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Abstract

All organisms make temporal predictions, and their evolutionary fitness generally depends
on the accuracy of these predictions. Understanding what structure enables computing tem-
poral predictions in complex natural scenarios is central to computational neuroscience and
machine learning. This thesis focuses on visual processing and describes a unified approach
for the representation and estimation of dynamic visual signals, as computed with neural
elements in brains or machines. We propose that temporal prediction can serve as a general
objective function, both for unsupervised learning of visual representations and for estimat-
ing probable future frames under uncertainty. Optimizing for next-frame prediction leverages
the order of time, especially visual motion, and extracts predictive information from image
sequences, without requiring labeled data. The architecture of a predictive system plays a
critical role and we hypothesize that it should reflect the symmetry properties of the physical
world. Specifically, a model that discovers the transformations acting in a visual scene should
exploit these transformations to predict accurately and should remain agnostic when these
transformations are ambiguous. Such interpretable models can serve as guides to explain
the responses of neurons in sensory cortices and their functional role in visual perception.
We first describe the empirical structure of dynamic visual scenes and then develop a
mathematical theory for exploiting that structure. The movement of observers and objects
creates distinct temporal structures in visual signals, allowing for partial prediction of future

signals based on past ones. Motivated by group representation theory, we propose a method



to discover and utilize the transformation structures of image sequences and show that local
phase measurements play a fundamental role. The proposed model extrapolates visual signals
in a local polar representation, this representation is learned via next-frame prediction. This
polar prediction model successfully recovers simple transformations in synthetic datasets
and scales to natural image sequences. The architecture is simple yet effective: it contains
a single hidden stage with one non-linearity that factorizes slow form and steady motion
signals. We demonstrate that polar prediction achieves better prediction performance than
traditional approaches based on motion compensation, and that it rivals conventional deep
networks trained on prediction.

We then confront the inherent uncertainty of visual temporal prediction and develop a
framework for learning and sampling the conditional density of the next frame given the past
few observed frames. Casting prediction as a probabilistic inference problem is motivated
by the need to cope with ambiguity in natural image sequences. We describe a regression-
based framework that implicitly estimates the distribution of the next frame, effectively
learning a conditional image density from high-dimensional signals. This is achieved with
a simple resilience-to-noise objective function: a deep neural network is trained to map to
past conditioning frames and a noisy observation of the next frame to an estimated denoised
next frame. The network is trained over a range of noise levels without access to that noise
level, i.e., it is blind and universal. This denoising objective has the desirable property of
being local in the space of densities, and training across noise levels forces the network to
extract information about the stable underlying distribution of probable next frame given
past conditioning. We consider synthetic image sequences composed of moving disks that
occlude each other and demonstrate that trained networks can handle challenging cases of
bifurcating temporal trajectories—effectively choosing one occlusion or another when the
observation is ambiguous. Furthermore, local linear analysis of a network trained on natural

image sequences reveals that the model automatically weights evidence by reliability: the

vi



model integrates information from past conditioning and noisy observation, adapting to the
amount of predictive information in the conditioning, and the noise level in the observation.

Finally, we discuss the implications of this work for understanding biological vision.
Starting from the polar prediction model, we derive a circuit algorithm composed of lo-
cal neural computations for predicting natural image sequences. The circuit is composed
of canonical computational elements that have received ample physiological evidence: its
components resemble the normalized simple and direction-selective complex cell models of
primate V1 neurons. Unlike the polar prediction model, this circuit algorithm does not
impose a polar factorization, instead, it lets complex-cell-like units learn a combination of
quadratic responses. Furthermore, we outline a method for gradually extracting slower and
more abstract features by cascading this biologically plausible mechanism. These models
offer a normative framework for understanding how the visual system represents sensory
inputs in a form that simplifies temporal prediction. Together, our work on visual temporal
prediction builds connections between computational modeling and brain sciences. These
connections can guide the design and analysis of physiological and perceptual experiments,

and can also motivate further developments in machine learning.
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Chapter 1

Introduction

“Se tenir sur les épaules des géants et voir plus loin. Voir dans [’invisible,
a travers l’espace et a travers le temps. Plonger notre regard dans le passé et
découvrir que notre passé est immense. Pouvoir remonter le temps a contre
courant. Pouvoir distinguer a travers le long écoulement des ages, des éclats de
passé qui soudain, resurgissent de l'oubli. Des éclats de mondes disparus. Ft
partir a la recherche des lointaines métamorphoses qui ont donné naissance au

monde d’aujourd’hui.”

- Jean-Claude Ameisen (2012), Sur les épaules de Darwin

All organisms make temporal predictions, and their evolutionary fitness generally de-
pends on the accuracy of these predictions. Simple organisms make short term predictions
over low dimensional signals. For example, a bacterium following a chemical gradient mea-
sures local change, compares it to an internal state and extrapolates to decide where to go
next. Or consider the rhythmic oscillations of a flie’s circadian clock: it cycles through a

biochemical loop and provides a signal used to anticipate physiological needs throughout the



day. More complex organisms build on these strategies to predict higher dimensional signals
over longer timescales while maintaining correspondingly rich internal states. For example,
a teenager choosing a college major makes a consequential decision based on limited infor-
mation and under considerable uncertainty. Or consider society as a whole: we adapt to our
planet’s changing climate and rely on probabilistic projections of future climate to inform

our decisions and actions.

1.1 Temporal prediction

Temporal prediction is arguably the most important of our tasks: it is essential to our ability
to survive, adapt, and reproduce. It is also a compelling computation to study: it requires
combining internal state with measurements. Internally generated predictions about the
external world have to be updated according to incoming evidence from sensory signals as
well as information retrieved from memory.

One reason temporal prediction is important is that any sensory transduction, cognitive
operation or motor action induces time lags. Computation takes time, and biophysical
computation even more so. Therefore, any organism under ecological pressure to act in
synchrony with or in anticipation of the other players in the environment has to predict
forward in time. In that sense, organisms are not passively registering information currently
available in the environment, instead they extract the parts of it that are important to
guide their actions—these are the parts that might impact their future. As a result much
of behavior relies on making predictions about future outcomes given recent observations.
For example, physiological regulation aims to anticipate an organism’s needs in order to
meet them: predicting and avoiding errors, rather than correcting them after the fact [203].
Such regulation efficiently allocates energy by adapting to predicted demand, and loss of

predictability is stressful. Exactitude is not the only merit of a prediction—anticipating



also readies the organism to learn from events as they unfold. In fact, prediction is a form
of active engagement, which, together with getting feedback (i.e., prediction errors), are
fundamental to any learning system [50].

A strong version of this hypothesis proposes that making prediction is the purpose of
brains, and that organisms evolved more complex brains in order to perform more complex
predictions. The idea is that, along evolution, simple measurement strategies and predic-
tion primitives were reused and cascaded. Many researchers have recognized that temporal
prediction has the potential to provide a unifying organizing principle for intelligence—both
biological as well as artificial—and have created a vast literature across machine learning,
cognitive science and neuroscience. The general idea at the center of this literature is that
prediction requires abstraction: intelligence emerges in systems that learn hierarchical mod-
els of the world by predicting at increasingly long time scales and in increasingly abstract

representation [128].

A fertile problem. Because it is both mathematically fascinating and practically impor-
tant, the problem of temporal prediction has been intensely studied in the mathematics,
statistics and engineering communities. Investigations of temporal predictions have their
roots in the study of dynamics and of probability. Fourier series were developed to integrate
the dynamics of heat [70], and the calculus of probability was developed to predict uncertain
future outcomes conditioned on past evidence [127, 140]. Theses foundational ideas were used
to address signal processing problems during the Second World War [121, 223]. Optimum
mean squared error prediction was applied to time series whose future is only incompletely
determined by their past. With the development of information theory, prediction took an
new role for enabling communication [188]. Linear prediction became a central element of
statistical signal processing with the Kalman filter [112]. In the meantime meteorology and

fluid dynamics developed physics based prediction algorithms [172]. Stochastic forecasting



methods also became central to quantitative finance [13, 141, 26]. Motion compensated video
coding uses temporal prediction for data compression and remains a core element of image
processing [222].

The fields of cognitive science, machine learning and computational neuroscience have also
been concerned with the problem of temporal prediction since their inception. Many aspects
of human cognition can be described as the use of mental models to predict future events [415].
Recurrent Neural Networks were developed and trained for next letter prediction in text,
using an internal state to integrate information from the past and to extrapolate [108, 61].
Today transformer networks based on a “self-attention” architecture are widely used. These
models are simply trained to auto-regressively predict the next token on large text corpora—
demonstrating that temporal prediction provides a powerful learning signal [2].

But biological organisms do not passively predict their environment; instead, they actively
sample, explore, and try to influence it. The field of optimal control builds methods for
predicting the consequences of one’s actions. Model predictive control uses forward models
to predict the next state of the world given the current state and action [33, 227]. The neural
circuits that compute such predictions are actively being studied [116, 185]. Predictive
representations have also become central to the field of reinforcement learning [48]. But
learning by acting can be costly and dangerous, so organisms should learn as much as possible
through observation alone.

Pure prediction can be brittle and miss transient events or fail to generalize when the
data distribution shifts. Indeed no prediction is perfect and in practice prediction methods
should strive both for accuracy and well as expediency. Predictions are only useful if they

can be computed quickly under resource constraints and help inform risky decisions.

Modeling biological vision. Our visual system generates a remarkably accurate and

stable interpretation of the world, allowing us to make temporal predictions and adapt



to constantly changing circumstances. Computing visual predictions feels effortless, but
it is an impressive computational feat: the predictable structure of visual information is
hidden and obfuscated in high-dimensional, dynamic and noisy measurements. What are
the representations that underlie these capabilities? Some principles will help answering
this question. Neurons are selective for environmental features, and these selectivies are
constructed by cascades of simple transformations. Our perceptual capabilities are enabled—
and limited—Dby the activity of neurons, their noise properties, as well as prior information.
These neural selectivities have to be learned mostly from observation, i.e., unsupervised.
Building on those general principles, two broad normative frameworks have been used to
explain the neural computations that give rise to perception: coding efficiency and optimal
inference.

The theory of efficient coding proposes that sensory systems allocate resources efficiently
to capture information about inputs that are likely to occur [10, 19, 196]. Coding efficiency
maximizes information about stimuli in responses, subject to constraints (e.g., number of
neurons, spike rate, metabolic costs, wiring length). But pure coding efficiency is blind to
the behavioral use of visual information. The temporal prediction theory argues that the
visual system should preferentially extract the aspects of the signal that carry predictive
information, and that this predictive information should be represented in a format that
facilitate temporal prediction. In particular sensory systems should decompose the dynam-
ics of the signal and extract the causal factors of variation that are useful for prediction—
factorizing the underlying causes of visual measurements (e.g., reflectance/illumination, iden-
tity /expression). Efficient coding and temporal prediction have already proven to be useful
guides in explaining many aspects of early vision [204].

The theory of optimal inference proposes that perception is a best guess as to what is
in the world, given current sensory responses and prior experience [213]. Visual information

should be represented in a format that facilitates decoding: visual processing should isolate



task-specific information and reformat it for downstream inference (eventually, for motor
action). Probabilistic estimation provides the mathematical tools for modeling this inference
process [104, 192]. As a result, optimal inference is fundamental to modern accounts of
perception and action, and it also forms the basis of probabilistic machine learning [119, 134].
But optimal inference does not define which quantity is of interest and one needs to assume
upfront what to estimate or decide about. The temporal prediction theory argues that the
future is the relevant object for optimal inference. Furthermore, prediction at longer time
horizons promotes the extraction and storage of stable information—providing a powerful
signal for representation learning.

In summary, temporal prediction subsumes aspects of both coding efficiency and optimal
inference while addressing some of their limitations. By unifying these two frameworks,
temporal prediction avoids the common, but somewhat arbitrary, division into encoding
and decoding models. In the next section, we will discuss how to represent and analyze
properties of visual scenes. We emphasize the importance of natural scene statistics and of
visual motion. We then discuss existing approaches and outline desiderata for representation

learning based on temporal prediction.

1.2 Representing visual signals

Making temporal prediction is only possible because the world is lawful and because visual
signals are highly structured. In fact, visual signals only differ from noise in so far as
they are redundant. This redundancy should be exploited by sensory systems to guide the
transformation of sensory messages and to drive unsupervised learning [18]. This suggests
a strategy: study the empirical structure of natural scenes and design mathematical models
that exploit this structure—such models can then be trained on visual signals and compared

to biological systems.



Figure 1.1: Space-time slices through an image sequence. The image sequence is an
array, I1[x, y, t], of size 720 x 540 x 410 pixels, measured from the point of view of a cyclist
biking through traffic in Manhattan. The video was sampled at 30 frames per second. Top.
The top two frames show slices in the x-y plane (snapshots at instants ¢t and t1). The red
tick marks indicate mid-width and mid-height and correspond to the bottom two space-time
slices. Bottom. The bottom two frames are slices in the x-t and t-y plane, taken through
the mid-height axis and mid-width axis respectively. The red tick marks along the time axis
indicate instants ty and t1, corresponding to the top two frames. Observe that features of the
signal are qualitatively different in space and in time. Spatio-temporal continuity arises from
self-motion of the observer, as well as from the motion of objects in the world. Natural visual
scenes consist of multiple objects that interact in complex but predictable ways. Temporal
dynamics reveal some aspects of visual signals that are not apparent on static images alone.
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Figure 1.2: Spatio-temporal power spectrum of natural movies. Left. Joint spatio-
temporal power spectrum shown as a function of spatial frequency for different temporal
frequencies (1.4, 2.3, 3.8, 6, and 10 Hz, from top to bottom). Right. Same data, replotted
as a function of temporal frequency for different spatial frequencies (0.3, 0.5, 0.8, 1.3, and
2.1 cy/deg., from top to bottom). Solid lines indicate model fits according to a power-law
distribution of object velocities (reproduced from [54]).

1.2.1 Natural scene statistics

Images only occupy a small fraction of the full pixel space, a region informally referred to as
the “image manifold”. But our sensory systems do not process images in a random order,
and visual input are not independent samples from this manifold. Instead, our eyes move
several times per second, and visual signals are collected during the short fixation periods
between these saccadic eye movements. These brief glimpses can be thought of as short
temporal trajectories in the space of possible images—Ilike “hairs” on the image manifold.
For simplicity, we will only consider short videos captured with handheld cameras, i.e.,
not gaze aligned. Such short videos are temporally discretized into image sequences, yet
perceived as moving continuously.

Visual signals are spatio-temporally continuous and have distinctive statistics in space
and in time, as illustrated in Figure 1.1. There are significant dependencies between the
spatial and temporal spectra of image sequences. The slope of the spatial-frequency power
spectrum becomes shallower at higher temporal frequencies, and the same is true of the
temporal frequencies, as shown in Figure 1.2. This can be explained by assuming a sim-

plified motion model for objects at different depths and power law distribution of object



Figure 1.3: The importance of phase in images. Swapping the amplitude and the
phase spectrum of two images. Left. The first and last frames from the example video dis-
played in Figure 1.1. Center. Phase spectrum and log amplitude spectrum in corresponding
rows obtained by Fourier analysis. Both amplitude spectra are power laws and resemble each
other. Right. Reconstructed images by Fourier synthesis of the swapped amplitude and
phase spectra. The synthesized images look similar to the image whose phase was used in
the synthesis. This reveals that Fourier phase carries perceptually important information.

motions [54].

But power spectra assume stationarity and only capture second order statistics, i.e.,
linear Gaussian relationships, and therefore provide a weak approximation of natural images.
This can easily be demonstrated by swapping Fourier amplitude and phase on a pair of
images [155]. Image frequency amplitudes follow a generic power law, and this test reveals
the importance of phase as demonstrated in Figure 1.3.

The Fourier transform used to reveal the importance of phase is computed with sinusoids
that extend over the entire spatial domain. But our visual system relies on spatially localized
operators: neurons in the visual system respond to properties of confined regions of visual
space, i.e., their receptive are spatially localized. The steerable pyramid transform can be

thought of as a localized variant of the Fourier transform. This multi-scale transform decom-
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Figure 1.4: Steerable pyramid filters. Local convolutional operators used to decompose
images into bandlimited and oriented channels. The highpass and lowpass residual bands
are omitted. Filters at corresponding orientation and scale form the real and imaginary part
of an analytic filter. These complex valued filters can be used to measure local phase and
local amplitude of images.

poses image content into oriented frequency subbands via convolution with local filters [190].
The filters can be shifted in orientation (or steered), i.e., their discretization respects the
underlying continuous geometry of orientations [72]. A bank of such filters is displayed in
Figure 1.4 where complex analytic filters composed of an even- and an odd-symmetric part
constitute Hilbert transform pairs [162].

The statistics of natural image as seen through local linear filters have highly non-
Gaussian statistics. Intuitively, images consist of edges interspersed with blank regions,
therefore local filter responses are concentrated around zero with the rare edge coefficients
spread into long tails [34, 65]. These filter responses, or filter coefficients, are sparse and
their statistics can be modeled with a Laplacian distribution. Such a statistical signature
presents an opportunity for removing noise from images: additive Gaussian noise on an image
remains Gaussian inside the linear transform domain, while image coefficients have sparse
non-Gaussian statistics. Coring methods exploit this difference and thresholds the coeffi-
cients to remove noise, this suppresses low-amplitude values while retaining high-amplitude
values [193]. Beyond their sparsity, the variance of filter responses also varies in space (i.e.,

responses are heteroskedastic). Intuitively, this is due to changes in local image contrast,
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Figure 1.5: Image statistics and divisive normalization. Typical joint statistics of an
image seen through two neighboring linear filters (adapted from [187]). Left. Filter responses
are sparse and decorrelated but exhibit strong redundancy. The conditional histogram of
coefficients displays a characteristic bowtie shape. In each column, pixel intensity represents
the frequency of occurrence of a given pair of values. Column are independently rescaled to
fill the full intensity range. Pairs of responses are gathered over all image positions. The
variance of one filter’s responses depends on the amplitude of responses from the other filter.
Right. This redundancy can be removed with divisive normalization: responses are divided
by a weighted sum of squared responses from neighboring filters and an additive constant.
The conditional histogram of divisively normalized coefficients is flat, indicating that the
variance of a filter’s responses does not depend on the amplitude of a neighbor’s responses.

which drives a range of filter responses, and dividing by local contrast gaussianizes the re-
sponse distribution [179]. Beyond the marginal response statistics of individual filters, there
are also strong local relationships between coefficients and groups of responses display con-
ditional dependencies across location, orientation, scale, and phase. This can be revealed
by considering conditional coefficient distributions [215]. Correspondingly, local gain control
over local neighborhoods of coefficients further reduces redundancy, as shown in Figure 1.5.
Models based on such local gain control have proven useful for image denoising [163] and

can account for divisive suppression and adaptation in early sensory processing [187].
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Figure 1.6: Motion is space-time orientation. Spatio-temporally oriented filters can
be used to detect and measure motion. Left. One dimensional signal moving to the left.
Motion traces a diagonal band in the two-dimensional space-time diagram. The speed of
motion is given by the inverse slope of this band. An idealized filter at the corresponding
orientation can measure this pattern. Right. Similar diagram for a signal moving to the
right and a corresponding filter to measure its motion. Prediction amounts to extrapolating
along local space-time orientation and should therefore be motion informed. The difference
between the left and right diagram illustrates that computing such an extrapolation is highly
non-linear, i.e., it needs to be motion adaptive.

1.2.2 Visual motion

Humans are adept at tasks which require motion processing. Indeed, visual motion provides
a rich source of information for many visual tasks such as activity recognition, object de-
tection, material properties recognition, three dimensional pose estimation, etc. [80] Some
challenging problems in computational vision are simplified by considering image sequences
as opposed to static images. For example the temporal evolution of (dis)occlusions reveals
object boundaries and foreground background relationships, thereby facilitating scene seg-
mentation. And similarly, motion parallax provides a cue for optical range, which enables
depth estimation. As a result, there exists a rich literature on motion processing, span-
ning computational theory, physiology and perception. Previous models have focused on the
representation and analysis visual motion, describing physiologically plausible mechanisms
for computing optic-flow, i.e., estimating a single motion vector for each position in an im-
age [191]. Those computational models were typically designed from first principles and then

compared to physiological and perceptual measurements [195, 221, 233].

12



Visual motion also plays an important role in temporal prediction. Indeed, the motions
of both the observer and objects in the scene structure the dynamics of sensory signals,
allowing for partial prediction of future signals based on past ones. Motion is orientation in
space-time and spatio-temporally oriented filters can be used to detect and measure it [3].
Accordingly, temporal prediction must adapt to the direction of visual motion, as illustrated
by example moving patterns in Figure 1.6. Note however that prediction does not require

explicitly assigning an optic-flow vector at each location of images; it should be possible to

achieve more accurate visual temporal prediction with flow-free methods.

1.2.3 Representation learning

Visual representations have to be learned, mostly from observational data, by finding and
exploiting redundancies and structure in signals [16]. Temporal prediction constitutes a
general objective function to achieve such time-supervised visual representation learning
and a variety of formulations have been considered in the literature. These formulations can
be organized into three broad categories that respectively put more relative emphasis on

formal elegance, empirical performance and scientific understanding.

e Information bottleneck formulation. This beautiful and abstract theory argues
that sensory systems should extract “predictive information” [207, 25]. The amount
of predictive information in a representation is measured by mutual information with
future signals. The information bottleneck formulation states that representations
should be maximally informative about future sensory signals while being minimally
informative about past ones. This theory uses time to define a notion of relevance:
sensory signals are only relevant if they pertain to the future. As such, the informa-
tion bottleneck provides a statistical optimality criterion for representations; yet, it

can not specify good representations because mutual information is blind to invert-
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ible mappings. Moreover, the information bottleneck formulation is computationally
impractical: estimating mutual information in high dimensions is intractable, and ex-
tracting predictive information remains an open problem. As a result, it is challenging
to relate the information bottleneck formulation to biological or behavioral measure-
ments. The linear Gaussian case is a notable exception to this difficulty [39]. This
solution was used to estimate the information content of a population of retinal neu-
rons about the position of a moving bar at different temporal offsets. The information
contained about the future was found to be as high as possible, given the amount of

information contained about the past [157].

Predictive coding algorithm. This hierarchical probabilistic method proposes a
procedure for integrating top-down predictions with bottom-up errors [168]. Predic-
tions are subtracted from feed-forward input and only residuals are signaled to the
next stage of processing. This approach is inspired by video coding standards such as
motion compensation where the encoder only sends residuals. The initial theory was
restricted to a Kalman filter, which is a linear Gaussian model that does not corre-
spond well to image statistics [167]. A modern deep neural network implementation
of the predictive coding algorithm was trained on video data and shown to recover
some qualitative aspects of biological vision [131, 132]. But the proposed architecture

is complex, and is composed of stacked convolutional LSTM modules with multiple

losses, making it difficult to interpret or relate to neural computation.

Temporal straightening hypothesis. This functional model of visual represen-
tations proposes a computational mechanism for temporal prediction. It states that
primate visual representations support prediction by “straightening” the temporal tra-
jectories of naturally-occurring input [92]. This idea is illustrated on Figure 1.7. The

temporal straightening hypothesis has received indirect psychophysical and physiolog-
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Figure 1.7: The temporal straightening hypothesis. Left. Image sequences follow
highly curved trajectories in signal space, and those are difficult to predict. In particular
linear extrapolation fails: the second red arrow lands far from the next image in the tra-
jectory. Right. The visual system is hypothesized to represent sensory measurements in a
form that simplifies temporal prediction by straightening these trajectories. Temporal pre-
diction is reduced to linear extrapolation: the red arrows lands close to the next image in
the trajectory.

ical support [93]. Building on this work, we use temporal straightening as an objective

function to design and learn visual representations.

Desiderata. What do we want out of neural models of visual temporal prediction? There
are three criteria that drive our work: simplicity, usability, and validity. Simple models
enable understanding fundamental principles, and success in this dimension is quantified by
how much we are learning by considering a particular model or theory. Usable models serve to
build practical tools, and their quality is simply measured by how well they work compared to
other approaches. Finally, valid models explain natural phenomena, and empirical evidence
should be the eventual arbitrator between models that seek to capture the phenomena of

interest.
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1.3 Thesis overview

In this thesis, we will study some key aspects of the visual temporal prediction problem in-
cluding representation, estimation and modeling. Our goal is to develop a unified framework
for efficient and optimal predictions in neural systems. We will emphasize representations
that i) are based on principles from harmonic analysis and probability theory and ii) can
plausibly be mapped onto brain architecture and help understand visual perception. We
will first describe methods for computing optimal temporal predictions and then assess how

close to such an optimum neural circuits operate.

What is a good representation? In chapter 2, we study the empirical structure of dy-
namic visual scenes and propose a mathematical theory for using that structure. Abstractly,
the method discovers and exploits symmetries in visual signals in order to enable tempo-
ral prediction. We demonstrate that reformatting the signal into a representation where
positional displacements are explicit simplifies temporal prediction. We design a flow-free
architecture that scales to the prediction of natural videos while remaining interpretable.

This architecture involves a multiplicative computation which factorizes form and motion.

What is a good prediction? In chapter 3, we develop an empirical Bayes approach to
visual temporal prediction. We describe a framework for estimating the uncertain future
of high-dimensional image sequences and use it to perform statistical inference. We build
a conditional denoising network that implicitly contains information about the posterior
distribution of probable next frames given past observations. We make this information
explicit by sampling probable next frames. We demonstrate that this approach automatically

handles occlusion boundaries and that it adaptively combines cues.
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What is the visual system computing? In the final chapter (chapter 4), we discuss
the relevance of the deterministic calculation and structure proposed in the polar prediction
model from chapter 2 to biological vision. We describe how cascaded neural transformations
can be used to compute future predictions. We derive a model for the visual system that
is based on the hypothesis that neurons should extract and exploit signal structures that
can be modeled as a transformation group. We reformulate polar prediction as a model
for early visual processing with local gain control, orientation and direction selectivity. We
then outline a hierarchical extension to this model. Our eventual goal is to also map the

stochastic solution from Chapter 3 onto physiology and perception.
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Chapter 2

Representing visual transformations

“Our sensation can not give us the notion of space. That notion is built up by
the mind from elements which pre-exist in it, and external experience is simply
the occasion for its exercising this power, or at most a means of best exercising
it. Sensations by themselves have no spatial character. [...] We have within us,
i a potential form, a certain number of models of groups, and experience merely

assists us in discovering which of these models departs least from reality.”

- Henri Poincaré (1898), On the Foundations of Geometry

The fundamental problem of vision can be framed as that of representing images in
a form that facilitates performing visual tasks, be they estimation, recognition, or motor
action. Perhaps the most general “task” is temporal prediction, which has been proposed
as a fundamental goal for unsupervised learning of visual representations [69]. Previous
research along these lines has generally focused on estimating stable representations rather
than using them to predict: for example, extracting slow features [225], or finding sparse

codes that have slow amplitudes and phase changes [35].
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In video processing and computer vision, a common strategy for temporal prediction is
to first estimate local translational motion, and then (assuming no acceleration) use this to
warp and/or copy previous content to predict the next frame. Such motion compensation is
a fundamental component in video compression schemes as MPEG [222]. These video coding
standards are the result of decades of engineering effort [60], and have enabled reliable and
efficient digital video communication that is now commonplace. But motion estimation is
a difficult nonlinear problem, and existing methods fail in regions where temporal evolution
is not translational and smooth: for example, expanding or rotating motions, discontinuous
motion at occlusion boundaries, or mixtures of motion arising from semi-transparent surfaces
(e.g., viewing the world through a dirty pane of glass). In compression schemes, these failures
of motion estimation lead to prediction errors, which must then be adjusted by sending
additional corrective bits.

Human perception does not seem to suffer from such failures—subjectively, we can an-
ticipate the time-evolution of visual input even in the vicinity of these commonly occurring
non-translational changes. In fact, those changes are often highly informative, revealing ob-
ject boundaries, and providing ordinal depth and shape cues and other information about the
visual scene. This suggests that the human visual system uses a different strategy—perhaps
bypassing altogether the explicit estimation of local motion—to represent and predict evolv-
ing visual input.

In this chapter, we will first study the empirical structure of dynamic visual scenes and
expose limitations in existing approaches to visual temporal prediction. We then propose a
self-supervised representation-learning framework that extracts and exploits the regularities
of natural videos to compute accurate predictions. We formulate an architecture for repre-
senting visual transformations and optimize its parameters via next-frame prediction. This
polar architecture linearizes the typical transformations occurring in image sequences and

is motivated by the Fourier shift theorem and its group-theoretic generalization. Through
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controlled experiments, we demonstrate that this approach can discover the representation
of simple transformation groups acting in data. We show that, when trained on natural
video datasets, this framework achieves better prediction performance than traditional mo-
tion compensation. We also demonstrate that it rivals conventional deep networks, while
maintaining interpretability and speed. We end this chapter by highlighting an intriguing
relationship between polar prediction and the “self-attention” block used in transformer

architectures.

2.1 Dynamic visual scenes

There exists a strong relationship between visual representations and the structure of images
(see discussion in section 1.2.1). Although the visual system is exposed to a stream of signals,
the relation of visual representations to dynamic scenes has received less attention. In this
section we focus on describing the statistics of dynamic visual scenes and ask: what makes

visual temporal prediction feasible?

2.1.1 Failures of linear predictors

Linear extrapolation of images in the pixel domain fails to produce accurate predictions and
instead results in double exposure images. All applications of linear extrapolation to linear
representations of images suffer from the same issue.

Linear regression is a standard method for computing temporal predictions [232, 136].
Although dynamics may not be linear, they can be locally approximated with a linear solu-
tion. Such linear least squares predictions can be computed efficiently and form the basis of
many engineering applications [84]. For each short segment of data, linear prediction weights
are calculated, and then frequently updated to reflect the changing dynamics of the signal

(e.g., every 100 ms for speech applications). Unfortunately this approach is not biologically
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realistic as it relies on very fast weight updates while synaptic plasticity operates at a slower
timescale.

Slow feature analysis seeks a signal representation such that coefficients evolve slowly in
time [225]. Slowness is equivalent to straightness of the temporal difference of these coeffi-
cients. This method is typically applied after the data is lifted into non-linear features using
a kernel. In that non-linear space, the slowness objective can be reduced to a generalized
eigenvalue problem, but it leaves the questions of choosing an appropriate kernel untouched.

A related approach reformulates nonlinear dynamical systems as infinite dimensional lin-
ear dynamics and aims to discover a finite dimensional approximation of the corresponding
Koopman operator [145]. This approach, originating in the fluid mechanics literature, can
be thought of as a dynamical analog of the kernel trick. The idea is to lift a nonlinear
system from the original state-space into a higher dimensional representation space where
its dynamics can be captured by a fixed matrix. This formalism has inspired a line of work
in machine learning where parameterized auto-encoders approximately linearize a system’s
dynamics in the latent space. Such networks are typically trained by minimizing a temporal
prediction error [11]. Extensions have been proposed that aim to adapt the dynamics matrix
to input velocity by introducing an auxiliary network, making non-linear temporal predic-
tions in the latent space [133]. Unfortunately, learning a coordinate systems that linearizes
dynamics is very challenging and these methods have not proven effective to predict natural

image sequences.

2.1.2 Non-linear structure

Visual temporal prediction needs to adapt to motion and to select a direction for spatio-
temporal extrapolation. As illustrated described in Figure 1.6, this is a very non-linear
operation. What are appropriate representations for such motion adaptive computations?

In particular, which non-linearities provide good inductive biases for temporal prediction?
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Linear-Rectify-Linear. Let us start with the simplest selection mechanism: thresholding,
which suppresses negative coefficients and leaves positive coefficients untouched. We consider
a network that maps the previous five frames (¢; = [zy, ..., 24_4]) to a predicted next-frame
(Z441). The network is composed of two layers: a linear analysis, followed by rectification, and
a linear synthesis (or LRL cascade). The analysis contains K spatio-temporal convolutional
filters (ay, of size 5 x 7 x 7) and additive biases (scalars ;). The thresholding nonlinearity, p,
is implemented with a ReLU, i.e., p(.) = max(.,0) (such rectified linear units are commonly
used in machine learning). The synthesis contains K spatial convolutional filters (b of size
7 x 7). The network parameters (w = {ay, ag, by} ,) are adjusted via stochastic gradient

descent to minimize the average squared prediction error:

T

K
min > e — £ (c)l?, where &1(c) = > Bp(Af e + ), (2.1)
k=1

t=1

where Ay (respectively By) is a convolution matrix with the filter a; (respectively by). It
has been argued that such an architecture learns features that resemble the receptive fields
of neurons in the early stages of the primate visual system [197]. Such example filters are
displayed in Figure 2.1. But the LRL cascade has limited expressivity and this method pro-
duces inaccurate predictions, even when the number of channels K is large. This is because

thresholding is an inefficient non-linearity for temporal extrapolation of image structure.

Linear-Gain-Linear. Let us now consider a slightly more sophisticated architecture that
aims to explicitly use visual motion for computing temporal predictions. We consider the
same least squares objective as in equation 2.1, only changing the non-linearity of the pre-
dictor, Z(c) (hereafter LGL cascade). The idea is to first estimate a distribution of probable
visual motions using a nonlinear gating mechanism, and to then marginalize it out. The

joint distribution of target next frame z, past frames ¢ and visual motion v, factorizes as
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Figure 2.1: Rectified spatio-temporal filters. Four example convolutional channels in
a Linear-Rectify-Linear temporal prediction model. Each row displays a space-time analysis
filter on the left and a corresponding spatial synthesis filter on the right. The filters are
normalized and the intensity of each channel is depicted by the slope of the rectification
non-linearity in red. The spatial phase of the first two filters shifts with time, indicating
that they are selective for orientation in space-time. The last filter is an identity operation
and it acts as a copy-pasting mechanism on positive valued coefficients.

p(z,c,v) = p(z|e,v)p(v|c). Tt is well known that optimal least squares estimation is achieved
by the posterior mean, and using this factorization, the next frame posterior mean can be

written as:

Z(c) = /xp($|c)dx = /xp(:v[c, v)p(v|c)dvdz. (2.2)

We consider a discrete approximation to this integral, utilizing spatio-temporal analysis

filters, ay, spatial synthesis filters, b;, and a softmax gating mechanism:

K Te

w0~ — (o] )b (2.3)

K aTc
k=1 Zj:l €’

The synthesis filters form a basis in which the upcoming frame is expressed. The coefficients
in that basis are a product of the analysis coefficients and of the softmax gains, respectively
approximating p(x|c,v) and p(v|c). Unfortunately this LGL cascade only offers marginal

performance improvements over the LRL cascade, even when the number of channels K is
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Figure 2.2: Analytic filter in rectangular and polar coordinates. Illustrating the
definition of local amplitude and local phase. Left. Rectangular representation of a spatially
localised oscillatory pattern, or wavelet. The real and imaginary parts of the filter correspond
to even and odd symmetric sinusoids. Right. Polar representation of the wavelet filter. The
amplitude is a Gaussian envelope whose width controls frequency bandwidth. The phase is
a ramp whose slope controls central frequency.

large. One important limitation of these models is that they can only handle a finite set of
motion speeds, failing to exploit the distinctive spatio-temporal continuity that structures

image sequences.

Local phase is fundamental. Local phase is defined with an analytical filter such as
the Gabor wavelet depicted in Figure 2.2. Local phase provides a strong signal for spatio-
temporal continuity as illustrated by Figure 2.3. Indeed when features move, their positional
information is only implicitly available in the relative coefficient values of linear filters. Po-
sitional information can be made explicit with local phase and thereby reveal temporal
stability. We give an explicit example of straightening an image sequence and revealing its
temporal structure by using a local polar decomposition in Figure 2.4.

The importance of decomposing images into local phase and amplitude information has
long been recognized in vision science [234]. Specifically local phase has been used in a
number of machine vision and image processing applications, such as estimation of image
motion [67] and disparity [68], description of image textures [162], recognition of iris pat-
terns [47], perception of blur [218], and image compression [183, 9]. These methods all
attempt to factorize visual signals—separating form and motion—to facilitate processing.

The literature on motion microscopy describes temporal processing of local phases in a
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Figure 2.3: Conditional phase histogram. Statistical summary of local phase coeffi-
cients dynamics. The coefficients are computed with an analytic pair of steerable pyramid
filters on a natural image sequence. The two dimensional histogram displays the phase value
at the next time step (0;y1) against the phase value at the previous time step (6;_1), condi-
tioned on the current phase value being 0 (6; = 0). Grayscale intensity indicates frequency,
and the red curve is an empirical estimation of the posterior expectation: E[6;,1|0;_1,60; = 0].
Statistics are collected over spatial locations and time in the image sequence. The dashed
yellow line indicates minus the identity and highlights the linearity of phase relationships
through time.

fixed complex-valued wavelet representation to interpolate between video frames and mag-
nify imperceptible movements [228, 214]. This work highlights the difference between “La-
grangian approaches” and “Fulerian approaches.” The former is based on optic flow: motion
is computed explicitly and the frames of the video are warped according to the magnified
velocity vectors. The latter bypasses the difficulties of motion estimation, and processes local

phase differences, thereby separating spatial and temporal operations.

Additive vs. multiplicative methods. To end this section, we contrast linear and angu-
lar extrapolation in a wavelet representation. The comparison between these two approaches
is illustrated in Figure 2.5. The notions of central frequency and of frequency bandwidth of
the wavelet are depicted in Figure 2.2.

Taylor expansions are commonly used for linear approximation and extrapolation—but

they are only valid locally in space. The inner product between a shifted signal x, with a
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Figure 2.4: Revealing temporal structure. Straightening an image sequence via local
polar decomposition. Top left. First frame of an image sequence involving the motion of
a camel to the right and camera panning. Each image in the sequence is a point in the
pixel state space. Top right. Projection in the first three principal components of the
image trajectory in pixel state space. Notice that this trajectory is highly curved, which
corresponds to the right hand side of Figure 1.7. Bottom left. Coefficients of steerable
pyramid filters applied in the centre of the image sequence, as indicated by the red cross
in the upper left. Pyramid bands are displayed with orientation on the x axis and scale
on the y axis as in Figure 1.4. The two dimensional curves indicate the response to even-
symmetric and odd-symmetric filters (respectively Im and Re). Notice that these trajectories
are circular, suggesting transforming the responses from rectangular to polar coordinates.
Bottom right. Projection in the first three principal components of the image trajectory in
polar coefficients space. Coefficients in polar coordinates at each location were concatenated
in a long vector containing amplitudes and unwrapped phases. Such vectors were collected
in a matrix for all the time steps in the video. Principal component analysis is applied to
this matrix. Notice that the trajectory is straightened, which is analogous to the right hand
side in Figure 1.7.
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Figure 2.5: Taylor vs. Fourier extrapolation. Comparing two approaches to extrapo-
lation. Left. Linear extrapolation is valid locally in space and is exact for ramps. Right.
Angular extrapolation is valid locally in frequency and is exact for waves.

wavelet ¢, can be approximated with the inner product of the original signal x with the
same wavelet by adding a term that is linear in the size of the shift 7, provided that the shift

is small relative to the central frequency of the wavelet:
Yoz, Y-z x), if T <Y (2.4)

where ¢ is the spatial derivative of the wavelet, 1; is its Fourier transform, and its central

frequency is defined as: & = # [ w|(w)]? dw.

Fourier methods are also commonly used for angular extrapolation—but they are only
valid locally in frequency. The inner product between a shifted signal with a wavelet can be
approximated with the inner product of the original signal with the wavelet phase shifted
by an amount 7¢ that depends both on the size of the shift and the central frequency of the

wavelet, provided that the shift is small relative to the frequency bandwidth of the wavelet:
Voz, e (), if T <o (2.5)

where the frequency bandwidth is defined as: 0% = # f[_mr]Q w — €2 (w)[? dw. In other

words, local image translation is equivalent to local phase shift, and a complex wavelet
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representation approximately diagonalizes local translations [85]. Angular methods perform
well in cases where handling large continuous shifts is important and bandlimiting the signal
is possible [57]. Moreover these methods preserve the Euclidian norm of the signal, which is

not true of linear methods.

We hypothesize that the spatio-temporal coherence of image sequences is revealed by
local phase because of the inertia of visual transformations. Therefore a good representation
should extract and exploit signal structures that can be modeled as a transformation group.

The remainder of this chapter is focused on developing and testing this hypothesis.

2.2 Multiplicative mechanisms for predicting transfor-

mations

2.2.1 Base case: the Fourier shift theorem

Our approach is motivated by the well-known behavior of Fourier representations with re-
spect to signal translation. Specifically, the complex exponentials that constitute the Fourier
basis are the eigenfunctions of the translation operator, and translation of inputs produces
systematic phase advances of frequency coefficients. Let x = [x¢,...,2x_1]" € RY be a
discrete signal indexed by spatial location n € [0, N — 1], and let X € CV be its Fourier
transform indexed by k € [0, N — 1]. We write x**, the circular shift of x by v, ¥ = z,,_,
(with translation modulo N). Let ¢ denote the primitive N*® root of unity, ¢ = /",
and let F € CV*V denote the Fourier matrix, F},, = Tlﬁ¢"k. Multiplication by the adjoint

(i.e., the conjugate transpose), F*, gives the Discrete Fourier Transform (DFT), and by F
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the inverse DFT. We can express the Fourier shift theorem! as: x* = Fdiag(¢,)F*x, where
bp = [0°,07, 072, ..., ¢~ DU]T is the vector of phase shift by v. See Appendix 5 for a
consolidated list of notation used throughout this work.

This relationship can be depicted in a (commutative) diagram:

~ —kv~

Lk phase shift Qb Lk

<F* ? (2.6)
\

Tn spatial shift ? Tn—v

This diagram illustrates how transforming to the frequency domain renders translation
a “simpler” operation: phase shift acts as rotation in each frequency subspace, i.e., it is

diagonalized.

Prediction via phase extrapolation. Consider a signal, the N-dimensional vector x;,
that translates at a constant velocity v over time: wz,; = %,_. 0. This sequence traces
a highly non-linear trajectory in signal space, i.e., the vector space where each dimension
corresponds to the signal value at one location. In this space, linear extrapolation fails. As
an example, Figure 2.6 shows a signal consisting of a sum of two sinusoidal components in one
spatial dimension. Mapping the signal to the frequency domain simplifies the description. In
particular, the translational motion now corresponds to circular motion of the two (complex-
valued) Fourier coefficients associated with the constituent sinusoids. In polar coordinates,
the trajectory of these coefficients is straight, with both phases advancing linearly (at a rate

proportional to their frequency), and both amplitudes constant.

'Proof by substituting m = n — v:

o N-1 N—1—v N-—1
xivk — Z ¢7kn$n_1; _ Z ¢7kv¢fkmzm _ (bfkv Z d)fk:nxn _ ¢7kvfk.
n=0 m=—v n=0
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Figure 2.6: Straightening translations. (a) Three snapshots of a translating signal
consisting of two superimposed sinusoidal components: x,,; = sin(27(n — t)) + sin(273(n —
t))/2. (b) Projection of the signal into the space of the top three principal components.
The colored points correspond to the three snapshots in panel (a). In signal space, the
temporal trajectory is highly curved—linear extrapolation fails. (¢) Complex-valued Fourier
coefficients of the signal as a function of frequency. The temporal trajectory of the frequency
representation is the phase advance of each sinusoidal component. (d) Trajectory of one
amplitude and both (unwrapped) phases components. The conversion from rectangular to
polar coordinates reduces the trajectory to a straight line—which is predictable via linear
extrapolation.

2.2.2 Generalization: representing transformation groups

Streaming visual signals are replete with structured transformations, such as object displace-
ments and surface deformations. While these can not be captured by the Fourier represen-
tation, which only handles global translation, the concept of representing transformations
in their eigen-basis generalizes. Indeed, representation theory describes elements of general

groups as linear transformations in vector spaces, and decomposes them into basic building
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blocks [86]. In fact, it is illuminating to think of classical Fourier analysis as a special case
in the representation theory of compact commutative Lie groups [135].

However, the transformation groups acting in image sequences are not known a priori,
and it can be difficult to give an explicit representation of general group actions. In this
work, we aim to find structures that can be modeled as groups in image sequences, and we
learn their corresponding representations from unlabeled data.

In harmonic analysis, the Peter-Weyl Theorem (1927) establishes the completeness of the
unitary irreducible representations for compact topological groups (an irreducible representa-
tion is a subspace that is invariant to group action and that can not be further decomposed).
Furthermore, every compact Lie group admits a faithful (i.e., injective) representation given
by an explicit complete orthogonal basis, constructed from finite-dimensional irreducible
representations [86]. Accordingly, the action of a compact Lie group can be expressed as a
rotation within each irreducible representation (an example is the construction of steerable
filters [72] in the computational vision literature).

In the special case of compact commutative Lie groups, the irreducible representations
are one-dimensional and complex-valued (alternatively, pairs of real valued basis functions),
i.e., they have a toroidal topology. Note that this case corresponds to a concrete result
from linear algebra: the equivalence between matrices that commute with one another, and
matrices that admit a simultaneous block-diagonalization [98]. Moreover, the action of a
compact commutative Lie group can be described as a change of phases in its irreducible
representation. This suggests a strategy for learning a representation: seek pairs of basis
functions for which phase extrapolation yields accurate prediction of upcoming images in a

stream of visual signals.

Objective function. We aim to learn a representation of video frames that enables next

frame prediction. Specifically, we optimize a cascade of three parameterized mappings: an
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analysis transform (f, : RY — RM) that maps each frame to a latent representation, a
prediction in the latent space (P, : RM x R® — RM) and a synthesis transform (g, :
RM — RY) that maps the predicted latent values back to the image domain. All the
parameters (w) of these mapping are learned by minimizing the average squared prediction

error:

1 N .
min T Z l|x¢1 — gw(th)HQ; where Z;11 = Py(2¢,2¢-1), and z; = f,(x;). (2.7)
t

Polar prediction mechanism. We begin with the simplest case: sequences small image
patches, linear analysis and synthesis transforms, and a fixed prediction mechanism. We
will show later that polar prediction can be made convolutional and multiscale. With these
extensions the model adapts to multiple unknown and noisy transformations that act in
different spatial position of natural image sequences (see Section 2.3). Furthermore, we
will also generalize the polar prediction mechanism to model biological computation (see
Section 4.1).

Let the linear coefficients be computed as an inner product between the input patch and
the filter weights. Specifically for k € [0, K|, where K is the number of pairs of channels, we
have:

T T
Yot = VopXe and, Yopi14 = Vo1 Xe. (2.8)

In order to obtain phases, coefficients are grouped in pairs, forming complex-valued coeffi-
cients: zx; = Yokt + Wor+1, € C. These complex-valued coefficients can then be converted
to polar coordinates: 2, = akjtew’“vt.

With this notation, the polar prediction mechanism is defined as a linear phase extrap-
olation and amounts to calculating 241 = akytei(ekﬁMk«i), where the phase advance A0y,

is equal to the phase difference over the interval from ¢t — 1 to t: Af; = 0 — 0x4—1. This

polar prediction mechanism makes two strong assumptions: there is no phase acceleration,
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and the amplitudes stay constant. The phase-advanced coefficients can be expressed in a

more direct way, using complex arithmetic, as:

ket 2k, t—1

(2.9)

2k,t+1 = 5k,t2k,t7 where 5k,t S T —
|Zk:,t||2k,t—1|

with Z and |z| respectively denoting complex conjugation and complex modulus of z. Note
that this polar prediction mechanism is homogeneous of degree one: it is computed as the
ratio of a cubic over a quadratic.

This formulation in terms of products of complex coefficients has the benefit of han-
dling phases implicitly, which makes phase processing computationally feasible, as previously
noted in the texture modeling literature [162, 235]. Optimization over circular variables suf-
fers from a discontinuity if one represents the variable over a finite interval (e.g., [—m, 7).
Alternatively, procedures for “unwrapping” the phase are generally unstable and sensitive
to noise.

The estimated next patch is generated by applying the transposed filters to the phase
advanced coefficients. We use the same weights for the encoding and decoding stages, that
is to say the analysis operator is the conjugate transpose of the synthesis operator (as is the
case for for the Fourier transform and its inverse). Sharing weights between analysis and
synthesis transforms reduces the number of parameters and simplifies interpretation of the
learned solution.

In summary, given a video dataset X = [xy,...,x7] € RV*T the convolutional filters of

a polar prediction model are learned by minimizing the average squared prediction error:

T
min > [[x,1 — Wdiag(6,) W*x,[|*;
=1

WE(CNXNK
t

where §; = (z; ©Z;1) @ (|z¢| ® |24-1]), and z, = Wx,. (2.10)
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The columns of the matrix W contain the K complex-valued filters, wj = v, +ivagpr; € CV
and multiplication, division, amplitude, and complex conjugation are computed pointwise.
The operations in polar coordinates is the only non-linear step used in the architecture
and we therefore refer to it as the “polar predictor” model (hereafter, PP). This bivariate
non-linear operation differs markedly from the typical (pointwise) activation function (e.g.,

rectification) found in convolutional neural networks.

Recovery of planted symmetries. To experimentally validate our approach, we first
verified that the PP model can robustly recover known symmetries in small synthetic datasets
consisting of translating or rotating image patches. For these experiments, the analysis and
synthesis transforms are applied to the entire patch (i.e., no convolution). Learned filters
for each of these cases are displayed in Figure 2.7. When trained on translating image
patches, the learned filters are pairs of plane waves, shifted in phase by 7/2. Similarly, when
trained on rotating patches, the learned filters are conjugate pairs of circular harmonics. This
demonstrates that the polar prediction model can automatically recover the representation
of transformation groups acting in visual data. When the transformation is not perfectly
translational (e.g., translation with open boundary condition), the learned filters are localized
Fourier modes. Note that when multiple kinds of transformations are acting in data (e.g.,
mixtures of both translations and rotations), the PP model is forced to compromise on a
single representation. Indeed, the phase extrapolation mechanism is adaptive but the basis
in which it is computed is fixed and optimized. A more expressive model would also allow
for adaptation of the basis itself.

The synthetic sequences were generated by randomly selecting 100 image patches of
size 16 x 16 from the DAVIS dataset and transforming them multiple times to obtain a
sequence of 11 frames. We applied translations or rotations and verified that PP recovers

the corresponding harmonic functions: Fourier modes for translation (panel a), and disk
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Figure 2.7: Learned filters on planted symmetries. Four polar predictor models were
trained on synthetic image sequences consisting of translating and /or rotating image patches.
In each panel, the 32 pairs of filters are displayed side by side and ordered by their norm
from top to bottom. See text for discussion.

harmonics for rotation (panel b). To show that the recovery of harmonics is robust, we
design two additional synthetic datasets. i) the combination of translational and rotational
sequences. In this case, PP learns some filters that correspond to either transformation. But
the model does not have the expressivity required to dynamically adapt the representation
to either transformation (panel c); ii) generalized translation sequences: spatially sliding a

square window on a large image (i.e., new content creeps in and falls off at boundaries),
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instead of using cyclic boundary condition (i.e., content wraps around the edges). In this
case, PP learns localized Fourier-like modes (panel d), indicating that approximate group
actions still provide meaningful training signal-—but some of the filters are not structured.
Notice that some of high frequency harmonics are missing. This is due to the spectral

properties of image patches, which have more power at lower frequencies.

2.3 Polar prediction of natural videos

In this section, we scale the polar prediction model to natural image sequences by using

convolutional multiscale operators.

2.3.1 Analysis-synthesis transforms

Local convolutional processing. When focusing on a small spatial region in an image
sequence, the transformation observed as time passes can often be well approximated as a
local translation. That is to say, in a spatial neighborhood around position n, m € N(n), we
have: z,, 141 = Zp—y. We can use the decomposition described for global rigid translation,
replacing the Fourier transform with a learned local convolutional operator [67], processing
each spatial neighborhood of the image independently and in parallel. At every position
in the image, each pair of coefficients is computed as an inner product between the input
and the filter weights of each pair of channels. This is analogous to the operations in
Equation 2.10 but with filters repeated convolutionally at each location. Correspondingly,
an estimated next frame is generated by applying the transposed convolution to the phase

advanced coefficients.

Multiscale decomposition. Transformations such as translation act on spatial neighbor-

hoods of various sizes. To account for this, the image is first expanded at multiple resolutions
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Figure 2.8: Laplacian pyramid. An image is recursively split into low frequency ap-
proximation and high frequency details. Given the initial image x = x;—9 € R, the
low frequency approximation (aka. Gaussian pyramid coefficients) is computed via blur-
ring (convolution with a fixed filter B) and downsampling (“stride” of 2, denoted 2)):
x; = 2,(B*x;, € R*’N) for levels j € [1,J]; and the high frequency details (aka.
Laplacian pyramid coefficients) are computed via upsampling (put one zero between each
sample, 27) and blurring: Ax; = x; — B % (2'x;41). These coefficients, {Ax;}o<j<, as well
as the lowpass, x;, can then be further processed. A new image is constructed recursively on
these processed coefficients. First by upsampling the lowest resolution, and then by adding
the corresponding details until the initial scale j = 0 as: x; = B* (2'x;41) + Ax;.

in a fixed overcomplete Laplacian pyramid [34]. Then learned spatial filtering (see previous
paragraph) and temporal processing (see section 2.2.2) are applied on these coefficients. Fi-

nally, the modified coefficients are recombined across scales to generate the predicted next

frame (see further details in the caption of Figure 2.8).

2.3.2 Predicting natural videos

We compare our multiscale polar predictor (mPP) to a causal implementation of the tradi-
tional motion-compensated coding (¢cMC) approach. For each block in a frame, the coder
searches for the most similar spatially displaced block in the previous frame, and communi-

cate the displacement coordinates to allow prediction of frame content by translating blocks
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Figure 2.9: Polar Prediction Model. The previous and current images in a sequence
(x;—1 and x;) are convolved with pairs of filters (W*), each yielding complex-valued coef-
ficients. For a given spatial location in the image, the coefficients for each pair of filters
are depicted in complex planes with colors corresponding to time step. The coefficients at
time ¢ 4+ 1 are predicted from those at times ¢ — 1 and ¢ by extrapolating the phase (d;).
These predicted coefficients are then convolved with the adjoint filters (W) to generate a
prediction of the next image in the sequence (X;11). This prediction is compared to the next
frame (x;11) by computing the mean squared error (MSE) and the filters are learned by
minimizing this error. Notice that, at coarser scales, the coefficient amplitudes tend to be
larger and the phase advance smaller, compared to finer scales.

of the (already transmitted) previous frame. We also compare to phase-extrapolation within
a steerable pyramid [194], an overcomplete multi-scale decomposition into oriented channels
(SPyr). We implemented a deep convolutional neural network predictor (CININ), that maps
two successive observed frames to an estimate of the next frame [143]. Specifically, we use a
CNN composed of 20 non-linear stages, each consisting of 64 channels, and computed with
3 x 3 filters without additive constants, followed by half-wave rectification. Finally, we also
consider a U-net [176] which is a CNN that processes images at multiple resolutions (U-net).
The number of non-linear stages, the number of channels and the filter size match those of
the basic CNN. See Appendix 5 for a description of the architectures, datasets and training

procedure.
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Figure 2.10: Prediction performance and computational costs. Left. Comparison
of the train and test set prediction errors for several prediction algorithms, computed on
the DAVIS dataset (dots) and on the VanHateren dataset (triangles). Values indicate mean
PSNR and error bars represent standard deviation computed over 10 random seeds. Right.
Comparison of the number of trainable parameters for the trainable models (with same color
code as left panel). Also shown is the mean training time for 200 epochs on the VanHateren
dataset, values are reported in minutes with error bars representing standard deviation.
Training time is computed on a NVIDIA A100 GPU.

Prediction performance. We report performance measured by Peak Signal-to-Noise Ra-
tio (PSNR) in decibels. The PSNR is a quality metric which expresses the logarithm of the
mean squared error (MSE) in units of the signal: PSNR(z, %) = 1010g10(lfange/MSE(x,i)),
where I ange is the range of possible pixel values of the image. A PSNR of 0dB means that
the squared peak signal and the mean squared error are equal; a PSNR of 10dB (resp. 20dB)
means that the squared peak signal is 10 times (resp. 100 times) bigger than the MSE.
Prediction performance results are summarized in Figure 2.10. First, observe that the
predictive algorithms considered in this study perform significantly better than baselines ob-
tained by simply copying the last frame, causal motion compensation, or phase extrapolation
in a steerable pyramid. Second, the multiscale polar predictor performs better than the con-
volutional neural networks on test data (both CNN and U-net are overfit). A representative

example image sequence and the corresponding predictions are displayed in Figure 2.11.
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Figure 2.11: Example image sequence and predictions. Comparing prediction meth-
ods on a typical example image sequence from the DAVIS test set. Top row. Two observed
frames (x;—1 and x;) and the target next frame (z;,1). Predicted next frames (Z;;) computed
with different methods. Bottom row. Residual errors between the target and predicted
next frame (z;.1 — Zyy1) for each method, displayed in corresponding column together with
performance value (measured in PSNR). All subfigures are shown on the same intensity
scale. Copy: repeating the last observed frame provides a simple baseline, but it misses
all the deformations of the fish. cMC: causal Motion Compensation relies on optic flow to
copy-paste image patches and captures some of the movement, but it suffers from severe
artefacts. SPyr: polar extrapolation in a fixed steerable pyramid representation produces a
higher quality prediction, but it is inaccurate around the tail. CNN: an expressive vanilla
neural network produces an accurate prediction, but is opaque and comprises 20 non-linear
stages and half a million parameters. mPP: the polar prediction model prediction is most
accurate (see left eye of the fish), yet comprises only a single stage and one non-linearity—
thereby remaining interpretable.

Computational costs. Additional comparison of computational costs for these algorithms
are also displayed in Figure 2.10. The polar predictor is lightweight and was designed as an
online method that could be applied to streaming data. The polar prediction model contains
roughly 30 times fewer parameters than the CNN and uses a single non-linearity, while the
CNN and U-net contain 20 non-linear layers. Meanwhile PPM matches the performance of
the CNN and U-net, thereby demonstrating the efficiency of the polar architecture. Notice
that the U-net, although it contains about as many paramters as the CNN] is almost as fast
to train as the polar predictor. Indeed most of the computation is applied to spatially down-

sampled coefficients. Finally, we also compare sample complexity by evaluating prediction
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Figure 2.12: Sample complexity Prediction performance of the polar predictor and U-
net measured in PSNR as a function of the size of the training set. Training performance
decreases with dataset size while test performance increases. The polar prediction model
is more data efficient than the U-net and achieves higher performance with small amounts
of training data. Performance was computed after 200 training epochs on a subset of the
DAVIS dataset.

performance of datasets of varying size. The results are reported in Figure 2.12 and show

that the polar predictor is more data efficient that the U-net.

2.3.3 Auto-regressive formulation and “self-attention”

In this section, we briefly comment on the intriguing relationship between polar prediction

2

and “self-attention.” Attention layers are the key module that gets stacked in transformer
networks. They are a canonical computation of modern deep learning and have found ap-
plications well beyond Natural Language Processing and language translation where it was
initially developed [212]. In particular this module has proven very effective on next-token
prediction tasks [2]. Yet it remains difficult to precisely describe representation power of
self-attention, its benefits and limitations as compared with other canonical modules (such

as convolution and rectification).

We begin by reformulating the polar prediction model in an auto-regressive form. The
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Figure 2.13: Auto-regressive polar prediction. Two equivalent computations: curved
red arrows indicate vector rotation from z; by the same angle as between z; and z;_1; cyan
vectors indicate reflection of z;_; along z;, computed as the projection of z;_; onto z;, doubled,
minus z;_1. Both land on z;,4.

polar prediction model from Equation 2.10, has the form:

K
s _ § kTk kT
Xt+1 = W Dtﬂf—lw Xt7

k=1

which is a sum of outer products, with an adaptive dynamics matrix that acts in each latent
two dimensional subspace by applying a rotation to each complex-valued coefficient. This

rotation can be written as a combination of past coefficients:
221 + 2z — |z

and o = ]’
t—1

(2.11)

Zii1 = 2z + 12,1 where ag = rall2 B
k|| 2k t—1

which corresponds to a reflection computed via projection and scaling. This operation is
known as a Householder reflection in linear algebra [100] and is illustrated in Figure 2.13.
This equivalence between vector rotation in a plane and reflection along that vector gener-
alizes to arbitrary dimension.
Using this observation, and writing X, = [Xo,...,xr — 1] and X; = [x3,...,x7], polar
prediction can be written in an auto-regressive form:
) K

X; =) WHW*TX,)AL, (2.12)

k=1
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where the matrix of auto-regressive coefficients, Ak € R™*T depends on X,. More ex-

plicitely, the last column of this auto-regressive matrix can be written:

A, T —1] =0, ...,0, —norm(x; W*) /norm(W'x; 1)),

2normalize(x, W*T)normalize(W¥*x,_,)]" € R, (2.13)

it contains interactions between the two dimensional coefficients of the inputs along the
kt" basis element. This A matrix modulates coefficients with weights that are computed
across time points. This modulation is normalized so that the whole prediction process stays
homogeneous: scaling the inputs results in an equivalent scaling of the outputs.

This is reminiscent of the self-attention mechanism, which can be written:

K

X; =) WEWIXo)Af (2.14)
k=1

A} = softmax(triu(X; W, W. X)), (2.15)

where the softmax is computed column-wise on the upper triangular matrix of similarities,
and WF (resp. Wk Wk, Wf;) correspond to the k™ group of columns in the output matrix
(resp. value, key and query matrices). Similar notational convention is often used in the
machine learning literature [59]. The attention matrix in this architecture plays a role
similar to that of the auto-regressive coefficients matrix in polar prediction, Eq 2.13. Here
the softmax non-linearity achieves the same homogeneity property as normalization in auto-
regressive polar prediction.

The relationship between auto-regressive polar prediction and self-attention offers a way
to understand the implicit bias of the self-attention module, and suggests an explanation
for the success of the transformer architecture: self-attention is well suited to represent

and utilize the transformation groups acting in data. Related observations were made on
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algebraic tasks where a single self-attention layer is trained to perform discrete arithmetic
operations [150, 41]. In such tasks, the weights of self-attention learn a representation of a
cyclic group. It would be interesting to ask whether such circular features also underlie the
performance of larger models that utilize transformers. Further analysis is required to clarify

the similarities and differences between auto-regressive polar prediction and self-attention.

2.4 Discussion

We have described how the structure of image sequences is shaped by local content deforma-
tions and we introduced the polar prediction model to take advantage of this structure. By
starting from mathematical fundamentals and considering an abstract formulation in terms
of learning the representation of transformation groups, we formulated a framework that

makes three main contributions.

Discovering group transformations. First, the polar prediction model can extract the
structure implicit in sequential data: the model jointly discovers and exploits the approxi-
mate symmetries acting in image sequences. The polar prediction model handles transfor-
mations that are locally commutative and continuous. This complements the well developed
group-theoretical methods in machine learning where many authors have discussed imposing
known invariants [122, 44, 30]. Note that these methods learn on groups, but do not learn
the group.

Symmetry discovery is a fundamental problem that has received comparatively less at-
tention from the machine learning community. Exceptions to this include methods that
adopt a Lie group formalism to factorize invariance and equivariance. Initial approaches
attempted to learn group generators from dynamic signals [166], and visual representations

that are invariant to geometric transformations occurring in image sequences [24]. A polar
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parametrization was used to identify irreducible representations in synthetic data [43]. The
Lie group formalism has also been combined with sparse coding [40, 38] to model natural
images as points on a latent manifold. More recently, bispectral neural networks [184] have
been shown to learn image representations invariant to a given global transformation. In
a related formalism, factored Boltzmann machines have been proposed to learn relational
features [144]. The idea of learning a temporally straightened representation from image
sequences was explored using a heuristic extrapolation mechanism: specialized “soft max-
pooling” and “soft argmax-pooling” modules [82].

Notice that the polar prediction model relies on a plain temporal prediction objective.
It does not promote sparsity of either amplitude or phase components and does not rely on
explicit regularization. Previous work based on sparse coding also aimed to represent visual
transformation and describes local image structure in polar coordinates. Specifically, a two
layer complex-valued sparse coding model model was proposed for representation learning
from image sequences [35]. But the discontinuity arising from selection of sparse subsets
of coefficients seems at odds with the representation of continuous group actions [130]. In
contrast, the polar prediction model relies on a smooth and continuous parameterization to

jointly discover and exploit the transformations acting in sequential data.

A simple framework. Second, the polar prediction model achieves accurate next-frame
video prediction within a principled framework and provides an interpretable alternative to
opaque deep net architectures. Prediction is computed via adaptive phase extrapolation in
a fixed shiftable basis. The model strictly separates spatial and temporal processing. The
basis is optimized by minimizing mean squared prediction error and aims to best diagonalize
video dynamics. The prediction mechanism assumes that phase evolves linearly with no
acceleration and that amplitude remains unchanged. The phase relationships are exploited

implicitly in a bundled computation, bypassing the instabilities and discontinuities of angular
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phase variables. The model applies a non-linearity independently on each complex valued
coefficient.

The standard compression and denoising algorithms also rely on a similar structure.
In all these signal processing tasks diagonal adaptive operators in appropriate bases offers
qualitative improvements over classic linear methods. Quantizing coefficients in a discrete
cosine (or wavelet) basis improves on linear compression (blurring and down-sampling).
Similarly, thresholding coefficients in the basis that optimally separates signal from noise
improves on Wiener filtering (convolution with an appropriately scaled low-pass filter). Our
empirical results demonstrate that a related strategy is also very efficient for predicting image
sequences. The standard deep networks considered here could in principle have discovered
a similar solution, but did not do so in our experiments. This exemplifies a fundamental

theme in computational vision: when possible, let the representation do the analysis.

Relationship to biology. Third, the non-linear components of the polar prediction model
map to known physiological elements of the early visual system. In chapter 4 we will discuss
the relevance of this model to understanding the nonlinear response properties of neurons
in primate visual cortex. Moreover, we will treat polar prediction as a module that can be

cascaded.

Unfortunately, the polar prediction model does not resolve the problem of discontinu-
ous motion at occlusion boundaries. The model is limited to local deformations and only
computes a single best guess for the next-frame. When the future frame could go in one
of two directions, the model compromises and guesses the average of these two solutions.
Such blurry predictions are inadequate and call for a reframing of temporal prediction as a
probabilistic inference problem. This leads us to the topic of the next chapter: estimating

optimal predictors.
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Chapter 3

Estimating optimal predictors

“Instead of fearing wrong predictions, we look eagerly for them;, it is only when
predictions based on our present knowledge fail that probability theory leads us to

fundamental new knowledge.”

- E.T. Jaynes (1985), Maximum entropy and Bayesian methods in applied statistics

Predicting the future is inherently uncertain and the visual system faces substantial
ambiguity while anticipating sensory signals. Some of this uncertainty can be traced to
measurement limitations: although remarkably accurate, our eyes only capture a fraction of
the information carried by light. Moreover, our visual system inevitably discards some of
this information during processing. These limitations prevent visual perception from fully
resolving contingencies in the dynamics of the environment. The ambiguity caused by missing
information can change outcomes and be consequential (think, for example, of the sudden
direction changes in a chase between predator and prey). As a consequence our perceptual
system must make assumptions and fill in those gaps. In that sense, perception is a process

of inference in which incoming information is combined with internal expectations. Such
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unconscious inference is probabilistic in nature and must rely on information distilled from
past experience. But probabilistic inference on incomplete and noisy visual measurements
is computationally extremely challenging, even unfeasible in general. Yet, our visual system
provides us with a reliable interpretation of the world.

In this chapter, we describe a method for estimating and sampling from the distribution
of probable future frames. We first examine the high-dimensional density estimation problem
in the case of the distribution of future visual signals given past observations and review some
related work. We then develop an implicit method for learning, representing and utilizing
an image density for temporal prediction. We show that training for resilience to noise is
sufficient for embedding the density in a neural network and that this implicit density can be
revealed via sampling. We highlight the case of occlusion boundaries, where the need for a
probabilistic approach to prediction is most apparent, and show that the method generalizes

to inference on natural image sequences.

3.1 High-dimensional probabilistic modeling

Density estimation is the mother of all unsupervised learning problems. The simplest method
for estimating the distribution of a signal from data is to build a histogram. First define a
grid to partition the data space into cells, then assemble a dataset, and count the number
of data points that lie in each of those cells to get an estimated frequency. Unfortunately
this method is cursed by dimensionality: the number of cells grows exponentially with data
dimensionality. For high-dimensional data like images, this exponential dependency in the
dimensionality renders the histogram based approach infeasible. For example, in the case of
small gray-scale images of size 32 x 32 pixels with intensity sampled on a standard an 8-bit

61024

grid (corresponding to integer values in 0-255), the number of cells is 25 . This very large

number is far beyond the size of any feasible dataset. In general, the statistical difficulty of
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density estimation obstructs probabilistic modeling, where inference and sampling require not
only estimation but also integration over high-dimensional densities. Making assumptions
is therefore necessary for probabilistic inference on high-dimensional data, and we need

principles to guide these choices.

3.1.1 Coping with incomplete information

Many researchers have proposed methods to tackle this statistical challenge in the context
of video prediction [156]. We will review three key ingredients of the problem: the need for a
probabilistic formulation, the objective function (explicit vs. implicit probability modeling),

and the choice of architecture.

The need for a probabilistic formulation. In ambiguous situations where multiple
next frames are probable, single deterministic guesses are inadequate. Unfortunately this
situation is far from marginal and image measurements are always incomplete, making them
insufficient to fully specify the future. The next frame in an image sequence is a single event
with several possible outcomes, its distribution is therefore multi-modal. This uncertainty
can be made more visible by predicting further out into the future, as illustrated in Figure 3.1.
A trained deep network predictor is applied recursively: starting with two images from the
test set, and predicting the third frame. The network then predicts the following frame by
processing the second and third frame, i.e., its previous output is fed back as an input. After a
few steps of this recursive procedure, the predictions collapse to a blurry uninformative image.
The prediction network compromises, instead of deciding, on ambiguous features. Indeed, a
network trained to minimize prediction mean square error approximates the posterior mean.
As a result it averages over all possible next frames. But the manifold of natural images does
not form a convex set, and averaging pushes the prediction off the image manifold, resulting in

unnatural predictions. This weakness is common to all the deterministic methods considered
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Figure 3.1: Collapse of recursive deterministic prediction. First two frames of a
test image sequence, followed by predictions from a trained CNN. Each predicted frame is
the result of processing the last two frames in the sequence, i.e., the predictor is applied
recursively. Predictions become blurry after a few steps and collapse to an uninformative
smooth image.

in Chapter 3.

Although no perfect prediction is possible, an optimal method should aim to make full
use of all available information while remaining noncommittal about the rest. Such a prob-
abilistic approach requires assigning a belief to all possible next frames, which is infeasible.
Instead, classical solutions assume a stationary stochastic processes, and linear Gaussian
models have been used for filtering at least since Wiener [223]. In that case, mean and
covariance are sufficient statistics and can readily be computed. This approach has been
successfully applied to dynamical systems where the Kalman filter combines noisy measure-
ments and linear state dynamics [112]. Such linear Gaussian methods form the bedrock of
machine learning [178] but they are insufficient to tackle problems with multi-modal posterior
distributions such as video prediction.

Many extensions have been proposed to handle non-linear dynamics and complex pos-
terior distributions. One approach makes locally linear approximations to the dynamics
(extended Kalman filter), unfortunately it only considers Gaussian posteriors. A general
strategy for handling more complex posteriors is to make locally Gaussian approximations:
with the mean set at the maximum of the posterior and the precision matrix set to the Fisher
information (i.e., a Laplace approximation). This construction is well suited to unimodal
posterior distributions. To tackle multimodal posteriors, particle filters have been developed
that track the trajectory of multiple possible samples through time. Unfortunately these

methods suffer from the curse of dimensionality. The rest of this section is devoted to dis-

20



cussing modern machine learning solutions, which offer expressive and flexible approaches

for probabilistic visual temporal prediction.

The objective function. At a high level, probabilistic methods aim to map data from
the signal space into a representation that is distributed according to a Gaussian and to map
representations back to the signal space. Explicit approaches to generative modeling aim to
learn a proper probability density. These methods need to compute a normalization constant
to ensure that the learned density function integrates to one. The standard objective for
generative modeling is KL divergence between estimated and target distribution, and it
is achieved by maximizing likelihood. These likelihood-based models make assumptions
in order to tackle the problematic normalization constant (it is an integral over the high-
dimensional data distribution). As a result these methods suffer from limitations on the
family of densities that can be represented, or on the family of architectures that can be

used.

e Variational Auto-Encoders [118, 171] are latent-variable models that build on principles
from variational inference [216, 27] and are trained to minimize a bound on the log
likelihood of the data. The idea is to substitute the inference algorithm with a learned
mapping, a deep encoder network, that outputs an approximate posterior over the
latent for each datapoint. Sequential variational auto-encoders have been applied to
video prediction but with limited success [125, 66, 51, 12]. These methods rely on
approximations and the variational bound can be quite loose; they also assume a fixed

Gaussian prior in the latent space and this limits their expressivity.

e Normalizing Flows [53, 170] use the change of variable formula to compute a series of
invertible mapping between the data distribution and a Gaussian distribution. This

“gaussianization” approach sidesteps intractable integrals, but is restricted to architec-

o1



ture for which computing the change of variable is efficient (it involves a problematic

log determinant term).

Pixel autoregressive models [21, 79, 209] factorize the data distribution into a series of
conditional distributions and learn those smaller conditional distributions. But these
methods proceed in an arbitrary pixel raster order (adopted from the coding literature),
and take more time for generating samples, which makes them inappropriate for an

online temporal prediction setting.

Prediction of discretized video token [165] forms an explicit multinomial distribution
over a quantized representation of the next frame. This approach is inspired by the suc-
cess of next token prediction in Natural Language Processing which demonstrated the
power and generality of a simple prediction objective function. In language modeling
the number of tokens is large but remains manageable: it can be explicitly modeled as
a multinomial distribution and optimized with the familiar categorical cross-entropy
loss that is also in common use for multi-way classification. Application to high-
dimensional video data requires tokenization, for example via learned vector quan-
tization [210] (which is optimized with a straight-through estimator, bypassing the
non-differentiable quantization step). But the quantization step often occurs early in

processing and produces representations that can be brittle.

The difficulties of likelihood-based models can be avoided by considering implicit models.

A prominent example of this approach is given by Generative Adversarial Networks [81] which

only models the generation process and have been widely used for video prediction [143, 217].

The idea is to train a generative model by optimizing it to fool a classifier that tries to

distinguish between images from the training set and samples from the model. Unfortunately

these models are unstable and drop modes of the data distribution. The competitive game

between generator and discriminator networks is sensitive to details of the training algorithm.
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The game effectively minimizes a Jensen-Shannon divergence, but fails to represent certain
parts of the distribution. Nevertheless, the idea of an implicit approach remains appealing,

especially if it could be made to provide some access to the desired probability distribution.

Architectural choices. Video next-frame prediction is usually cast as a sequence-to-
image problem, and a central difficulty is to handle long-term temporal dependencies. Re-
current Neural Network make use of long context by updating a latent state, but are difficult
to train. In practice it is common to resort to complex self-gating architectures like the Long
Short-Term Memory networks [131]. Feedforward Convolutional Neural Networks on the
other hand are much more stable to train, but only rely on limited temporal context—
although pyramids of causal convolutions may be used [154]. Many authors have pro-
posed more sophisticated video processing architectures that explicitly splits into motion
and content streams. These methods build in some structural assumptions, for example
the notion of background and foreground, or some notion of objectness. Similarly, using
motion-compensation upfront suffers from the limitations of optic-flow: assigning a single
displacement vector per pixel fails at occlusion boundaries, where there are multiple mo-
tions. Some researchers have designed architectural variants that aim to strike a balance
between structure and flexibility, obtaining promising results in tasks such as image anima-
tion and action recognition [230, 63]. Of particular interest are architectures that exploit the
multiscale nature of visual signals, in particular U-nets [170] are auto-encoders that process

signals fine-to-coarse and then coarse-to-fine.

3.2 Score-based inference

Score matching estimation offers an alternative to maximum likelihood estimation that

bypasses the problematic high-dimensional integral in the normalization constant [102].
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Maximizing the log likelihood E, [log pg(x)} is equivalent to minimizing the KL-divergence
KL(p,py) = E,[log p(x)—log ps(x)], where p(z) is the data distribution and ps(z) the density
model. But optimizing the parameters of a density model by minimizing KL divergence is
computationally prohibitive: it involves taking gradients of the normalization constant with
respect to the parameters. Score matching eliminates the normalizing constant by replacing

KL minimization with minimization of the weaker relative Fisher information:

1
Z(p,po) =E, §||Vz logp(x) — V., logpg(x)H2 ) (3.1)

In other words score matching minimizes the expected squared distance between the gradient
of the log-density given by the model and the gradient of the log-density of the observed data.
In the statistics literature, the gradient of a log-density is also know as a score function, hence
the name score matching. For models in the exponential family (i.e., whose energy is linear
in #), this estimator can be expressed as a simple quadratic objective in the parameters (via
integration by parts). Moreover the score matching estimator is consistent and its precision
depends on the smoothness of the data distribution.

This estimation method was generalized and placed in an “empirical Bayes” frame-
work [169]. This framework is appealing because of its simplicity and generality: it provides
least squares estimators given access to data and to the distortion process only. Indeed,
denoising and least squares optimization can be used implicitly to learn arbitrary data dis-
tributions. In the rest of this section, we contrast this framework with other machine learning
approaches, and provide an intuitive introduction to empirical Bayes, focusing on approxi-

mation and optimization.

Probabilistic modeling frameworks. The two critical differences between the empirical
Bayes approach and other probabilistic machine learning approaches are i) denoising is a local

operation in the space of probability distributions and ii) denoising serves both for learning
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Figure 3.2: Probabilistic modeling frameworks. Contrasting implicit and an explicit
approaches to probabilistic modeling. In both cases, a model transforms frequencies esti-
mated from past measurements into beliefs assigned to possible future measurements. Left.
Traditional framework: given training data, perform inference in a probabilistic model, and
generate synthetic data by sampling from the model. The model is explicit and its pa-
rameters are learned through repeated iterations of inference and sampling. The learning
objective is applied end-to-end: from training data, to inferred latent representation, and
all the way to generated data. Right. Empirical Bayes score-based framework: learn a
mapping from noisy data to denoised data. The probabilistic model remains implicit and is
only revealed by generating samples. There is a single operation, denoising, and it provides
a local learning objective: gradually bringing noise closer to the data distribution.

as well as for for sampling. These points are illustrated in Figure 3.2.

Many of the methods reviewed in the previous section (Section 3.1) attempt to learn map-
pings from training images to Gaussian latent variables, and from latent Gaussian variables
to generated images. These mappings are optimized to solve inference and sampling in a
single step. What sets the score based approach apart is that it breaks down this process into
many independent steps, these steps can be learned separately and are all well constrained.
The idea is to train a denoiser to remove arbitrary amounts of Gaussian noise and to use it
for sampling: denoising provides local steps between the Gaussian distribution and the data
distribution. These local steps can be optimized with a simple least squares procedure, and
the trained network contains information about the score function at multiple noise levels.

The implicit probabilistic model contained in the network can be revealed via sampling.
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Generating samples is reduced to climbing the implicit probability landscape following the
direction provided by the denoiser.

Previous work proved that denoisers trained via least squares provide control over the
KL divergence between the target distribution and its approximation [111]. Remarkably,
it was also shown that common architectural motifs, such as convolution and rectification,
give rise to inductive biases that are sufficient to estimate scores from reasonable amounts
of data [111]. These methods have been used for solving inverse problems [109] and have
fueled a recent burst of progress in generative modeling. These score-based methods are often
referred to as diffusion models and have set a new standard in image generation [199, 95, 200].
Corresponding video generation results have been achieved using very large networks and

datasets [96, 31].

Problem formulation. Building on this work, we will describe a conditional version of
score-based inference. Our goal is to learn and use the distribution of the next frame in
image sequences; more precisely, the conditional distribution of the next frame given the
past few frames. We will consider a simple architecture that is specialized for temporal
prediction and show how to sample probable next-frames. Abstractly, temporal prediction
can be thought of an inverse problem that requires prior information in order to recover the
part of the information obfuscated by the arrow of time.

We consider a causal non-linear filtering problem [223]: removing undesired noise from
an observation in order to recover the underlying signal. The desired distribution of next
frames conditioned on the past is z;11 ~ p(x4i1|ci), where ¢; = [y, ..., 4, 41]. We assume
that the temporal dependencies are local and well approximated by the following conditional

independence assumption:

VteNand s ¢ {t,...,.t =7+ 1}, xp1 L xs{zshimsst—rt1- (3.2)
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We consider architectures with access to 7 past conditioning frames, effectively enforcing a

finite memory length.

3.2.1 Approximation: learning a family of scores

We aim to learn a conditional denoiser that is both effective at all noise levels, and that
automatically estimates the noise level. Such a universal and blind denoiser can adaptively
process signals at different distortion level, which we will exploit in the sampling algorithm
described in the next section on optimization. We assume that we have access to image
sequences and to noisy observations, y;11 ~ po(yii1|ct), where yi1 = z401 + 02, with z ~
N(0, Id). We write g,(z) the probability density function of a Gaussian variable centered at
0 with standard deviation o evaluated at z. In the remainder of the text, we will drop time
subscripts for clarity. We refer to the distribution of the noisy signal given conditioning,
po(ylc), as the observation density.

The Minimum Mean Squared Error (MMSE) denoising function is given by the posterior
expectation:

m]}nIE[Hx — f(y,0)||?] is achieved at f*(y,c) = Elz|y, c]. (3.3)

Remarkably this posterior expectation can be expressed as a step in the direction of the score
of the observation density scaled by the variance of the noise, an identity often attributed

to Stein or to Miyazawa [175, 146]:
Elzly, c] = y + 0*V, log p,(ylc). (3.4)

The key idea of the score-based framework is to exploit the connection between MMSE
denoising and the score function in the reverse direction: first train a denoiser to minimizing
MSE, then treat it as an approximation of the scaled score function (which is the optimal

solution).
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This link between denoising and the score function is at the centre of the score-based
framework and it can easily be derived. First express the observation density as a convolution

of the target density with a Gaussian distribution of variance o

m@wwa/Mﬂ@m@Mme:/fuwMAy—wMa (3.5)

where the second step uses the conditional independence of y and ¢ given x: p,(y|z,c) =
po(ylz) = g,(y — ). Then differentiate with respect to the noisy signal and divide both

sides by the noisy distribution:

Vpa(ole) = [ plal) 30 - 2)galy — o)

Vpolyle) _ 1 [ \Pe(@.yle)
@@‘ﬁ/(ywmmd' (36)

Finally, recognize the score on the left-hand side and rearrange the expression to obtain the

desired identity !

O'QVy log p,(y|c) = /(m —y)p(zly, c)de = Elz|y, c] — . (3.7)

Notice however that the identity in Equation 3.4 requires access to the variance of the
noise. Instead we will consider a denoiser that is blind to the distortion level and trained
to remove noise of arbitrary magnitude (i.e., universal). Such an optimal denoiser should

integrate over noise levels:

@w@=y+/aWu%mewwm@w. (3.8)

In practice estimating the noise level is a simple one dimensional problem that is well con-

! This result can also be obtained by first showing the general relationship:
E;[V,logp(y|z)|y] = Vylog p(y), and then applying it in the Gaussian noise case: p(y|z) = g-(y — ).
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Figure 3.3: Bimodal distribution and score across noise level. One dimensional
illustration of the approximation problem. Top. Bimodal distribution consisting of two
point masses placed at —1/2 and 1/2 (indicated by dashed lines). From left to right, the
distribution is convolved with a Gaussian kernel of increasing bandwidth, which corresponds
to adding independent Gaussian noise of increasing magnitude. Bottom. Optimal denoising
step at corresponding noise levels, i.e., the score scaled by the noise variance. The score is
the gradient of the log probability with respect to the variable, V, logp,(y). The sampling
process described in Section 3.2.2 consists in using these scores to gradually reduce noise
(i.e., traverse the family of noisy distributions from right to left on the top row).

strained by the many observed pixels. Note that adding noise to target images is equivalent
to smoothing their distribution with a Gaussian distribution, the more noise is added, the
larger the bandwidth of the soothing. The continuous family of smoothed distributions forms
a scale-space representation of the data distribution [226]. As a result a universal and blind

denoiser contains information about that whole family of distributions.

A simple example consisting of a one dimensional distribution comprising two point masses
is displayed in Figure 3.3. For this example we consider a pure denoising scenario, there is
no conditioning information. At very high noise levels the score points in the direction of
the origin. At lower levels of noise, the score points towards the closest of the two point
masses of the bimodal distribution. The transition between these two regimes is continuous

and smooth.

29



3.2.2 Optimization: synthesizing new samples

Assuming that we have successfully approximated the family of scores of the observation
distribution, we now turn to the question of using the trained denoiser to generate new
samples, i.e., predicted next frames conditioned on the past few frames. In the previous
section (Eq. 3.4), we showed that the residual of the optimal denoising function, f(y,c) =
Z(y, c) — y, is proportional to the gradient of log p(y|c). The idea is to go along the direction
of this gradient and climb towards more probable samples.

Sampling via iterative denoising has demonstrated strong performance on unconditional
image generation and can be extended to solve linear inverse problems [109]. Here we describe
a procedure for conditional sampling. The algorithm follows the learned scores embedded
in a trained denoiser and gradually reduce the effective noise level until a sample is reached.

Specifically, starting from an arbitrary image, yo, iterates a simple map:

Yk = Yr—1 + o f(Ye—1,¢) + Y2k, (3.9)

where the parameter a4, controls the step-size and the parameter v, controls the amplitude of
a sample of additive noise. It is natural to pick a geometric schedule for the step-size. Adding
noise along the sampling iterations, z; ~ N(0, Id), avoids getting stuck in local maxima and
promotes exploration. An additional parameter 5 € [0, 1] controls the proportion of injected
noise, playing the role of an inverse temperature. The key idea of this procedure is to chose
the amplitude 7 so as to reduce the effective noise magnitude on each iteration®.

Initially the algorithm takes larger steps, which correspond to removing a lot of noise,
and gradually makes smaller adjustments as the generated image starts to look more like a

plausible sample. This coarse-to-fine iterative refinement behavior is central to the success

2The amplitude of the additive noise is set to: vZ = ((1 — Bag)? — (1 — ag)?)o? where the effective noise
level is o = ||f (yrx_1]c)||/Vd, see [109] for the derivation.
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Figure 3.4: Blind universal denoiser for bimodal distribution. One dimensional
illustration of the optimization problem. Residual of the optimal denoising function for the
distribution displayed in Figure 3.3. The function was computed numerically with a plug-in
estimator for the standard deviation of the noise. There are two stable fixed points on the
point masses of the target distribution and an unstable fixed point between the two. The
sampling algorithm will reach one of these fixed points depending on initial conditions and
the effect of added noise.

of the sampling algorithm. Indeed local search methods can only explore high-dimensional
landscapes that are sufficiently smooth (log-concave). The universal-blind denoiser effectively

relies on such a blurred distribution, which enables sampling.

This sampling algorithm is illustrated in the simple one dimensional bimodal distribution
in Figure 3.3. We numerically evaluated the optimal denoiser (recall that in this simple case
there is no conditioning). For simplicity we used a maximum a posteriori (MAP) plug-in
estimator for the effective noise level: 6 = argmax_p(co|y). We considered a non-informative
prior for the noise level: p(o) < 1/0, i.e., a log-uniform distribution. The optimal denoiser
residual is given by:

fly) = 6(y)*Vylogp(ylo(y)), (3.10)
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and is illustrated in Figure 3.4. The sampling algorithm will chose between the two point

masses depending on the initial condition and the effect of noise added during sampling.

3.3 Numerical results

Architecture and conditioning mechanism. In this section we will use a U-net [170]
composed of three scales. Past conditioning frames are concatenated as extra input to the
network. This conditioning mechanism was also used to denoise fine scales wavelet coef-
ficients based on coarse scales coefficients [110]. Other common conditioning approaches
include adjusting the gain and bias at each layer (i.e., two numbers per channel, delocal-
ized), and cross attention mechanism (query form conditioning, key and value from noisy
observation). Concatenating past frames as additional input has the advantage of being
elementary and it is also well suited to the temporal prediction case. Indeed, conditioning
frames have the same shape as the noisy observation, and local convolutional processing can
make use of these two sources of evidence for the denoising task. The number of conditioning
frames can be varied by modifying the number of input channels (denoted 7). More details

on the architecture are provided in Appendix 5.

3.3.1 Tackling occlusions on a procedural dataset

Occlusion boundaries are an inevitable result of image formation and play an important
role in depth perception. Traditional motion compensated technique fail to account for the

nonrigid motion patters near occlusion boundaries.

Moving leaves. We designed a synthetic dataset in order to reduce the occlusion problem
to a minimal case. Our aim is to use this dataset to demonstrate how the score-based

inference framework defined in Section 3.2 makes decisions on ambiguous occlusion sequences.

62



o O o o . p° B o . e

Figure 3.5: Moving leaves dataset. Five example image sequences, each containing two
disks against a blank background. Disks move along smooth curves and occlude each other,
with the larger disk always occluding the smaller one.

Building on the dead leaves model defined in the natural scene statistics literature [142, 129,
14], we propose a moving disks datasets. Disks are randomly dropped on an image canvas
and occlude each other, we also assign a random depth (or distance) to each disk. The
disks are assumed to have the same physical size and to stay at their fixed depth. Each
disk is then moved randomly along smooth trajectories to generate image sequences that
respect occlusion relationships. Within each image sequence, the disks do not change in their
projected image size. The trajectories of each disk are sampled from a Gaussian processes,
and their average speed of motion scales inversely with depth (with objects at a further
distance moving more slowly). These image sequences contain two reliable, albeit indirect,
cues to depth: the projected disk size, and motion parallax. The luminance of each disk and
of the background are selected uniformly at random between 0 and 1. More details on this
dataset are provided in Appendix 5.

There are several benefits to using such a procedural dataset: it enables sampling a

distribution along continuous features such as size, speed, texture, etc.; and it is easy to
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change the rules and control the difficulty of the task. For example allowing the disks to
move along the depth axis, thereby decoupling size from range; or changing the occlusion
rule, letting brighter disk occlude for example, or making the occlusion rule stochastic; or
changing the number of disks, etc. This dataset is also useful to study the representation

of fast small object, which are subject to temporal aliasing.

Results. A U-net with two conditioning frames (7 = 2) was trained on the moving leaves
dataset. The network was evaluated on new sequences of disks which were not included
in the training set. This probe sequence contains two clean conditioning frames and the
target next frame is initialized with pure noise. Samples of probable next frame can be
generated using the sampling algorithm described in Section 3.2.2. Example samples around
an unambiguous occlusion boundary are displayed in Figure 3.6. Similarly, example samples
around an ambiguous occlusion boundary are displayed in Figure 3.7. The network can be
used to sample occluded disks which respect the dataset property whereby smaller disks get
occluded. Notice that the occluder disk tends to be almost perfectly round while the oc-
cluded one is often deformed. These results highlight the power of the probabilistic sampling
algorithm as compared to deterministic one step prediction.

The degree of ambiguity of a disk occlusion was then varied continuously by controlling
the relative size of two disks moving towards one another. The results are summarized in
Figure 3.8. Notice that the network adapts its predictions to the relative size difference
between the two disks, sampling exclusively one kind of occlusion when the measurement
are unambiguous and gradually becoming more stochastic when they are ambiguous. We
note that these effects are only observed in well trained networks and small gains in denoising
performance can have a large impact on the quality of generated samples.

Finally, we recursively generated longer sequences to evaluate ability to generate tempo-

rally coherent sequence and revisit the example from Figure 3.1. Two such sequences are

64



past conditioning observatio estimate  target

easy
example

Ti—1 Tt Yt+1 Lf?t+1 Tt41

iterative partial denoising

. n
random samples

Figure 3.6: Samples around unambiguous occlusion boundary. Predicting an unam-
biguous disk occlusion. Top. Two conditioning frames contain disks of different size moving
towards each other. The network observes pure noise in the next frame and estimates the
target (all input frames are highlighted in red). In this example, the next frame is unam-
biguous: the light disk on the right should occlude the other. As expected, the denoising
estimate (highlighted in green) is a close approximation of the target (but the edges of the
disk are blurry). Middle. Intermediate steps of the iterative partial denoising procedure,
this score-based sampling algorithm uses the same conditional denoiser network as above.
The corresponding sampled probable next-frame is highlighted in blue. Bottom. Example
samples of probable next-frame generated using the iterative partial denoising procedure
starting from different random initializations. Each contain sharp occlusion boundaries, all
with the light disk on the right occluding the other. With this sampling procedure, the net-
work decides on the occlusion and produces diverse samples that, unlike one step denoising,
do not blur the edges.

displayed in Figure 3.9. The network was initialized with two images from the test set and
successive frames were sampled recursively. The sampled image sequences are coherent over

many frames and yet different from the sequence in the test set. Notice that the network
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Figure 3.7: Samples around ambiguous occlusion boundary. Predicting an ambigu-
ous disk occlusion. Top. Two conditioning frames contain disks of equal size moving towards
each other. The network observes pure noise in the next frame and estimates the target (all
input frames are highlighted in red). In this example, the next frame is ambiguous: there are
no cue as to which disk should occlude the other. As expected, the denoising estimate (high-
lighted in green) is a blurry mixture between the two possibilities (it is an average over the
whole posterior). Middle. Intermediate steps of the iterative partial denoising procedure,
this score-based sampling algorithm uses the same conditional denoiser network as above.
The corresponding sampled probable next-frame is highlighted in blue. Bottom. Exam-
ple samples of probable next-frame generated using the iterative partial denoising procedure
starting from different random initializations. Each contain sharp occlusion boundaries, with
either disk occluding the other at about equal frequency. With this sampling procedure, the
network decides on the occlusion and produces diverse samples that, unlike one step denois-
ing, do not compromise between the two possibilities.

tends to drop or modify disks that are occluded in the first example and creates a second
disk out of nothing in the second example. Moreover, we see the sampling algorithm starting

to fail at on the last frame of the second example. In other examples we have observed that
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Figure 3.8: Decisions around occlusion boundaries. Showing frequency of right disk
occlusion as a function of the difference in depth between the two disks (averaged over
64 samples). Highlighted in red are the unambiguous examples from Figure 3.6 and the
ambigous example from Figure 3.7. A psychometric function is fit to the choice data and
shows that the network is sensitive to the disk’s relative size difference (and is slightly biased).

small disks often do not reappear after being fully occluded. This indicates a need for longer
temporal dependencies, the restriction to two conditioning frames being too strict, especially

in presence of acceleration.

3.3.2 Probabilistic prediction of natural videos

Denoising performance. Several U-nets with varying conditioning lengths were trained
for next frame prediction on a generic dataset of natural image sequences (see description
in Appendix 5). The test performance of trained denoiser networks are summarized in
Figure 3.10. In the unconditional case (i.e., 7 = 0), the network only exploits static image
structure and recovers the image denoising performance described in [147]: the error curve
meets the identity line at 40 dB and has a slope of approximately one-half. For conditional
image denoising, there is a gradual performance improvement that is particularly saliant at

low input PSNR values. The largest increases in output PSNR is obtained from conditioning

67



oo [e oo le]e]e]ele
DEEEEEEEED
N

.'.'PO.‘.‘.'.'.’

Figure 3.9: Generated moving disks sequences. Coherent sequences can be generated
using a conditional denoiser via recursive sampling, but not via recursive estimation. In all
three examples the first two frames come from the test dataset and the successive frames
are generated recursively, using the previous two frames as conditioning. Top. Recursive
estimation obtained by estimated a denoised next frame in one step. For the first step of
this recursive process, the inputs to the conditional denoiser are highlighted in red (the
noise observation, y;y1, is not shown) and the estimated next frame is highlighted in green.
This estimation is blurry because it approximates the posterior mean. After a few recursive
steps predictions collapse to an uninformative blurry image, analogous to the situation in
figure 3.1. Middle. Recursive sampling of probable next frame obtained via iterative partial
denoising using the same denoiser as above. The generated next frame (highlighted in blue)
is sampled from the conditional distribution of probable next frame. Recursive samples
generate a coherent image sequence with disk motion and occlusions (not shown in this
particular example). Bottom. Another example of recursive sampling. The forth step in
the recursive sampling process is highlighted and shows that after full occlusion of the small
disk, its size, color and location is ambiguous. This example shows the limitations of the
plain conditional denoising approach due its short memory length—only accessing two past
conditioning frames.

on one baseline image (i.e., 7 = 1). Adding a second conditioning frame (i.e., 7 = 2)
improves performance further, which is indirect evidence that the network is making use of
motion information. The benefits of conditioning reach a plateau with three past frames.
The trained denoiser networks with two and three conditioning frames also match pure

prediction performance which is indicated by a vertical dashed line at 28dB. Indeed at
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Figure 3.10: Conditional image denoising performance. Denoisers with varying num-
ber of conditioning frames (7) exploit spatio-temporal structure of natural image sequences.
Left. Input-output PSNR curves summarize the test performance of trained denoisers. The
horizontal axis represents difficulty, with lower PSNR value corresponding to stronger dis-
tortion. The vertical axis represents performance, with higher PSNR value corresponding to
better denoising. Dashed black lines indicate the identity, slope one-half, and a horizontal
line at 28dB corresponding to the performance of the same network trained for prediction
alone (two conditioning frames, no noisy observation). Right. Horizontally: example image
sequence, noisy observation and target next frame at 0dB input PSNR. Vertically: estimated
next frame for denoisers with varying number of conditioning frames (with matching color
code). Longer memory results in higher quality denoising, showing that the denoiser can
exploit spatio-temporal image structure.

very low input PSNR values there is effectively no information in the observation and the
network’s performance is entirely driven by temporal prediction. Estimated next frames
for denoisers with varying number of conditioning frames are shown for an example image

sequences in Figure 3.10.
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Figure 3.11: Samples of probable next-frame. Top. Example image sequence from
the DAVIS test set. The two conditioning frames show a man walking to the left and a car
driving to the right in the background. In natural image sequence, the person occludes the
car in the next frame. Starting from an observation of pure noise the network estimates a
blurry next frame. Bottom. Samples starting from different noisy initializations are shown
below. They are diverse but their perceptual quality is not very high. In particular the
features of the face are lost.

Samples of probable next-frame. We then sampled from the trained denoiser with two
conditioning frames. The results are shown in Figure 3.11 but they have low perceptual
quality. Sampling diverse and high quality temporally stable trajectories along the manifold
of natural images requires a larger training set and more training iterations. It may be
possible to improve the quality of next-frame samples by considering architectures with

richer non-linearities, as was described in Chapter 2.

Spatio-temporal adaptive linear filtering. The U-net architecture used here is bias-
free, i.e., there are no additive constants in the convolutional layers or the batch-norm
layers. Such a network is homogeneous and locally linear and as a result can be interpreted
as computing an adaptive linear filter [147]. Specifically, the conditional denoiser can be

expressed as a linear function of the conditioning frame and the noisy observation:

&(y,c) = &, + Z., where z, = V,2(y,c) -y, and . = V. &(y,c) - c. (3.11)
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Figure 3.12: Spatio-temporal adaptive filtering. Visualization of the effective linear
weights used to compute the central denoised pixel of an example image sequence. Top.
Image sequence from the test set, a pattern is moving to the left. Dashed white lines highlight
the central pixel of each frame for reference. The two past conditioning frames are clean and
the noisy observed frame has a PSNR of about 16 dB. Bottom. Effective linear filter used
by the network to weight the conditioning frames and the noisy observation, y;1, to estimate
the center pixel of the next frame 2;,,. Each pixel of the estimation is effectively computed by
weighting the inputs with some linear filter (only the one corresponding to the center pixel
is shown here). Notice that the effective filter locally averages the noisy observation and
focuses on the part of the previous image displaced to the right (corresponding to leftward
motion of the pattern). The estimated frame has a much higher PSNR of about 25.5 dB.

We evaluated those Jacobian matrices on the trained denoiser and display the result in
Figure 3.12. The linear filters are oriented in space-time and adaptively track the motion
of the underlying pattern. This is analogous to the observations made on video denoising

networks [189].

Adaptively weighing evidence by reliability. Since the network utilizes both past
conditioning frame and noisy future observation, we can ask how it combines these two
sources of information to produce an estimated next frame. In general, the decomposition

of the posterior over two cues is:

_plz,y,e)  plyle)plele)p(z)  plzly)p(zle) py)p(c)
PE) =0 T s - @ pwo P
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where we use conditional independence in the second step. The two individual posteriors
are combined multiplicatively with a third interaction term that quantifies how independent

the two cues are. We can write an analogous decomposition of the squared denoising error:

lo =@y, Ol* = llz — &el|* + [lo — &, ||* — [l2]]* + 2y, 2c), (3.13)

where we reuse the notation for locally linear effective computation from Figure 3.12. This
expression is a partition of variance and it reveals how each cue contributes to the overall
denoising performance. We evaluated the network performance on three probe sequences at
different noise levels. We also computed a local linear approximation of the network at each
of these levels and computed the first two terms on the right hand side of equation 3.13. The
results are displayed in Figure 3.13 shows that the network appropriately combines evidence
weighing it by its reliability. Note that the reliability of past frames and of noisy observation
are estimated automatically, i.e., the network performs blind evidence integration.

This result shows that conditioning has more impact on the estimate at high noise level.
As the noise level is reduced, the model relies gradually more on the observation and finally
ignores the conditioning altogether. This means that at some point in the sampling process,
the network effectively acts as a image generation model. Such an image generation model
is no longer constrained by past frames and will explore the image manifold locally. This
may help explain the poor sample quality that was observed in Figure 3.11. It would be
interesting to develop a denoising architecture that more explicitly controls the role of past
conditioning. Intuitively, the geometrical picture corresponding to denoising and prediction
are complementary. Denoising corresponds to projecting a distorted image on the image

manifold, while prediction amounts to extrapolating along the manifold.
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Figure 3.13: Adaptive cue combination. Local linear analysis of information inte-
gration from two different sources, past conditioning and noisy observation. In green the
denoising performance for a single probe image sequence as in Figure 3.10. In orange the de-
noising performance due to noisy observation only, it increases with input PSNR. In blue the
denoising performance due to past conditioning frames only, it decreases with input PSNR.
These two curves are calculated using a local linear approximation as described in Eq. 3.11.
The level at which the orange and blue curve cross depends on how difficult the prediction is,
demonstrating that the network adaptively weights evidence by reliability. Top. A texture
image sequence with non rigid complex motion. The orange and blue curves cross around
0dB input PSNR. Middle. A person walking to the right on a stable background. The or-
ange and blue curves cross around 30dB input PSNR. Bottom. A static pattern consisting

of three smooth regions separated with straight boundaries. The orange and blue curves
cross around 60dB input PSNR.

3.4 Discussion

In this chapter we cast probabilistic temporal prediction as a generative modeling task and
describe an empirical Bayes method to generate probable video predictions. The approach
is motivated by the incomplete and noisy nature of visual measurements and the conditional
nature of inference through time. We showed how to embed the distribution of future signals
given past observations in a network via conditional denoising, and we put this model to use
by generating probable next-frames. The sampled next-frames correctly handle ambiguous

situations, choosing a depth order for objects that occlude each other. This ability to handle
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multi-modal distribution is critical and stands in contrast to methods that blur the uncertain
regions, especially along occlusion boundaries. The moving leaves procedural dataset was
designed to illustrate the fact that, even in elementary mechanical scenarios, probabilistic
modeling is appropriate. Indeed, measurements are always incomplete and the probabilistic
framework can readily handle this ambiguity. Moreover the network displays hallmarks of
probabilistic computation: it adaptively combines information from past conditioning and
noisy observations, appropriately weighting them according to their reliability.

The simplicity of the score-based empirical Bayes framework is appealing and its suc-
cess suggests that density estimation and sampling—although very challenging in high-
dimensions—may be tackled with well known and robust tools: (non-linear) least squares
regression and (coarse-to-fine) gradient ascent. This is only possible because i) noise offers
a local learning signal and enables sampling, and ii) the network architecture matches the

structure of the visual signal being processed.

What is noise good for? The denoising formulation of empirical Bayes framework reveals
that noise can play an important functional role in both estimation and sampling. This
functional role can be summarized by three properties: regularity, locality, and uniformity.
First, noise enables sampling because it regularizes the learned energy landscape, making it
easier to learn and to climb. Indeed, adding noise smooths the distribution (making it more
log-concave) and thereby amenable to local search methods (both learning and sampling are
gradient based). Adding noise during sampling also drives exploration, allowing the samples
to escape from local maxima, and promoting diversity. Second, resilience to noise is a local
objective in the sense that it brings data from random Gaussian to the target distribution
incrementally. Such locality in the space of densities offers a powerful simplification: the
transformation from data to Gaussian and back to data is broken down into steps. As a result,

denoising provides a learning signal for each of these intermediate steps and allows learning to

74



proceed in parallel. This locality may explain why the denoising objective is more efficient
than traditional end-to-end methods. Third, high-dimensional random normal variables
concentrate on a hypersphere whose radius is the square root of the dimensionality and
tile its surface uniformly. This uniformity of random Gaussian samples in high dimensions
is desirable for calculating expectations, which is central to both inference and sampling.
Indeed, such an isotropic distribution (i.e., rotationally invariant) provides an efficient grid
on which to evaluate high-dimensional integrals. In contrast, the distribution of points on
a regular grid is far uniform in high dimensions (i.e., not rotationally invariant), and the
question of designing uniform grids in high dimensions with deterministic methods remains

open.

Implicit bias of the architecture. Although the trained deep network achieves accurate
conditional denoising performance, it remains difficult to understand the functional logic of
its computation. The local linear analysis starts to reveal some of this prediction mech-
anism. The internal computation could be further exposed by an eigen-decomposition of
the Jacobian. Of particular interest is the possibility to relate these eigen-values and eigen-
vectors back to the polar prediction mechanism of Chapter 2. Turning the polar prediction
model into an analysis tool may help explain the origin of the previously reported “geometry
adaptive harmonic bases”, and elucidate whether they come in pairs [I11]. In turn, such
an analysis can motivate architectural modifications, perhaps involving richer non-linearities
such as local gain-control. In this chapter we only considered standard U-nets, and condi-
tioning information was provided as an additional input, via concatenation. A more explicit
conditioning mechanism may change the implicit bias of the architecture. Finally, there
is also an opportunity to reformulate the sequence-to-image architecture into an encoder-
decoder like architecture, and to extract latent features—leveraging temporal prediction to

learn abstract representations that are informed by the statistics of image sequences.
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Chapter 4

Modeling biological vision

“The principle that the redundancy in sensory messages resulting from requ-
larities in the environment are exploited in sensory pathways illuminates a host

of sensory phenomena, [...], and possibly the nature of intelligence itself.”

- Horace Barlow (2001), The exploitation of reqularities in the environment by the brain

The modern history of neuroscience is punctuated by the discovery of neurons along the
visual hierarchy that respond to features of the environment: from center-surround filters
in the retina and the visual thalamus [126, 62], to the characterization of orientation and
spatial frequency selectivity in the primary visual cortex [101], and up the dorsal and ventral
streams with motion [148] and texture [91] selectivity respectively. The slow but steady
progress in describing how neural activity relates to perception has fueled a vast field of
research and has positioned vision as a model system of choice to study a broad range of

topics from biological mechanism to cognitive function.

Canonical computational elements. Neural selectivities can be described as being com-

puted from simple canonical building blocks [56]. Elements like linear filtering, rectifying
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non-linearity, local pooling and gain control have proven remarkably effective at capturing
the activity of neurons in the early primate visual system. When combined into cascaded
model, canonical computational elements have proven to be very expressive and powerful.
This modular design has the advantage of relying on elements that are relatively simple and
can be understood precisely. Although such models do not reveal the exact circuit basis
of visual perception, they can provide a functional account of visual processing. Moreover,
these elements seem to be appropriate for describing local circuits in many cortical areas [30].
This has given rise to the hypothesis that cells in each cortical area perform the same form
of computation—an idea that is foundational to deep neural networks [74, 173].

Yet, mid and high-level visual areas remain difficult to understand. Even for the sub-
regions where selectivity of neurons has been described (e.g., the face patches in IT [94]), we
still do not know how selectivity is constructed from the signals afferent to these neurons.
There are at least three main reasons why characterizing the selectivity of visual neurons
for environmental features is challenging: i) the space of natural images is too large to be
explored exhaustively, ii) the quest for effective canonical computational elements is difficult
to constrain, and iii) the visual system continually adapts as it is being probed by experi-
menters seeking which stimulus to show. As a result, there is currently no computational
account for the selectivity of neurons and populations in these regions, i.e., we do not have

“image-computable” models of those regions.

Deep network models of visual processing. The advent of deep neural networks has
spurred a new wave of visual processing models that are based on large natural visual data
and tasks. These networks correlate with recorded neural firing rates from the primate mid-
to high-level visual cortex and outperform previous approaches [231, 186]. These methods
have been tested using a controlled experimental paradigm where static images are flashed in

random order and neural responses from macaques are recorded and averaged over repetitions
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of the same image.

Although these computational models are fully accessible to analysis, it remains challeng-
ing to understand the functional properties that underlie their successes and limitations. In
particular, their neural predictivity is sensitive to choices of objective function, architecture,
dataset and training methodology—which limits our ability compare networks to biological
circuits or perceptual behavior. Moreover, using neural recordings as another benchmark
for deep networks risks over-fitting to a particular set of physiological measurements while
it remains unclear which measurements are most worth predicting (ion channel dynamics,
blood oxygenation level, or else, and in response to artificial stimuli, or natural movies, etc.).

Despite their limitations, deep networks have boosted the top-down behavioral approach
to modeling vision and demonstrated the feasibility and effectiveness of feedforward models
composed of simple modules. In this chapter, we will also adopt a performance optimization
approach to modeling biological vision. We extend this approach beyond object recogni-
tion and consider the more general temporal prediction objective (which has the advantage
of being unsupervised). We also extend the architecture beyond convolution-rectification
and consider biologically motivated and powerful canonical computations such as local gain
control and quadratic non-linearities. Our goal is to capture the functional properties and

responses of neurons to image sequences, including their dynamics.

Representing transformation groups. In their seminal work on modeling visual com-
putation, Pitts and McCulloch adopted a geometrical framework to describe perceptual

59]. They described a method for invariant object recognition that averages

invariance [l
along group orbits, and they also proposed a mechanism for aligning objects to a stan-
dard form. The emphasis was on explaining how object categorization can ignore nuisance

variability in position, orientation, distance, luminance, etc. More generally, the idea that

architecture and properties of neurons reflect the symmetry properties of the physical world
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has motivated many models of visual processing [4, 160].

We also consider learning to represent transformation groups, and aim to go beyond in-
variant object recognition. We focus on factorizing form and pose for temporal prediction,
emphasizing the importance of equivariance to physical transformations. Equivariance is a
property of representations which are sensitive to signal variability. Specifically, a representa-
tion is equivariant when there is a correspondence between transformations of the signal and
transformations of the representation (this idea is illustrated with a commutative diagram
in section 2.6). Indeed variability in pose is not nuisance, instead it is actively represented in
the ventral stream where perceptual and neural sensitivity have been demonstrated [97]. Our
hypothesis is that predicting transformation dynamics drives a separation between a slow
invariant component (the “what”) and a linearized equivariant component (the “where”).
Specifically, small population of neurons should use this transformation structure to locally
predict their upcoming inputs. In other words, we posit that neurons should extract and
exploit the signal structures that can be modeled as transformation groups.

In this chapter, we discuss the relevance of the polar prediction model to understanding
the nonlinear response properties of neurons in the primate visual system. Our goal is to
derive a model for sensory computation from the principles of visual temporal prediction
described in Chapter 2. First, we show how the computations of the polar prediction model
can be mapped to known physiological elements of the early visual system. We then extend
this approach to a second layer and treat polar prediction as a module that can be cascaded.
We end this chapter with a discussion of some perceptual and physiological evidence, and

highlight important open problems in modeling visual temporal prediction.
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Figure 4.1: Learned polar predictor filters. Example filters from a Polar Predictor
model trained to predict videos from the DAVIS dataset. Left. Spatial domain filters of
size 17 x 17 pixels. All 32 quadrature pairs of filters are displayed side by side and sorted by
their norm. Right. Corresponding Fourier amplitude spectra displayed similarly. Observe
that the filters are selective for orientation and spatial frequency.

4.1 Neural circuit computation of polar prediction

The polar prediction model described in Chapter 2 uses a phase extrapolation mechanism
that builds-in a polar non-linearity and automatically learns quadrature pairs of filters. A
polar predictor composed of 32 pairs of convolutional filters was trained on the DAVIS
dataset, and the learned filters are displayed in Figure 4.1. These filters resemble receptive
fields of neurons in area V1 (primary visual cortex). They are selective for orientation and
spatial frequency, filters in each pair have similar frequency selectivity. But a lot of these
structures were built into the architecture as opposed to learned from data. Previous models
also imposed a polar change of coordinates to model neural computation of visual represen-
tations [35] (see discussion in section 2.4). In this section we relax these assumptions, learn
the prediction mechanism jointly with the filters, and bring the model closer to biological

neural circuits.
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4.1.1 Quadratic predictor

Polar prediction can be restructured into components resembling normalized simple and
direction-selective complex cell models of primate V1 neurons. This correspondence goes
beyond the qualitative match of learned filters from Figure 4.1 and suggests a plausible circuit
implementation for temporal prediction. Building models from elements that are consistent
with know physiology offers a path to explaining the non-linear response properties of cells

in primate visual cortex.

Circuit computation. Let us derive a circuit algorithm for temporal prediction based on
canonical computational elements. We consider a parameterized predictor mechanism (P,)
that can be learned jointly with the analysis and synthesis filters. This “quadratic predictor”
(hereafter QP) generalizes the polar extrapolation mechanism and can accommodate groups
of channels of size larger than two (polar predictor filters only have a real and an imaginary
part). As such, the quadratic predictor subsumes phase extrapolation as a spatial case (and
recovers the polar non-linearity on synthetic data).

The quadratic prediction mechanism is depicted and described in Figure 4.2. In the case
of pairs of filters, g = 2, the quadratic prediction mechanism can be described as follows.
Current and previous pairs of coefficients (Yr: = [Yok.t, Yoko1.t Yoki—1, Yorr14-1) € R?) are
normalized (u;; € R?), then linearly combined (L; € R**9), squared (elementwise), and
linearly combined again (Ly € R?*?) to produce a prediction matrix (My; € R?*?) that
is applied to the current coefficients to produce a prediction ([Jogsi1, Jorr1er1) € R2).
These linear combination can be learned jointly with the analysis and synthesis weights by
minimizing the prediction error.

This quadratic prediction mechanism, still in the case of pairs of filters, can be derived
from the phase extrapolation mechanism, by writing it using only real-valued elements.

First express the filter responses in polar coordinates: wyor; = V;kxt = gt cos(fy,), and
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Figure 4.2: Quadratic prediction mechanism. Computing temporal predictions with
a quadratic prediction circuit that unifies two classical neural models. Left. The divisive
normalization model describes gain control in V1 simple cells and accounts for the effects of
contrasts and masking [89]. Cell responses are divided by the pooled activity of neighboring
units. Right. The spatio-temporal energy model for the perception of motion [3]. Two
direction selective simple cells in quadrature are squared and combined linearly to extract
a motion energy signal. Center. Groups of coefficients (y) at the previous and current
time-step are normalized (u) and then passed through in a Linear-Square-Linear cascade to
produce a prediction matrix (M). This matrix is applied to the current vector of coefficients
to predict the next one. The filters as well as the linear transforms (L; and Ls) are learned.
This quadratic prediction module contains phase extrapolation as a special case and handles
the groups of coefficients of arbitrary size (i.e., going beyond pairs). Blue dots indicate units
that resemble normalized simple cells, and the red dot indicates units that resemble direction
selective complex cells.

Yokt1,t = Vo1 Xe = apgsin(fy,). Then write phase advance as an explicit two dimensional

rotation:

Yok t+1 _ cos Al —sin Ay, Yokt | (4.1)

Q2k+1,t+1 sin Aek,t COs Agk,t Yok+1t

where the 2 x 2 prediction matrix, My, is a rotation by angle Afj,. This corresponds
exactly to equation 2.9. Let us write ugg; the normalized filter response (for unit vector).
Now, using an elementary trigonometric identity, cos(a — b) = cos(a) cos(b) + sin(a) sin(b),

the elements of this prediction matrix can be expressed as an explicit quadratic function of
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the normalized response:

Yokt
€08 Al 4 = Ugp pUog—1 + Uoks1 1 Uokt1,4—1, Where Uy, = T 2 (4.2)
2kt T Yokt

Finally, this quadratic function can be expressed in terms of squared quantities using the po-
larization identity: a8 = ((a+3)?—(a—3)?)/4. This trick allows computing a multiplication

with two squaring operations (i.e., without cross terms). Specifically:

cos Al = 1 ((U2k,t + u2k,t71)2 — (ugks — u2k,t71>2+

(Ugkt1,e + U2k+1,t—1)2 — (Ugkt1t — U2k+1,t—1)2>‘ (4.3)

An analogous expression can be derived for sin Afy ;.
The quadratic predictor can be generalized to groups of filters of size g and expressed
compactly using vector notation. The optimization objective, which can be though of as an

approximate block-diagonalization, is:

T
min Z X1 — VAVTx,||%  where A; = blockdiag(M, 4, ..., Mg.,),
VLi Ly &=
Mk,t = LQ(LIuk,t)QQ, uki = (]_T'i’f%? and Yt = VTXt. (44)
g J kit
The columns of the convolutional matrix V€ R¥*9NVE contain K groups of g filters (repeated

at N locations). In the quadratic predictor, the number of filters per group is not limited
to pairs (this is unlike the polar prediction mechanism from equation 2.9). The prediction
matrices, My, € R9*9, are computed adaptively as a Linear-Square-Linear cascade applied
to normalized filter responses (this is a generalization of the computation in Equation 4.3).
The squaring is computed pointwise and the normalized filter responses include the current

and the previous time points: Wy = [Ups, Urt1 sy - - > Ukrg-14] ' € RY and ug ;. The linear
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g% xd

combinations are learnable matrices L; € R?*% and L, € R , where d is the number of

quadratic units. Note that in the case of pairs (g = 2), six quadratic units suffice (d = 6)".

Divisive normalization. The normalized responses of the quadratic prediction model re-
semble normalized simple cells (see Figure 4.2). Specifically the unit vector of responses,
usk(t) in equation 4.2, are linear projections of the visual input divided by the energy of re-
lated cells. This is reminiscent of the normalization behavior observed in simple cells [89, 37].
It is desirable for a prediction system to be homogeneous, that is to say the intensity of its
output should scale with that of its inputs. The normalized response described here are used
as multiplicative gates on principal cells, making the system altogether homogeneous. Previ-
ous models of divisive normalization put emphasis on redundancy reduction (see Figure 1.5),

here we focus on its role in computing temporal predictions.

Direction selectivity. The quadratic units of the quadratic prediction model resemble
the direction selective complex cells of the energy model (see Figure 4.2). Specifically the
quadratic responses, the elements of the matrix M that are detailed in equation 4.3, are
sensitive to temporal change in spatial phase. This selectivity for spatial displacement in
a given orientation and spatial frequency is reminiscent of direction-selective complex cells
which are thought to constitute the first stage of motion estimation [3, 195]. The func-
tional mechanism for computing direction selectivity has been established in retinal circuits
[15, 29] but remains unknown for primate cortex. The quadratic prediction model constitutes
a hypothesis for how direction selectivity can be constructed from afferent simple cells with
anti-phase spatial selectivity. The idea is that in a cortical column, nearby simple cells with

similar tuning get pooled to form a direction selective complex cell. The detailed circuitry

1Using “Gauss’s trick”, each complex multiplication can be computed with only three real multiplications:

(@ +1ib)(c +id) = ac — bd + i((a + b)(c + d) — ac — bd).
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Figure 4.3: Learned quadratic predictor filters. Example filters from a Quadratic
Predictor model composed of 64 pairs of filters and six quadratic units. Left. Spatial
domain filters of size 17 x 17 pixels. The first 32 pairs are displayed side by side and sorted
by frequency. Observe that the quadratic prediction mechanism for pairs also learns filters in
quadrature. Right. Corresponding Fourier amplitude spectra displayed similarly. Observe
that the filters are selective for orientation and spatial frequency.

proposed in Equation 4.3 is testable with local microcircuit anatomical measurements. Pre-
vious models of complex cells put emphasis on invariance or slowness but did not account

for direction selectivity [103, 22].

4.1.2 Filter selectivity

Filters of a trained quadratic prediction model recover simple cell like selectivity with fewer
constraints than the polar prediction model. A model composed of 64 pairs of channels with
6 quadratic units (i.e., K = 64, ¢ = 2 and d = 6) was trained for next-frame prediction
on the DAVIS dataset. This model recovers the polar non-linearity and pairs of learned
filters are related by a shift in spatial phase. The filters are selective of orientation and
spatial frequency, as seen in Figure 4.3. The learned filters tile the frequency domain and
make efficient use of limited resources. The frequency tiling is displayed with Gabor fits for

individual filters in Figure 4.4. There is a greater density of filters covering low frequencies,
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Figure 4.4: Frequency tiling. Spatial frequency selectivity of the 64 pairs of quadratic
predictor filters from Figure 4.3. The two dimensional frequency domain is shown with
origin at the center of horizontal and vertical frequency axes. Intensity corresponds to the
superimposed power spectra of all the filters. All frequencies are equally represented, except
for the highest frequencies which are ignored. For each filter, the Gaussian envelope of a
Gabor fit is displayed as an orange ellipse. The population evenly tiles the frequency space
and the density of filters is higher near the origin, where filters are more narrowly tuned.
This corresponds to the low frequencies where visual signals have most of their energy.

which corresponds to the power law distribution of image spectra.

Beyond quadrature pairs. The quadratic prediction model generalizes polar prediction
by relaxing the assumption of phase advance. Instead of building-in a phase extrapolation
mechanism, prediction is calculated by a learned Linear-Squaring-Linear (or LSL) cascade.
This prediction mechanism is potentially more expressive than polar prediction. A quadratic
prediction model that bundles channels by groups of four was trained for next-frame predic-
tion on the DAVIS dataset. The model achieved slightly more accurate predictions than a
polar predictor or of a quadratic predictor composed of pairs of filters. The learned filters
have selectivities that resemble those of a polar predictor and are displayed in Figure 4.5.
The number of quadratic units in the QP mexhanism controls its expressively by varying

the width of the LSL cascade.

Color. Cascading a temporal prediction module requires processing multiple channels in

parallel, but we have so far only considered grayscale image sequences. As a stepping stone
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Figure 4.5: Learned groups of filters. Examples groups of filters from a quadratic
predictor trained for next-frame prediction on the DAVIS video dataset. The filters form
groups of 4, and the 16 groups with largest average norm out of 64 groups are shown. Notice
that each groups of 4 filters are selective for orientation and spatial scale at various phases—
reminiscent of polar prediction filters.

to developing a multi-stage architecture (see Section 4.2), we start by considering colored
image sequences, with three channels corresponding to the RGB color model. The polar
prediction model readily extends to multichannel inputs, and a model composed of 64 filters
that process the three input channels in parallel was trained for next-frame prediction on
the colored DAVIS dataset. The learned filters are displayed in Figure 4.6. Many of the
channels resemble results for the grayscale experiment and are not color selective (luminance
filters). Some channels are color selective and display red-green and yellow-blue opponency
(chromaticity filters). These filters tend to have lower spatial frequency selectivity and have
a matching luminance selectivity. These two categories are reminiscent of cells described
in V1 [107]. The rest of the channels have more complex selectivity with a mismatch be-
tween their luminance and chromaticity selectivities (e.g., first row second, forth and sixth

columns).

4.1.3 Discussion

In this section, we derived the quadratic predictor, a circuit algorithm that computes polar
prediction using canonical neural elements. Expressing phase extrapolation with real valued

arithmetic only, the computation of temporal predictions reduces to a ratio of a cubic over a
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Figure 4.6: Learned color filters A polar predictor with 64 pairs of filters was trained

on color videos from the DAVIS dataset. The learned color filters are shown in the spatial

domain on the left and their amplitude spectrum is at corresponding localtion on the right.

Filters are ordered by their euclidian norm. Only a single phase per filter is shown (this is
unlike in Figure 4.1 where both filters in each pair are displayed).

quadratic that can be parameterized and learned jointly and simultaneously with the filters.
This parameterized prediction mechanism generalizes the polar prediction, which is restricted
to pairs of filters.

We established connections between elements of the polar prediction framework and
elements of the early visual processing in primates. These connections suggest how the vi-
sual system may represents sensory inputs in a form that simplifies temporal prediction.
By unifying divisive normalization and energy computation in a normative framework, the
quadratic temporal prediction mechanism bridges well established aspects of visual neuro-
science with the theory of temporal prediction. The polar prediction model also offers a

functional explanation for perceptual straightening.

Relationship to predictive coding. Many researchers have proposed candidate algo-
rithms for signaling predictions and prediction errors across the visual hierarchy (“predic-
tive coding”) [149, 168, 73]. This work has typically relied on Gaussian generative models

and focused on the possible implementation of corresponding algorithms by neural mech-
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anisms [105, 106]. But it is difficult to reconcile this approach with notion of selectivity,
neurons responding vigorously to code for preferred feature and their selectivity increasing
with learning, leading to more selective and vigorous responses, not less.

Comparatively less attention has been given to the problem of computing temporal pre-
dictions for highly non-Gaussian natural signals (“predictive processing”) [90]. Our proposed
polar prediction model provides a systems level hypothesis for how cortical circuits in the
primate visual system might compute predictions of their inputs. Our framework is agnostic
to how a circuit would use such predictions to adjust connection strengths and learn the
filters. Specifically, we have relied on a standard backpropagation algorithm, only analyzing
the learned solution and not the learning dynamics themselves. Local circuit mechanisms
adjust synaptic weights when conflicts occur between predictions and reality. Developing
a local and biologically plausible learning rule based on violation of expectation is of wide

interest [69, 1, 28, 78].

Prospect for experiments. New experiments and analysis are needed to understand
how perceptual straightening emerges from neural computation. The polar prediction model
suggests that prediction takes place in the polar coordinates defined by simple and complex
cells. This polar straightening hypothesis can be quantitatively tested through statistical
modeling of neural data.

The idea of straightening neural trajectories in V1 state space has received some physi-
ological support [93]. But there are important limitations to straightening in the standard
rectangular coordinates. First, neural trajectories are constrained to evolve in a bounding
box and can not stay straight for long. Indeed, neural firing rates are restricted to the pos-
itive orthant, and neurons saturate. This bounding box constraint has been shown to play
an important role in forcing neural trajectories to curve [152].

A second more fundamental limitation comes from the need for trigonometric calculations
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Figure 4.7: Temporal straightening. Reformulating the straightening hypothesis to
compare the polar prediction model with the physiology of predictive processing. See text
for discussion. Right. Straightening in rectangular coordinates. Left. Straightening in
polar coordinates.

to straighten visual transformations. We showed in Section 2.2.1 that explicit straightening
of the simplest transformation—translation—requires phase unwrapping and suffers from
the branch cut problem (see Figure 2.6). Correspondingly it was observed that complex cells
are responsible for most of rectangular straightening and that simple cells do not contribute
to the reduction in curvature [93].

Polar straightening on the other hand retains the idea of linearizing trajectories but leaves
it implicit along polar coordinates as illustrated by Figure 4.7. In this illustration, neuron
1 and 2 are meant to represent simple cells (each a pair of opponent cells) whose activity
level oscillates with time, while neuron 3 represents a complex cell whose activity level slowly
rises with time. Interestingly, rotational neural dynamics are well documented and many
population level analyses of physiological recordings reveal circular neural trajectories [42,
120, 236, 75, 8].

Reanalysing this data by first characterizing units and treating simple cells and complex
cells separately would allow testing the polar prediction hypothesis. Although finding simple
cells and complex cells with similar selectivity and overlapping receptive fields might be

challenging. Moreover, this data was collected using a controlled experimental paradigm

90



that randomizes the order of stimulus presentation: images were flashed in random order
rather than shown as continuous movies. A more natural paradigm, with image sequences

shown as movies, would facilitate testing the polar prediction hypothesis.

Missing. Some aspects of the filters learned by the quadratic prediction mechanism diverge
from typical V1 simple cells. In particular, the spatial extent of the filters is not well
controlled in the simulations. Many filters tend to occupy the entire spatial extent of the
learnable convolutional weights. Indeed these filters represent low spatial frequencies and
capture the transformation of large modes of the image data. This can be alleviated by using
a multiscale representation as described in section 2.3. The learned filters also contain more
oscillations than typical V1 receptive fields as quantified with a Gabor fit [174].

The separation of spatial and temporal processing in the polar prediction model is at
odds with the measured spatio-temporal receptive fields of neurons in V1 [419, 182]. We
explored a space-time variant of the model and observed little impact on performance. This
requires decoupling the analysis and synthesis filters, letting the former be spatio-temporal,
while the latter remained purely spatial (analysis and synthesis filters still come in pairs).
We observed that learned spatio-temporal filters are typically separable. Further analysis is
required to precisely relate these results to early visual physiology.

We focused on modeling the primary visual cortex, seemingly skipping predictive pro-
cessing in the retina [202, 23, 157] and in the Lateral Geniculate Nucleus (LGN) of the
thalamus [55, 46]. In fact, previous work has demonstrated that both regions can indeed be
well modeled as anticipating their inputs using spatial and temporal decorrelation filters. In
our case, we considered video data that had already been gain adjusted, thereby reducing the
need for front-end luminance and contrast gain control, which are the primary computational
functions of the early visual system [138, 139].

Our approach lacks detailed mechanistic realism. For modeling neural firing rates, re-
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sponses should be positive, and it would be interesting to consider opponent pairs of rectified
filters in place of each unconstrained filter. More fundamentally, modeling visual temporal
prediction may require considering the spikes—indeed temporal coding could be critical to
enable fast processing.

Finally, incorporating gain adaptation could enable handling multiple transformations.
Since circumstances are constantly changing, representations must adapt to different kinds of
transformation structure. Gain adaptation represents such a rapid and reversible mechanism
and it is ubiquitous in the nervous system. Modulating the amplitude of modes in the learned
basis would be a natural counterpart to phase advance. The idea is to reduce prediction error
by taking a gradient step with respect to the gains at each time step. This has the potential

to make the polar predictor both more expressive and more neural.

4.2 Cascaded architecture for hierarchical prediction

So far, we have been focused on very short-term predictions, in the range of tens of mil-
liseconds. Computing a detailed prediction over this short time-scale is indeed necessary to
stay in tune with the rapid dynamics of our visual world. Although the details of visual
signals quickly become unpredictable, extrapolating at longer temporal horizons is also of
great importance. But finding temporal associations across long timescales is a notoriously
challenging task.

In this section we explore the possibility of treating polar prediction as a module that
can be stacked in a cascade in order to predict gradually more abstract features that are
more temporally stable. Such slower variables can be integrated further back and predicted
further forward. Indeed, long term prediction promotes more abstract features because those
are the ones which remain coherent for longer [225]. At very long timescales, this amounts

to selecting which information will be relevant and is therefore worth remembering, and to
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building a cognitive representation in which to plan actions [181]. Longer term prediction is
also interesting because it might help understand the mystery of perceptual stability despite
frequent eye movements [229]. We will describe a cascaded architecture that aims to account

for the computation of stable semantic features along the visual hierarchy.

Serial prediction. Temporal prediction lends itself to subdivision. It can be broken down
into a succession of largely autonomous stages that function without top-down supervision.
Our hypothesis is that cascaded polar prediction modules can gradually extract slower and
more abstract information. Each stage of such a cascaded model can predict at different
abstraction levels and timescales by gradually factorizing its input into a part that is tem-
porally stable and a part that evolves steadily. The idea is that each stage can be learned
independently via local temporal prediction and that a slower summary is extracted and
passed along to the next stage where a similar prediction architecture is applied. The ex-
traction of slow timescales at lower levels enables learning features that evolve steadily in the
next representation space—those are more abstract features. Prediction of such an internal
signal is a local computation potentially amenable to a local learning rule. But visualizing
and interpreting such internal signals is as not intuitive as for visual signals in the pixel
domain. Conceptually we place ourselves in the position of the cortical areas downstream of

V1 (i.e., which only have access to neural activity in area V1).

The visual hierarchy. The anatomy of primate ventral stream is organized as a cascade of
stages, each stage or visual cortical area being identified by its retinotopic map [64]. The func-
tional properties of visual neurons become progressively more complex along this hierarchy.
In the ventral stream, neural responses become gradually more selective for particular image
features and more tolerant of image transformations that preserve those features [180, 52].
The receptive fields of neurons grow in spatial size with each stage of the hierarchy (roughly

doubling in size from V1 to V2, and again from V2 to V4 [77]). The receptive fields are
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smaller and denser near the center of gaze and grow with eccentricity—each cortical retino-
topic map being foveated. There is a corresponding nested hierarchy of neural timescales in

the visual system [37].

Related work. Hierarchical models of visual processing have a long history and are typ-
ically composed of cascaded convolutional filtering applied to energy like signals [83, 74].
The role of depth in such cascades has been linked to efficiently representing visual signals
with compositional structure [6, 7]. Cascaded statistical models of images patches, which
are motivated by efficient coding, have been compared to the selectivity of neurons in area
V2 [99]. Hierarchical temporal predictive coding models have also been developed [105, 106],
and hierarchical temporal prediction was used as a candidate model for the dorsal visual
stream [198]. Note however that in those studies, the convolution-rectification architectures
used are not well suited to capture the multiplicative computations required for temporal

prediction (see Section 2.1.2).

4.2.1 A two-stage model

The polar prediction model described in Chapter 2 and the quadratic prediction model of
Section 4.1 both assume that amplitudes are sufficiently smooth to be left constant by the
prediction mechanism. Indeed, learned pairs of filters have linearly advancing phases and
slow amplitudes. But these slow amplitudes still contain abundant structured change which
is partially predictable. This suggests cascading the prediction module onto the amplitudes
as depicted in Figure 4.8. For simplicity, we will fix the first stage, W7, to a steerable pyramid

and only learn the second stage, W5.

Setup. A second stage polar predictor model was trained to predict next frame steerable

pyramid amplitudes on the DAVIS dataset. The pyramid is composed of four orientations
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Figure 4.8: Two-stage architecture. A multi-stage model aiming to gradually factorize
stability and change. Image sequences are spatially filtered by a first stage, W,", and future
coefficients are predicted via phase advance and projected back to the input space, Wj.
This first stage is trained by minimizing prediction mean squared error in the input space.
Amplitudes from the first stage coefficients are more stable than the input image sequence
but still contain predictable structure. The second stage processes these amplitudes with
the same polar prediction architecture. The prediction objective measured layerwise, phase
stays local within each stage and only amplitudes are propagated forward. Note that second
layer spatial filters, W, , are applied to a multichannel input stream.

at three scales, with even and odd symmetric filters as shown in Figure 1.4—the high and
low pass residuals are ignored. The amplitudes are computed by combining even and odd
responses and then spatially downsampled by a factor two. The second layer convolutional
filters are of size 11 x 11 pixels and span all 12 input channels. This second stage contains
64 pairs of filters. There is an intermediate normalization layer between steerable pyramid
amplitudes and the second layer filters. This batch normalization layer enforces that the
input to the second layer has mean zero and variance one in each of the 12 input channels.

There is a small penalty on the euclidian norm of the weights (weight decay A = 1072).

Preliminary Results. Three example learned filters are illustrated in Figure 4.9. Most
of the filters compute motion integration across orientation and scale, two such filters are
examined in more detail in Figure 4.10. This corresponds to two-stage models of visual mo-
tion representation, where velocity is extracted from linear combinations of spatio-temporal
energy [195]. Some of the remaining channels (not shown) are selective for global luminance
changes, for orientation changes, and for scale changes. The rest of the channels, about a

fourth, are less intuitively interpretable.
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Figure 4.9: Second layer filters. Three example second layer filters from a two-stage
architecture trained for next frame prediction on the DAVIS dataset. (a) First stage steer-
able pyramid filters at four orientations and three scales, only odd symmetric filters shown,
displayed for reference. Pyramid filters define the input space on which the second layer op-
erates (specifically the amplitude coefficients) and second layer filters in the following pannels
are displayed using the same layout. (b) Obliquely oriented filter selective for amplitude in
oblique orientation at medium scale. (c) Vertically oriented filter selective for amplitude in
oblique orientation at fine scale. (d) Horizontally oriented filter selective for amplitude in
vertical orientation at fine scale.
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Figure 4.10: Two example filters. Second layer filters that integrate coherent spatio-
temporal amplitude across orientation and scale. Top. Vertically oriented filter selective for
amplitude in vertical orientation at fine scales. Filter pair shown in rectangular coordinates
on the left. Cycling though phases produces spatio-temporal filters and vertical and hori-
zontal slices are displayed on the right. Observe that the filter pair is selective for coherent
left-right motion. Bottom. Horizontally oriented filter selective for amplitude in vertical
orientation at coarse scale. The filter pair is selective for coherent down-up motion.
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4.2.2 Discussion

In this section we constructed a hierarchical model by treating polar prediction as a module
that can be cascaded. The model suggests a computational role for complex cells in each
layer: to extract representations that are “stable to dynamics”, by factorizing out the tem-
porally stable information [17]. This model can serve as a guide to explain mid-level vision,
especially the extraction of abstract features at slow time scales from low level measurements.
We hypothesize that the transformations of the visual stream arise through an unsupervised

learning process that aims at facilitating temporal prediction, one stage at a time.

Why layerwise? End-to-end back-propagation is generally considered biologically im-
plausible. The two-stage prediction model described here relies only on local computations
only, and those local computations are analogous to the lateral dynamics of cortical neurons.
Each layer is learned by predicting its input, which does not require image reconstruc-
tion in the pixel domain (except for the first stage). There is no feedback between stages,
which avoids the representation collapse problem common to many layerwise representation
learning schemes. More importantly, the layerwise temporal prediction objective provides
a learning signal that constrains all the intermediate stages of the representation. This is
unlike end-to-end learning, which often constrains the overall network function while leaving
intermediate stages under-determined. Previous work explored a related strategy for repre-
sentation learning with layerwise self-supervised learning objectives [158]. That study was
restricted to processing static images as opposed to image sequences, and it required the use
of different inputs to train each layer (images of different size). In the method we presented,
the temporal hierarchy can automatically match task complexity with the expressivity of
each layer.

This is analogous to the extraction of gradually more abstract representations in the

successive stages of a scattering transform [137, 32]. The scattering transform extracts a
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representation that is stable to deformations by computing a cascade of wavelet decomposi-
tion and amplitudes non-linearity, and extracting a spatially averaged amplitude per channel
at each stage. Stability to deformation is similar to temporal stability when the signal dy-
namics are dominated by deformations. But unlike our proposed model, at each stage of
the scattering transform, a wavelet decomposition is computed separately for each channel.
Such a tree structure is problematic because it does not capture interactions between chan-
nels and because the number of channels grows exponentially with depth (although some
pruning is possible). Our proposed model learns a scattering-like representation with two
important differences: i) only amplitudes are propagated forward, but the model also uses
phases, those phases are used for computing temporal prediction and stay local within each
stage, and ii) each successive stage pools information across its input channels, i.e., there are
lateral interactions, which make the model more expressive than traditional tree-structured

ones.

Missing. The qualitative interpretation of example second layer filters does not give a
full understanding of their selectivity. Generating an image sequence that is maximally
activating would demonstrate what aspects of the visual scene are captured by a second-
layer filter. The hierarchical construction proposed in this section was motivated by the
idea of extracting more abstract and stable representations. This can be tested explicitly
by quantifying the temporal stability of successive stages. Correspondingly, slower modes
should enable longer-term prediction. Moreover, the degree of abstraction of the learned
features can be tested by quantifying how transferable the representation is for downstream
tasks such as scene segmentation, heading direction prediction, or object recognition. This
analysis can be repeated for models composed of one, two, or more polar prediction stages.

The two-layer temporal prediction model makes predictions for visual processing down-

stream of area V1. By some aspect it is similar to area MT, by others it is similar to area
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V2. Comparing the model to physiological recordings in these area would help refine our
hypotheses. In particular, the second layer simple-like units pool compatible orientation
energy from the first layer, which is reminiscent of motion selective units in area MT [233].
Temporal prediction could help explain how such selectivity could be learned, a question
that was left open by visual motion processing models of area MT [195]. The second layer
complex-like units compute feature correlations across space, orientation, scale and phase,
which is reminiscent of texture selective units in area V2 [239]. Moreover, the learned fil-
ters of our two layer model are compatible with the analysis of neural selectivity in area
V2 [153]. These V2-like complex units compute auto- and cross-correlations across local

oriented energy of a multiscale representation, which corresponds to texture statistics [162].

4.3 On what the visual system is computing

Physiological recordings afford partial access to what is represented by the visual system.
But the use of these representations has to be inferred in order to understand what is being
computed. This requires describing the transformation of representations from one area to
the next. The theory of efficient coding and of optimal inference can help inform this process.
Similarly, the theory of temporal prediction can also guide model development: asking how
the brain computes the future helps constraining our hypotheses. In this section, we discuss
the physiological and perceptual phenomena that our models seek to explain, as well as

corresponding experiments that would help testing and refining these models.

4.3.1 Physiology: functional organization of visual cortex

The speed of sight. Processing visual information in real time is challenging, especially
in rapidly changing environments. The constraints of online processing demand fast commu-

nication of neural signals over long cortical distances. Electric spikes are actively propagated
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along axons by voltage-gated channels that send information quickly. Yet axonal conduction
delays remain significant as the speed of propagation stays under 100 meters per second [220].
Moreover, the response latency of post-synaptic neurons adds to processing delay, and neu-
ronal integration time depends on the state of the membrane.

It is remarkable that despite these biophysical delays visual categorization can be com-
puted very rapidly. In primates, a single volley of spikes takes about 70 ms to propagate
through the visual hierarchy up to area IT and is sufficient to support rapid visual catego-
rization [206]. The onset latency of neurons along the visual hierarchy increases regularly,
adding about 10 ms per stage [151]. It is notable that area MT, which is selective for motion,
responds faster than V2, which is selective for visual texture.

Moreover the spread of neural latencies within visual areas tends to be larger than the
difference of latencies across areas. This may be due to lateral interactions within each area,
where local recurrent circuits compute and transform representations. These local circuits
are more dense, rapid and precise that cross area projections and are therefore a natural
candidate for the computation of temporal prediction. These circuits also continually adapt
to changes in the environment, and also adjust as they operate so as to be resilient to
changes in underlying biological implementation (e.g., robustness to neural damage). Our
polar prediction model constitutes a hypothesis for utilizing and continually learning such

fast local computation.

Functional anatomy. Although many hierarchical models of visual processing assume
that only V1 complex cells are projected to V2, evidence from precise physiological experi-
ments suggests otherwise [58]. There is partial evidence that MT receives primarily complex
cell afference from V1. Overall, we need more systematic measurements of the functional
properties of V1 projections into the dorsal and ventral streams.

There is ample physiological evidence for existence of feedback connections across visual
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cortical areas, but their functional role remains difficult to characterize. Feedback projec-
tions from V2 to V1 seem responsible for late texture modulation in the primary visual
cortex [240]. Fast prefrontal recurrent processing and projection from the ventro-lateral
prefrontal cortex contribute to object recognition [114, 113]. Better understanding of these
processes requires developing models with feedback. In this regard, it would be interesting to
study the functional contribution of higher stages to condition temporal prediction in lower
stages.

The broad division of the visual system into ventral and dorsal streams is well es-
tablished [208]. The dorsal pathway (V1, V3, V5) represents position, motion, and ac-
tion; while the ventral pathway (V1, V2, V4, IT) represents spatial form, recognition, and
leads to memory. But the interactions between these parallel streams, although well docu-
mented [123, 124, 224], remains poorly understood. Because temporal prediction requires the
combination of motion and form, temporal prediction models hold the potential of providing

a normative framework to study these interactions.

4.3.2 Perception: seeing what comes

Gestalt. It has long been recognized that our perceptual systems exploit cues available in
the signal by grouping together elements in the visual scene that have a continuous contour
or that move together. The Gestalt school of psychology described “continuity”, “common
fate” and other such laws. Understanding the origin of these disparate laws and how they
come together on natural visual signals is of interest. Perceptual effects such as the illusory
shift in the location of a patch containing visual motion reveal the predictive nature of visual
processing. This motion-induced position shift [164] reflects the visual system’s anticipation
of the future position of moving image content. Deriving a synthetic visual system by
training for temporal prediction of dynamic visual scenes constitutes a promising approach

for learning “intuitive physics” [20].
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Development. In humans, the acquisition of spatio-temporal object constancy occurs
within the first four months of life—before infants can learn through motor interaction with
their environment [115]. Partially occluded objects that move coherently across the occluder
are perceived as unitary. It has been suggested that infants begin life with fundamental
notions like coherence, unitarity and persistence. In turn these notions enable infants to
temporally predict the future position of moving objects [201]. The temporal prediction
networks described in this thesis provide a basis for the computational understanding of
these fundamental notions, and of how they are combined with sensory information. The
critical elements of the network architecture, local gain control and squaring, constitute a
candidate hypothesis for the structures that may be present at birth and then refined during

development.

Temporal masking. Visual perception is lossy. Many aspects of the visual scene are not
perceived, and certain features tend to take priority over others. For example, fast motions
are a powerful cue for objectness and parts of the scene moving together tend to be grouped
together. Moreover, moving objects typically do not also morph, change size, or color at the
same time as they move. Correspondingly, our visual system seems to expect that moving
objects do not change form. This is revealed by a striking temporal masking illusion: objects
changing in color, luminance, size, or shape appear to stop changing when they move [205].
This striking phenomenon, referred to as event silencing, exemplifies a form of perceptual
interference between two features of a stimulus, with fast motion dominating other features.
Temporal prediction might be able to account for such phenomena, and networks trained
on next frame prediction can be use to test this hypothesis. Indeed, studying the implicit

motion prior embedded in prediction networks can help explain perceptual illusions [219].

Perceptual stability. Although we actively move our eyes many times per second, our

perceptual experience of the environment is stable, suggesting that our visual system in-
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tegrates information across saccades [76]. One common hypothesis for the coordination of
visual information over space and time is that of shifter circuits [5]. This model proposes an
explicit copy-pasting mechanism that registers visual inputs onto some internal perceptual
space. This idea is largely inspired from motion compensation in video processing, where
it has been successfully implemented. But the biological plausibility of this method has
been questioned. Indeed, handling arbitrary image shifts comes with a prohibitive wiring
cost. Even more problematic is the absence of regular grids in visual cortex that could be
registered with one another. Instead, topographic maps are foveated, with denser sampling
of the central region of gaze and magnified receptive fields in the periphery.

Foveated visual representations combine high resolution at the center of gaze with broad
contextual information in the periphery. The latter guides saccades to relevant visual lo-
cations, while the former enables analysis of fine details at those select locations. Tracking
object motion stabilizes a target onto the fovea but blurs the background. Correspondingly,
local and global visual motion cues are dominant in the periphery and the fovea respec-
tively [88]. Peripheral vision is subject to crowding, with visual features summarized and
represented by a texture-like code [71, 177, 238]. The gradual increase in receptive field
size allows pooling information spatially and extracting stable features along the ventral
hierarchy—which may help explain how sensory information is integrated into a unified and
yet detailed percept. This hypothesis for the origin of perceptual stability may seem to
be at odds with the fact that the resolution of our perceptual experience only matches the
resolution of V1 cells, and not that of IT for example. But pooling does not have to blur
features and limit perceived resolution, instead it can extract invariant information along
well defined features. This is best illustrated with a familiar example: a complex cell is more
invariant to position than a matched simple cell, yet it has the same spatial resolution and

is just as finely tuned to frequency.
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Chapter 5

Discussion

In this thesis, we explored the topic of temporal prediction and proposed that it can serve as
a unifying theory for visual processing. We emphasized local neural computations, factorized
representations, and probabilistic inference on dynamic visual signals.

In Chapter 2, we proposed a model for discovering and exploiting the predictable structure
in image sequences. The model factorizes transformations with a simple polar mechanism.
We demonstrated how this multiplicative architectural building block enables visual temporal
prediction.

Future work will aim to extend the expressivity of the model by stacking polar modules
in a multi-layered architecture. Such an architecture could discover groups from partial
observation (e.g., 2d projection of 3d transformation) and jointly represent multiple groups.
Of particular interest is the study of symmetry discovery beyond commutative groups. There
are also potential applications of the polar prediction model to engineering tasks such as
video compression, where the development of flow-free methodologies could have important
practical benefits.

In the following chapter, Chapter 3, we developed a probabilistic framework for temporal

prediction that that can handle ambiguity and cope with incomplete information in high-
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dimensions. We optimized a model for noise resilience and used it to sample probable next
frames in image sequences. This model adaptively combines past conditioning and noisy
observation.

Future work will aim to elucidate how trained conditional denoisers compute predictions,
and the polar prediction model could serve as a helpful analysis tool. Further work will distill
the sequence-to-image denoiser architecture into an explicit representation that is both prior
informed and abstract.

In the last chapter, Chapter 4, we discussed the relevance of polar prediction for biological
modeling. We mapped the model to canonical sensory computations that have received ample
evidence. We also outlined how to extract more abstract features by cascading the polar
mechanism.

Future work will design and analyze physiological and perceptual experiments to quan-
titatively test the polar straightening hypothesis. The hierarchical model outlined in this
chapter should be further developed to handle prediction at longer timescales and serve as
a candidate model for mid-level visual areas. Finally, bringing the probabilistic framework
of Chapter 3 closer to biology might offer a way to think about how sensory systems adapt

to (i.e., learn, store, update, and utilize) environmental probabilities.
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Appendix A

Notations

Let RV denote the N-dimensional Euclidean space equipped with the usual Euclidean
norm || - || and let CX denote the K-dimensional complex vector space. Let CN*X denote
the set of N x K complex-valued matrices. Let F* denote the adjoint (ie. the conjugate
transpose) of F.

Given vectors u,v € CK  let u® v = [uvy,...,ugvg]’ € CEK denote the elementwise
(aka. Hadamard) product of u and v. Let u @ v = [uy/v1,...,ux/vg]" € CX denote the
elementwise division of u and v. Let diag(u) denote the K x K diagonal matrix whose
(k, k)" entry is uy.

Let the complex number z € C be expressed in rectangular coordinates as z = x + iy
where (z,7) € R?, or in polar coordinates as z = ae” where (a,0) € R, x [-m, 7]. Its
complex conjugate is 7 = x — iy = ae~*. The rectangular coordinates are u = a cos(f) and
v = asin(d); and the polar coordinates are a = |2| = /22 + 42, and 0 = /2 = atan2(y, z).

We overload these notations to denote element-wise operations on a vector z € CX: z =

z1,...,zx)" € CK and |z| = [|1],. .., |2k|]" € RE.
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Appendix B

Representing visual transformations

Description of architectures

Motion Compensation. We compare our method to the traditional motion-compensated
coding approach that forms the core of inter-picture coding in well established compression
standards such as MPEG. Block matching is an essential component of these standards,
allowing the compression of video content by up to three orders of magnitude with moderate
loss of information. For each block in a frame, typical coders search for the most similar
spatially displaced block in the previous frame (typically measured with MSE), and com-
municate the displacement coordinates to allow prediction of frame content by translating
blocks of the (already transmitted) previous frame. We implemented a “diamond search”
algorithm [237] operating on blocks of 8 x 8 pixels, with a maximal search distance of 8
pixels which balances accuracy of motion estimates and speed of estimation (the search step
is computationally intensive). We use the estimated displacements to perform causal motion
compensation (¢cMC), using displacement vectors estimated from the previous two observed
frames (x;-; and x;) to predict the nezt frame (x;41) rather than the current one (as in

MPEG).
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Complex Steerable Pyramid. We consider a fixed multiscale oriented representation
of image content: a steerable pyramid [194, 162] covering 16 orientations and 5 scales on
the DAVIS dataset (resp. 16 orientations and 4 scales on VanHateren dataset). This choice
of number of orientations and number of scales maximizes prediction performance on the

corresponding datasets.

Polar Predictor. We use 32 pairs of convolutional channels with filters of size 17 x 17
pixels, without biases (no additive constants) and no padding (ie. “valid” boundary con-
dition). For the multiscale version (mPP), we use 16 pairs of convolutional channels with
filters of size 11 x 11 pixels, without biases (no additive constants). The representation is
computed inside a fixed Laplacian pyramid [34]. We used 4 scales for the DAVIS dataset
(and respectively 3 scales for the VANH dataset). Within this multiscale representation, the

learned filters are applied with zero padding (ie. “same” boundary condition).

Vanilla CNN. Finally, we implemented a more direct convolutional neural network predic-
tor (CNN), that maps two successive observed frames to an estimate of the next frame [143].
For this, we used a CNN composed of 20 stages, each consisting of 64 channels, and computed
with 3 x 3 filters without additive constants, followed by half-wave rectification (ie. ReLU).
To facilitate learning, a skip connection copies the current frame x; and the network only
outputs residuals that get added to the current frame in order to predict the next frame:
Xip1 = X + fuw([Xe,%X¢—1]). This model jointly transforms and processes pairs of frames to
generate predictions, while both polar predictor (PP) and quadratic predictor (QP) separate

spatial processing and temporal extrapolation.

U-net. This multi-resolution architecture is commonly used for image-to-image tasks [170].
It has an analysis-synthesis structure with downsampling, upsampling, and skip connections

between levels at the same resolution. We used 5 stages, each containing a computational
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block that consists of two convolutions, batch norm and rectification. The convolutions have
filters of size 3 x 3, comprise 64 channels, and no additive bias. The end-to-end network

comprises 20 non-linear stages with ReLLU activations.

Description of datasets and optimization

DAVIS. To train, test and compare these models, we use the DAVIS dataset [161], which
was originally designed as a benchmark for video object segmentation. Image sequences
in this dataset contain diverse motion of scenes and objects (eg., with fixed or moving
camera, and objects moving at different speeds and directions), which make next frame
prediction challenging. Each clip is sampled at 25 frames per second, and is approximately 3
seconds long. The set is subdivided into 60 training videos (4741 frames) and 30 test videos
(2591 frames). We pre-processed the data, converting all frames to monochrome luminance
values, and scaling their range to the interval [—1,1]. Frames are cropped to a 256 x 256
central region, where most of the motion tends to occur, and then spatially down-sampled

to 128 x 128 pixels.

VanHateren. We also consider a smaller video dataset consisting in footage of animals
in the wild [211] which contains a variety of motions (animals in the scene, camera motion,
etc.) and occlusions. The missing band at the top the frame is cropped, reducing the image
size from 128 x 128 pixels to 112 x 128 pixels. The dataset is standardized to zero mean and
unit variance, it is split into snippets of 11 frames, 292 snippets are used for training and 33

for testing. There is no spatial downsampling or whitening.

Boundary handling. The computation of this prediction error is restricted to the center
of the image because moving content that enters from outside the video frame is inherently

unpredictable. Specifically, we trim a 17-pixel strip from each side, yielding frames of size
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94 x 94 pixels for the DAVIS dataset and 78 x 94 for the VanHateren dataset. Convolutions

are computed with zero padding so that the outputs have the same size as inputs.

Training procedure. We assume the temporal evolution of natural signals to be suffi-
ciently and appropriately diverse for training, and do not apply any additional data aug-
mentation procedures. We train on brief temporal segments containing 11 frames (which
allows for prediction of 9 frames), and process these in batches of size 4. We train each
model for 200 epochs on DAVIS using the Adam optimizer [117] with default parameters
and a learning rate of 3 - 107%. The learning rate is automatically halved when the test
loss plateaus. In the CNN, we use batch normalization before every half-wave rectification,

rescaling by the standard deviation of channel coefficients (but with no additive bias terms).
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Appendix C

Estimating optimal predictors

Description of architectures

The conditional denoisers considered here are all three scales U-nets [176]. The network takes
as input the past conditioning frames concatenated with the noisy observation. The number
of past conditioning frame is controlled by varying the number of input channels. The filters
are of size 3 x 3, the first stage contains 64 filters. Each successive stage of the encoder
downsamples the image by a factor 2 in each spatial dimension and doubles the number
of channels. Each stage of the decoder reverses this, upsampling spatially, and halving the
number of channels-while combining information across stages in a coarse-to-fine manner.
The network outputs an estimated next frame, there is no input-output skip connection, this

is unlike the one used in Appendix 5.

Description of datasets and optimization

Moving Leaves. FEach image sequence contains two disks on a blank background that

move and occlude each other. In each sequence, both disks have the same physical size but
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their distance to the imaging plane is randomized. As a result, each disk’s projected 2d
size is a reliable, although indirect, cue to its distance in the scene. The disk with larger
projected 2d size always occlude the smaller one. The trajectories of each disk are sampled
from Gaussian processes, and their average speed of motion scales inversely with distance.
This motion parallax is an additional, albeit weaker cue to a disk’s distance.

This synthetic dataset contains 10° image sequences, and is split into train and test set
with at a 9 to 1 ratio. Each sequence is composed of 11 frames and is of size 32 x 32 pixels.
For each image sequence, luminance and depth are sampled randomly and uniformly. The
spatial positions (x and y) are sampled from a Gaussian process, and the bandwidth of the
GP scales with depth (smoother slower trajectories for objects further away). In each image

sequence, there is at least one frame where half of smaller disk is occluded by the larger disk.

DAVIS32. Small image sequences were cropped out of the DAVIS dataset, this procedure
is different from the one described in Appendix 5. This dataset contains about 5 - 10* small
image sequences, divided into about 36 thousands training sequences (or about 400 thousand
frames), and about 5 thousand test sequences (or about 60 thousand frames). Each image
sequence is composed of 11 frames of size 32 x 32 pixels. The spatial crops of the large
DAVIS images are taken at 21 spatial locations and 3 different scales. The data is rescaled

so that grayscale intensity lies in [0, 1].

Training procedure. The networks are trained to minimise mean squared denoising error,
and the procedure is almost identical to that used in Appendix 5. The only differences is
that the networks are trained for 1000 epochs. Moreover, the square root of the noise level

is sampled uniformly between 0 and 1.
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