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Abstract

Neurons in early sensory areas rapidly adapt to changing sensory statistics, both by
normalizing the variance of their individual responses and by reducing correlations
between their responses. Together, these transformations may be viewed as an
adaptive form of statistical whitening. Existing mechanistic models of adaptive
whitening exclusively use either synaptic plasticity or gain modulation as the
biological substrate for adaptation; however, on their own, each of these models
has significant limitations. In this work, we unify these approaches in a normative
multi-timescale mechanistic model that adaptively whitens its responses with
complementary computational roles for synaptic plasticity and gain modulation.
Gains are modified on a fast timescale to adapt to the current statistical context,
whereas synapses are modified on a slow timescale to learn structural properties of
the input statistics that are invariant across contexts. Our model is derived from
a novel multi-timescale whitening objective that factorizes the inverse whitening
matrix into basis vectors, which correspond to synaptic weights, and a diagonal
matrix, which corresponds to neuronal gains. We test our model on synthetic and
natural datasets and find that the synapses learn optimal configurations over long
timescales that enable the circuit to adaptively whiten neural responses on short
timescales exclusively using gain modulation.

1 Introduction

Individual neurons in early sensory areas rapidly adapt to changing sensory statistics by normalizing
the variance of their responses [1; 2]. At the population level, neurons also adapt by reducing
correlations between their responses [3; 4]. These adjustments enable the neurons to maximize the
information that they transmit by utilizing their entire dynamic range and reducing redundancies in
their representations [5–8]. A natural normative interpretation of these transformations is adaptive
whitening, a context-dependent linear transformation of the sensory inputs yielding responses that
have unit variance and are uncorrelated.

Decorrelation of the neural responses requires coordination between neurons and the neural mech-
anisms underlying such coordination are not known. Since neurons communicate via synaptic
connections, it is perhaps unsurprising that most existing mechanistic models of adaptive whiten-
ing decorrelate neural responses by modifying the strength of these connections [9–15]. However,
long-term synaptic plasticity is generally associated with long-term learning and memory [16], and
thus may not be a suitable biological substrate for adaptive whitening (though short-term synaptic
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Figure 1: Adaptive whitening circuit, illustrated with N = 2 primary neurons and K = 2 interneurons. Left:
Dashed ellipses representing the covariance matrices of 2D stimuli s drawn from different statistical contexts.
Center: Primary neurons (shaded blue circles) receive feedforward stimulus inputs (shaded purple circles), s, and
recurrent weighted inputs, −Wn, from the interneurons (teal circles), producing responses r. The interneurons
receive weighted inputs, z = W⊤r, from the primary neurons, which are then multiplied elementwise by gains
g to generate their outputs, n = g ◦ z. The gains g are modulated at a fast timescale to adaptively whiten within
a specific stimulus context. Concurrently, the synaptic weights are optimized at a slower timescale to learn
structural properties of the inputs across contexts. Right: Dashed unit circles representing the whitened circuit
responses r in each statistical context.

plasticity has been reported [17]). On the other hand, there is extensive neuroscience literature
on rapid and reversible gain modulation [18–25]. Motivated by this, Duong et al. [26] proposed a
mechanistic model of adaptive whitening in a neural circuit with fixed synaptic connections that
adapts exclusively by modifying the gains of interneurons that mediate communication between the
primary neurons. They demonstrate that an appropriate choice of the fixed synaptic weights can both
accelerate adaptation and significantly reduce the number of interneurons that the circuit requires.
However, it remains unclear how the circuit learns such an optimal synaptic configuration, which
would seem to require synaptic plasticity.

In this study, we combine the learning and adaptation of synapses and gains, respectively, in a unified
mechanistic neural circuit model that adaptively whitens its inputs over multiple timescales (Fig. 1).
Our main contributions are as follows:

1. We introduce a novel multi-timescale adaptive whitening objective in which the (inverse)
whitening matrix is factorized into a synaptic weight matrix that is optimized across contexts
and a diagonal (gain) matrix that is optimized within each statistical context.

2. With this objective, we derive a multi-timescale online algorithm for adaptive whitening
that can be implemented in a neural circuit comprised of primary neurons and an auxiliary
population of interneurons with slow synaptic plasticity and fast gain modulation (Fig. 1).

3. We test our algorithm on synthetic and natural datasets, and demonstrate that the synapses
learn optimal configurations over long timescales that enable the circuit to adaptively whiten
its responses on short timescales exclusively using gain modulation.

Beyond the biological setting, multi-timescale learning and adaptation may also prove important
in machine learning tasks. For example, Mohan et al. [27] adjust the gains of channels in a deep
denoising neural network (with pre-trained synaptic weights) to improve performance on samples
with out-of-distribution noise corruption. The normative multi-timescale framework developed here
offers a new approach to continual learning and test-time adaptation problems such as this.

2 Adaptive symmetric whitening

Consider a neural population with N primary neurons (Fig. 1). The stimulus inputs to the primary
neurons are represented by a random N -dimensional vector s whose distribution p(s|c) depends on a
latent context variable c. The stimulus inputs s can be inputs to peripheral sensory neurons (e.g., the
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rates at which photons are absorbed by N cones) or the postsynaptic inputs to neurons in an early
sensory area (e.g., glomerulus inputs to N mitral cells in the olfactory bulb). Context variables can
include location (e.g., a forest or a meadow) and time (e.g., season or time of day). For simplicity,
we assume the context-dependent inputs are centered; that is, Es∼p(s|c)[s] = 0, where Es∼p(s|c)[·]
denotes the expectation over the conditional distribution p(s|c) and 0 denotes the vector of zeros. See
Appx. A for a consolidated list of notation used throughout this work.

The goal of adaptive whitening is to linearly transform the inputs s so that, conditioned on the context
variable c, the N -dimensional neural responses r have identity covariance matrix; that is,

r = Fcs such that Es∼p(s|c)
[
rr⊤

]
= IN ,

where Fc is a context-dependent N×N whitening matrix. Whitening is not a unique transformation—
left multiplication of the whitening matrix Fc by any N ×N orthogonal matrix results in another
whitening matrix. We focus on symmetric whitening, also referred to as Zero-phase Components
Analysis (ZCA) whitening or Mahalanobis whitening, in which the whitening matrix for context c is
uniquely defined as

Fc = C−1/2
ss (c), Css(c) := Es∼p(s|c)

[
ss⊤

]
, (1)

where we assume Css(c) is positive definite for all contexts c. This is the unique whitening transfor-
mation that minimizes the mean-squared difference between the inputs and the outputs [28].

To derive an algorithm that learns the symmetric whitening matrix Fc, we express Fc as the solution
to an appropriate optimization problem, which is similar to the optimization problem in [14, top of
page 6]. For a context c, we can write the inverse symmetric whitening matrix Mc := F−1

c as the
unique optimal solution to the minimization problem

Mc = argmin
M∈SN++

fc(M), fc(M) := Tr
(
M−1Css(c) +M

)
, (2)

where SN++ denotes the set of N × N positive definite matrices.1 This follows from the fact that
fc(M) is strictly convex with its unique minimum achieved at Mc, where fc(Mc) = 2Tr(Mc)
(Appx. B.1). Existing recurrent neural circuit models of adaptive whitening solve the minimization
problem in Eq. 2 by choosing a matrix factorization of Mc and then optimizing the components
[11; 12; 14; 26].

3 Adaptive whitening in neural circuits: a matrix factorization perspective

Here, we review two adaptive whitening objectives, which we unify into a single objective that
adaptively whitens responses across multiple timescales.

3.1 Objective for adaptive whitening via synaptic plasticity

Pehlevan and Chklovskii [11] proposed a recurrent neural circuit model that whitens neural responses
by adjusting the synaptic weights between the N primary neurons and K ≥ N auxiliary interneurons
according to a Hebbian update rule. Their circuit can be derived by factorizing the context-dependent
matrix Mc into a symmetric product Mc = WcW

⊤
c for some context-dependent N ×K matrix

Wc [14]. Substituting this factorization into Eq. 2 results in the synaptic plasticity objective in Table
1. In the recurrent circuit implementation, W⊤

c denotes the feedforward weight matrix of synapses
connecting primary neurons to interneurons and the matrix −Wc denotes the feedback weight matrix
of synapses connecting interneurons to primary neurons. Importantly, under this formulation, the
circuit may reconfigure both the synaptic connections and synaptic strengths each time the context
c changes, which runs counter to the prevailing view that synaptic plasticity implements long-term
learning and memory [16].

3.2 Objective for adaptive whitening via gain modulation

Duong et al. [26] proposed a neural circuit model with fixed synapses that whitens the N primary
responses by adjusting the multiplicative gains in a set of K auxiliary interneurons. To derive a neural

1For technical purposes, we extend the definition of fc to all SN by setting fc(M) = ∞ if M ̸∈ SN
++.
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Table 1: Factorizations of the inverse whitening matrix Mc and objectives for adaptive whitening circuits.

Model Matrix factorization Objective

Synaptic plasticity [11] WcW
⊤
c minW fc

(
WW⊤)

Gain modulation [26] IN +Wfixdiag(gc)W
⊤
fix ming fc

(
IN +Wfixdiag(g)W⊤

fix
)

Multi-timescale (ours) αIN +Wdiag(gc)W
⊤ minW Ec∼p(c)

[
ming fc

(
αIN +Wdiag(g)W⊤)]

circuit with gain modulation, they considered a novel diagonalization of the inverse whitening matrix,
Mc = IN + Wfixdiag(gc)W

⊤
fix, where Wfix is an arbitrary, but fixed N × K matrix of synaptic

weights (with K ≥ KN := N(N + 1)/2) and gc is an adaptive, context-dependent real-valued
K-dimensional vector of gains. Note that unlike the conventional eigen-decomposition, the number
of elements along the diagonal matrix is significantly larger than the dimensionality of the input
space. Substituting this factorization into Eq. 2 results in the gain modulation objective in Table 1.
As in the synaptic plasticity model, W⊤

fix denotes the weight matrix of synapses connecting primary
neurons to interneurons while −Wfix connects interneurons to primary neurons. In contrast to the
synaptic plasticity model, the interneuron outputs are modulated by context-dependent multiplicative
gains, gc, that are adaptively adjusted to whiten the circuit responses.

Duong et al. [26] demonstrate that an appropriate choice of the fixed synaptic weight matrix can both
accelerate adaptation and significantly reduce the number of interneurons in the circuit. In particular,
the gain modulation circuit can whiten any input distribution provided the gains vector gc has
dimension K ≥ KN (the number of degrees of freedom in an N ×N symmetric covariance matrix).
However, in practice, the circuit need only adapt to input distributions corresponding to natural input
statistics [6; 29–31]. For example, the statistics of natural images are approximately translation-
invariant, which significantly reduces the degrees of freedom in their covariance matrices, from
O(N2) toO(N). Therefore, while the space of all possible correlation structures is KN -dimensional,
the set of natural statistics likely has far fewer degrees of freedom and an optimal selection of
the weight matrix Wfix can potentially offer dramatic reductions in the number of interneurons K
required to adapt. As an example, Duong et al. [26] specify a weight matrix for performing “local”
whitening with O(N) interneurons when the input correlations are spatially-localized (e.g., as in
natural images). However, they do not prescribe a method for learning a (synaptic) weight matrix
that is optimal across the set of natural input statistics.

3.3 Unified objective for adaptive whitening via synaptic plasticity and gain modulation

We unify and generalize the two disparate adaptive whitening approaches [11; 26] in a single multi-
timescale nested objective in which gains g are optimized within each context and synaptic weights
W are optimized across contexts. In particular, we optimize, with respect to W, the expectation of
the objective from [26] (for some fixed K ≥ 1) over the distribution of contexts p(c):

min
W∈RN×K

Ec∼p(c)

[
min
g∈RK

fc
(
αIN +Wdiag(g)W⊤)] , (3)

where we have also generalized the objective from [26] by including a fixed multiplicative factor
α ≥ 0 in front of the identity matrix IN , and we have relaxed the requirement that K ≥ KN .

What is an optimal solution of Eq. 3? Since the convex function fc is uniquely minimized at Mc, a
sufficient condition for the optimality of a synaptic weight matrix W is that for each context c, there
is a gains vector gc such that αIN +Wdiag(gc)W

⊤ = Mc. Importantly, under such a synaptic
configuration, the function fc can attain its minimum exclusively by adjusting the gains vector g. In
the space of covariance matrices, we can express the statement as

Css(c) ∈ F(W) :=
{[

αIN +Wdiag(g)W⊤]2 : g ∈ RK
}
∩ SN++ for every context c,

where F(W) contains the set of covariance matrices that can be whitened with fixed synapses W
and adaptive gains g. Fig. 2 provides an intuitive Venn diagram comparing a non-optimal synaptic
configuration W0 and an optimal synaptic configuration WT .
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Figure 2: Illustration of multi-timescale learning in the space of covariance matrices. Orange and purple
regions (identical on the left and right) respectively represent the cone of all positive definite matrices SN

++, and
the subset of naturally-occurring covariance matrices {Css(c)}. Blue regions represent the set of covariance
matrices that can be whitened with adaptive gains for a particular synaptic weight matrix. On each side, the
yellow circle denotes a naturally-occurring input covariance matrix Css(c) and the dotted white curve illustrates
the trajectory of covariance matrices the circuit is adapted to whiten as the gains are modulated (with fixed
synapses, note the dotted white curve remains in the blue region). Left: With initial synaptic weights W0 the
circuit cannot whiten some natural input distributions exclusively via gain modulation, i.e., {Css(c)} ̸⊂ F(W0).
Right: After learning optimal synaptic weights WT , the circuit can match any naturally-occurring covariance
matrix using gain modulation, i.e., {Css(c)} ⊂ F(WT ).

4 Multi-timescale adaptive whitening algorithm and circuit implementation

In this section, we derive an online algorithm for optimizing the multi-timescale objective in Eq. 3,
then map the algorithm onto a neural circuit with fast gain modulation and slow synaptic plasticity.
To derive an online algorithm that includes neural dynamics, we first add neural responses r to the
objective, which introduces a third timescale to the objective. We then derive a multi-timescale
gradient-based algorithm for optimizing the objective.

Adding neural responses to the objective. First, observe that we can write fc(M), for M ∈ SN++,
in terms of the neural responses r:

fc(M) = Es∼p(s|c)

[
max
r∈RN

Tr
(
2rs⊤ −Mrr⊤ +M

)]
. (4)

To see this, maximize over r to obtain r = M−1s and then use the definition of Css(c) from Eq. 1
(Appx. B.2). Substituting this expression for fc, with M = αIN + Wdiag(g)W⊤, into Eq. 3,
dropping the constant term αIN term and using the cyclic property of the trace operator results in the
following objective with 3 nested optimizations (Appx. B.2):

min
W∈RN×K

Ec∼p(c)

[
min
g∈RK

Es∼p(s|c)

[
max
r∈RN

ℓ(W,g, r, s)

]]
, (5)

where ℓ(W,g, r, s) := 2r⊤s− α∥r∥2 −
K∑
i=1

gi
[
(w⊤

i r)
2 − ∥wi∥2

]
.

The inner-most optimization over r corresponds to neural responses and will lead to recurrent neural
dynamics. The outer 2 optimizations correspond to the optimizations over the gains g and synaptic
weights W from Eq. 3.

To solve Eq. 5 in the online setting, we assume there is a timescale separation between neural dynamics
and the gain/weight updates. This allows us to perform the optimization over r before optimizing
g and W concurrently. This is biologically sensible: neural responses (e.g., action potential firing)
operate on a much faster timescale than gain modulation and synaptic plasticity [24; 32]. In Appx. C,
we consider the case when there is also a timescale separation between the gain updates and weight
updates, so that the weights are optimized after the gains have equilibrated.
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Recurrent neural dynamics. At each iteration, the circuit receives a stimulus s. We maximize
ℓ(W,g, r, s) with respect to r by iterating the following gradient-ascent steps that correspond to
repeated timesteps of the recurrent circuit (Fig. 1) until the responses equilibrate:

r← r+ ηr

(
s−

K∑
i=1

niwi − αr

)
, (6)

where ηr > 0 is a small constant, zi = w⊤
i r denotes the weighted input to the ith interneuron,

ni = gizi denotes the gain-modulated output of the ith interneuron. For each i, synaptic weights,
wi, connect the primary neurons to the ith interneuron and symmetric weights, −wi, connect the
ith interneuron to the primary neurons. From Eq. 6, we see that the neural responses are driven by
feedforward stimulus inputs s, recurrent weighted feedback from the interneurons −Wn, and a leak
term −αr.

Fast gain modulation and slow synaptic plasticity. After the neural activities equilibrate, we
minimize ℓ(W,g, r, s) by taking concurrent gradient-descent steps

∆gi = ηg
(
z2i − ∥wi∥2

)
(7)

∆wi = ηw (rni −wigi) , (8)

where ηg and ηw are the respective learning rates for the gains and synaptic weights. By choosing
ηg ≫ ηw, we ensure that the gains are updated at a faster timescale than the synaptic weights.

The update to the ith interneuron’s gain gi depends on the difference between the online estimate of
the variance of its input, z2i , and the squared-norm of the ith synaptic weight vector, ∥wi∥2, quantities
that are both locally available to the ith interneuron. Using the fact that zi = w⊤

i r, we can rewrite the
gain update as ∆gi = ηg[w

⊤
i (rr

⊤ − IN )wi]. From this expression, we see that the gains equilibrate
when the marginal variance of the responses along the direction wi is 1, for i = 1, . . . ,K.

The update to the (i, j)th synaptic weight wij is proportional to the difference between rinj and wijgj ,
which depends only on variables that are available in the pre- and postsynaptic neurons. Since rinj is
the product of the pre- and postynaptic activities, we refer to this update as Hebbian. In Appx. E.2,
we decouple the feedforward weights w⊤

i and feedback weights −wi and provide conditions under
which the symmetry asymptotically holds.

Multi-timescale online algorithm. Combining the neural dynamics, gain modulation and synaptic
plasticity yields our online multi-timescale adaptive whitening algorithm, Alg. 1, which we express
in vector-matrix form with ‘◦’ denoting the Hadamard (elementwise) product of two vectors.

Algorithm 1: Multi-timescale adaptive whitening via synaptic plasticity and gain modulation

1: Input: s1, s2, · · · ∈ RN

2: Initialize: W ∈ RN×K ; g ∈ RK ; ηr > 0; ηg ≫ ηw > 0
3: for t = 1, 2, . . . do
4: rt ← 0
5: while not converged do
6: zt ←W⊤rt ; // interneuron inputs
7: nt ← g ◦ zt ; // gain-modulated interneuron outputs
8: rt ← rt + ηr (st −Wnt − αrt) ; // recurrent neural dynamics
9: end while

10: g← g + ηg
(
zt ◦ zt − diag

(
W⊤W

))
; // gains update

11: W←W + ηw
(
rtn

⊤
t −Wdiag(g)

)
; // synaptic weights update

12: end for

Alg. 1 is naturally viewed as a unification and generalization of previously proposed neural circuit
models for adaptation. When α = 0 and the gains g are constant (e.g., ηg = 0) and identically equal
to the vector of ones 1 (so that nt = zt), we recover the synaptic plasticity algorithm from [14].
Similarly, when α = 1 and the synaptic weights W are fixed (e.g., ηw = 0), we recover the gain
modulation algorithm from [26].
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Figure 3: Adaptive whitening of a synthetic dataset with N = 2, ηw = 1E-5, ηg = 5E-2. A) Covariance
ellipses (orange) of 4 out of 64 synthesized contexts. Black dashed lines are axes corresponding to the column
vectors of V. The unit circle is shown in green. Since the column vectors of V are not orthogonal, these
covariance matrices do not share a common set of eigenvectors (orange lines). B) Whitening error at the end
of each context presentation of 1E3 samples. We apply a moving average window of 10 stimulus samples. C)
Error at each stimulus presentation within five different contexts (gray panels), presented with W0, or WT . D)
Column vectors of W0, WT , V (each axis corresponds to the span of one column vector in R2). E) Smoothed
distributions of error (in Frobenius norm) between Ŵ and V across 250 random initializations of W0.

5 Numerical experiments

We test Alg. 1 on stimuli s1, s2, . . . drawn from slowly fluctuating latent contexts c1, c2, . . . ; that
is, st ∼ p(s|ct) and ct = ct−1 with high probability.2 To measure performance, we evaluate the
operator norm on the difference between the expected response covariance and the identity matrix:

Error(t) = ∥M−1
t Css(ct)M

−1
t − IN∥op, Mt := αIN +Wtdiag(g)W⊤

t . (9)

Geometrically, this “worst-case” error measures the maximal Euclidean distance between the ellipsoid
corresponding to M−1

t Css(ct)M
−1
t and the (N − 1)-sphere along all possible axes. To compare

two synaptic weight matrices A,B ∈ RN×K , we evaluate ∥Â−B∥F , where Â = AP and P is the
permutation matrix (with possible sign flips) that minimizes the error.

5.1 Synthetic dataset

To validate our model, we first consider a 2-dimensional synthetic dataset in which an optimal
solution is known. Suppose that each context-dependent inverse whitening matrix is of the form
Mc = IN + VΛ(c)V⊤, where V is a fixed 2 × 2 matrix and Λ(c) = diag(λ1(c), λ2(c)) is a
context-dependent diagonal matrix. Then, in the case α = 1 and K = 2, an optimal solution of the
objective in Eq. 3 is when the column vectors of W align with the column vectors of V.

To generate this dataset, we chose the column vectors of V uniformly from the unit circle, so they are
not generally orthogonal. For each context c = 1, . . . , 64, we assume the diagonal entries of Λ(c)
are sparse and i.i.d.: with probability 1/2, λi(c) is set to zero and with probability 1/2, λi(c) is chosen
uniformly from the interval [0, 4]. Example covariance matrices from different contexts are shown in
Fig. 3A (note that they do not share a common eigen-decomposition). Finally, for each context, we
generate 1E3 i.i.d. samples with context-dependent distribution s ∼ N (0,M2

c).

We test Alg. 1 with α = 1, K = 2, ηw = 1E-5, and ηg = 5E-2 on these sequences of synthetic inputs
with the column vectors of W0 chosen uniformly from the unit circle. The model successfully learns
to whiten the different contexts, as indicated by the decreasing whitening error with the number of
contexts presented (Fig. 3B). At the end of training, the synaptic weight matrix WT is optimized such
that the circuit can adapt to changing contexts exclusively by adjusting its gains. This is evidenced by
the fact that when the context changes, there is a brief spike in error as the gains adapt to the new
context (Fig. 3C, red line). By contrast, the error remains high in many of the contexts when using

2Python code accompanying this study can be found at https://github.com/lyndond/multi_timescale_whitening.
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Figure 4: Adaptive whitening of natural images. A) Examples of 2 out of 56 high-resolution images (top) with
each image corresponding to a separate context. For each image, 5 × 5 pixel patches are randomly sampled
to generate context-dependent stimuli with covariance matrix Css(c) ∈ S25

++ (bottom). B) Mean error during
training (Eq. 9) with K = N = 25. Shaded region is standard deviation over 2E3 random initializations
W0 ∈ O(25). C) Smoothed distributions of average adaptive whitening error over all 2E3 initializations. The
red distribution corresponds to the error on the held-out images with fixed learned synapses WT and modulated
gains g. The blue (resp. green, purple) distribution corresponds to the same error, but tested on the training
images (resp. with fixed gains equal to the average gains over the final 100 iterations, with fixed random synapses
W0). D) The learned weights (re-shaped columns of WT ) approximate orthogonal 2D sinusoids. E) Final error
(after T = 5E4 iterations) as a function of number of interneurons K. Bars are standard deviations centered on
the mean error at each K. The red horizontal line denotes average error when K = 0 (in which case r = s). F)
Frobenius norm between the eigenbasis of Ec∼p(c)[Css(c)] (i.e. across all contexts), Q∗, with WT , W0, and
the eigenbasis of each individual context covariance, Q(c), when K = N = 25. See Appx. D for additional
experiments.

the initial random synaptic weight matrix W0 (Fig. 3C, blue line). In particular, the synapses learn
(across contexts) an optimal configuration in the sense that the column vectors of W learn to align
with the column vectors of V over the course of training (Fig. 3DE).

5.2 Natural images dataset

By hand-crafting a particular set of synaptic weights, Duong et al. [26] showed that their adaptive
whitening network can approximately whiten a dataset of natural image patches with O(N) gain-
modulating interneurons instead ofO(N2). Here, we show that our model can exploit spatial structure
across natural scenes to learn an optimal set of synaptic weights by testing our algorithm on 56 high-
resolution natural images [33] (Fig. 4A, top). For each image, which corresponds to a separate context
c, 5 × 5 pixel image patches are randomly sampled and vectorized to generate context-dependent
samples s ∈ R25 with covariance matrix Css(c) ∈ S25++ (Fig. 4A, bottom). We train our algorithm in
the offline setting where we have direct access to the context-dependent covariance matrices (Appx. C,
Alg. 2, α = 1, J = 50, ηg =5E-1, ηw =5E-2) with K = N = 25 and random W0 ∈ O(25) on a
training set of 50 of the images, presented uniformly at random 1E3 total times. We find that the
model successfully learns a basis that enables adaptive whitening across different visual contexts via
gain modulation, as shown by the decreasing training error (Eq. 9) in Fig. 4B.

How does the network learn to leverage statistical structure that is consistent across contexts?
We test the circuit with fixed synaptic weights WT and modulated (adaptive) gains g on stimuli
from the held-out images (Fig. 4C, red distribution shows the smoothed error over 2E3 random
initializations W0). The circuit performs as well on the held-out images as on the training images
(Fig. 4C, red versus blue distributions). In addition, the circuit with learned synaptic weights WT

and modulated gains g outperforms the circuit with learned synaptic weights WT and fixed gains
(Fig. 4C, green distribution), and significantly outperforms the circuit with random synaptic weights
W0 and modulated gains (Fig. 4C, purple distribution). Together, these results suggest that the circuit
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learns features WT that enable the circuit to adaptively whiten across statistical contexts exclusively
using gain modulation, and that gain modulation is crucial to the circuit’s ability to adaptively whiten.
In Fig. 4D, we visualize the learned filters (columns of WT ), and find that they are approximately
equal to the 2D discrete cosine transform (DCT, Appx. D), an orthogonal basis that is known to
approximate the eigenvectors of natural image patch covariances [34; 35].

To test how the number of interneurons K impacts the performance of the circuit, we train the
algorithm with K = 1, . . . , 2N and report the final error in Fig. 4E. There is a steady drop in error
as K ranges from 1 to N , at which point there is a (discontinuous) drop in error followed by a
continued, but more gradual decay in both training and test images error as K ranges from N to 2N
(the overcomplete regime). To understand this behavior, note that the covariance matrices of image
patches approximately share an eigen-decomposition [35]. To see this, let Q(c) denote the orthogonal
matrix of eigenvectors corresponding to the context-dependent covariance matrix Css(c). As shown
in Fig. 4F (green histogram), there is a small, but non-negligible, difference between the eigenvectors
Q(c) and the eigenvectors Q∗ of the average covariance matrix Ec∼p(c)[Css(c)]. When K = N , the
column vectors of WT learn to align with Q∗ (as shown in Fig. 4F, blue histogram), and the circuit
approximately adaptively whitens the context-dependent stimulus inputs via gain modulation. As K
ranges from 1 to N , WT progressively learns the eigenvectors of Q∗ (Appx. D). Since WT achieves
a full set of eigenvectors at K = N , this results in a large drop in error when measured using the
operator norm. Finally, as mentioned, there is a non-negligible difference between the eigenvectors
Q(c) and the eigenvectors Q∗. Therefore, increasing the number of interneurons from N to 2N
allows the circuit to discover basis vectors WT to account for the small deviations between Q(c)
and Q∗, resulting in improved whitening error (Appx. D).

6 Discussion

Our normative derivation relies on a novel multi-timescale objective (Eq. 3) in which the (inverse)
whitening matrix is factorized into components that are optimized at different timescales. This model
draws inspiration from the extensive neuroscience literature on rapid gain modulation [24] and long-
term synaptic plasticity [16], and concretely proposes complementary roles for these computations:
synaptic plasticity facilitates learning features that are invariant across statistical contexts while gain
modulation facilitates adaptation within a statistical context. Experimental support for this will come
from detailed understanding of natural sensory statistics across statistical contexts and estimates of
(changes in) synaptic connectivity from wiring diagrams (e.g., [36]) or neural activities (e.g., [37]).

Our circuit uses local learning rules for the gain and synaptic weight updates, so it serves as a plausible
model of neural computation and can potentially be implemented in low-power neuromorphic
hardware [38–40] and incorporated into existing mechanistic models of neural circuits with whitened
or decorrelated responses [41–46]. However, there are aspects of our circuit that are not biologically
realistic. For example, we do not sign-constrain the gains or synaptic weight matrices, so our circuit
can violate Dale’s law. In addition, the feedforward synaptic weights W⊤ and feedback weights
−W are constrained to be symmetric. In Appx. E, we consider modifications of our model to be
more biologically realistic. Additionally, while we focus on the potential joint function of gain
modulation and synaptic plasticity in adaptation, short-term synaptic plasticity, which operates on
similar timescales as gain modulation, has also been reported [17]. Theoretical studies suggest
that short-term synaptic plasticity is useful in multi-timescale learning tasks [47–49] and it may
also contribute to multi-timescale adaptive whitening. Ultimately, support for different adaptation
mechanisms will be adjudicated by experimental observations.

Our work may also be relevant beyond the biological setting. Decorrelation and whitening transfor-
mations are common preprocessing steps in statistical and machine learning methods [50–54], and
are useful for preventing representational collapse in recent self-supervised learning methods [55–58].
Therefore, our online multi-timescale algorithm may be useful for developing adaptive self-supervised
learning algorithms. In addition, our work is related to the general problem of online meta-learning
[59; 60]; that is, learning methods that can rapidly adapt to new tasks. Our solution—which is closely
related to mechanisms of test-time feature gain modulation developed for machine learning models
for denoising [27], compression [61; 62], and classification [63]—suggests a general approach to
meta-learning inspired by neuroscience: structural properties of the tasks (contexts) are encoded in
synaptic weights and adaptation to the current task (context) is achieved by adjusting the gains of
individual neurons.
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A Notation

For N,K ≥ 2, let RN denote N -dimensional Euclidean space equipped with the usual Euclidean
norm ∥ · ∥ and let RN

+ denote the non-negative orthant. Let 0 = [0, . . . , 0]⊤ and 1 = [1, . . . , 1]⊤

respectively denote the vectors of zeros and ones, whose dimensions should be clear from context.

Let RN×K denote the set of N ×K real-valued matrices. Let ∥ · ∥F denote the Frobenius norm and
∥ · ∥op denote the operator norm. Let O(N) denote the set of N ×N orthogonal matrices. Let SN
(resp. SN++) denote the set of N ×N symmetric (resp. positive definite) matrices. Let IN denote the
N ×N identity matrix.

Given vectors u,v ∈ RN , let u◦v = [u1v1, . . . , uNvN ]⊤ ∈ RN denote the Hadamard (elementwise)
product of u and v. Let diag(u) denote the N ×N diagonal matrix whose (i, i)th entry is ui. Given
a matrix M ∈ RN×N , we also let diag(M) denote the N -dimensional vector whose ith entry is Mii.

B Calculation details

B.1 Minimum of the objective

Here we show that the minimum of fc, defined in equation 2, is achieved at Mc = C
1/2
ss (c).

Differentiating fc(M) with respect to M yields

∇Mfc(M) = −M−1Css(c)M
−1 + IN . (10)

Setting the gradient to zero and solving for M yields M = C
1/2
ss (c). Substituting into fc yields

fc(Mc) = Tr(M
−1/2
c Css(c) +Mc) = 2Tr(Mc).

13



B.2 Adding neural responses

Here we show that equation 4 holds. First, note that the trace term in equation 4 is strictly concave
with respect to r (assuming M is positive definite) and setting the derivative equal to zero yields

2s− 2Mr = 0.

Therefore, the maximum in equation 4 is achieved at r = M−1s. Substituting into equation 4 with
this form for r, we get

Es∼p(s|c)

[
max
r∈RN

Tr
(
2rs⊤ −Mrr⊤ +M

)]
= Es∼p(s|c)

[
Tr
(
M−1ss⊤ +M

)]
= Tr

(
M−1Css(c) +M

)
= fc(M),

where the second equality uses the linearity of the expectation and trace operators as well as the
formula Css(c) := Es∼p(s|c)[ss

⊤]. This completes the proof that equation 4 holds. Next, using this
expression for fc, we have

fc
(
αIN +Wdiag(g)W⊤) = Es∼p(s|c)

[
max
r∈RN

Tr
(
2rs⊤ − αrr⊤ −Wdiag(g)W⊤rr⊤

)]
+ αN +Tr(Wdiag(g)W⊤)

= Es∼p(s|c)

[
max
r∈RN

ℓ(W,g, r, s)

]
+ αN.

Substituting into equation 3 and dropping the constant αN term results in equation 5.

C Offline multi-timescale adaptive whitening algorithm

We consider an algorithm where we directly optimize the objective in equation 3. In this case, we
assume that the input to the algorithm is a sequence of covariance matrices Css(1),Css(2), . . . .
Within each context c = 1, 2, . . . , we take J ≥ 1 concurrent gradient descent steps with respect to g
and W:

∆g = ηgdiag
[
W⊤∇Mfc(αIN +Wdiag(g)W⊤)W

]
,

∆W = ηw∇Mfc(αIN +Wdiag(g)W⊤)Wdiag(g),

where we assume ηg ≫ ηw > 0 as in Algorithm 1 and the gradient of fc(M) with respect to M is
given in equation 10. These updates for g and W can also be obtained by averaging the corresponding
updates in equations 7 and 8 over the conditional distribution p(s|c). This results in Algorithm 2.

Algorithm 2: Offline multi-timescale adaptive whitening
1: Input: Covariance matrices Css(1),Css(2), . . .
2: Initialize: W ∈ RN×K ; g ∈ RK ; α ≥ 0; J ≥ 1; ηg ≫ ηw > 0
3: for c = 1, 2, . . . do
4: for j = 1, . . . , J do
5: M← αIN +Wdiag(g)W⊤

6: g← g + ηgdiag[W⊤∇Mfc(M)W]
7: W←W + 2ηw∇Mfc(M)Wdiag(g)
8: end for
9: end for

D Adaptive whitening of natural images

In this section, we elaborate on the converged structure of WT using natural image patches. To better
visualize the relationship between the learned columns of W and sinusoidal basis functions (e.g.
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Figure 5: Control experiment accompanying Sec. 5.2. A) WT learned from natural image patches.
B) Basis vectors from A displayed as line plots, compared to the 1D DCT, and principal components
of Ec∼p(c)[Css(c)]. C) Control condition. WT learned from spectrally-matched image patches with
random eigenvectors.

DCT), we focus on 1-dimensional image patches (rows of pixels). The results are similar with 2D
image patches.

It is well known that eigenvectors of natural images are well-approximated by sinusoidal basis
functions [e.g. the DCT; 34; 35]. Using the same images from the main text [33], we generated 56
contexts by sampling 16× 1 pixel patches from separate images, with 2E4 samples each. We train
Algorithm 2 with K = N = 16, ηw = 5E−2, and random W0 ∈ O(16) on a training set of X of
the images, presented uniformly at random T = 1E5 times. Fig 5A,B shows that WT approximates
the principal components of the aggregated context-dependent covariance, Ec∼p(c)[Css(c)], which
are closely aligned with the DCT. To show that this structure is inherent in the spatial statistics of
natural images, we generated control contexts, Css(c), by forming covariance matrices with matching
eigenspectra, but each with random and distinct eigenvectors. This destroys the structure induced by
natural image statistics. Consequently, the learned vectors in WT are no longer sinusoidal (Fig 5C).
As a result, whitening error with WT is much higher on the training set, with 0.3± 0.02 error (mean
± standard error over 10 random initializations; Eq. 9) on natural image contexts and 2.7± 0.1 on
the control contexts. While for the natural images, a basis approximating the DCT was sufficient to
adaptively whiten all contexts in the ensemble, this is not the case for the generated control contexts.

Finally, we find that as K increases from K = 1 to K = 16, the basis vectors in WT progressively
learn higher frequency components of the DCT (Fig. 6). This is a sensible solution, due to the
ℓ2 reconstruction error of our objective, and the 1/f spectral content of natural image statistics.
With more flexibility, as K increases past N (i.e. the overcomplete regime), the network continues
to improve its whitening error (Fig. 7A) by learning a basis, WT , that can account for within-
context information that is insufficiently captured by the DCT (Fig. 7B). Taken together, our model
successfully learns a basis WT that exploits the spatial structure present in natural images.

E Modifications for increased biological realism

In this section, we modify Algorithm 1 to be more biologically realistic.

E.1 Enforcing unit norm basis vectors

In our algorithm, there is no constraint on the magnitude of the column vectors of W. We can enforce
a unit norm (here measured using the Euclidean norm) constraint by adding Lagrange multipliers to
the objective in equation 3:

min
W∈RN×K

max
m∈RK

Ec∼p(c)

[
min
g∈RK

Es∼p(s|c) [g (W,g, r, s)]

]
, (11)
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Figure 6: As K increases, columns of W progressively learn higher frequency components of the
DCT.

Figure 7: A) Error on training and test set as a function of K. B) In the overcomplete regime, the
network learns basis vectors WT that further improve the error compared with the K ≤ N regime.

where

g(W,g, r, s) = ℓ(W,g, r, s) +

K∑
i=1

mi(∥wi∥2 − 1).

Taking partial derivatives with respect to wi and mi results in the updates:

∆wi = ηw(nir− (gi +mi)wi)

∆mi = ∥wi∥2 − 1.

Furthermore, since the weights are constrained to have unit norm, we can replace ∥wi∥2 with 1 in
the gain update:

∆gi = ηg(z
2
i − 1).

E.2 Decoupling the feedforward and feedback weights

We replace the primary neuron-to-interneuron weight matrix W⊤ (resp. interneuron-to-primary
neuron weight matrix −W) with Wrn (resp. −Wnr). In this case, the update rules are

Wrn ←Wrn + ηw
(
ntr

⊤
t − diag(g +m)Wrn

)
Wnr ←Wnr + ηw

(
rtn

⊤
t −Wnrdiag(g +m)

)
.
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Figure 8: With stricter constraints on biological realism (Algorithm 3), the model succeeds to whiten
synthetic data setup from Section 5.1 when the column vectors of V are chosen to be nonnegative. A)
Error decreases as training progresses. B) Online algorithm performance before and after training. C)
The learned basis (row vectors of Wnr after learning, red) is well-aligned with the generative basis
(dashed black) compared to initialization (row vectors of Wnr at initialization, blue). D) Asymmetric
feedforward weights, Wrn, and feedback weights, −Wnr, converge to being symmetric.

Let Wrn,t and Wnr,t denote the values of the weights Wrn and Wnr, respectively, after t = 0, 1, . . .
iterates. Then for all t = 0, 1, . . . ,

W⊤
rn,t −Wnr,t =

(
W⊤

rn,0 −Wnr,0

)
(IN − ηwdiag(g +m))

t
.

Thus, if gi +mi ∈ (0, 2η−1
w ) for all i (e.g., by enforcing non-negative gi,mi and choosing ηw > 0

sufficiently small), then the difference decays exponentially in t and the feedforward and feedback
weights are asymptotically symmetric. This result is similar to that of Kolen and Pollack [64], where
the authors trained a network with weight decay to show that weight symmetry naturally arises to
induce bidirectional function synchronization during learning.

E.3 Sign-constraining the synaptic weights and gains

The synaptic weight matrix W and gains vector g are not sign-constrained in Algorithm 1, which is
not consistent with biological evidence. We can modify the algorithm to enforce the sign constraints
by rectifying the weights and gains at each step. Here [·]+ denote the elementwise rectification
operation. This results in the updates

g← [g + ηg(z ◦ z− 1)]+

Wrn ←
[
Wrn + ηw

(
ntr

⊤
t − diag(g +m)Wrn

)]
+

Wnr ←
[
Wnr + ηw

(
rtn

⊤
t −Wnrdiag(g +m)

)]
+
.

E.4 Online algorithm with improved biological realism

Combining these modifications yields our more biologically realistic multi-timescale online algorithm,
Algorithm 3.
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Algorithm 3: Biologically realistic multi-timescale adaptive whitening

1: Input: s1, s2, · · · ∈ RN

2: Initialize: Wnr ∈ RN×K
+ ; Wrn ∈ RK×N

+ ; m,g ∈ RK
+ ; ηr, ηm > 0; ηg ≫ ηw > 0

3: for t = 1, 2, . . . do
4: rt ← 0
5: while not converged do
6: zt ←Wrnrt ; // interneuron inputs
7: nt ← g ◦ zt ; // gain-modulated interneuron outputs
8: rt ← rt + ηr (st −Wnrnt − αrt) ; // recurrent neural dynamics
9: end while

10: m← [m+ ηm(diag(WrnWnr)− 1)]+ ; // weight normalization update
11: g← [g + ηg (zt ◦ zt − 1)]+ ; // gains update
12: Wrn ←

[
Wrn + ηw

(
ntr

⊤
t − diag(g +m)Wrn

)]
+

; // synaptic weights update
13: Wnr ←

[
Wnr + ηw

(
rtn

⊤
t −Wnrdiag(g +m)

)]
+

14: end for

We test Algorithm 3 on a similar synthetic data setup to what was used in section 5.1, except that we
sample the column vectors of V from the intersection of the unit circle with the nonnegative quadrant,
Figure 8.
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