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Abstract
The performance of objective image quality assessment (IQA) models has been evaluated primarily by comparing model
predictions to human quality judgments. Perceptual datasets gathered for this purpose have provided useful benchmarks
for improving IQA methods, but their heavy use creates a risk of overfitting. Here, we perform a large-scale comparison
of IQA models in terms of their use as objectives for the optimization of image processing algorithms. Specifically, we
use eleven full-reference IQA models to train deep neural networks for four low-level vision tasks: denoising, deblurring,
super-resolution, and compression. Subjective testing on the optimized images allows us to rank the competing models in
terms of their perceptual performance, elucidate their relative advantages and disadvantages in these tasks, and propose a set
of desirable properties for incorporation into future IQA models.

Keywords Image quality assessment · Perceptual optimization · Performance evaluation

1 Introduction

The goal of objective image quality assessment (IQA) is the
construction of computational models that predict the per-
ceived quality of visual images. IQA models are generally
classified according to their reliance on the availability of an
original reference image. Full-reference methods compare a
distorted image to the complete reference image, reduced-
reference methods require only partial information about the
reference image, and no-reference (or blind) methods oper-
ate solely on the distorted image. The standard paradigm for
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testing IQA models is to compare them to human quality
ratings of distorted images, which have been made avail-
able in datasets such as LIVE (Sheikh et al. 2006) and
TID2013 (Ponomarenko et al. 2015). However, excessive
reuse of these test sets during IQA model development may
lead to overfitting, and as a consequence, poor generalization
to images corrupted by distortions that are not present in the
test sets (see Table 4).

A highly promising but relatively under-studied applica-
tion of IQA measures is to use them as objectives for the
design and optimization of new image processing algorithms.
The parameters of image processing methods are usually
adjusted tominimize themean squared error (MSE), the sim-
plest of all fidelity metrics, despite the fact that it has been
widely criticised for its poor correlation with human percep-
tion of image quality (Girod 1993). Early attempts at per-
ceptual optimization using the structural similarity (SSIM)
index (Wang et al. 2004) in place ofMSEachieved perceptual
gains in applications of image restoration (Channappayya
et al. 2008), wireless video streaming (Vukadinovic and
Karlsson 2009), video coding (Wang et al. 2011), and image
synthesis (Snell et al. 2017). A recent publication used per-
ceptual measures based on pre-trained deep neural networks
(DNNs) for optimization of super-resolution results (John-
son et al. 2016), although these have not been tested against
human judgments.
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In this paper, we systematically evaluate a large set of
full-reference IQA models in the context of perceptual opti-
mization. To determine their suitability for optimization, we
first test the models on recovering a reference image from
a given initialization by optimizing the model-reported dis-
tance to the reference. For many IQA methods, we find
that the optimization does not converge to the reference
image, and can generate severe distortions. These optima
are either local, or global but non-unique. We select eleven
optimization-suitable IQA models as perceptual objectives,
and use them to optimize DNNs for four low-level vision
tasks-image denoising, blind image deblurring, single image
super-resolution, and lossy image compression. Extensive
human perceptual tests on the optimized images reveal the
relative performance of the competing models. Moreover,
inspection of their visual failures indicates limitations in
model design, providing guidance for the development of
future IQA models.

2 Taxonomy of Full-Reference IQAModels

Full-reference IQA methods can be broadly classified into
five categories:

– Error visibilitymethods apply a distancemeasure directly
to pixels (e.g.,MSE), or to transformed representations of
the images. TheMSE in particular possesses useful prop-
erties for optimization (e.g., differentiability and con-
vexity), and when combined with linear-algebraic tools,
analytical solutions can often be obtained. For exam-
ple, the classical solution to the MSE-optimal denoising
problem (assuming a translation-invariant Gaussian sig-
nal model) is the Wiener filter (Wiener 1950). Given that
MSE in the pixel domain is poorly correlated with per-
ceived image quality, many IQA models operate by first
mapping images to more perceptually appropriate rep-
resentations (Safranek and Johnston 1989; Daly 1992;
Lubin 1993; Watson 1993; Teo and Heeger 1994; Wat-
son et al. 1997; Larson and Chandler 2010; Laparra et al.
2016), and measuring MSE within that space.

– Structural similarity (SSIM) methods are constructed to
measure the similarity of local image “structures”, often
using correlation measures. The prototype is the SSIM
index (Wang et al. 2004),which combines similaritymea-
sures of three conceptually independent components—
luminance, contrast and structure. It has become a de
facto standard in the field of perceptual image pro-
cessing, and provided a prototype for subsequent IQA
models based on feature similarity (Zhang et al. 2011),
gradient similarity (Liu et al. 2012a), edge strength simi-
larity (Zhang et al. 2013), and saliency similarity (Zhang
et al. 2014).

– Information-theoretic methods measure some approxi-
mation of the mutual information between the perceived
reference and distorted images. Statistical modeling of
the image source, the distortion process, and the human
visual system (HVS) is critical in algorithmdevelopment.
A prototypical example is the visual information fidelity
(VIF) measure (Sheikh and Bovik 2006).

– Learning-based methods learn a metric from a training
set of images and corresponding perceptual distances
using supervised machine learning methods. By lever-
aging the power of DNNs, these methods have achieved
state-of-the-art performance on existing image quality
databases (Bosse et al. 2018; Prashnani et al. 2018). But
given the high dimensionality of the input space (i.e.,
millions of pixels), these methods are prone to overfitting
the limited available data. Strategies that compensate for
the insufficiency of labeled training data include build-
ing on pre-trained networks (Zhang et al. 2018; Ding
et al. 2020), training on local image patches (Bosse et al.
2018), and combining multiple IQA databases (Zhang
et al. 2019b).

– Fusion-based methods combine existing IQA methods
to build a “super-evaluator” that exploits the diversity
and complementarity of their constituentmethods (analo-
gous to “boosting”methods inmachine learning). Fusion
combinations can be determined empirically (Ye et al.
2014) or learned from data (Liu et al. 2012b; Ma et al.
2019). Somemethods incorporate deterministic or statis-
tical image priors to regularize an IQA measure (Jordan
1881; Ulyanov et al. 2018). Since such regularizers can
be seen as a form of no-reference IQA measures (Wang
and Bovik 2011), we also view these as fusion solutions.

3 Screening of Full-Reference IQAModels for
Perceptual Optimization

We used a naïve task to demonstrate the issues encountered
when using IQA models in gradient-based perceptual opti-
mization. This task also allows us to pre-screen existing
models, and to motivate the design of experiments used in
subsequent comparisons.

3.1 Reference Image Recovery

Given a reference (undistorted) image x and an initial image
y0, we aimed to recover x by numerically optimizing

y� = argmin
y

D(x, y), (1)

where D denotes a full-reference IQA measure with a lower
score indicating higher predicted quality, and y� is the recov-

123



International Journal of Computer Vision

(a) Initialization (b) MS-SSIM (c) IFC (d) VIF (e) CW-SSIM (f) MAD

(g) FSIM (h) SFF (i) PAMSE (j) GMSD (k) VSI (l) MCSD

(m) NLPD (n) GTI-CNN (o) DeepIQA (p) PieAPP (q) LPIPS (r) DISTS

Fig. 1 Reference image recovery test. Starting from (a) a white Gaussian noise image, we recover images by optimizing the predicted quality
relative to a reference image, using different IQA models (b)–(r)

ered image. For example, if D is MSE, the (trivial) analytical
solution is y� = x , indicating full recoverability. The major-
ity of current IQA models are continuous and differentiable,
and solutions must be obtained numerically using gradient-
based iterative solvers. We considered an initial set of 17
methods, which we believe cover the full spectrum of full-
reference IQA methods. These include three error visibility
methods—MAD (Larson and Chandler 2010), PAMSE (Xue
et al. 2013) and NLPD (Laparra et al. 2016), seven struc-
tural similarity methods—MS-SSIM (Wang et al. 2003),
CW-SSIM (Wang and Simoncelli 2005), FSIM (Zhang et al.
2011), SFF (Chang et al. 2013), GMSD (Xue et al. 2014)
and VSI (Zhang et al. 2014), MCSD (Wang et al. 2016), two
information-theoretical methods—IFC (Sheikh et al. 2005)
and VIF (Sheikh and Bovik 2006), and five DNNmethods—
GTI-CNN (Ma et al. 2018), DeepIQA (Bosse et al. 2018),
PieAPP (Prashnani et al. 2018), LPIPS (Zhang et al. 2018)
and DISTS (Ding et al. 2020). As this paper focuses on the
perceptual optimization performance of individual IQAmea-
sures, fusion-based methods are not included.

Figures 1 and 2 show recovery results from two different
initializations—a white Gaussian noise image and a JPEG-
compressed version of a reference image, respectively. For
all IQAmethods, the optimization converges to a final image
with a substantially better score than that of the initial image.
Models based on injective mappings such as MS-SSIM,

PAMSE, NLPD and DISTS are able to recover the refer-
ence image (although the rate of convergence may depend
on the choice of initial image). Many of the remaining IQA
models generate a final image with worse visual quality than
that of the initial image (e.g., compare Fig. 2(a) with (o) or
(p)), often with noticeable model-dependent artifacts. This
is because these methods rely on surjective mapping func-
tions to transform the images to a reduced “perceptual” space
for quality computation. For example, GTI-CNN (Ma et al.
2018) uses a surjective DNN with four stages of convolu-
tion, subsampling, and halfwave rectification. The resulting
undercomplete representation is optimized for geometric
transformation invariance, at the cost of significant infor-
mation loss. The examples demonstrate that preservation of
some aspects of this lost information is important for per-
ceptual quality. Similar arguments can be applied to other
surjectiveDNN-based IQAmodels, such asDeepIQA (Bosse
et al. 2018) and PieAPP (Prashnani et al. 2018). Gener-
ally, optimization guided by the surjectivemodels “recovers”
more structureswhen initializedwith the JPEG image (which
provides roughly correct local luminances), as compared to
initialization with purely white Gaussian noise.
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(a) Initialization (b) MS-SSIM (c) IFC (d) VIF (e) CW-SSIM (f) MAD

(g) FSIM (h) SFF (i) PAMSE (j) GMSD (k) VSI (l) MCSD

(m) NLPD (n) GTI-CNN (o) DeepIQA (p) PieAPP (q) LPIPS (r) DISTS

Fig. 2 Reference image recovery test. Staring from (a) a JPEG compressed version of a reference image, we recover images by optimizing the
predicted quality relative to the reference image, using different IQA models (b)–(r)

3.2 IQAModel Selection

The reference image recovery test results were used to pre-
screen the initial set of IQA models, excluding those that
perform poorly (due to surjectivity). In addition, we excluded
models with similar designs. This process yielded 11 full-
reference IQA models to be compared in our human subject
evaluations:

1. MAE, the Mean Absolute Error (�1-norm) of pixel val-
ues, has been frequently adopted in optimization, despite
its poor perceptual relevance. MAE has been shown to
consistently outperformMSE (�2-norm) in image restora-
tion tasks (Zhao et al. 2016).

2. MS-SSIM (Wang et al. 2003), the Multi-Scale extension
of the SSIM index (Wang et al. 2004), provides more exi-
bility than single-scale SSIM, allowing for a wider range
of viewing distances. It decomposes the input images into
Gaussian pyramids (Burt and Adelson 1983), and com-
putes contrast and structure similarities at each scale and
luminance similarity at the coarsest scale only. MS-SSIM
has become a standard “perceptual” quality measure, and
has been used to guide the design of DNN-based image
super-resolution (Zhao et al. 2016; Snell et al. 2017) and
compression (Ballé et al. 2018) algorithms.

3. VIF (Sheikh and Bovik 2006), the Visual Information
Fidelity measure, quantifies how much information from
the reference image is preserved in the distorted image.
A Gaussian scale mixture (Portilla et al. 2003) is used
as a source model to summarize natural image statistics,
andmutual information is estimated assuming only signal
attenuation and additive noise perturbations. A distinct
property of VIF relative to other IQAmodels is that it can
handle cases in which the “distorted” image is visually
superior to the reference (Wang et al. 2015).

4. CW-SSIM (Wang and Simoncelli 2005), the Complex
Wavelet SSIM index, is designed to be robust to small
geometric distortions such as translation and rotation.
The construction allows for consistent local phase shifts
of wavelet coefficients, which preserves image features.
CW-SSIM addresses a common limitation of IQA meth-
ods that require precise spatial registration of the reference
and distorted images.

5. MAD (Larson and Chandler 2010), the Most Apparent
Distortion measure, explicitly models adaptive strate-
gies of the HVS. Specifically, a detection-based strat-
egy considering local luminance and contrast mask-
ing is employed for near-threshold distortions, and an
appearance-based strategy involving local spatial-freque-
ncy statistics is activated for supra-threshold distortions.
The two strategies are combined by a weighted geomet-
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ric mean, where the weight is determined based on the
amount of distortion.

6. FSIM (Zhang et al. 2011), the Feature SIMilarity index,
assumes that HVS understands an image mainly accord-
ing to its low-level features. It computes quality estimates
based on phase congruency (Kovesi 1999) as the primary
feature, and incorporates the gradient magnitude as the
complementary feature. Moreover, the phase congruency
component serves as a local weighting factor to derive an
overall quality score. FSIM also supplies a color version
by making quality measurements from chromatic compo-
nents.

7. GMSD (Xue et al. 2014), the Gradient Magnitude Sim-
ilarity Deviation, focuses on computational efficiency of
quality prediction, by simply computing pixel-wise gradi-
ent magnitude similarity followed by standard deviation
(std) pooling. This pooling strategy is, however, prob-
lematic because an image with large but constant local
distortion yields an std of zero (indicating the best pre-
dicted quality).

8. VSI (Zhang et al. 2014), the Visual Saliency Induced
quality index, assumes that the change of salient regions
due to image degradation is closely related to the change
of visual quality. The saliency map is used not only as a
quality feature, but also as a weighting function to char-
acterize the importance of a local region. By combining
saliency magnitude, gradient magnitude and chromatic
features, VSI demonstrates good quality prediction per-
formance, especially for localized distortions, such as
local patch substitution (Ponomarenko et al. 2015).

9. NLPD (Laparra et al. 2016), the Normalized Laplacian
Pyramid Distance, mimics the nonlinear transformations
of the early visual system: local luminance subtrac-
tion and local gain control, and combines these values
using weighted �p-norms. The parameters are optimized
to minimize the representation redundancies, instead of
matching human judgments. NLPD has been successfully
employed to optimize image rendering algorithms (Ma
et al. 2015; Laparra et al. 2017), where the input refer-
ence image has a much higher dynamic range than that of
the display. It has also been used to optimize a compres-
sion system (Ballé et al. 2016).

10. LPIPS (Zhang et al. 2018), the Learned Perceptual Image
Patch Similarity model, computes the Euclidean distance
between deep representations of two images. The authors
showed that feature maps of different DNN architectures
have “reasonable” effectiveness in accounting for human
perception of image quality. As LPIPS has many differ-
ent configurations, we chose the default one based on the
VGG network (Simonyan and Zisserman 2015) with the
weights learned from the BAPPS dataset (Zhang et al.
2018). VGG-based LPIPS can be seen as a generalization
of the “perceptual loss” (Johnson et al. 2016), which com-

putes the Euclidean distance on convolution responses
from one stage of VGG.

11. DISTS (Ding et al. 2020), the Deep Image Structure and
Texture Similaritymetric, is explicitly designed to tolerate
texture resampling (e.g., replacing one patch of grass with
another).DISTS is based on an injectivemapping function
built from a variant of the VGG network, and combines
SSIM-like structure and texture similarity measurements
between corresponding feature maps of the two images.
It is sensitive to structural distortions but at the same time
robust to texture resampling and modest geometric trans-
formations.

We re-implemented all 11of thesemodels usingPyTorch,1

and verified that our code could reproduce the published
performance results for each model on the LIVE (Sheikh
et al. 2006), CSIQ (Larson and Chandler 2010), and
TID2013 (Ponomarenko et al. 2015) databases (see Table 2
in “Appendix 1”). We modified grayscale-only models to
accept color images, by computing scores on RGB channels
separately and averaging them to obtain an overall quality
estimate.

4 Perceptual Optimization of Standard
Image Processing Tasks

We used each of the 11 full-reference IQA models to guide
the learning of DNNs to solve four low-level vision tasks:

– image denoising,
– blind image deblurring,
– single image super-resolution,
– lossy image compression.

Theparameters of eachnetwork are optimized tominimize an
IQAmeasure over a database of corrupted and original image
pairs via stochastic gradient descent. Implementations of all
IQAmodels, as well as theDNNs for the four tasks, are avail-
able at https://github.com/dingkeyan93/IQA-optimization.

4.1 Image Denoising

Image denoising is a core application of classical image
processing, and also plays an essential role in testing prior
models of natural images. In its simplest form, one aims to
recover an unknown clean image x ∈ R

N from an observed
image y that has been corrupted by additive white Gaussian
noisen of knownvarianceσ 2, i.e., y = x+n.Denoising algo-
rithms can be roughly classified into spatial domain methods

1 https://pytorch.org.
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Fig. 3 Network architecture used for denoising and deblurring. In addi-
tion to initial and final convolutional blocks, it contains 16 residual
blocks, each consisting of two convolutions and a halfwave rectifier

(ReLU). Conv h × w × cin × cout indicates affine convolution with
filter size h×w, over cin input channels, producing cout output channels

Fig. 4 Network architecture
used for super-resolution,
containing 16 residual blocks
followed by two upsampling
modules, each composed of an
upsampler (factor of 2, using
nearest-neighbor interpolation)
and a convolution

Fig. 5 Network architecture used for lossy image compression, which
includes an analysis transformation fa , a quantizer Q, and a synthesis
transformation fs . fa is comprised of n blocks, each with a convolu-
tion and downsampling (stride) by 2 followed by two residual blocks.

After the last block, another convolution layer withm filters is added to
produce the internal code representation, the values of which are then
quantized by Q. fs consists of a cascade that is mirror-symmetric to fa ,
with nearest-neighbor interpolation used to upsample the feature maps

[e.g., Wiener filter (Wiener 1950), bilateral filter (Tomasi
andManduchi 1998) and collaborative filtering (Dabov et al.
2007)], and wavelet transform methods (Donoho and John-
stone 1995; Simoncelli and Adelson 1996; Portilla et al.
2003). Adaptive sparsifying transforms (Elad and Aharon
2006) and variants of nonlinear shrinkage functions have also
been directly learned from natural image data (Hel-Or and
Shaked 2008; Raphan and Simoncelli 2008). In recent years,
purely data-driven models based on DNNs have achieved
state-of-the-art levels of performance (Zhang et al. 2017).

Here, we constructed a simplified DNN, shown in Fig. 3,
inspired by theEDSRnetwork (Limet al. 2017). The network
was trained to estimate the noise (which is then subtracted
from the observation to yield a denoised image), by mini-

mizing a loss function defined as

�(φ) = D
(
y − fφ(y), x

)
, (2)

where D is an IQA measure and fφ : R
N �→ R

N is the
mapping of the DNN, parameterized by vector φ.

4.2 Blind Image Deblurring

The goal of image deblurring is to restore a sharp image x
from a blurry observation y, which can occur due to defocus
and motion of the camera, and motion of objects in a scene.
The observation process is usually described by

y = Kx + n, (3)
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where K ∈ R
N×N denotes a spatially-varying linear ker-

nel. Blind deblurring refers to the problem in which the blur
kernel is unknown. Most early methods, e.g., the classical
Lucy–Richardson algorithm (Richardson 1972; Lucy 1974),
focused on non-blind deblurring where the blur kernel is
assumed known. Successful blind deblurring methods, such
as (Fergus et al. 2006; Pan et al. 2016), rely heavily on
statistical priors of natural images and geometric priors of
blur kernels. With the success of deep learning, many DNN-
based approaches (Tao et al. 2018;Kupyn et al. 2018) attempt
to directly learn the mapping function for blind deblurring
without explicitly estimating the blur kernel. Here we also
adopted this “kernel-free” approach to train aDNN for image
deblurring in an end-to-end fashion. We employed the same
network architecture used in denoising (see Fig. 3) with the
same loss function (Eq. (2)).

4.3 Single Image Super-Resolution

Single image super-resolution aims to enhance the resolution
and quality of a low-resolution image,which can bemodelled
by

y = PK x + n, (4)

where P denotes downsampling by a factor of β. This is an
ill-posed problem, as downsampling is a projection onto a
lower-dimensional subspace, and its solution must rely on
some form of regularization or prior model. Early attempts
exploited sampling theory (Li and Orchard 2001) or natural
image statistics (Sun et al. 2008). Later methods focused on
learning mapping functions between the low-resolution and
high-resolution images through sparse coding (Yang et al.
2010), locally linear regression (Timofte et al. 2013), self-
exemplars (Huang et al. 2015), etc. Since 2014, DNN-based
methods have come to dominate this field as well (Dong et al.
2014). An efficient method of constructing a DNN-based
mapping is to first extract features from the low-resolution
input and then upscale them with sub-pixel convolution (Shi
et al. 2016; Lim et al. 2017). Here, we followed this method

in constructing a DNN-based function f : R
⌊

N
β2

⌋

�→ R
N ,

with architecture specified in Fig. 4. The loss is specified by

�(φ) = D
(
fφ(y), x

)
. (5)

4.4 Lossy Image Compression

Data compression involves finding a more compact data
representation from which the original image can be recon-
structed.Compression can be either lossless or lossy.Herewe
followed a prevailing scheme in lossy image compression—
transform coding, which consists of transformation, quanti-

Fig. 6 Test images (from the validation set of DIV2K) used in the
subjective experiment

zation, and entropy coding. Traditional image compression
methods (e.g., the most widely used standard—JPEG) used
a fixed linear transform for all bit rates. More recently, many
researchers have demonstrated the visual benefits of nonlin-
ear transforms, especiallyDNN-based learnable ones that are
capable of adapting their parameters to different bitrate bud-
gets. In this paper, we constructed two DNNs for analysis
and synthesis transforms, respectively, as shown in Fig. 5.
The analysis transform fa maps the image to a latent feature
vector z, whose values are then quantized to L levels with the
centers being {c1, . . . , cL}, where ci ∈ R for i = 1, . . . , L .
This quantized representation z̄ = Q( fa(x)), is fed to
the synthesis transform fs to reconstruct the compressed
image: y = fs(z̄). The quantizer has zero gradients almost
everywhere (and infinite gradients at the transitions), which
prevents training via gradient descent (Ballé et al. 2017).
Hence, we used a soft differentiable approximation (Mentzer
et al. 2018)

z̄i = Q(zi ) =
L∑

j=1

exp
(−s(zi − c j )2

)

∑L
k=1 exp

(−s(zi − ck)2
)c j (6)

to backpropagate gradients during training, where the scale
parameter s controls the degree to which Q(·) approximates
quantization.

123



International Journal of Computer Vision

MAE

MS-SSIM VIF

CW
-SSIM

MAD
FSIM

GMSD VSI
NLPD

LPIPS
DISTS

MAE

MS-SSIM

VIF

CW-SSIM

MAD

FSIM

GMSD

VSI

NLPD

LPIPS

DISTS

1

2

4

3

5

7

6

8

2

1

5

4

6

3

7

8

2

3

1

6

5

7

8

4

3

4

1

5

8

2

6

7

5

3

2

1

4

8

6

7

4

3

5

1

2

8

6

7

4

2

7

5

3

1

6

8

4

3

8

5

2

1

7

6

2

3

5

4

6

7

1

8

2

3

6

4

8

7

1

5

7

6

4

2

5

8

3

1

10

11

9

11

10

9

11

9

10

11

10

9

11

10

9

11

9

10

11

9

10

10

11

9

11

10

9

10

11

9

11

10

9

(a) Denoising

MAE

MS-SSIM VIF

CW
-SSIM

MAD
FSIM

GMSD VSI
NLPD

LPIPS
DISTS

MAE

MS-SSIM

VIF

CW-SSIM

MAD

FSIM

GMSD

VSI

NLPD

LPIPS

DISTS

2

4

3

7

6

5

1

8

3

1

2

4

7

5

6

8

8

1

6

4

5

7

2

3

8

7

1

2

5

6

3

4

7

5

1

4

8

6

2

3

8

7

5

1

6

2

3

4

7

8

4

3

1

2

5

6

8

7

5

2

4

1

3

6

2

4

3

7

8

5

1

6

8

5

4

3

7

6

1

2

6

5

4

3

8

7

2

1

11

10

9

11

10

9

9

11

10

11

10

9

9

11

10

9

11

10

10

11

9

10

11

9

11

10

9

10

11

9

10

9

11

(b) Deblurring

MAE

MS-SSIM VIF

CW
-SSIM

MAD
FSIM

GMSD VSI
NLPD

LPIPS
DISTS

MAE

MS-SSIM

VIF

CW-SSIM

MAD

FSIM

GMSD

VSI

NLPD

LPIPS

DISTS

1

3

8

4

6

2

5

7

2

1

4

8

7

3

5

6

3

4

1

5

8

2

6

7

4

5

1

2

8

3

7

6

5

4

1

8

7

6

2

3

5

3

7

1

2

6

4

8

3

2

6

7

1

5

4

8

8

4

6

2

5

1

3

7

2

3

5

4

8

1

6

7

6

3

4

8

7

5

1

2

7

6

3

4

5

8

2

1

11

9

10

11

9

10

11

10

9

11

9

10

11

10

9

10

11

9

11

10

9

10

11

9

11

10

9

11

10

9

11

10

9

(c) Super-resolution
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(d) Compression

Fig. 7 Objective ranking of the final results in the four tasks. Vertical axis indicates IQA models used to train the networks, and horizontal axis
indicates IQA models used to evaluate performance. The numbers of 1–11 indicate the rank order from the best to the worst

In lossy image compression, the objective function is a
weighted sum of two terms that quantify the coding cost and
the reconstruction error, respectively:

� = λH [z̄] + E[D(y, x)]. (7)

The first term is typically the entropy of the discrete codes
z̄, which provides a lower bound on the bitrate for transmit-
ting the quantized coefficients (Shannon 1948). The second
term is the distortion between the reconstructed image y
and the original image x , as quantified by the full-reference
IQA model D. The Lagrange multiplier λ controls the rate-
distortion trade-off. Due to substantially different scales of
IQA model values, λ should be adjusted for each model
in order to enable fair comparison at similar bitrates, an
extremely time-intensive process. To avoid this, follow-
ing Agustsson et al. (2019), we set λ = 0 in Eq. (7), and

controlled an upper bound on bitrate

H(z̄) ≤ dim(z̄) log2(L) (8)

by adjusting the architecture of fs (i.e., the dimension of z̄)
and the number of quantization levels L in Q. This elimi-
nation of the entropy from the objective also means that we
did not need to continually re-estimate the probability mass
function P(z̄), which varies with changes in the network
parameters. The optimization objective in Eq. (7) is reduced
to

�(φ,ψ) = E

[
D

(
fs,ψ

(
Q

(
fa,φ(x)

))
, x

)]
, (9)

where φ and ψ are the parameters of fa and fs , respectively.
The expectation is approximated by averaging over mini-
batches of training images.
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Fig. 8 Customized graphical user interface for subjective testing

MS-SSIM   MAE   MAD   LPIPS   DISTS   NLPD   CW-SSIM   VSI   VIF   FSIM   GMSD
0.70             0.65        0.45         0.45           0.39          0.37              0.36          -0.44    -0.51     -0.58        -2.04

DISTS   LPIPS   MAD   MS-SSIM   MAE   CW-SSIM   VIF   NLPD   FSIM   VSI   GMSD
3.23           3.10         0.48             0.32            0.20              0.16          -0.79      -0.94        -1.54     -1.73       -2.75

(a)

(b)

(c)

(d)

DISTS   LPIPS   MS-SSIM   MAE   NLPD   MAD   FSIM   VIF   VSI   GMSD   CW-SSIM
2.50          1.88              1.20            1.02         0.65         0.53 -0.70      -1.37    -1.81       -1.85             -2.04

DISTS   LPIPS   MS-SSIM   MAE   MAD   NLPD   FSIM   VIF   VSI   GMSD   CW-SSIM
2.61          2.35              1.58            1.53        0.68         0.29         -0.37      -1.64    -2.00 -2.06             -4.26

Fig. 9 Subjective ranking of the final results in the four tasks, based
on human opinion scores. (a) Denoising, (b) deblurring, (c) super-
resolution, (d) compression. The optimization performance of IQA

models is ranked in the descending order from left to right. Below
each model is the global ranking score (larger is better). Models with
the same colored box have statistically insignificant performance

5 Implementation Issues

In this section, we describe in detail the training of our DNN-
based computational models for the four low-level vision
tasks, and the subjective testing procedure used to collect
human ratings of the optimized images.

5.1 Model Training

For denoising, we fixed the noise std to σ = 50 (relative
to pixel values in the range [0, 255]). For deblurring, we
simulated various kernels with different motion patterns and
blur levels as in Kupyn et al. (2018). For super-resolution,
we generated low-resolution images by downsampling high-
resolution images by a factor of β = 4 using bicubic
interpolation. For compression, we set the number of quanti-
zation levels to L = 2 with centers {−1, 1}, the quantization
scale parameter to s = 1, the number of downsampling
stages to n = 4, and the number of output channels of

fa to m = 64. This leads to a maximum of H(z̄)
W×H ≤

W×H
24·24 · 64 · log2(2)/(W × H) = 0.25 bits per pixel (bpp).
We chose the 4744 high-quality images in the Waterloo

Exploration Database (Ma et al. 2017b) as reference images.
Training was performed in two stages. In the first stage, we
pre-trained a network using MAE as the loss function for all
four tasks (Wang et al. 2018). In the second stage, we fine-
tuned the network parameters by optimizing the desired IQA
model. Pre-training brings several advantages. First, some
IQA models are sensitive to initializations (e.g., CW-SSIM,
MAD, FSIM, GMSD, and VSI) and pre-training yields more
reasonable optimization results (also validated in the task
of reference image recovery). Second, models that require
backpropagating gradients through multiple stages of com-
putation (e.g., LPIPS and DISTS) converge much faster.
Third, it helps us to test whether the recently proposed IQA
models lead to consistent perceptual gains on top of MAE, a
special case of the simple �p-norm distance.

For each training stage of the four tasks, we used theAdam
optimization package (Kingma and Ba 2015) with a mini-
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Fig. 10 Denoising results on two regions cropped from an example image, using a DNN optimized for different IQA models

batch size of 16 and an initial learning rate of 10−4, which
decays linearly by a factor of 2 for every 100K iterations, and
we set the maximum number of iterations to 500K. We ran-
domly extracted patches with the size of 192×192×3 during
training, and tested on 20 independent images selected from
the DIV2K validation set (see Fig. 6). Training took roughly
1000 GPU hours (measured using an NVIDIA GTX 2080
device) for a total of 4×11 = 44 models. Special treatments
(i.e., gradient clipping and a smaller learning rate) were given
to FSIM and VSI, otherwise their losses are difficult to con-
verge according to our trials.

Generally, it can be difficult to stabilize the training of
DNNs to convergence, especially given that the gradients of
different IQA models exhibit idiosyncratic behaviors. For-
tunately, a simple criterion exists to test the validity of the
optimization results: for a given low-level vision task, the
DNN optimized for the IQA measure Di should produce the
best result (averaged over an independent set of images) in
terms of Di itself, when comparing to DNNs optimized for
{Dj } j �=i . Figure 7 shows the ranking of results generated
by networks optimized for each of the 11 IQA models (cor-
responding to one column in one subfigure) on the DIV2K
validation set (Timofte et al. 2017), where 1 and 11 indicate
the best and worst rankings, respectively. By inspecting the
diagonal elements of the four matrices, we conclude that 43

out of 44models satisfy the criterion, verifying the rationality
of our training procedures. The only exception is whenMAE
is the optimization goal and NLPD (Laparra et al. 2016) is
the evaluation measure for the deblurring task. Nevertheless,
MAE ranks its own results the second place. As shown in
Sect. 6.2, the resulting images from MAE and NLPD look
visually similar.

5.2 Subjective Testing

We conducted an experiment to acquire human perceptual
comparisons of the IQA optimized results. A two-alternative
forced choice (2AFC) method was employed, allowing dif-
ferentiation of fine-grained quality variations. On each trial,
subjects were shown two images optimized according to two
different IQAmethods, presented on the left and right side of
the corresponding reference image (see Fig. 8). Subjectswere
asked to choose which of the two images had better qual-
ity. Subjects were allowed unlimited viewing time, and were
free to adjust their viewing distance. A customized graphical
user interface (GUI) was used to display the images at res-
olution matched to the screen (i.e., 512 × 512 pixels), and
subjects were able to zoom in to any portion of the images for
more careful comparison. The screen had the resolution of
1920×1080 pixels, andwas calibrated in accordancewith the
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(a) Original (b) Cropped (c) Blurred (d) MAE (e) MS-SSIM (f) VIF (g) CW-SSIM

(h) MAD (i) FSIM (j) GMSD (k) VSI (l) NLPD (m) LPIPS (n) DISTS

Fig. 11 Deblurring results for two regions cropped from an example image, using a DNN optimized for different IQA models

recommendations of ITU-R BT.500-11 ITU-R (2002). Tests
were performed in indoor spaces with ordinary illumination
levels.

We generated a total of
(11
2

) × 4 × 20 = 4400 paired
comparisons for 11 IQAmodels, 4 tasks, and 20 test images.
We gathered data from 25 subjects (13males and 12 females)
aged between 18 and 22, with normal or corrected-to-normal
visual acuity. Subjects had general background knowledge of
image processing and computer vision, but were otherwise
naïve to the purpose of this study. To reduce fatigue, we per-
formed the experiment in multiple sessions, each consisting
of 500 randomly selected comparisons, with the randomized
left–right presentation, and allowed subjects to take a break
at any time during the session. Subjects were encouraged,
but not required, to participate in multiple sessions. In order
to detect subjects that were not properly performing the task,
we included 5 pairs where one image was of unambiguously
better quality (e.g., the original and a noisy image).Our inten-
tion was to discard the results of subjects who failed in more
than one of these pairs, but the results of all subjects turned
out to be valid. In total, each image pair was evaluated by at
least 5 subjects, and each IQA model was ranked over 1000
times for each vision task.

6 Experimental Results

Based on the subjective data, we conducted a quantitative
comparison of the IQA models through the lens of percep-
tual optimization. We also qualitatively compared the visual
results associated with the IQA models. Last, we combined
a top-performing IQAmodel with adversarial loss (Goodfel-
low et al. 2014) to test whether additional perceptual gains
could be obtained in blind image deblurring.

6.1 Quantitative Results

We employed the Bradley-Terry model (Bradley and Terry
1952) to convert paired comparison results to global rank-
ings. This probabilistic model assumes that the visual quality
of the k-th test image optimized for the i-th IQA model, qki ,
follows a Gumbel distribution with location μk

i and scale
s. Assuming independence between qki and qkj , the differ-

ence qki − qkj is a logistic random variable, and therefore

pki j = P(qki ≥ qkj ) can be computed using the logistic cumu-
lative distribution function:

pki j = P(qki − qkj ≥ 0) = exp(μk
i /s)

exp(μk
i /s) + exp(μk

j/s)
, (10)
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Table 1 SRCC of objective
ranking scores from the IQA
models against subjective
ranking scores

IQA model Denoising Deblurring Superresolution Compression

MAE 0.527 0.164 0.309 0.455

MS-SSIM 0.564 0.127 0.455 0.346

VIF 0.273 0.600 0.418 0.018

CW-SSIM 0.382 0.418 0.091 0.018

MAD 0.418 0.455 0.346 0.382

FSIM 0.236 0.054 0.091 0.127

GMSD 0.091 0.018 0.127 0.127

VSI 0.164 0.018 0.018 0.091

NLPD 0.491 0.127 0.200 0.309

LPIPS 0.709 0.855 0.782 0.782

DISTS 0.346 0.891 0.782 0.855

Top two results are marked in bold

Table 2 Verification of results
obtained by our PyTorch
re-implementations of the tested
IQA models, on three IQA
databases

IQA model Grayscale Color

LIVE CSIQ TID2013 LIVE CSIQ TID2013

MS-SSIM 0.951/0.951 0.906/0.886 0.786/0.782 0.931/0.932 0.902/0.886 0.801/0.816

CW-SSIM 0.786/0.781 0.745/0.738 0.673/0.680 0.741/0.747 0.744/0.744 0.709/0.725

VIF 0.964/0.963 0.911/0.911 0.677/0.676 0.957/0.957 0.894/0.894 0.654/0.654

NLPD 0.937/0.938 0.932/0.937 0.800/0.800 0.917/0.914 0.913/0.913 0.812/0.808

GMSD 0.960/0.960 0.950/0.950 0.804/0.804 0.949/0.948 0.937/0.934 0.830/0.823

MAD 0.967/0.960 0.947/0.941 0.781/0.773 0.954/0.951 0.937/0.935 0.758/0.740

FSIM 0.963/0.963 0.924/0.916 0.802/0.802 0.965/0.965 0.931/0.923 0.851/0.851

VSI 0.953/0.950 0.930/0.923 0.805/0.793 0.952/0.956 0.942/0.937 0.897/0.889

LPIPS 0.932/0.932 0.837/0.837 0.616/0.616 0.932/0.932 0.876/0.876 0.670/0.670

DISTS 0.942/0.942 0.905/0.905 0.764/0.764 0.954/0.954 0.929/0.929 0.830/0.830

Numbers indicate SRCC values (reported in original publication/produced by our re-implementation). Bold
indicates methods that are computed only on grayscale images in their original versions; we have extended
them to evaluate RGB images by averaging the values across all channels

Table 3 Summary of datasets for evaluating full-reference IQA models

Dataset # of Reference images # of Distorted images Distortion types

LIVE (Sheikh et al. 2006) 29 779 Traditional

CSIQ (Larson and Chandler 2010) 30 866 Traditional

TID2013 (Ponomarenko et al. 2015) 25 3000 Traditional

FLT (Egiazarian et al. 2018) 75 300 Denoising

Liu13 (Liu et al. 2013) 40 1200 Deblurring

Lai16 (Lai et al. 2016) 25 2800 Deblurring

Ma17 (Ma et al. 2017a) 30 1620 Super-resolution

QADS (Zhou et al. 2019) 20 980 Super-resolution

SHRQ (Min et al. 2019) 80 600 Dehazing

Tian19 (Tian et al. 2018) 10 140 Rendering

SynTex (Golestaneh et al. 2015) 21 105 Texture synthesis

TQD (Ding et al. 2020) 10 150 Texture synthesis

BAPPS (Zhang et al. 2018) – 26,904 Multiple

Proposed 20 880 Multiple

Traditional distortion types include artificial Gaussian noise, Gaussian blur, JPEG compression, etc. As in the dataset we describe in Sect. 5, BAPPS
contains multiple distortion types, produced by computational methods for different vision tasks
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Fig. 12 Super-resolution results for two cropped regions from an example image, using a DNN optimized for different IQA models

where s is usually set to 1, leading to a simplified expression:

pki j = eμk
i

eμk
i + eμk

j

. (11)

As such, we may obtain the negative log-likelihood of our
pairwise count matrix Wk :

�(μk |Wk) =
M∑

i=1

M∑

j=1
j �=i

(
wk
i j log

(
eμk

i + eμk
j

)
− wk

i jμ
k
i

)
, (12)

wherewk
i j represents the number of times that Di is preferred

over Dj for the k-th test image. For each of the four low-level
vision tasks, we minimized Eq. (12) iteratively using gradi-
ent descent to obtain the optimal estimate μ̂k . We averaged
μ̂k over the 20 test images, resulting in four global rank-
ings of perceptual optimization performance, as shown in
Fig. 9. It is clear that MS-SSIM (Wang et al. 2003) andMAE
are superior to the other IQA models in the task of denois-
ing, whereas DNN-basedmeasures DISTS (Ding et al. 2020)
and LPIPS (Zhang et al. 2018), outperform the others in all
other tasks. Thus, there is no single IQA model that per-
forms best across all tasks. We ascribe this to differences in

the nature of the tasks: denoising requires distinguishing sig-
nal and noise, deblurring, super-resolution, and compression
all require recovery of discarded information from partial
deterministic measurements (for the first two, via linear pro-
jection, and for compression via quantization). MS-SSIM
and MAE are both known to prefer smooth appearances,
and are seen to excel at denoising. Both DISTS and LPIPS
explicitly represent aspects of fine textures, and are superior
for the remaining three tasks. Finally, it is important to note
that many of the models, despite their impressive abilities to
explain existing IQA databases, are outperformed by MAE,
the simplest metric in our set.

To determine whether the optimization results of the IQA
models are statistically significant, we conducted an inde-
pendent paired-sample t-test. The null hypothesis is that the
ranking scores {μk

i }20k=1 for Di and {μk
j }20k=1 for Dj come from

the same normal distribution with unknown variance. When
the test cannot reject the null hypothesis at the α = 5%
significance level, the two IQA models have statistically
indistinguishable performance, and we considered them to
belong to the same group. Grouping results are shown in
Fig. 9. Surprisingly, we find that the perceptual gains of MS-
SSIM over MAE are statistically insignificant on all four
tasks, despite the fact that MS-SSIM is far better than MAE
in explaining existing IQA databases. Relying on similar sets
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Fig. 13 Compression results for two cropped regions from an example image, using a DNN optimized for different IQA models

of VGG features (Simonyan and Zisserman 2015), DISTS
and LPIPS also achieve similar performance, except for the
super-resolution task where the former is statistically bet-
ter.

By computing the Spearman’s rank correlation coefficient
(SRCC) between objective model rankings (in Fig. 7) and
subjective human rankings (in Fig. 9), we are able to compare
the algorithm-level performance of the 11 IQAmodels on the
new dataset. We find from the Table 1 that there is a lack of
correlation betweenmodel predictions and human judgments
for the majority of IQA methods. DISTS and LPIPS tend to
rank the images with complex model-dependent distortions
in a more perceptually consistent way. We refer interested
readers to “Appendix 1” for more comparisons on several
IQA databases dedicated to low-level vision problems.

6.2 Qualitative Results

In this subsection, we show example images produced by
each IQA-optimized method, qualitatively summarize the
types of visual distortion, and use them to diagnose the short-
comings of the corresponding IQA models.

Figure 10 shows denoising results for the “cat” image.
We observe that MAE, MS-SSIM, and NLPD do a good
job in denoising flat regions, but tend to over-smooth tex-
ture regions. VIF encourages detail enhancement, leading to
artificial local contrast, while GMSD produces a relatively
dark appearance presumably because it discards local lumi-
nance information. Moreover, the results of FSIM and VSI
exhibit noticeable artifacts. LPIPS and DISTS preserve fine
details, but may not fully remove noise in smooth regions,
mistaking the remaining noise as visually plausible texture.
Overall, traditional IQAmodelsMAEandMS-SSIMdenoise
images with various content variations robustly, keeping
high-frequency information loss within the acceptable range.
This may explain why they are the dominant objective func-
tions for this task.

Figure 11 shows deblurring results for the “basket” image.
We see that most of the IQA methods fail, but in different
ways. Specifically, the results of MAE, MS-SSIM, CW-
SSIM, and NLPD are quite blurred. FSIM, GMSD, and VSI
generate severe ringing artifacts. VIF again fails to adjust the
local contrast. MAD exhibits undesirable white dot artifacts,
although the main structures are sharp. LPIPS succeeds in
deblurring this example, while DISTS produces a result that
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(a) Clean (b) Blurry (c) DeblurGAN-v2 (d) Fine-tuned

Fig. 14 Deblurring examples obtained by the original DebluGAN-v2 and the fine-tuned DeblurGAN-v2 (with the loss in Eq. (14))

is closest to the original. This is consistent with current state-
of-the-art deblurring results (Kupyn et al. 2019), generated
by incorporating comparison of the VGG features into the
loss.

Figure 12 shows super-resolution results for the “corner
tower” image. Again, MAE, MS-SSIM, NLPD, and espe-
cially CW-SSIM produce somewhat blurred images, without
recovering fine details. MAD, FSIM, GMSD, and VSI are
able to generate some “structures”, but these are perceived
as unpleasant model-dependent artifacts. Benefiting from
its texture synthesis capability, DISTS has the potential to
super-resolve perceptually plausible fine details, although
they differ from those of the original image.

Figure 13 shows compression results for the “airplane”
image at 0.24 ± 0.01 bpp. A JPEG image, compressed to
0.25 bpp, suffers from block and blur artifacts. Overall, the
main structures of the original image are well preserved for
most IQAmodels, but the fine details (e.g., the grass) have to
be discarded at this low bitrate, or are synthesized with other

forms of distortion. VIF reconstitutes a desaturated image
with over-enhanced global contrast, and CW-SSIM super-
imposes periodic artifacts on the underlying image. White
dots and ringing artifacts are again apparent in the results of
MAD and VSI, respectively. The image by NLPD is blurred
and red-shifted. Both LPIPS and DISTS succeed in synthe-
sizing textures that are visually similar to the original.

We can summarize the artifacts created during percep-
tual optimization, some of which are not found in traditional
image databases for the purpose of quality assessment:

– Blurring is a frequently seen distortion type in all four of
the tasks, and ismainly caused by error visibilitymethods
(e.g., MAE and NLPD) and structural similarity methods
(e.g., MS-SSIM), which rely on simple injective map-
pings. Specifically, MAE and SSIM work directly with
pixels, and NLPD transforms the input image to a multi-
scale overcomplete representation using a single stage
of local mean subtraction and divisive normalization.
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(a) Original: PSNR↑ / SSIM↑
LPIPS↓ / DISTS↓

(b) Bicubic: 20.46 / 0.577
0.373 / 0.256

(c) Glasner09: 19.79 / 0.602
0.400 / 0.266

(d) Yang13: 20.26 / 0.600
0.352 / 0.232

(e) EDSR: 21.10 / 0.651
0.330 / 0.218

(f) SRGAN: 17.41 / 0.546
0.357 / 0.178

(g) ESRGAN: 17.63 / 0.550
0.239 / 0.133

(h) RankSRGAN: 19.07/0.564
0.294 / 0.132

Fig. 15 A visual quality assessment example of super-resolution. (a)
High-resolution image, (b-h) are the super-resolution results computed
using bicubic interpolation, Glasner09 (Glasner et al. 2009), Yang13
(Yang andYang 2013),EDSR(Lim et al. 2017),SRGAN(Ledig et al.
2017), ESRGAN (Wang et al. 2018), and RankSRGAN (Zhang et al.

2019a), respectively. One can see that the GAN-based results (f-h) are
visually superior to the others, contrary to the predictions of PSNR and
SSIM. LPIPS indicates that the result (f) is worse than (d) and (e),
in disagreement with visual inspection. DISTS is correlated well with
human perception in this example

Table 4 SRCC comparison of IQA models on existing image generation/restoration databases

IQA model Denoising Deblurring Super-resolution Dehazing Rendering Texture synthesis

FLT Lai16 Liu13 Ma17 QADS SHRQ Tian19 SynTEX TQD

PSNR 0.183 0.301 0.803 0.592 0.360 0.740 0.536 0.114 0.233

SSIM 0.355 0.298 0.777 0.624 0.529 0.692 0.230 0.620 0.307

MS-SSIM 0.246 0.320 0.898 0.795 0.717 0.687 0.396 0.469 0.288

VIF 0.169 0.261 0.864 0.831 0.815 0.667 0.259 0.448 0.305

CW-SSIM 0.101 0.600 0.742 0.706 0.474 0.698 0.522 0.496 0.325

MAD 0.182 0.446 0.897 0.864 0.723 0.605 0.622 0.134 0.302

FSIM 0.555 0.297 0.921 0.747 0.687 0.695 0.476 0.093 0.176

GMSD 0.389 0.174 0.918 0.851 0.765 0.663 0.479 0.006 0.256

VSI 0.528 0.295 0.920 0.710 0.584 0.696 0.531 0.123 0.179

NLPD 0.151 0.323 0.853 0.732 0.591 0.608 0.463 0.483 0.271

PieAPP 0.629 0.601 0.786 0.771 0.849 0.725 0.298 0.709 0.713

LPIPS 0.457 0.347 0.867 0.788 0.669 0.777 0.311 0.663 0.392

DISTS 0.636 0.754 0.941 0.878 0.809 0.789 0.671 0.923 0.910

Top two results are marked in bold

Under strict constraints imposed by the tasks, they prefer
to make a more conservative estimate, producing some-
thing akin to an average of all possible outcomes with
sharp structures, as would occur when optimizing MSE.

– Ringing is a high-frequency distortion type that often
occurs in the images optimized forFSIM,VSI andGMSD
(see Fig. 11(i)–(k)). One common characteristic of the
three models is that they rely heavily (in some cases,

solely) on local gradient magnitude for feature similarity
comparison, underweighting (or abandoning) other per-
ceptually important features (such as local luminance and
local phase). This creates “shortcuts” that the DNNs can
exploit, generating distortions with similar local gradient
statistics.

– White dot artifacts are typical in the optimization results
of MAD, which extracts lower-order image statistics
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(a) Original: PSNR↑ / SSIM↑
LPIPS↓ / DISTS↓

(b) MAE: 26.44 / 0.809
0.285 / 0.189

(c) MS-SSIM: 26.28 / 0.807
0.286 / 0.193

(d) VIF: 26.18 / 0.781
0.303 / 0.199

(e) CW-SSIM: 26.14 / 0.787
0.293 / 0.184

(f) MAD: 26.11 / 0.796
0.288 / 0.188

(g) FSIM: 25.99 / 0.784
0.307 / 0.209

(h) GMSD: 21.45 / 0.707
0.372 / 0.285

(i) VSI: 25.60 / 0.784
0.307 / 0.216

(j) NLPD: 26.05 / 0.795
0.298 / 0.201

(k) LPIPS: 25.55 / 0.774
0.285 / 0.183

(l) DISTS: 25.56 / 0.775
0.293 / 0.175

Fig. 16 Another set of denoising results optimized for different IQA models

Table 5 2AFC score comparison of IQA models on the BAPPS dataset and the proposed dataset

IQA model BAPPS Proposed

Colorization Video deblurring Frame interpolation Superresolution Denoising Deblurring Superresolution Compression

PSNR 0.624 0.590 0.543 0.642 0.627 0.518 0.612 0.689

SSIM 0.522 0.583 0.548 0.613 0.636 0.575 0.599 0.649

MS-SSIM 0.522 0.589 0.572 0.638 0.623 0.568 0.655 0.665

VIF 0.515 0.594 0.597 0.651 0.589 0.607 0.655 0.540

CW-SSIM 0.512 0.601 0.604 0.665 0.623 0.651 0.584 0.496

MAD 0.490 0.593 0.581 0.655 0.624 0.671 0.681 0.651

FSIM 0.573 0.590 0.581 0.660 0.522 0.490 0.525 0.563

GMSD 0.517 0.594 0.575 0.676 0.417 0.454 0.469 0.567

VSI 0.597 0.591 0.568 0.668 0.518 0.470 0.487 0.576

NLPD 0.528 0.584 0.552 0.655 0.622 0.514 0.629 0.652

PieAPP 0.594 0.582 0.598 0.685 0.625 0.734 0.744 0.822

LPIPS 0.625 0.605 0.630 0.705 0.657 0.788 0.768 0.834

DISTS 0.627 0.600 0.625 0.710 0.602 0.790 0.704 0.833

Top two results are marked in bold
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(a) Original: PSNR↑ / SSIM↑
LPIPS↓ / DISTS↓

(b) MAE: 22.91 / 0.488
0.458 / 0.283

(c) MS-SSIM: 22.68 / 0.510
0.430 / 0.256

(d) VIF: 15.96 / 0.447
0.441 / 0.267

(e) CW-SSIM: 22.99 / 0.493
0.387 / 0.192

(f) MAD: 22.07 / 0.409
0.463 / 0.256

(g) FSIM: 22.23 / 0.382
0.510 / 0.323

(h) GMSD: 20.04 / 0.401
0.572 / 0.371

(i) VSI: 23.03 / 0.435
0.496 / 0.381

(j) NLPD: 23.51 / 0.477
0.467 / 0.294

(k) LPIPS: 22.50 / 0.499
0.272 / 0.097

(l) DISTS: 21.92 / 0.471
0.305 / 0.101

Fig. 17 Another set of deblurring results optimized for different IQA models

from responses of Gabor filters at multiple scales and
orientations. The resulting set of statisticalmeasurements
seems insufficient to summarize natural image structures
that exhibit higher-order dependencies. Therefore, MAD
is “blind” to distortions that satisfy the same set of statis-
tical constraints, and gives the optimized distorted image
a high-quality score.

– Over-enhancement of local image contrast is encouraged
by VIF, which, in most of our experiments, causes signif-
icant quality degradation. We believe this arises because
VIF does not fully respect reference information when
normalizing the covariance term. Specifically, only the
second-order statistics of the reference image are used
to construct the normalization factor. By incorporating
the same statistics computed from the distorted image
into normalization, the problem of over-enhancement
may be alleviated. In general, quality assessment of
image enhancement is a challenging problem (Fang
et al. 2015; Wang et al. 2015), and to the best of our
knowledge, all existing full-reference IQAmodels fail to
reward properly-enhanced cases, while penalizing over-
enhanced cases.

– Luminance and color artifacts are perceived in final
images that are associated with many IQA models. Two
causes seem plausible. First, methods such as GMSD
discard luminance information. Second, methods such
as MS-SSIM and NLPD are originally designed for
grayscale images only. Applying them to RGB channels
separately fails to take into account hue and saturation
information. Transforming to a perceptually better color
space, and making use of knowledge of color distor-
tions (Rajashekar et al. 2009) offers an pportunity for
improvement.

6.3 Combining with Adversarial Loss

In the field of image restoration and generation, many
state-of-the-art algorithms are based on adversarial train-
ing (Goodfellow et al. 2014), demonstrating impressive
capabilities in synthesizing realistic visual content. The out-
put of the adversarial loss is the probability of an image being
computer-generated, but this does not confer capabilities for
no-reference IQA modeling, as confirmed by a low SRCC
of 0.366 on the LIVE dataset (Sheikh et al. 2006). Nev-
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(a) Original: PSNR↑ / SSIM↑
LPIPS↓ / DISTS↓

(b) MAE: 27 .16 / 0.795
0.328 / 0.226

(c) MS-SSIM: 27 .01 / 0.799
0.321 / 0.222

(d) VIF: 17 .72 / 0.659
0.432 / 0.298

(e) CW-SSIM: 25 .79 / 0.738
0.369 / 0.258

(f) MAD: 25 .96 / 0.753
0.313 / 0.179

(g) FSIM: 26 .11 / 0.766
0.313 / 0.197

(h) GMSD: 20 .56 / 0.750
0.321 / 0.215

(i) VSI: 25 .87 / 0.755
0.336 / 0.232

(j) NLPD: 27 .16 / 0.793
0.324 / 0.224

(k) LPIPS: 25.90 / 0.758
0.219 / 0.123

(l) DISTS: 25 .22 / 0.740
0.236 / 0.107

Fig. 18 Another set of super-resolution results optimized for different IQA models

ertheless, adversarial loss may be useful at the algorithm
level, meaning that given a set of images generated by a
computationalmethod, the average probability quantitatively
measures the capability of the method in generating photore-
alistic high-quality images. In this subsection, we explored
the combination of the adversarial loss and a top-performing
IQA measure for additional perceptual gains.

We chose the task of blind image deblurring, and fine-
tuned a state-of-the-art model—DeblurGAN-v2 (under the
configuration of Inception-ResNet) (Kupyn et al. 2019). The
original loss function for the generator is

�o = 0.5 × �MSE + 0.006 × �VGG + 0.01 × �Adv. (13)

The first and second terms are the MSE on pixels and
responses of conv3_3 of VGG19 (Simonyan and Zisserman
2015), respectively, and �Adv is a variant of the adversarial
loss (Kupyn et al. 2019). We selected the best-performing
IQA model—DISTS-for this experiment. We followed the
same training strategy, but modified the loss function of the
generator to be

�n = �DISTS + 0.001 × �Adv, (14)

where �DISTS denotes theDISTS index.An immediate advan-
tage of this replacement is that the number of hyperparame-
ters is reduced, making manual hyperparameter adjustment
easier. After fine-tuning, the average DISTS value decreases
from 0.22 to 0.18 on the Köhler test dataset (Köhler et al.
2012). Figure 14 shows two visual examples, from which
we find that the fine-tuned results have sharper edges and
enhanced contrast, indicating that perceptual gains may be
obtained by DISTS on the two examples.

7 Conclusions

We have conducted a comprehensive study of perceptual
optimization of four low-level vision tasks, guided by eleven
full-reference IQA models. This provides an alternative
means of testing the perceptual relevance of IQA models
in a practical setting, which we believe is an important com-
plement to the conventional methodology for IQA model
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(a) Original: PSNR↑ / SSIM↑
LPIPS↓ / DISTS↓

(b) MAE: 27 .55 / 0.834
0.351 / 0.209

(c) MS-SSIM: 27 .67 / 0.846
0.320 / 0.189

(d) VIF: 14 .75 / 0.575
0.449 / 0.290

(e) CW-SSIM: 22 .42 / 0.429
0.613 / 0.407

(f) MAD: 26 .55 / 0.793
0.331 / 0.181

(g) FSIM: 25 .92 / 0.831
0.324 / 0.184

(h) GMSD: 21 .99 / 0.762
0.388 / 0.197

(i) VSI: 25 .14 / 0.794
0.380 / 0.220

(j) NLPD: 21 .83 / 0.762
0.353 / 0.201

(k) LPIPS: 24.36 / 0.786
0.161 / 0.081

(l) DISTS: 25 .18 / 0.781
0.201 / 0.080

Fig. 19 Another set of compression results optimized for different IQA models

evaluation. Subjective testing led to several useful findings.
First, through perceptual optimization, we generated a num-
ber of distortions (different from those used in existing IQA
databases), which may easily fool the respective models or
models of similar design philosophies (see Table1). It should
be noted that the emergence of specific distortions is in princi-
ple dependent on the experimental choices (e.g., initialization
strategy, model architecture, and optimization technique).
Second, although they underperformed theDNN-basedmod-
els on three of four applications, the standard full-reference
IQAmodels (MS-SSIM andMAE) are still valuable tools for
optimizing image processing systems due to their robustness
and simplicity. Third, more recent IQA models with surjec-
tive mappings may still be used to monitor image quality
and to optimize the parameter settings of image processing
methods, but in a limited and well-controlled space. Last,
the two DNN-based models (LPIPS and DISTS) offered the
best overall performance in our experiments, but their high
computational complexity and lack of interpretability may
hinder their use.

Our work has interesting connections to two separate lines
of research. First, inspired by the philosophy of “analy-

sis by synthesis” (Grenander 1970), Wang and Simoncelli
(2008) introduced the maximum differentiation competition
methodology to automatically synthesize images for effi-
ciently comparing IQA models. Given two IQA models,
MAD generates samples in the space of all possible images
that best discriminate the two models. However, the synthe-
sized images may be highly unnatural, and in this case, of
limited practical importance. Ma et al. (2020) alleviated this
issue by manually constraining the search space to a finite
image set of practical interest. Our approach combines the
best aspects of these two methods, in the sense that the test
images for model comparison are automatically generated
by the trained networks, but arise as solutions of real-world
vision tasks and are thus of practical importance. Second,
the existence of type II adversarial examples (Szegedy et al.
2013) has exposed the vulnerability ofmany computer vision
algorithms, where a tiny change to the input that is imper-
ceptible to the human eye would cause the algorithm to make
classification mistakes. In our case, weaknesses in an IQA
model are exposed through optimized images that may be
interpreted as type I “adversarial” examples of the model:
a significant change is made to the original image that sub-
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stantially degrades its perceptual quality, but the model still
claims that this image is of high quality.

The analysis of our experimental results suggests several
desirable properties that should be included in future IQA
methods. First, the transformation used in the IQA model
should be perceptual, mapping the input images into a space
where a simple distance measure (e.g., Euclidean) matches
human judgements of image quality. This is in the same
spirit that color scientists pursue perceptually uniform color
spaces, and is an underlying principle of a number of exist-
ing models (e.g., NLPD). Zhang et al. (2018) and Ding et al.
(2020) demonstrated that a cascade of linear convolution,
downsampling, and rectified nonlinearity optimized for high-
level vision tasks may be a good candidate. Second, the IQA
model should enjoy unique optima (i.e., the underlying map-
ping should be injective) to guarantee that images close to
optimal are visually similar to the original. This criterion
was respected by early models (e.g., MS-SSIM), but was
largely overlooked in recent IQAmodel development. Third,
the IQAmodel should be continuous and differentiable, with
well-behaved gradients, to aid optimization in complex situa-
tions (e.g., training DNNs with millions of parameters). Last
but not least, the IQA model should be computationally effi-
cient, enabling real-time quality assessment and perceptual
optimization. To the best of our knowledge, although many
current IQA models possess subsets of these properties, no
current IQA model satisfies them all.
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Appendix 1: Perceptual Correlation
Comparison of IQAModels

A conventional method for evaluating IQA models is to
compute their agreement with subjective scores in one or
more standardized IQA databases [e.g., LIVE (Sheikh et al.
2006), CSIQ (Larson andChandler 2010) or TID2013 (Pono-
marenko et al. 2015)], consisting of artificially distorted
images. Many existing IQA models achieve impressive
correlation with these databases (see Table 2), but their
performance in assessing the perceptual quality of images
produced by low-level vision algorithms has not been tested.
In this appendix, we tested them on multiple human-rated
image generation/restoration databases, including a denois-
ing database—FLT (Egiazarian et al. 2018), two motion
deblurring databases—Liu13 (Liu et al. 2013) and Lai16 (Lai
et al. 2016), two super-resolutiondatabases—Ma17 (Maet al.

2017a) and QADS (Zhou et al. 2019), a dehazing database—
SHRQ (Min et al. 2019), a depth image-based rendering
database—Tian19 (Tian et al. 2018), two texture synthesis
databases—SynTex (Golestaneh et al. 2015) and TQD (Ding
et al. 2020), and a patch similarity database—BAPPS (Zhang
et al. 2018). The details of these databases are summarized
in Table 3.

Tables 4 and 5 show the performance comparisons of 13
IQA methods in terms of the SRCC and 2AFC scores. As
suggested in Zhang et al. (2018), the 2AFC score is com-
puted by: pq + (1 − p)(1 − q), where p is the percentage
of human votes and q = {0, 1} is the vote of an IQA model.
When q agrees with the majority of human votes, the 2AFC
score is larger, indicating better performance. We find that
the overall performance of all models is lower compared to
that in the standard IQA databases (see Table 2), indicating
the difficulty of generalizing to unseen distortions.Moreover,
DNN-based measures are relatively better than knowledge-
driven models in these application-oriented databases, but
there is still significant room for improvement.

Figure 15 shows a quality assessment example of real-
world super-resolution methods. Here we only compared
the most widely used measures (PSNR and SSIM), and the
two that performed best both on optimization and assess-
ment (LPIPS and DISTS). It is not surprising that PSNR and
SSIM have the poor correlation with human opinions, as they
focus more on signal fidelity than perceptual quality (Blau
and Michaeli 2018). LPIPS and DISTS perform better, but
the former is somewhat oversensitive to texture substitution.
Asmany recent image restoration algorithms succeed in gen-
erating richer textures, DISTS holds much promise for use
in quality assessment for such applications (Figs. 16, 17, 18
and 19).
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