Capturing slow adaptation with generalized linear models

Abstract

 Retinal ganglion cell firing rates adapt to luminance and contrast changes over several seconds.

• Generalized linear models (GLMs) have successfully characterized primate RGC responses to white noise.

• We show that GLMs, with spike history feedback extending back six seconds, can capture responses to a noise stimulus modulated by a log-normal contrast envelope.

• The model predicts adaptive responses to a contrastswitching stimulus that arise due to a slowly decaying inhibitory effect of previous spikes.

Generalized linear models

 Post-spike filters parametrized as a linear combination of raised cosine "bump" kernels extending out to six seconds.

• The extrinsic signal models variability in the spike rate at timescales slower than that of the post-spike filters.

•The log-likelihood function of the model parameters (linear filter, post-spike filter, extrinsic signal) is jointly concave.

Chaitanya Ekanadham¹, Jonathan Shlens^{1,3}, Lauren Jepson³, Alan M. Litke³, Daniel Tranchina¹, Liam Paninski², E.J. Chichilnisky³, Eero P. Simoncelli¹ 1 New York University, New York, NY, USA; 2 Columbia University, New York, NY, USA; 3 Salk Institute, San Diego, CA, USA

S(x,y,t) = B(x,y,t)C(x,y,t)*B*(*x*,*y*,*t*)~ *smoothed Gaussian noise* $log(C(x,y,t)) \sim smoother Gaussian noise$

Example stimulus frame

Example contrast envelope (single pixel)

From left to right: Mean ON spatial filter; Mean OFF spatial filter; Mean temporal filter for ON (blue) and OFF (red); Mean post-spike filter tail for ON (blue) and OFF (red)

Example of a raster of responses to a repeated stimulus for the cell (blue) and fitted model (red). The PSTH of the true and model responses is also shown below.

"Lava" stimulus

Model fits

- luminance adaptation?
- Truccolo (2005),

Predicted (red) and true (blue) responses to contrast-switching stimulus for the 3 cells labeled in the scatter plot. True responses averaged over 10 trials. Mean (red line) and std. dev. (red cloud) of model response calculated with 100 blocks of 10 trials each.

Conclusions

 GLMs can accurately describe responses to a novel stimulus with slowly fluctuating contrast.

• For adapting cells, the model exhibits a slow inhibitory effect of spike history, enabling it to mimic slowly adapting RGC responses to contrast-switching stimuli.

• Can a GLM also capture fast gain control (~120ms) and/or

References

[1] Baccus & Meister (2002), [2] Chander & Chichilnisky (2001, [3] Kim and Rieke (2001), [4] Fairhall (2001), [5] Pillow (2008), [6] Smirnakis (1997), [7]