most 
thoroughly characterized area. Individual V1 cells encode infor-
mation about local orientation and spatial frequency2, and simple 
 computational models can describe neural responses as a function of 
visual input3. Substantial progress has also been made in understand-
ing later stages, such as inferotemporal cortex, where neurons exhibit 
complex object-selective responses4. However, the transformations 
between V1 and inferotemporal cortex remain a mystery.

Several observations from physiology and theory can help 
to constrain the study of this problem. It has been shown that  
receptive field sizes increase along the ventral stream. Many models  
of visual pattern recognition5–10 have proposed that increases in 
spatial pooling provide invariance to geometric transformations 
(for example, changes in position or size). In addition, it is well 
established that receptive field sizes scale linearly with eccentricity  
in individual areas and that this rate of scaling is larger in each  
successive area along the ventral stream, providing a signature that 
distinguishes different areas11–13.

We hypothesize that the increase in spatial pooling, both in 
 successive ventral stream areas and with eccentricity, induces an irre-
trievable loss of information. Stimuli that differ only in terms of this 
lost information will yield identical population-level responses. If the 
human observer is unable to access the discarded information, such 
stimuli will be perceptually indistinguishable; thus, we refer to them 
as metamers. Visual metamers were crucial to one of the earliest and 
most successful endeavors in vision science: the elucidation of human 
trichromacy. Behavioral experiments predicted the loss of spectral 
information in cone photoreceptors 100 years before the physiological 
mechanisms were confirmed14. The concept of metamerism is not 
limited to trichromacy, however, and a number of studies have used 
it to understand aspects of pattern or texture vision15–17.

We developed a population-level functional model for ventral 
stream computation beyond V1 that allowed us to synthesize and 

examine the perception of a new type of visual metamer. The 
first stage of the model decomposes an image with a population 
of oriented V1-like receptive fields. The second stage computes 
local averages of nonlinear combinations of these responses over 
regions that scale in size linearly with eccentricity, according to a 
scaling constant that we can vary parametrically. Given a photo-
graphic image, we synthesized distinct images with identical model 
responses and asked whether human observers could discriminate 
them. From these data, we estimated the scaling constant that yields 
metameric images and found that it was consistent with receptive 
field sizes in area V2, suggesting a functional account of representa-
tion in that area.

Our model also provides an explanation for the phenomenon of  
visual crowding18,19, in which humans fail to recognize peripherally 
 presented objects surrounded by clutter. Crowding has been hypothesized 
to arise from compulsory pooling of peripheral information20–23,  
and the development of our model was partly inspired by evidence 
that crowding is consistent with a representation based on local texture  
statistics24. Our model offers an instantiation of this hypothesis,  
providing a quantitative explanation for the spacing and eccentricity  
dependence of crowding effects, generalizing them to arbitrary photo-
graphic images and linking them to the underlying physiology of the 
ventral stream.

RESULTS
Our model is motivated by known facts about cortical  computation, 
human pattern vision and the functional organization of ventral stream 
receptive fields. The V1 representation uses a bank of oriented filters 
covering the visual field, at all orientations and spatial frequencies. 
‘Simple’ cells encode a single phase at each position, whereas ‘complex’ 
cells combine pairs of filters with the same preferred position, orienta-
tion and scale, but with different phase25.

The second stage of our model achieves selectivity for compound 
image features by computing products between particular pairs of V1 
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responses (both simple and complex) and averaging these products 
over local regions, yielding local correlations. Correlations have been 
shown to capture important features of naturalistic texture images and 
have been used to explain some aspects of texture perception17,26,27. 
Correlations across orientations at different positions yield selec-
tivity to angles and curved contours, as suggested by physiological  
studies of area V2 (refs. 28–32). Correlations across frequencies encode 
features with aligned phase or magnitude (for example, sharp edges 
or lines)17,33, and correlations across positions capture periodicity.  
Finally, local correlations are compatible with models of cortical com-
putation that propose hierarchical cascades of linear filtering, point 
nonlinearities and pooling5–9,25,34,35 (see Online Methods).

We must specify the pooling regions over which pair-wise pro-
ducts of V1 responses are averaged. Receptive field sizes in the 
ventral stream grow approximately linearly with eccentricity, and 
the slope of this relationship (that is, the ratio of receptive field 
 diameter to eccentricity) increases in successive areas (see Fig. 1 and 
Supplementary Analysis). In our model, pooling is performed by 
weighted averaging, with smoothly overlapping functions that grow 
in size linearly with eccentricity, parameterized with a single scal-
ing constant (see Online Methods and Supplementary Fig. 1).

Generation of metameric stimuli
If our model accurately describes the information captured (and dis-
carded) at some stage of visual processing, and human observers can-
not access the discarded information, then any two images that produce 
matching model responses should appear to be identical. To directly 
test this assertion, we examined perceptual discriminability of syn-
thetic images that were as random as possible while producing identi-
cal model responses17. Model responses (Fig. 2a) were computed for a 
full-field photograph (for example, Fig. 2b). Synthetic images were then 
generated by initializing them with samples of Gaussian white noise 
and iteratively adjusting them (using a variant of gradient descent) 
until they matched the model responses of the original image (see  
Online Methods).

Synthetic images were identical to the original near the intended 
fixation point, where pooling regions were small, but features in the 
periphery were scrambled, and objects were grossly distorted and 
generally unrecognizable (Fig. 2c,d). When generated with the cor-
rect scaling constant, and viewed with proper fixation, however, the 
two images appeared to be nearly identical to the original and to 
each other.

Perceptual determination of critical scaling
To test the model more formally and to link it to a specific ventral 
stream area, we measured the perceptual discriminability of synthetic 

images as a function of the scaling constant used in their generation. 
If the model, with a particular choice of scaling constant, captures the 
information represented in some visual area, then model-generated 
stimuli will appear to be metameric. If the scaling constant is made 
larger, then the model will discard more information than the 
associated visual area and model-generated images will be readily 
 distinguishable. If the model scaling is made smaller, then the model 
discards less information and the images will remain metameric. 
Thus, we sought the largest value of the scaling constant at which 
the stimuli appeared to be metameric. This critical scaling should 
correspond to the scaling of receptive field sizes in the area in which 
the information is lost.

As a separate control for the validity of this procedure, we examined 
stimuli generated from a V1 model that computes pooled V1 complex-
cell responses36 (that is, local spectral energy, see Supplementary 
Fig. 2). The critical scaling estimated for these stimuli should match 
the receptive field sizes of area V1. As the mid-ventral model includes 
a larger and more complex set of responses than the V1 model, we 
know a priori that the critical scaling for the mid-ventral model will 
be as large, or larger, than for the V1 model, but we do not know  
by how much.

For each model, we measured the ability of human observers to 
distinguish between synthetic images generated for a range of scaling 
constants (Fig. 2e and Online Methods). All four observers exhibited 
monotonically increasing performance as a function of scaling con-
stant (Fig. 3). Chance performance (50%) indicates that the stimuli 
are metameric and, roughly speaking, the critical scaling is the value 
at which each curve first rises above chance.

To obtain an objective estimate of the critical scaling values, we 
derived an observer model that used the same ventral stream repre-
sentation as was used to generate the matched images. The inputs to 
the observer model were two images that were matched over region 
sizes specified by scaling s. If we assume that the observer computes 
responses to each of these images with receptive fields that grow in 
size according to a fixed (but unknown) critical scaling s0, then their 
ability to discriminate the two images will depend on the difference 
between the two sets of responses. We derived a closed-form expres-
sion for the dependency of this difference on s (see Online Methods). 
This expression is a function of the observer’s scaling parameter, s0, 
as well as a gain parameter, 0, which controls their overall perform-
ance. We used signal detection theory37 to describe the probability 
of a correct answer and fit the parameters (s0, 0) to the data of each 
subject by maximizing their likelihood.

The observer model provided an excellent fit to individual observer 
data for both the V1 and mid-ventral experiments (Fig. 3). Critical 
scaling values (s0) were highly consistent across observers, with most 

Figure 1 Physiological measurements of 
receptive field size in macaque. (a) Receptive 
field size (diameter) as a function of the 
distance between the receptive field center and 
the fovea (eccentricity) for visual areas V1, V2 
and V4. Data were adapted from refs. 11 and 
12, the only studies to measure receptive fields 
in all three macaque ventral stream areas with 
comparable methods. The size-to-eccentricity 
relationship in each area is well described by 
a ‘hinged’ line (see Supplementary Analysis 
for details and an analysis of a larger set of ten physiological datasets). (b) Cartoon depiction of receptive fields with sizes based on physiological 
measurements. The fovea is at the center of each array. The size of each circle is proportional to its eccentricity, based on the corresponding scaling 
parameter (slope of the fitted line in a). At a given eccentricity, a larger scaling parameter implies larger receptive fields. In our model, we used 
overlapping pooling regions (linear weighting functions) that uniformly tiled the image and were separable and of constant size when expressed in polar 
angle and log eccentricity (Supplementary Fig. 1).
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of the between-subject variability being captured by differences in 
overall performance ( 0). As expected, the simpler V1 model required 
a smaller scaling to generate metameric images. Specifically, critical  
scaling values for the V1 model were 0.26  0.05 (mean  s.d.), 
whereas values for the mid-ventral model were roughly twice as  
large (0.48  0.02).

Estimation of physiological locus
We then compared the psychophysically estimated scaling parameters 
to physiological estimates of receptive field size scaling in different 
cortical areas. Functional magnetic resonance imaging has been used 
to measure population receptive fields in humans by estimating the 
spatial extent of a stimulus that contributes to the hemodynamic 
response across different regions of the visual field13. Although these 
sizes grow with eccentricity, and across successive visual areas, they 
include additional factors, such as variability in receptive field posi-
tion and non-neural hemodynamic effects, which may depend on 
both eccentricity and visual area. We chose to compare our results 

Figure 2 Mid-ventral model, example metameric stimuli and experimental task. (a) In each spatial pooling region, the image was first decomposed 
using a population of model V1 cells (both simple and complex), varying in their preferred orientation and spatial frequency. Model responses were 
computed from products of the filter outputs across different positions, orientations and scales, averaged over each of the pooling regions.  
(b) An original photograph of the Brunnen der Lebensfreude in Rostock, Germany. (c,d) Synthetic image samples, randomly selected from the set of 
images that generated model responses identical to those of the original (b). The value of the scaling parameter (used to determine the pooling regions 
of the model) was selected to yield 75% correct performance in discriminating such synthetic images (see Fig. 4). The two images, when viewed with 
fixation at the center (red dot), should appear to be nearly identical to the original and to each other, despite gross distortions in the periphery (for 
example, a woman’s face is scrambled and dissolves into the spray of the fountain). (e) Psychophysical ABX task. Human observers viewed a sequence 
of two synthetic stimuli ABX, each randomly selected from the set of all images having model responses matched to an original image, followed by a 
third image that was identical to one of the first two. Observers indicated which of the first two images matched the third.
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Figure 3 Metamer experiment results. Each graphs shows, for an 
individual observer, the proportion of correct responses in the ABX task 
as a function of the scaling parameter (ratio of receptive field diameter 
to eccentricity) of the model used to generate the stimuli. Data were 
averaged over stimuli drawn from four naturalistic images. Dark gray 
indicates the mid-ventral model (see Fig. 2), whereas light gray  
indicates the V1 model (see Supplementary Fig. 2). Shaded region 
indicates the 68% confidence interval obtained using bootstrapping.  
The gray horizontal lines indicate chance performance. Black lines 
indicate performance of observer model with critical scaling and gain 
parameters chosen to maximize the likelihood of the data for each 
individual observer (see Online Methods). r 2 values for the fits are 
indicated at the bottom of each plot.
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to single-unit electrophysiological measurements in non-human pri-
mates. Receptive field size estimates vary systematically, depending on 
the choice of stimuli and the method of estimation, so we combined 
estimates reported for ten different physiological datasets to obtain a 
distribution of scaling values for each visual area (see Supplementary 
Analysis). This analysis yielded values of 0.21  0.07 for receptive fields 
in V1, 0.46  0.05 for those of V2 and 0.84  0.06 for those of visual 
area V4 (mean with 95% confidence intervals). Moreover, for studies 
that used comparable methods to estimate receptive fields in both V2 
and V1, the average receptive field sizes in V2 were approximately 
twice the size of those in V1, for both macaques and humans11,13,38.

As expected, the critical scaling value estimated from the V1 metamer 
experiment was well matched to the physiological estimates of receptive 
field scaling for V1 neurons. For the mid-ventral model, the critical 
scaling was roughly twice that of the V1 model, was well matched to 
receptive field sizes of V2 neurons and was substantially smaller than 
those of V4. This correspondence suggests that the metamerism of 
images synthesized using our mid-ventral model arises in area V2.

Robustness to bottom-up and top-down performance manipulations
If metamerism reflects a structural limitation of the visual system, 
governed by the eccentricity-dependent scaling of receptive field sizes, 
then the effects should be robust to experimental manipulations that 
alter observer performance without changing the spatial properties of 
the stimuli. To test this, we performed two variants of the mid-ventral 
metamer experiment, designed to alter performance through bottom-
up and top-down manipulations of the experimental task.

First, we repeated the original experiment with doubled presentation 
times (400 ms instead of 200 ms). Fitting the observer model to data 
from four observers (Fig. 4a), we found that the gain parameter ( 0) 
was generally larger, accounting for increases in performance, but that 

the critical scaling (s0) was statistically indistinguishable from that esti-
mated in the original experiment (P = 0.18, two-tailed paired t test).

In a second control experiment, we manipulated endogenous atten-
tion. At the onset of each trial, a small arrow was presented at fixation, 
pointing toward the region in which the two subsequently presented 
stimuli differed most (see Online Methods). The fitted gain parameter 
was again generally larger, accounting for improvements in perform-
ance, but the critical scaling was statistically indistinguishable from 
that estimated in the original experiment (P = 0.30; two-tailed paired 
t test; Fig. 4b). In both control experiments, the increase in gain var-
ied across observers and depended on their overall performance in 
the original experiment (some observers already had near-maximal 
performance). The scaling for the two control experiments were simi-
lar to those of the original experiment, were closely matched to the 
scaling of receptive fields found in area V2 and were much greater 
than the scaling found in the V1 metamer experiment (P = 0.0064, 
extended presentation task; P = 0.0183, attention task; two-tailed 
paired t test; Fig. 5).

Relationship to visual crowding
Our model predicts severe perceptual deficits in peripheral vision, 
some of which are revealed in the well-studied phenomenon of visual 
crowding18,19, which has been hypothesized to arise from pooling or 
statistical combination in the periphery20–24. Crowding is typically 
characterized by asking observers to recognize a peripheral target 
object flanked by two distractors at varying target-to-flanker spacings. 
The critical spacing at which performance reaches threshold increases 
proportional to eccentricity18,19, with reported rates ranging from 
0.3 to 0.6. Our estimates of critical scaling for the mid-ventral model 
are in this range, but the substantial variability (which arises from 
different choices of stimuli, task, number of targets and flankers, and 
threshold) renders this comparison equivocal. Moreover, a direct 
comparison of these values may not even be warranted, as it implicitly 
relies on an unknown relationship between the pooling of the model 
responses and the degradation of recognition performance.

Figure 4 Metamer control experiments.  
Each column shows data and fitted 
psychometric functions for an individual 
observer. Both experiments used stimuli 
generated by the mid-ventral model. 
(a) Metamer experiment with extended 
presentation time. Light gray points  
indicate 400-ms presentation time,  
whereas dark gray points indicate 200-ms 
presentation time (replotted from Fig. 3).  
The shaded region represents the 68% 
confidence interval obtained using 
bootstrapping. The gray horizontal  
lines indicate chance performance.  
(b) Metamer experiment with directed 
attention. Light gray points indicate  
that observers were directed with an 
attentional cue indicating the region with the largest change (see Online Methods), whereas dark gray points represent undirected attention 
(replotted from Fig. 3). The shaded region represents the 68% confidence interval obtained using bootstrapping.
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We performed an additional experiment to determine directly 
whether our mid-ventral model could predict recognition performance 
in a crowding task. The experimental design was inspired by a previous 
study linking statistical pooling in the periphery to crowding24. First, 
we measured observers’ ability to recognize target letters presented 
peripherally (6 deg) between two flanking letters, varying the target-
to-flanker spacing to obtain a psychometric function (Fig. 6a). We 
then used the mid-ventral model to generate synthetic metamers for 
a subset of these peripherally presented letter stimuli and measured 
the ability of observers to recognize the letters in these metamer 
stimuli under foveal viewing. Recognition failure (or success) for a 
single metamer cannot alone indicate crowding (or lack thereof), but 
the average performance across an ensemble of metamer samples 
 quantifies the limitations on recognizability imposed by the model.

Average recognition performance for the metamers is well matched 
to that of their corresponding letter stimuli (Fig. 6a) for metamers 
synthesized with scaling parameter s = 0.5 (the average critical scaling 
estimated for our human observers). For metamers synthesized with 
scaling parameters of s = 0.4 or s = 0.6, performance was significantly 
higher or lower, respectively (P < 0.0001, two-tailed paired t test across 
observers and conditions). These results are consistent across all obser-
vers, at all spacings, and for two different eccentricities (Fig. 6b).

DISCUSSION
We constructed a model for visual pattern representation in the 
mid-level ventral stream that computes local correlations amongst 

V1 responses in eccentricity-dependent pooling regions. In addition, 
we developed a method for generating images with identical model 
responses and used these synthetic images to show that when the 
pooling region sizes of the model are set correctly, images with iden-
tical model responses are indistinguishable (metameric) to human 
observers, despite severe distortion of features in the periphery. We 
found that the critical pooling size required to produce metamericity 
is robust to bottom-up and top-down manipulations of discrimina-
tion performance; that critical pooling sizes are consistent with the 
 eccentricity dependence of receptive field sizes of neurons in ventral 
visual area V2; and that the model can predict degradations of peri-
pheral recognition known as crowding, as a function of both spacing  
and eccentricity.

Perceptual deficits in peripheral vision have been recognized for cen-
turies. Most early studies focused on the loss of acuity that results from 
eccentricity-dependent sampling and blurring in the earliest visual 
stages. Crowding is a more complex peripheral deficit39. In 1976, Jerome 
Lettvin gave a subjective account of this phenomenon, describing  
 letters embedded in text as having “lost form without losing crispness,” 
and concluding that “the embedded [letter] only seems to have a ‘statis-
tical’ existence.”20. This article seems to have drifted into obscurity, but 
these ideas have been formalized in recent reports that explain crowd-
ing in terms of excessive averaging or pooling of features21–24. One 
study in particular hypothesized that crowding is a manifestation of the 
representation of peripheral visual content with local summary statis-
tics24, and showed that human recognition performance for crowded 
letters was matched to that of foveally viewed images synthesized to 
match the statistics of the original stimulus (computed over a localized 
region containing both the letter and flankers).

Our model provides an instantiation of these pooling hypotheses 
that operates over the entire visual field, which, in conjunction with 
the synthesis methodology, enabled several scientific advances. First, 
we validated the model with a metamer discrimination procedure, 
which provides a more direct test than comparisons to recognition 
performance in a crowding experiment. Second, the parameterization 
of eccentricity dependence allowed us to estimate the size of pooling 
regions and to associate the model with a distinct stage of ventral 
stream processing. Third, the full-field implementation allowed us 
to examine crowding in stimuli extending beyond a single pooling 
region and to account for the dependence of recognition on both 
eccentricity and spacing, the defining properties of crowding18.

Finally, the fact that our model operates on arbitrary photographic 
images allows generalization of the laboratory phenomenon of crowd-
ing to complex scenes and everyday visual tasks. For example, crowd-
ing places limits on reading speed, as only a small number of letters 
around each fixation point are recognizable40. Model-synthesized 
metamers can be used to examine this ‘uncrowded’ window (Fig. 7a). 
We envision that our model could be used to optimize fonts, letter 
spacing or line spacing for robustness to crowding effects, potentially 
improving reading performance. There is also some evidence linking 
dyslexia to crowding with larger-than-normal critical spacing18,41,42, 
and the model might serve as a useful tool for investigating this 
hypothesis. Model-synthesized images also show how camouflaged 
objects, which are already difficult to recognize foveally, blend into 
the background when viewed peripherally (Fig. 7b,c).

The interpretation of our experimental results relies on assumptions 
about the representation of, and access to, information in the brain. 
This is perhaps best understood by analogy to trichromacy14. Color 
metamers occur because information is lost by the cones and cannot 
be recovered in subsequent stages. However, color appearance judg-
ments clearly do not imply direct conscious access to the responses of 
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Figure 6 Crowding experiment. (a) Recognition performance for two 
different kinds of stimuli: peripherally viewed triplets of letters and 
foveally viewed stimuli synthesized to produce model responses identical 
to their corresponding letter triplets. Black dots represent the average 
recognition performance for a peripheral letter between two flankers, 
as a function of letter-to-letter spacing (n = 5 observers). The black 
line represents the best fitting Weibull function. The gray shaded 
region represents the 95% confidence interval for fit obtained through 
bootstrapping. Synthetic stimuli were generated for spacings yielding 
approximately 50%, 65% and 80% performance, based on the average 
psychometric function. Colored dots indicate average recognition 
performance for model-synthesized stimuli (foveally viewed). Different 
colors indicate the scaling parameter used in the model (purple, 0.5; 
orange, 0.6; green, 0.4). Error bars represent s.d. across observers.  
(b) Comparison of recognition performance for the peripheral letter  
triplets (from the psychometric function in a) and the foveally viewed 
synthetic stimuli (colored dots from a). Each point represents data from 
a single observer for a particular spacing and scaling. Two observers 
performed an additional condition at a larger eccentricity (not shown in a) 
to extend the range of performance levels (the six left-most points).
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those cones. Analogously, our experiments imply that the information 
loss ascribed to areas V1 and V2 cannot be recovered or accessed by 
subsequent stages of processing (two stimuli that are V1 metamers, 
for example, should also be V2 metamers). However, this does not 
imply that observers directly access the information represented in 
V1 or V2. Indeed, if observers could access V1 responses, then any 
additional information loss incurred when those responses are com-
bined and pooled in V2 would have no perceptual consequence and 
the stimuli generated by the mid-ventral model would not appear to 
be metameric.

The loss of information in our model arises directly from its archi-
tecture, the set of statistics and the pooling regions over which they 
are computed, and this determines the set of metameric stimuli. 
Discriminability of non-metameric stimuli depends on the strength 
of the information preserved by the model, relative to noise. As seen 
in the presentation time and attention control experiments, manipula-
tions of signal strength did not alter the metamericity of stimuli and 
therefore did not affect estimates of critical scaling. These results 
are also consistent with the crowding literature. Crowding effects are 
robust to presentation time43, and attention can increase perform-
ance in crowding tasks while yielding small or no changes in critical 
spacing19,44. Certain kinds of exogenous cues, however, may reduce 
critical spacing45, and perceptual learning has been shown to reduce 
critical spacing through several days of intensive training46. If either 
manipulation were found to reduce critical scaling (as estimated from 
a metamer discrimination experiment), we would interpret this as 
arising from a reduction in receptive field sizes, which could be veri-
fied through electrophysiological measurements.

From a physiological perspective, our model is deliberately simplis-
tic. We expect that incorporating more realistic response properties (for 
example, spike generation, feedback circuitry) would not substantially 
alter the information represented in model populations, but would 
render the synthesis of stimuli computationally intractable. Despite 
the simplicity of the model, the metamer experiments do not uniquely 
constrain the response properties of individual model neurons. This 
may again be understood by analogy with the case of trichromacy: 
color-matching experiments constrain the linear subspace spanned 
by the three cone absorption spectra, but do not uniquely constrain 
the spectra of the individual cones14. Thus, identification of V2 as 
the area in which the model resides does not imply that responses of 
individual V2 neurons encode local correlations. Our results, however, 
do suggest new forms of stimuli that could be used to explore such 
responses in physiological experiments. In a single pooling region, the 
model provides a parametric representation of local texture features17. 
Stochastic stimuli containing these features are more complex than 
sine gratings or white noise, but better controlled (and more hypoth-
esis driven) than natural scenes or objects, and are therefore well suited 
for characterizing responses of individual cells47.

Finally, one might ask why the ventral stream discards such a 
substantial amount of information. Theories of object recognition 
posit that the growth of receptive field sizes in consecutive areas, 
as well as with eccentricity, confers invariance to geometric trans-
formations, and cascaded models based on filtering, simple nonlin-
earities and successively broader spatial pooling have been used to 
explain such invariances measured in inferotemporal cortex8–10,48. 
Our model closely resembles the early stages of these models, but 

a b

c

Figure 7 Effects of crowding on reading and  
searching. (a) Two metamers, matched to the  
model responses of a page of text from the first 
paragraph of Herman Melville’s Moby Dick. Each 
metamer was synthesized using a different foveal 
location (the letter above each red dot). These 
locations are separated by the distance readers 
typically traverse between fixations40. In each 
metamer, the central word is largely preserved; 
farther in the periphery, the text is letter-like, but 
scrambled, as if taken from a non-Latin alphabet. 
Note that the boundary of readability in the first 
image roughly coincides with the location of the 
fixation in the second image. We emphasize that 
these are samples drawn from the set of images that 
are perceptually metameric; although they illustrate 
the kinds of distortions that result from the model, 
no single example represents what an observer sees 
in the periphery. (b) The notoriously hard-to-find 
Waldo (character with the red and white striped shirt) 
blends into the distracting background and is only 
recognizable when fixated. Cross-hairs surrounding each image indicate the location of the fovea used by the model during synthesis. (c) A soldier in 
Afghanistan wears patterned clothing to match the stoney texture of the environment and similarly blends into the background.
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our inclusion of eccentricity-dependent pooling and the invariance 
to feature scrambling revealed by the metamericity of our synthetic 
stimuli seems to be at odds with the goal of object recognition. One 
potential resolution of this conundrum is that the two forms of invari-
ance arise in distinct parallel pathways. An alternative possibility is 
that a texture-like representation in the early ventral stream provides 
a substrate for object representations in later stages. Such a notion 
was suggested by Lettvin, who hypothesized that “texture, somewhat 
redefined, is the primitive stuff out of which form is constructed.”20. If 
so, the metamer procedure introduced here provides a powerful tool 
for exploring the nature of invariances arising in subsequent stages 
of the ventral stream.

METHODS
Methods and any associated references are available in the online version 
of the paper at http://www.nature.com/natureneuroscience/.

Note: Supplementary information is available on the Nature Neuroscience website.
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ONLINE METHODS
Multi-scale multi-orientation decomposition. Images were partitioned into 
subbands by convolving with a bank of filters tuned to different orientations and 
spatial frequencies. We used the ‘steerable pyramid’, which has several advantages 
over common alternatives (for example, Gabor filters and orthogonal wavelets), 
including direct reconstruction properties (beneficial for synthesis), transla-
tion invariance in subbands and rotation invariance across orientation bands17.  
A MATLAB (MathWorks) implementation is available at http://www.cns.nyu.
edu/~lcv/software.php. The filters were directional third derivatives of a low-
pass kernel and were spatially localized, oriented, antisymmetric and roughly 
one octave in spatial frequency bandwidth. We used a set of 16 filters, rotated 
and dilated to cover four orientations and four scales. We also included a set 
of even-symmetric filters of identical Fourier amplitude (that is, Hilbert trans-
forms)17. Each subband was subsampled at its associated Nyquist frequency,  
so that filter spacing was proportional to size. We write the nth subband as 
xn(i, j), a two-dimensional array containing the complex-valued responses. We 
also use vector notation xn. The real part of the subband is denoted as sn(i, j) 
and represents the responses of V1 simple cells. The square root of the sum of 
the squared responses of symmetric and antisymmetric filters yields a phase- 
invariant measure of local magnitude, denoted en(i, j), and represents the 
responses of V1 complex cells17,25.

Mid-ventral model. The second stage of the model computes products of 
pairs of V1 responses tuned to neighboring orientations, scales and positions.  
The model responses were based on those developed previously17 for global  
texture modeling, but all averages were computed over localized pooling regions. 
A pooling region is defined by a positive-valued weighting function denoted 
w(i, j), whose values sum to 1 (see below for details on their construction). The 
mid-ventral model includes, first, the products of responses at nearby spatial 
locations (that is, autocorrelations) for both simple cells (capturing spectral 
features such as periodicity) and complex cells (capturing spatially displaced 
occurrences of similarly oriented features). Simple cell autocorrelations are  
given by 

A n k l w i j s i j

w i k j l s i k j l
w n w n

n

( , , ) ( , ) ( , ) ( )

( , ) ( , )
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where (k,l) specifies the spatial displacement (in horizontal and vertical 
 directions), the summation is over (i, j), and w n( )s  is the weighted mean 
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Complex cell autocorrelations are similarly given by 
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In the mid-ventral model, we included spatial displacements in the range 
(−3 k 3, −3  l  3) for both autocorrelations. In the V1 model (see below),  
we only included the central sample (that is, k = l = 0) for which equations (1) and 
(2) reduce to weighted variances.

Second, the model includes products of complex cell responses with those at 
other orientations (capturing structures with mixed orientation content, such 
as junctions or corners) and with those at adjacent scales (capturing oriented 
features with spatially sharp transitions such as edges, lines and contours). These 
cross-correlations are given by 

C n m w i j e i j e i jw n w n m w n( , ) ( , ) ( , ) ( ) ( , ) ( )e e

where indices (n, m) specify two subbands arising from filters at different orienta-
tions at the same scale or at different orientations at adjacent scales. This yields 
six cross-orientation correlations at each scale and 16 cross-scale correlations 
for each scale.

Third, the model includes products of the simple cell responses with phase-
doubled simple cell responses at the next coarsest scale. Phase relationships at 

(1)(1)

(2)(2)

(3)(3)

(4)(4)

adjacent scales distinguish lines from edges and can also capture gradients in 
intensity arising from shading17. These correlations are given by 
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where indices (n, m) specify two adjacent scales (n is the finer scale).
It is worth noting that all of these products may be represented equivalently as 

differences of squared sums and differences (that is, 4ab=(a+b)2−(a−b)2), which 
might provide a more physiologically plausible form25. We also included three 
weighted marginal statistics (variance, skew and kurtosis) of the low-pass images 
reconstructed at each scale of the course-to-fine process. The weighted mean is 
given in equation (2). Higher-order weighted moments of order p are 
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From this, the skew and kurtosis are 
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Pooling regions. Each of the model statistics was computed using locally 
weighted spatial averages. The weighting functions (generically denoted w(i, j) 
in the preceding section) are smooth and overlapping, and arranged so as to tile 
the image (that is, they sum to a constant). These functions are separable with 
respect to polar angle and log eccentricity, ensuring that they grow linearly in 
size with eccentricity (see examples in Supplementary Fig. 1). Weighting in 
each direction is defined in terms of a generic ‘mother’ window, with a flat top 
and squared cosine edges. 
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These window functions sum to a constant when spaced on the unit lattice. The 
parameter t specifies transition region width, and is set to 1/2 for our experi-
ments. For polar angles, we require an integer number N  of windows between 
0 and . The full set is

h f
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where n indexes the windows and w  is width. For log eccentricity, an integer 
number of windows is not required. However, to equate boundary conditions 
across scaling conditions in our experiments, we centered the outermost window 
on the radius of the image (er). For computational efficiency, we also did not include 
 windows below a minimum eccentricity (e0 – approximately half a degree of  
visual angle in our stimuli). For smaller eccentricities, pooling regions are 
extremely small and constrain the model to reproduce the original image. Between 
the minimum and maximum eccentricities, we constructed Ne windows 
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where n indexes the windows and we is the width. The number of windows, Ne, 
 determines the ratio of radial full-width at half-maximum to eccentricity, which 
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is reported as the scaling (for example, Figs. 4 and 5). We can achieve an arbitrary 
scaling (that is, a non-integer number of windows) by releasing the constraint 
on the endpoint location (for example, Figs. 6 and 7). For each choice of scaling, 
we chose an integer number of polar-angle windows (N ) that yielded an aspect 
ratio of radial width to circumferential width of approximately 2. There are few 
studies on peripheral receptive field shape in the ventral stream, but our choice 
was motivated by reports of radially elongated receptive fields and radial biases 
throughout the visual system49,50. Future work could explore the effects of both 
the scaling and the aspect ratio on metamericity.

To use each window at different scales of the pyramid, we create an original 
window in the pixel domain and then generate low-pass windows to be applied 
at different scales by blurring and sampling the original (that is, we construct a 
Gaussian pyramid). The information captured by averages computed with this 
full set of two-dimensional windows is approximately invariant to global rotation 
or dilation: shifting the origin of the log-polar coordinate system in which they 
are defined would re-parameterize the model without substantially changing the 
class of metameric stimuli corresponding to a particular original image.

V1 model. The model for our V1 control experiment uses the same components 
described above. We used the same linear filter decomposition, and then squared 
and pooled these responses directly, consistent with physiological characteriza-
tions in V1 (ref. 36). This model does not include the local correlations (that 
is, pair-wise products) used in the mid-ventral model. Both the V1 model and 
the mid-ventral model collapse the computation into a single stage of pooling, 
instead of building the mid-ventral model on the responses of a pooled V1 stage 
(and previous stages, such as the retina and LGN). This kind of simplification 
is common in modeling sensory representations and allowed us to develop a 
tractable synthesis procedure.

Synthesis. Metameric images were synthesized to match a set of measurements 
made on an original image. An image of Gaussian white noise was iteratively 
adjusted until it matched the model responses of the original. Synthesizing from 
different white noise samples yields distinct images. This procedure approximates 
sampling from the maximum entropy distribution over images matched to a set 
of model responses17. We used gradient descent to perform the iterative image 
adjustments. For each set of responses, we computed gradients, following previ-
ous derivations17, but including the effects of the window functions. Descent steps 
were taken in the direction of these gradients, starting with the low-frequency 
subbands (that is, coarse to fine). For autocorrelations, gradients for each pooling 
region were combined to give a global image gradient on each step. Gradient step 
sizes were chosen to stabilize convergence. For the cross correlations, single-step 
gradient projections were applied to each pooling region iteratively.

We used 50 iterations for all of the images generated for the experiments. 
Parameter convergence was verified by measuring mean squared error, normal-
ized by the parameter variance. For samples synthesized from the same original 
image, this metric was 0.01  0.015 (mean  s.d.) across all images and scalings 
used in our experiments. As an indication of computational cost, synthesis of a 
512 × 512 pixel image for a scaling of s = 0.5 took approximately 6 to 8 h on a 
Linux workstation with 2.6 GHz dual Opteron 64-bit processor and 32 GB RAM. 
Smaller scaling values require more windows, and thus more parameters and 
more time. The entire set of experimental stimuli took approximately 1 month of 
compute time to generate. Synthesis sometimes required more steps to converge 
for artificial stimuli, such as those created for the crowding experiments (Fig. 6), 
so we used 100 iterations for those syntheses.

Experimental stimuli. Stimuli were derived from four naturalistic photographs 
from the authors’ personal collection. One image depicts a natural scene (trees 
and shrubbery) and the other three depict people and man-made objects. For 
each photograph, we synthesized three images for each of six values of the scaling 
parameter s. Pilot data revealed that performance was at chance for the smallest 
value tested, so we did not generate stimuli at smaller scalings. The V1 model was 
simpler, allowing us to synthesize stimuli for three smaller scaling values.

Psychophysics. Eight observers (ages 24–32, six males, two females) with normal 
or corrected-to-normal vision participated in the experiment. Protocols for selec-
tion of observers and experimental procedures were approved by the human 
subjects committee of New York University and all subjects signed an approved 

consent form. One observer was an author; all others were naive to the purposes 
of the experiment. Four observers participated in the metamer experiments 
(described in this section), and five observers participated in the crowding experi-
ments (described below). One observer participated in both.

In the metamer experiments, two observers (S3 and S4) were tested with eye 
tracking (see below), with stimuli presented on a 22-inch flat screen CRT monitor 
at a distance of 57 cm. Two observers (S1 and S2) were tested without eye tracking, 
with stimuli presented on a 13-inch flat screen LCD monitor at a distance of 38 cm.  
In both displays, all images were presented in a circular window subtending  
26 degrees of visual angle and blended into the background with a 0.75-degree-
wide raised cosine. A 0.25-degree fixation square was shown throughout the 
experiment.

Each trial of the ABX task (Fig. 3) used two different synthesized image 
 samples, matched to the model responses of a corresponding original image. 
At the start of each trial, the observer saw one image for 200 ms. After a 500-ms 
delay, the observer saw the second image for 200 ms. After a 1,000-ms delay, the 
observer saw one of the two images repeated, for 200 ms. The observer indicated 
with a key press whether the third image looked more like the first (1) or the sec-
ond (2). There was no feedback during the experiment. Before the experiment, 
each observer performed a small number of practice trials (~5) with feedback to 
become familiar with the task.

In the mid-level ventral experiment, we used four original images and six 
scaling conditions, and created three synthetic images for each original/scaling 
combination. This yielded 12 unique ABX sequences per condition. In each block 
of the experiment, observers performed 288 trials, one for each combination of 
image (4), scaling (6) and trial type (12). Observers performed four blocks (1,152 
trials). The V1 experiment was identical, except that it included nine scaling 
conditions, resulting in 384 trials per block. Observers performed three blocks 
(1,152 trials). Blocks were performed on different days, so the observer never saw 
the same stimulus sequence twice in the same session. Psychometric functions 
and parameter estimates were similar across blocks, suggesting that observers did 
not learn any particular image feature. Results were also similar across the four 
original images and were thus combined.

We performed two further control experiments using the stimuli from the mid-
ventral metamer experiment. The first of these was identical to the main experi-
ment except that presentation time was lengthened to 400 ms. Each observer 
performed either two or three blocks (576 or 864 trials). The second experiment 
was identical to the main experiment, except that at the beginning of each trial a 
small line (1 deg long) emanating from fixation was presented for 300 ms, with 
a 300-ms blank period before and after. On each trial, we computed the squared 
error (in the pixel domain) between the two to-be-presented images and averaged 
the squared error in each of six radial sections. The line cue pointed to the section 
with largest squared error. Each observer performed two blocks (576 trials).

Eye tracking. Two observers (S3 and S4) were tested while their gaze positions 
were measured (500 Hz, monocular) with an Eyelink 1000 (SR Research) eye 
tracker, for all four metamer experiments. A 9-point calibration was performed 
at the start of each block. We analyzed the eye position data to discard trials 
with broken fixation. We first computed a fixation location for each block by 
averaging eye positions over all trials. This was used as fixation, rather than the 
physical screen center, to account for systematic offset due to calibration error. 
We then computed, on each trial, the distance of each gaze position from fixation; 
a trial was discarded if this distance exceeded 2 degrees for any gaze position. We  
discarded 5% (S3) and 17% (S4) of trials across all four experiments. Using a more 
conservative (1 degree) threshold discarded more trials, but did not substantially 
change psychometric functions or critical scaling estimates. By only including 
trials with stable fixation, we ruled out the possibility that systematic differences 
in fixation among scaling conditions, presentation conditions or models could 
account for our results.

Fitting the psychometric function. We assumed that an observer’s performance 
in the ABX experiment was determined by a population of mid-ventral neurons 
whose receptive fields grew with eccentricity according to scaling parameter 
s0, and their performance depended on the total squared difference of those 
responses computed on the two presented images generated with model critical 
scaling s. We derived a closed-form approximation to that squared difference as a 
function of s0 and s. Let x be a vector of values from an original image to be locally 
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averaged (for example, a vector containing pair-wise products of two orientation 
subbands). Let M be a matrix whose rows contain the weighting functions (with 
sizes scaling according to s) that are used to compute local averages. Assume 
that a second vector y was initially set to a vector of white noise samples, n, and 
then adjusted so that Mx = My, that is, the two images match with respect to the 
local averages computed by M. Define the projection matrix P=MT(MMT)−1M, 
which projects vectors into the space spanned by M. We can rewrite y as the sum 
of two components 

y n x( )I P P

where the first term is the component of n that lies in the null space of M, and the 
second is constrained by the fact that y is matched to x (that is, Mx = My).

Now let R be the matrix that the observer uses to compute averages over regions 
scaling with s0. We assumed that the discriminability of the two stimuli depends 
on the sum of squared differences between these averages. We can express the 
expected value of this quantity, taken over instantiations of x and y that match 
the same model measurements, as 

d R R

R I P P I P P

R

2 2

2

E x y

E x x n x

E (( )( )I P x n 2

where we use the definition of y from equation (12) and rewrite x in a similar 
form. Assuming that x and n are independent and have the same covariance 
matrix C, we obtain 

d Tr R I P I P R

Tr R I P C I P

T T T

T

2

2

E x n x n( )( )( ) ( )

( ) ( )RR

Tr R RM MM M C R M MM MR

T

T T T T T T( ) ( )1 12

We can obtain a simple functional form for this expression by assuming that C is 
a multiple of the identity matrix. In general, the components of x (and n) are not 
decorrelated, but the predicted discriminability is still valid within a scale factor, 
as can be verified through simulation. After some matrix algebra, we obtain 

d Tr RR Tr R RM MM MT T T T2 1( ) ( ( ) )

This provides a closed-form expression for the overall error as a function of the 
measurement matrices M and R. Finally, we wished to express this result in terms 
of the scaling parameters for the synthesis model and the observer. This is easily 
obtained from equation (15) if we assume that M and R compute local means in 
blocks of fixed sizes m and r, respectively, that m is an integer multiple of r, and 
that both m and r divide evenly into n, the length of x. For matrices with this 
structure, we can express d 2 as a function of m 

d m
n
r

r
m

m r

m r

2 2 1

0
( )

This expression has a natural continuous generalization to handle smoothly over-
lapping averages and non-integer ratios. The radial extent of our model pooling 
regions is proportional to the scaling s, so the average region size will be pro-
portional to s2, with a proportionality constant that depends on the shape of the 
region. Replacing m with s2, and r with s02, and absorbing the factor of n r/ 2 into 
a single scale constant, gives the closed-form approximation 

d s
s
s

s s

s s

2 0
0
2

2 0

0

1

0
( )

(12)(12)

(13)(13)

(14)(14)

(15)(15)

(16)(16)

(17)(17)

We empirically verified that this approximation holds for the smooth weight-
ing functions used in our model implementation. The proportionality factor, 

0, is likely to differ for each measurement in the model. If we assume that the 
observer performs a weighted sum of the squared errors over the full set of meas-
urements, then the overall error will be of the same form as that of equation (17). 
Notice that 0 scales the magnitude of the squared difference, without affecting 
the point at which the curve first exceeds 0 (that is, s = s0). Thus, when fitting 
the data, the gain parameter captures variability in overall performance across 
observers and presentation conditions. Finally, we used signal detection theory37 
to compute the probability of a correct response PC(s) in the ABX task as a func-
tion of the underlying difference d2(s) 

P s d s d s d s d s
c( )

( ) ( ) ( ) ( )2 2 2 2

2 2 2 2

where  is the cumulative of the normal distribution. We used the MATLAB fmin-
search routine to find the values of the gain factor ( 0) and the critical scaling (s0) 
that maximize the likelihood of the data (proportion correct responses for each 
scaling) under this model, for each subject and condition. We used bootstrapping 
to obtain 95% confidence intervals for the parameter estimates. We resampled 
the individual trials with replacement and refit the resampled data to re-estimate  
the parameters.

Crowding. Five observers participated in the crowding experiments (one of 
whom also participated in the metamer experiments). Stimuli were presented 
on a 13-inch flat-screen LCD monitor at a distance of 38 cm. Each observer 
performed two tasks, a peripheral recognition task on triplets of letters and a 
foveal recognition task on synthesized stimuli, similar to a previous study24. In 
the first task, each trial began with a 200-ms presentation of three letters in the 
periphery, arranged along the horizontal meridian. Letters were uppercase, in the 
Courier font, and 1 degree in height. The ‘target’ letter was centered at 6-degree 
eccentricity and the two ‘flanker’ letters were presented left and right of the target. 
All three letters were drawn randomly from the alphabet without replacement. We 
varied the center-to-center spacing between the letters, from 1.1 to 2.8 degrees (all 
large enough to avoid letter overlap). Observers had 2 s to identify the target letter 
with a key press (1 out of 26 possibilities, chance = 4%). Observers performed 48 
trials for each spacing. For each observer, performance as a function of spacing 
was fit with a Weibull function by maximizing likelihood. Spacings of 1.1, 1.5 
and 2 degrees corresponded to approximately 50%, 65% and 80% performance, 
respectively; these spacings were used to generate synthetic stimuli for the foveal 
task (see below). To extend our range of performance, two observers were run in 
an additional condition (8-degree eccentricity, 0.8 letter size, 1-degree spacing) 
yielding approximately 20% performance. For these observers, the same condi-
tion was included in the foveal task.

We used our mid-ventral model to synthesize stimuli matched to the letter tri-
plets. To reduce the number of images that had to be synthesized (computational 
cost is high for the small scaling parameters), we synthesized stimuli containing 
triplets along eight radial arms, but eccentricity, letter size, font and letter-to-
letter spacing were otherwise identical. For each image of triplets, we generated 
nine different synthetic stimuli: three different spacings (1.1, 1.5 and 2 degrees) 
for each of three different model scalings (0.4, 0.5 and 0.6) centered roughly 
around the average critical scaling estimated in our initial metamer experiment. 
We synthesized stimuli for 56 unique letter triplets; letter identity was balanced 
across experimental manipulations. On each trial of the foveal recognition task, 
one of the triplets from the synthesized stimuli was presented for 200 ms and 
the observer had 2 s to identify the middle letter. The observer saw each unique 
combination of triplet identity, spacing and scaling only once. Trials with different 
spacings were interleaved, but the three different model scalings were performed 
in separate blocks (with random order).

(18)(18)
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