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ABSTRACT

Consider the decomposition of a signal into features that
undergo transformations drawn from a continuous family.
Current methods discretely sample the transformations and
apply sparse recovery methods to the resulting finite dictio-
nary. These methods do not exploit the underlying continuous
structure, thereby limiting the ability to produce sparse so-
lutions. Instead, we employ interpolation functions which
linearly approximate the manifold of scaled and transformed
features. Coefficients are interpreted as interpolation weights,
and we formulate a convex optimization problem for obtain-
ing them, enforcing both reconstruction accuracy and spar-
sity. We compare our method, which we call continuous basis
pursuit (CBP) with the standard basis pursuit approach on a
sparse deconvolution task. CBP yields substantially sparser
solutions without sacrificing accuracy, and does so with a
smaller dictionary. We conclude that for signals generatedby
transformation-invariant processes, a representation that ex-
plicitly accommodates the transformation(s) can yield sparser
and more interpretable decompositions.

Index Terms— sparsity, feature decomposition, basis
pursuit, interpolation, invariance

1. INTRODUCTION

Decomposing signals into a sparse linear combination of fea-
tures is an important and well-studied problem, The observed
signal is assumed to be of the form:

y(t) =
∑

j∈I

xjφj(t) + η(t) (1)

whereI indexes a subset of a known finite dictionaryΦ =
{φk(t)}dk=1, andη(t) is noise. One tries to recoverI and
{xj}j∈I by solving

min
~x∈Rd

‖~x‖0 s.t. ‖y(t)−
d

∑

j=1

xjφj(t)‖2 ≤ ǫ (2)

whereǫ := ‖η(t)‖2 is assumed to be known, and‖ · ‖0 in-
dicates theL0 pseudonorm (number of nonzero elements).
The dictionary may be optimized (so as to best represent an
ensemble of signals) or fixed in advance. Minimizing Eq. (2)
is NP-hard in general [1]. Approximate methods fall into two
broad classes: greedy methods and relaxation methods. Nei-
ther make assumptions about dictionary structure. However,
many real signals are generated by processes that obey natural
invariances (e.g., translation-invariance, rotation-invariance).
In the majority of published examples, the dictionary is
formed by transforming the features by discrete amounts
(e.g., “convolutional” dictionaries for sound processing[2],
translated/dilated/rotated features for images [3]). Although
this dictionary is generated using the transformation structure
of the source, the discretization limits the ability of current
methods to approximate the true solution of Eq. (2).

We develop a variant of the well-knownbasis pur-
suit denoising(BP) method [4] (which is equivalent to the
LASSO [5]), that we callcontinuous basis pursuit(CBP).
We construct a dictionary from groups of “interpolator”
functions that approximate transformed versions of features
through continuous variation of their coefficients. We for-
mulate a convex optimization problem to solve for the coef-
ficients with respect to this dictionary that best approximate
the signal. The coefficients are constrained to allow only
configurations producing transformed features. We impose
sparsity across (but not within) the interpolator groups. The
amount of transformation and amplitude strength of a fea-
ture can be extracted from the coefficients by inverting the
interpolation. Our method reduces to BP when one assumes
nearest-neighbor interpolation, where each group consists of
a transformed copy of the feature. We find through empirical
simulations that our method, equipped with two simple types
of interpolation, produces sparser representations that ap-
proximate the signal just as well (if not better) than BP. There
are two additional advantages: (1) we can explicitly recover
the locations and amplitudes of features in the signal from
the optimal coefficients, and (2) there is usually a decreasein
computational complexity.
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Fig. 1. Illustration of three approximations of a translational manifoldM (red curve is a single level set ofM, corresponding
to amplitude1). fτ is shorthand for the functionf(t − τ). (a) Basis pursuit (BP) dictionary consists of discretely shifted f ’s.
(b) Continuous basis pursuit with first-order Taylor interpolator (CBP-T). Each pair{fk∆, f ′

k∆}, with properly constrained co-
efficients, represents a triangular region of the space. (c)CBP with polar interpolation (CBP-P). Each triplet,{ck∆, uk∆, vk∆},
represents a wedge of a cone. (d) Polar interpolator as a circular arc through{f−∆

2

, f0, f∆

2

} with radiusr (dashed green circle

in (c)), approximating a segment ofM: fτ (t) ≈ c0(t) + r cos(2θτ
∆ )u0(t) + r sin(2θτ

∆ )v0(t) for |τ | < ∆
2 .

2. PROBLEM FORMULATION

Assume we observe a 1D signal on a finite interval,y(t) ∈
L2([0, T ]), of the form:

y(t) =

N
∑

j=1

ajf(t− τj) + η(t) (3)

wheref(t) is known.1 Assume also thatǫ = ‖η(t)‖2 is
known. The goal is to recover theevent times{τj}N1 , and
event amplitudes{aj}N1 . In general, there are many solutions
consistent withy(t), so we focus on obtaining the “sparsest”
solution i.e. the one with fewest events:

min
{τj},{aj}

N s.t. ‖y(t)−
N

∑

j=1

ajf(t− τj)‖2 ≤ ǫ (4)

This problem is intractable because the number of events
is unknown and the constraint is nonlinear in the event times.
A now-standard approach is to convert (4) into a sparse linear
inverse problem by discretizing the time interval[0, T ] with
some spacing∆, and solving:

min
~x∈R⌈T/∆⌉

‖~x‖0 (5)

s.t. ‖y(t)−
⌈T/∆⌉
∑

j=1

xjf(t− j∆)‖2 ≤ ǫ (6)

which is a sparse inverse problem as expressed in (2). Al-
though the constraint is now quadratic, this problem is NP-
hard due to theL0 psuedonorm objective, and so relaxed or
greedy versions are solved instead. Furthermore, we need∆
small to accurately represent arbitrary translates off(t), re-
sulting in a very large dictionary, and a correspondingly large
computational cost for solving (5). Relaxation methods such
as basis pursuit denoising ([4, 5]) replace theL0 term with the

1Here, we restrict ourselves to a single feature and assume the transforma-
tion is translation, but generalization to multiple features and/or other types
of transformations is straightforward.

L1-norm, making the problem a quadratic program. How-
ever, the validity of this relaxation requires limited correla-
tions among dictionary elements ([6]), an assumption which
does not hold for small∆ and smoothf(t). On the other
hand, greedy approaches (e.g., matching pursuit [7]) do not
suffer from a small∆, but are susceptible to suboptimal min-
ima in cases of superimposed features.

2.1. Continuous basis pursuit

We assume without loss of generality that‖f(t)‖2 = 1 and
that event amplitudes are nonnegative.2. The advantage of
using (5) in place of (4) is that it uses a linear basis for
the class of signals which we are trying to model: super-
positions of scaled translates off(t), which we denote by
M = {af(t − τ) : a ≥ 0, τ ∈ R} in L2([0, T ]). This dis-
cretized basis consists of “rays” (see Fig. 1(a)). The approx-
imation is only good when the discretization time step∆ is
very small, but in this regime the dictionary is ill-conditioned,
making it difficult to infer sparse coefficients. However, there
are other linear representations ofM. For example, one
could augment the discrete basis to include the derivatives
{f ′(t− j∆), a ∈ R, j ∈ Z}, so that arbitrary small timeshifts
are well-approximated via first-order Taylor expansions (see
Fig. 1(b)). More generally, suppose we have an orthogonal
set{φj(t)}M1 in L2([0, T ]), called theinterpolator groupand
an interpolation mapD : [−∆

2 , ∆
2 ]→ R

M such that:

f(t− τ) ≈
M
∑

j=1

(D(τ))jφj(t), for |τ | < ∆

2
(7)

For example, in the Taylor case, we haveφ1(t) = f(t) and
φ2(t) = f ′(t) with D(τ) = [1 τ ]T . DefineS := {a~x :
~x ∈ Range(D), a ≥ 0}. The idea is to represent signals in
this basis with coefficients constrained to be inS. Let Φ∆ :
R

⌈T/∆⌉×M → L2([0, T ]) be given by:

2For negative amplitudes, we can include the negative of eachbasis func-
tion in the dictionary and constrain all coefficients to be nonnegative.



BP CBP-T CBP-P (see Fig. 1(c),1(d))
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


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

 =





1 rρ −rρ̃
1 r 0
1 rρ rρ̃





−1 



f−∆

2

(t)

f0(t)
f∆

2

(t)





~D(τ) 1 [1, τ ]T [1, r cos(θ 2τ
∆ ), r sin(θ 2τ

∆ )]T

S {x1 ≥ 0} {x1 ≥ 2|x2|
∆ } {x1 ≥ 0, x2

2 + x2
3 = r2x2

1, rρx1 ≤ x2}
H S S {x1 ≥ 0, x2

2 + x2
3 ≤ r2x2

1, rρx1 ≤ x2}
PS(~x) ~x ~x [x1, rx1

x2√
x2
2
+x2

3

, rx1
x3√

x2
2
+x2

3

]T

Table 1. Left: Components of BP and CBP methods (see text). For CBP-P, {ρ, ρ̃} = {cos(θ), sin(θ)}, andr andθ are shown in
Fig. 1(d). Right: Accuracy of BP and CBP methods, as a function of spacing between basis groups. We also include CBP with
a 2nd-order Taylor interpolator, which is not shown in the table. Parenthesized numbers in legend indicate asymptotic slope.

(Φ∆~x)(t) :=

⌈T/∆⌉
∑

i=1

M
∑

j=1

xijφj(t− i∆) (8)

If each block ofM coefficients~xi = [xij ]
M
j=1 is in S, then

(Φ∆~x)(t) is approximately a superposition of scaled trans-
lates off(t). In the Taylor example, the coefficients must
satisfy the linear inequality|xi2| ≤ ∆

2 xi1 for eachi (so that
xi1D(xi2

xi1
) = [xi1 xi2]

T ). In the general case where the
constraint region could be nonconvex, we relax to the convex
hull, denoted byH = Conv(S). We then solve:

min
~x∈R⌈T/∆⌉×M

⌈T/∆⌉
∑

i=1

‖~xi‖2 (9)

s.t. ~xT
i ∈ H, ∀1 ≤ i ≤ ⌈T/∆⌉ (10)

‖y(t)− (Φ∆~x)(t)‖2 ≤ ǫ

Notice that the mixedL1/L2 objective promotes sparsity of
the event amplitudes, not of the coefficients themselves. The
optimization (9) can be solved efficiently using convex pro-
gramming. This is related to recovery methods for so-called
“block-sparse” signals [8, 9], the primary difference being the
constraint (10) that forces coefficients to be valid interpolation
weights (ensuring that(Φ∆~x)(t) is close toM). Event times
and amplitudes are estimated by projecting each~xi from H
ontoS, and inverting the interpolation:

ai ← a s.t.
PS(x̃i)

a
∈ Range(D)

τi ← i∆ + D−1(PS(~xi)/ai) (11)

wherePS(.) projects vectors inH onto S. The degree to
which the solution of (9) approximates that of (4) relies on
three factors: (1) the accuracy of the interpolation in (7);(2)
the accuracy of the convex approximationH ≈ S and the
tractability of the projectionPS(.); and (3) the correlations of
the resulting basisΦ∆. Table 1 gives a specification for two
interpolators: a first-order Taylor approximation, and a circu-
lar arc (polar) approximation, along with the nearest-neighbor
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Fig. 2. Sparsity of the 3 methods of Table 1, as a function
of basis size (N = ⌈T⌉

∆ , 2⌈T⌉
∆ , 3⌈T⌉

∆ , respectively), measured
with theL0.1-norm. Dashed line indicates sparsity of the true
solution. Values are averaged over 500 trials (error bars indi-
cate standard error). Noise standard deviation isσ = ‖f(t)‖∞

12 .

interpolation corresponding to BP. The adjacent figure com-
pares the accuracy of the interpolators. Figures 1(a)-1(c)il-
lustrate the approximation of a translational manifold using
these interpolators.

3. EMPIRICAL RESULTS

We simulated data by drawing event times from a homoge-
neous Poisson process with rate50Hz and drawing event am-
plitudes uniformly from[0.5, 1.5]. We chosef(t) ∝ te−αt2

as our feature, and choseη(t) to be Gaussian white noise. We
compared the sparsity (averaged over several data samples)
of the solutions of (9) using standard BP and CBP with 1st-
order Taylor and polar interpolators, for different spacings∆.
In each trialǫ was set to the true value of‖η(t)‖2. For numer-
ical stability, we used theLp-norm withp = 0.1 to measure
sparsity (results were relatively stable w.r.t. the value of p).
For numerical optimization we sample the functionsf(t) and
y(t) at a much finer density than any∆ we tested. Figure 2
shows the solution sparsity for each method as a function of
the basis sizeN , with equal reconstruction error for all so-
lutions. One can see that, relative to standard BP, the Taylor
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Fig. 3. Noise sensitivity of solutions. (a) Sparsity vs. SNR
( ‖f‖∞

σ ). For each SNR, the∆ yielding the sparsest solutions
was chosen. The dashed curve is the averageL0.1 norm of the
true solution. (b) Optimal spacing vs. SNR.
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Fig. 4. Example of signal recovery for each method,
each using its optimal∆. Upward stems are estimated
times/amplitudes determined using Eq. (11). Downward
stems are true event times/amplitudes. Ticks denote locations
of the groups corresponding to upward stems. SNR is12.

interpolation allows a solution with more sparsity while us-
ing a smaller basis. The polar interpolation scheme yields
even more sparsity using an even smaller basis. Figures 3(a)
and 3(b) demonstrate that the sparsity and basis-size advan-
tages of the CBP methods over standard BP are robust to (and
even enhanced by) increases in noise. Figure 4 shows the co-
efficients recovered for an example signal.

4. DISCUSSION

We have introduced a new methodology for signal decompo-
sition in terms of continously shifted features. Our formu-
lation represents a compromise between the intractable non-
linear problem (4) and the discretized sparse linear inverse
problem (5). We developed a convex objective function that
can be used with any linear interpolation method. The coef-
ficients are constrained to represent translated versions of the
features, and the mixedL1/L2 objective function penalizes
event amplitudes. We showed empirically that CBP, using two
different interpolation schemes, yields substantially sparser
solutions than BP, with a smaller basis. These results are ro-
bust to noise and the spacing between interpolating groups.

Our method is readily applied to other signal types
and can be generalized to tranformations other than trans-
lation, provided an accurate and tractable interpolator is
available. For example, one might include dilation of the
features for acoustic signals. For two-dimensional signals
such as photographic images, one could include rotation.
Our current model assumes that the features are known.
However, it would be natural to incorporate our method
in the context of learning optimal features for a signal en-
semble [e.g., 10, 11, 8, 3, 2], by iterating between learning
features and finding the sparse coefficients using CBP.
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