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Abstract

We describe a novel formulation of the range
recovery problem, based on computation of the
di�erential variation in image intensities with
respect to changes in camera position. The
method uses a single stationary camera and a
pair of calibrated optical attenuation masks to
directly measure this di�erential quantity. The
subsequent computation of the range image is
simple and should be suitable for real-time im-
plementation. We have constructed and tested
a prototype range camera based on these prin-
ciples.

Introduction

Visual images are formed via the projection
of light from the three-dimensional world onto
a two-dimensional sensor. In an idealized pin-
hole camera, all points lying on a ray passing
through the pinhole will be imaged onto the
same image position. Thus, information about
the distance to objects in the scene (i.e., range)
is lost. Range information can be recovered
by measuring the change in appearance of the
world resulting from a change in viewing po-
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sition. Traditionally, this is accomplished via
simultaneous measurements with two cameras
(binocular stereo), or via a sequence of measure-
ments collected over time from a moving camera
(structure from motion).
The recovery of range in these approaches fre-

quently relies on an assumption of brightness
constancy, which states that the brightness of
the image of a point in the world is constant
when viewed from di�erent positions [4]. Con-
sider the formulation of this assumption in one
dimension (the extension to two dimensions is
straightforward). Let f(x; v) describe the inten-
sity function measured through a pinhole cam-
era system. The variable v corresponds to the
pinhole position (along the direction perpendic-
ular to the optical axis). The variable x param-
eterizes the position on the sensor. This con�g-
uration is illustrated in Figure 1. According to
the assumption, the intensity function f(x; v) is
of the form:

f(x; v) = I
�
x� vd

Z

�
; (1)

where I(x) = f(x; v) jv=0, d is the distance
between the pinhole and the sensor and Z is
the range (distance from the pinhole to a point
in the world). Note that this assumption will
typically be violated near occlusion boundaries,
where points visible from one viewpoint are in-
visible from another.
Several complications arise in these ap-

proaches. The degree to which the brightness
constancy assumption holds will, in general,
decrease with increasing camera displacement.
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Figure 1: Geometry for a binocular stereo
system with pinhole cameras. The variable
V parameterizes the position of the camera

pinholes. According to the brightness con-
stancy constraint, the intensity of a point in
the world, as recorded by the two pinhole

cameras, should be the same (i.e. f(x; 0) =
f(x � vd

Z
; v)).

This is due to larger occluded image regions,
and increased e�ects of the non-Lambertianity
of surface re
ectances. Violations of the bright-
ness constancy assumption lead to di�culties
in matching corresponding points in the images
(the so-called \correspondence problem"). Fur-
thermore, a two-camera stereo system (or a sin-
gle moving camera) requires careful calibration
of relative positions, orientations, and intrinsic
parameters of the camera(s).

These problems are partially alleviated in
techniques utilizing a single stationary camera.
A number of these techniques are based on es-
timation of blur or relative blur from two or
more images (e.g., [6, 9, 11, 12, 8]). Adelson
and Wang [1] describes an unusual method in
which a lenticular array is placed over the sen-
sor, e�ectively allowing the camera to capture
visual images from several viewpoints in a single
exposure. Dowski and Cathey[2] and Jones and
Lamb [5] each describe range imaging systems
that use an optical attenuation mask in front of
the lens. By observing local spectral informa-
tion in a single image, they are able to estimate
range. Both techniques rely on power spectral
assumptions about the scene.

In this paper, we propose a single-camera
method which avoids some of the computational
and technical di�culties of the single-camera
approaches discussed above. In particular, we
propose a \direct" di�erential method for range
estimation which computes the image derivative
with respect to viewing position using a single
stationary camera and an optical attenuation
mask. This approach avoids the correspondence
problem, makes no spectral assumptions about
the scene, is relatively straightforward to cali-
brate, and is computationally e�cient. Based
on these principles we have constructed and
tested a prototype range camera. The construc-
tion of this camera, as well as some results are
presented here.

Direct Viewpoint Derivatives

For the purpose of recovering range, we are
interested in computing the change in the ap-
pearance of the world with respect to change
in viewing position. It is thus natural to con-
sider di�erential measurement techniques. Tak-
ing partial derivatives of the intensity function
f(x; v) (Equation (1)) with respect to the image
and viewing positions, and evaluating at v = 0
gives:

Ix(x) � @f(x;v)
@x jv=0

= I 0(x); (2)

and

Iv(x) � @f(x;v)
@v jv=0

= � d
Z I

0(x); (3)

where I 0(�) indicates the derivative of I(�) with
respect to its argument. Combining these two
expressions gives:

Iv(x) = � d
Z Ix(x): (4)

Clearly, an estimate of the range, Z, can be
computed using this equation. Note that in the
case of di�erential binocular stereo (e.g., [7]),
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the derivative with respect to viewing position,
Iv, is replaced by a di�erence, Iv1 � Iv2 . A sim-
ilar relationship is used in computing structure
from motion (for known camera motion), where
Iv is typically replaced by di�erences of consec-
utive images. We now show a direct method for
measurement of this derivative through the use
of an optical attenuation mask.

Consider a world consisting of a single uni-
form intensity point light source and a stan-
dard lens-based imaging system with a variable-
opacity optical attenuation mask, M(u), placed
directly in front of the lens (left side of Figure 2).
The light striking the lens is attenuated by the
value of the mask function at that particular
spatial location. 1 With such a con�guration,
the image of the point source will be a scaled
and dilated version of the mask function:

I(x) = 1
�M( x�): (5)

The scale factor, �, is a monotonic function of
the distance to the point source, Z, and may be
derived from the imaging geometry:

� = 1� d
f +

d
Z ; (6)

where d is the distance between lens and sensor,
and f is the focal length of the lens.

In the system shown on the left side of Fig-
ure 2, the e�ective viewpoint may be altered
by translating the mask, while leaving the lens
and sensor stationary. The generalized inten-
sity function, for a mask centered at position v

is written as:

f(x; v) = 1
� M(x� � v); (7)

assuming that the non-zero portion of the mask
does not extend past the edge of the lens.

The di�erential change in the image (with re-
spect to a change in the mask position) may
be computed by taking the derivative of this

1For our purposes, we assume that the values of such
a mask function are real numbers in the range [0,1].

equation with respect to the mask position, v,
evaluated at v = 0:

Iv(x) � @
@v f(x; v)jv=0

= � 1
�M

0(x�); (8)

where M 0(�) is the derivative of the mask func-
tion M(�) with respect to its argument. The
derivative with respect to viewing position,
Iv(x), may thus be computed directly by imag-

ing with the optical attenuation mask M 0(u)! 2

Finally, notice that the spatial derivative of
the �rst image, I(x), is closely related to the
image Iv(x):

Ix(x) � @
@x f(x; v)jv=0

= 1
�2
M 0(x�)

= � 1
� Iv(x): (9)

From this relationship, the scaling parameter
� may be computed as the ratio of the spa-
tial derivative of the image formed through the
mask M(u), and the image formed through the
derivative of that mask, M 0(u). This computa-
tion is illustrated in Figure 2. The distance to
the point source can subsequently be computed
from � using the monotonic relationship given
in Equation (6). Note that the resulting equa-
tion for estimating range is identical to that of
Equation (4) when d = f (i.e., when the camera
is focused at in�nity).

Range Estimation

Equation (9) embodies the fundamental rela-
tionship used for the direct di�erential compu-
tation of range of a single point light source. A
more realistic world consisting of a collection of
many such uniform intensity point sources im-
aged through an optical attenuation mask will
produce an image consisting of a superposition
of scaled and dilated versions of the masks. In

2In practice, M 0(u) cannot be directly used as an at-
tenuation mask, since it contains negative values. This
issue is addressed later in the paper.
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Figure 2: Direct di�erential range esti-

mation for a single uniform intensity point
source. Images of a point light source are
formed using two di�erent optical attenua-

tion masks, M (u) and its derivative, M 0(u).
In each case, the image formed is a scaled
and dilated copy of the mask function (by

an amount �, monotonically related to the
depth, Z). Computing the spatial (image)
derivative of the image formed under mask
M (u) produces an image that is identical to

the image formed under the derivative mask,
M 0(u), except for a scale factor �. Thus, �
may be estimated as the ratio of the two im-

ages. Range is computed from � using the
relationship given in Equation (6).

particular, we can write an expression for the
image by summing the images of the visible
points, p, in the world:

f(x; v) =

Z
dxp

1
�p
M
�
x�xp
�p

� v
�
L(xp); (10)

where the integral is performed over the vari-
able xp, the position in the sensor of a point p
projected through the center of the lens. The in-
tensity of the world point p is denoted as L(xp),
and �p is monotonically related to the distance
to p (as in Equation (6)). Note again that we
must assume that each point produces a uni-
form light intensity across the mask.

Again, consider the derivatives of f(x; v) with
respect to viewing position, v, and image posi-
tion, x:

@

@v
f(x;v) = @

@v

Z
dxp

1

�p
M

�
x�xp

�p
� v

�
L(xp)

= �

Z
dxp

1

�p
M

0

�
x�xp

�p
� v

�
L(xp)(11)

and

@

@x
f(x;v) = @

@x

Z
dxp

1

�p
M

�
x�xp

�p
� v

�
L(xp)

=

Z
dxp

1

�2
p

M
0

�
x�xp

�p
� v

�
L(xp); (12)

As in the previous section, the following two
partial derivative images are de�ned:

Iv(x) � @
@v
f(x; v) jv=0

= �

Z
dxp

1

�p
M 0

�
x�xp
�p

�
L(xp); (13)

and

Ix(x) � @
@x
f(x; v) jv=0

=

Z
dxp

1

�2
p

M 0

�
x�xp
�p

�
L(xp): (14)

Equations (13) and (14) di�er only in a mul-
tiplicative term of 1

�p
. Unfortunately, solving

for �p is nontrivial, since it is embedded in the
integrand and depends on the integration vari-
able. Consider, however, the special case where
all points in the world lie on a frontal-parallel
plane relative to the sensor. 3 Under this con-
dition, the scaling parameter �p is the same for
all points xp and Equations (13) and (14) can
be written as:

Iv(x) = � 1
�

Z
dxp M

0

�
x�xp
�

�
L(xp) (15)

Ix(x) = 1
�2

Z
dxp M

0

�
x�xp
�

�
L(xp): (16)

The scaling parameter, �, a function of the dis-
tance to the points in the world (Equation (6))
can then be computed as the ratio:

Iv(x) = ��Ix(x): (17)

3In actuality, this assumption need only be made
locally.
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In order to deal with singularities (i.e., Ix =
0), a least-squares estimator can be used for �
(as in [7]). Speci�cally, we minimize the follow-
ing error function:

E(�) =
X
P

(Iv(x) + �Ix(x))
2; (18)

where the summation is performed over a small
patch in the image, P . Taking the derivative
with respect to �, setting equal to zero and solv-
ing for � yields the minimal solution:

� = �

P
P
Iv(x)Ix(x)P
P
Ix(x)2

: (19)

The algorithm easily extends to a three-
dimensional world: we need only consider two-
dimensional masks M(u; w), and the horizon-
tal partial derivative Mu(u; w) = @M(u; w)=@u.
For a more robust implementation, the vertical
partial derivative mask @M(u; w)=@w may also
be included. The least-squares error function
becomes:

E(�) =
X
P

(Iu + �Ix)
2 + (Iw + �Iy)

2: (20)

Solving for the minimizing � gives:

� = �

P
P (IuIx + IwIy)P

P (I
2
x + I2y )

: (21)

Optical Mask Design

Thus far, the only restriction placed on the
optical masks, M(u; w) and Mu(u; w), is that
the second be the derivative of the �rst. Il-
lustrated in Figure 3 is an example of such
a matched pair of masks based on a two-
dimensional Gaussian. Typically, the function
Mu(u; w) will have negative values (as in the
case of the Gaussian) and thus is not feasible
for use as an optical attenuation mask. Fur-
thermore, a positive constant cannot simply be
added toMu(u; w), since this will destroy the re-
quired derivative relationship between the two
masks.

Figure 3: Gaussian optical masks. Illus-
trated along the top row is a two-dimensional
Gaussian mask, M (u;w) (left), and its par-

tial spatial derivative, Mu(u;w) (right). Il-
lustrated along the bottom row are a pair of
non-negative masks,M1(u;w) andM2(u;w),

computed from the Gaussian and its deriva-
tive masks using Equations (22) and (23).

Due to the linearity of the imaging process,
however, we can use masks that are linear com-
binations of the masks Mu(u; w) and M(u; w).
In particular, a scalar multiple of M(u; w) can
be added to Mu(u; w) in order to form a mask
function that is entirely positive. The new
mask, M1(u; w), shown in Figure 3, is given by:

M1(u; w) = �M(u; w) + 
Mu(u; w); (22)

where �, 
 are scaling constants chosen to force
the function M1(u; w) to �ll the range [0; 1]. A
second symmetrical mask can be formed by sub-
tracting Mu(u; w) from M(u; w):

M2(u; w) = �M(u; w)� 
Mu(u; w): (23)

Note thatM2(u; w) is equal toM1(u; w) rotated
180 degrees about its center, and that

M(u; w) = M1(u;w)+M2(u;w)
2� (24)

Mu(u; w) = M1(u;w)�M2(u;w)
2
 : (25)

Again, by linearity of the imaging process, the
images that would have been obtained with the
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masks M(u; w) and Mu(u; w) can be recovered
from images obtained with two masksM1(u; w)
and M2(u; w). In particular, let I1(u; w) be the
image obtained through the maskM1(u; w), and
I2(u; w) the image obtained through the mask
M2(u; w). Then:

I(u; w) = I1(u;w)+I2(u;w)
2� (26)

Iv(u; w) = I1(u;w)�I2(u;w)
2
 ; (27)

where I(u; w) and Iv(u; w) are the desired quan-
tities for estimating the range image using
Equation (19).

Results

In addition to a series of simulations (re-
sults not shown here) we have constructed a
prototype camera for validating the direct dif-
ferential approach to range estimation. The
camera consists of an optical attenuation mask
(a liquid crystal spatial light modulator, LC
SLM) sandwiched between a pair planar-convex
lenses, and placed in front of an o�-the-shelf
SONY XC-77 CCD camera. The essential com-
ponent of this system is the LC SLM pur-
chased from CRL Smectic Technology (Middle-
sex, UK). This device is a fully programmable,
fast-switching, twisted nematic liquid crystal
display. This device has a display area of 28.48
mm (W) � 20.16 mm (H); the spatial reso-
lution is 640 � 480, with 4 possible grayscale
values. The LC-SLM was calibrated to correct
for any non-linearities: light transmittance for
each grayscale was measured using a photome-
ter. This calibration information was incorpo-
rated into a standard stochastic error di�usion
dithering algorithm (e.g., [3]) in order to ren-
der the optical masks with reasonable accuracy.
The CCD sensor was also calibrated and found
to be nearly linear. The display is controlled
through a PC VGA video interface. The LC
SLM refreshes its display at 30 Hz; when syn-
chronized with the frame grabber, the required
images (I(x; y) and Iv(x; y)) taken through the

Figure 4: Illustrated are 1-D slices of the
image of \point light source" taken through

a pair of Gaussian-based masks (top). Also
shown are 1-D slices of the images I and Iv
(bottom: solid curve), and the their �t to a

Gaussian and its derivative (dashed curve).

pair of masks may be acquired at 15 Hz.

In our �rst set of experiments with this range
camera, a pinhole, at a distance of 20 cm, back-
lit by a desk lamp was imaged through a re-
duction tube. Illustrated in Figure 4 are 1-D
slices of the images, I1 and I2, taken through
a pair of Gaussian-based masks. Also shown in
this �gure are 1-D slices of the images I and Iv
computed by the taking the appropriate combi-
nations of I1 and I2 (Equations (26) and (27)).
Note that the resulting images are reasonably
well �t to a Gaussian and its derivative (dashed
line).

In our next set of experiments, a simple tar-
get consisting of a frontal-parallel planar tex-
tured pattern (random white noise) was im-
aged through a pair of Gaussian-based masks
(see Figure 3). An estimate of depth was com-
puted according to Equations (19) and (6). Il-
lustrated in Figure 5 are the recovered range
images for the target placed at a distance of
11cm and 17cm from the camera. For these tar-
gets, the mean estimate of range was 11.3 and
17.16 cm, with a standard deviation of 0.47 and
0.59 cm, respectively. In these results, the im-
ages were pre-processed to remove regions with
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Figure 5: Range images. Illustrated are the
recovered range images for a frontal-parallel

planar target at a distance of 11 and 17 cm
from the camera. The computed range maps
have a mean of 11.3 and 17.16 cm, with a

standard deviation of 0.47 and 0.59 cm, re-
spectively.

low spatial derivative (this amounted to approx-
imately 50% of the data), the resulting \holes"
were �lled with a simple bilinear interpolation
scheme.

Discussion

An optical attenuation mask placed in front
of a lens-based imaging system produces an im-
age which is a superposition of scaled and di-
lated copies of the mask function. The deriva-
tive of this image is related by a scale factor to
a second image created with the derivative of
the �rst mask. The scale factor is monotoni-
cally related to range. This simple observation
has lead us to a direct di�erential method for
estimating range from a single stationary cam-
era. In particular, the derivative with respect
to viewing position is computed directly: it is
simply the image formed under the derivative
mask. Based on these principles, we have con-
structed and tested a prototype range camera.

We are able to acquire the necessary pair of im-
ages at 15 Hz through the use of a fast-switching
LC SLM as an optical attenuation mask. Since
the subsequent processing of the images is sim-
ple and fast, this technique should be amenable
to a real-time implementation.

Two assumptions have been made in our so-
lution to this problem. Both of these assump-
tions are made (although often not explicitly) in
nearly every structure from stereo or motion al-
gorithm. The �rst assumption is that the light
emanating from each point in the scene is con-
stant across the lens (i.e., the brightness con-
stancy assumption). Note that this assumption
will typically be violated at occlusion bound-
aries, because the light emanating from a par-
tially occluded point will hit only a portion of
the lens. One potential solution to this prob-
lem is to expand the function describing the
light emanating from a point in a Taylor series.
The coe�cients of these terms may be estimated
by collecting additional measurements (i.e., im-
ages) with higher-order derivative masks.

The second assumption is that of locally
frontal-parallel surface orientation. This as-
sumption was necessary in order to solve for �p
given the two image measurements described by
Equations (13) and (14). Solving without this
assumption is a nonlinear optimization problem
(since the �p appears inside the argument of
M(�)), which should be amenable to an itera-
tive solution.

There are still several mask design issues that
need to be resolved. First, our example of
Gaussian-based masks was somewhat arbitrary.
A pair of masks should be designed from a set of
optimality constraints based on derivative accu-
racy, e�ective baseline, light transmittance, etc.
Once an optimal function is determined, the
construction of the actual optical masks must
be calibrated to include nonlinearities in the
printing process (e.g., halftoning), and the ef-
fects of the intrinsic point spread function of
the camera. In particular, the image of a point
light source recorded by the camera with mask
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Mu(u; v) must be equal to the spatial derivative
of the image recorded with mask M(u; v). Fi-
nally, noise in the image measurements, I1(u; w)
and I2(u; w), will be ampli�ed by the computa-
tions in Equation (26) and Equation (27): small
values of � or 
 are thus undesirable.

As with most ranging techniques, accuracy
behaves according to the rules of triangulation.
In particular, errors will be proportional to the
square of the range, and inversely proportional
to both the focal length and baseline. 4 We
have veri�ed these relationships via simple sim-
ulations. As in many other range-imaging sys-
tems, the accuracy may be improved with the
use of structured illumination.

A counterintuitive aspect of our technique is
that it relies on the defocus of the image. In par-
ticular, a perfectly focused image corresponds to
� = 0, leading to a singularity in Equation (9).
In practice, this may be alleviated by focusing
the camera at in�nity (i.e., d = f), thus ensur-
ing that points at distances within the operat-
ing range of the algorithm will be su�ciently
blurred.

And �nally, an interesting variant of the tech-
nique arises when considering a Gaussian mask,
and its derivative with respect to �:

G(u; w) = 1
�2
e�(u

2+w2)=2�2 ; (28)

G�(u; w) = @
@�G(u; w)

= � 2
�3
e�(u

2+w2)=2�2

+ (u2+w2)
�5 e�(u

2+w2)=2�2: (29)

Let I(x; y) and I�(x; y) be the images obtained
through the masks G(u; w) and G�(u; w), re-
spectively. Using the same techniques as in the
previous section, it can be shown that these two
images obey the following constraint:

I�(x; y) = �2� [Ixx(x; y) + Iyy(x; y)] ;

= �2�r2I(x; y); (30)

4E�ective baseline in our system depends on the mask
function, and is proportional to the lens diameter.

where Ixx(x; y) and Iyy(x; y) correspond to the
horizontal and vertical second partial deriva-
tives of I(x; y), and r2 is the Laplace operator.
As before, � is inversely proportional to range,
and is given by Equation (6). This formulation
provides a di�erential algorithm for range-from-
defocus. Unlike previous formulations (e.g., [9]),
this solution avoids the artifacts arising from the
computation of local Fourier transforms.
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