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and Texture Similarity
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Abstract—Objective measures of image quality generally operate by comparing pixels of a “degraded” image to those of the original.
Relative to human observers, these measures are overly sensitive to resampling of texture regions (e.g., replacing one patch of grass
with another). Here, we develop the first full-reference image quality model with explicit tolerance to texture resampling. Using a
convolutional neural network, we construct an injective and differentiable function that transforms images to multi-scale overcomplete
representations. We demonstrate empirically that the spatial averages of the feature maps in this representation capture texture
appearance, in that they provide a set of sufficient statistical constraints to synthesize a wide variety of texture patterns. We then
describe an image quality method that combines correlations of these spatial averages (“texture similarity”) with correlations of the
feature maps (“structure similarity”). The parameters of the proposed measure are jointly optimized to match human ratings of image
quality, while minimizing the reported distances between subimages cropped from the same texture images. Experiments show that
the optimized method explains human perceptual scores, both on conventional image quality databases, as well as on texture
databases. The measure also offers competitive performance on related tasks such as texture classification and retrieval. Finally, we
show that our method is relatively insensitive to geometric transformations (e.g., translation and dilation), without use of any specialized
training or data augmentation. Code is available at https://github.com/dingkeyan93/DISTS.

Index Terms—Image quality assessment, structure similarity, texture similarity, perceptual optimization.

F

IMAGE quality assessment (IQA) – the quantification of
human perception of image quality – is a fundamental

problem in both human and computational vision, and is
of paramount importance in a variety of real-world applica-
tions, such as image restoration, compression, and render-
ing. For more than 50 years, the mean squared error (MSE)
was the standard full-reference method for assessing signal
fidelity and quality, and it continues to play a fundamental
role in the development of signal and image processing
algorithms, despite its poor correlation with human percep-
tion [1], [2].

A variety of proposed full-reference IQA methods pro-
vide a better account of human perception than MSE [3]–[8],
and the Structural Similarity (SSIM) index [3] has become a
de facto standard in the field of image processing. But these
methods rely on alignment of the images being compared,
and are thus highly sensitive to differences between images
of the same texture (e.g., two different cropped regions
of the same bed of pebbles). Two samples of the same
texture differ substantially in the precise arrangement of
their features, while appearing nearly the same to a human
observer (see Fig. 1). Since textured surfaces are ubiquitous
in photographic images, it is important to develop objective
IQA metrics that are consistent with this aspect of percep-
tual similarity. Such a metric would allow the development

• Keyan Ding, Kede Ma, and Shiqi Wang are with the Depart-
ment of Computer Science, City University of Hong Kong, Kowloon,
Hong Kong (e-mail: keyan.ding@my.cityu.edu.hk, kede.ma@cityu.edu.hk,
shiqwang@cityu.edu.hk).

• Eero P. Simoncelli is with the Flatiron Institute of the Simons Foundation,
and the Center for Neural Science and the Courant Institute of Mathemat-
ical Sciences, New York University, New York, NY 10003, USA (e-mail:
eero.simoncelli@nyu.edu).

of a new generation of image processing solutions - for
example, a compression engine that statistically synthesizes
texture regions rather than trying to exactly re-create the
pixels of the original image [9], [10].

We present the first full-reference IQA method that is
insensitive to resampling of visual textures. Our method
is constructed by first nonlinearly transforming images to
a multi-scale overcomplete representation, using a variant
of the VGG convolutional neural network (CNN) [14]. We
show that the spatial averages of the feature maps provide
a compact set of statistical constraints that is sufficient to
capture the visual appearance of textures [15]. Specifically,
we use the test originally proposed by Julesz [16], and
demonstrate that synthesizing a new image by forcing it to
match the channel averages computed from a given texture
image results in an image of similar visual appearance.
Although the number of statistics in the set is substantially
smaller than that of pixels in the image, we find that the
result holds for a wide variety of textures, regardless of the
initialization, thus revealing the robustness of this model to
adversarial examples [17].

After transforming the original and corrupted images,
we construct our measure by combining two terms over all
feature maps: one that compares the spatial averages (and
thus, the texture properties) of the two images, and a second
that compares the structural details. The final distortion
score is computed as a weighted sum of these two terms,
with the weights adjusted to match human perception of
image quality and invariance to resampled texture patches.
The first is achieved by comparing the responses of the
model with a database of human image quality ratings.
The second is achieved by minimizing the distance between
pairs of patches sampled from the same texture images. We
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(a) (b) (c)

Fig. 1. Existing full-reference IQA models are overly sensitive to point-by-point deviations between images of the same texture. (a) A grass image
and (b) the same image, distorted by JPEG compression. (c) Resampling of the same grass as in (a). Popular IQA measures, including PSNR,
SSIM [3], FSIM [11], VIF [4], GMSD [12], DeepIQA [13], PieAPP [8], and LPIPS [7], predict that image (b) has a better perceived quality than image
(c), which is in disagreement with human rating. In contrast, the proposed DISTS model makes the correct prediction. (Zoom in to improve visibility
of details).

show that the resulting Deep Image Structure and Texture
Similarity (DISTS) index can be transformed into a proper
metric in the mathematical sense. Moreover, DISTS corre-
lates well with human quality judgments in several inde-
pendent datasets, and achieves a high degree of invariance
to texture substitution. We also demonstrate competitive
performance of DISTS on tasks of texture classification and
retrieval. Last, we show that DISTS is insensitive to mild
local and global geometric distortions [18], [19], which may
be imperceptible to the human visual system (HVS).

1 BACKGROUND

Pioneering work on perceptual full-reference IQA dated
back to the 1970s, when Mannos and Sakrison [20] inves-
tigated a class of visual fidelity measures in the context of
rate-distortion optimization. A number of alternative mod-
els were subsequently proposed [21], [22], each mimicking
certain functionalities of the HVS and penalizing the errors
between the reference and distorted images “perceptually”.
However, the HVS is a complex and highly nonlinear sys-
tem [23], and most IQA measures within the error visibility
framework rely on strong assumptions and simplifications
(e.g., linear or quasi-linear models for early vision character-
ized by restricted visual stimuli), and exhibit shortcomings
regarding the definition of visual quality, quantification of
suprathreshold distortions, and generalization to natural
images [24]. The SSIM index [3] introduced the concept of
comparing structure similarity (instead of measuring error
visibility), opening the door to a new class of full-reference
IQA measures [11], [12], [18], [25]. Other design method-
ologies for knowledge-driven IQA include information-
theoretic criterion [4] and perception-based pooling [26].
Recently, there has been a surge of interest in leveraging
advances in large-scale optimization to develop data-driven
IQA measures [7], [8], [13], [19]. However, databases of hu-
man quality scores are often insufficiently rich to constrain
the large number of model parameters. As a result, these
learned methods are at risk of over-fitting [27].

Nearly all knowledge-driven full-reference IQA models
base their quality measurements on point-by-point com-
parisons between pixels or convolution responses (e.g.,
wavelets). As such, they are not capable of handling “vi-
sual textures”, which are loosely defined as spatially ho-

mogeneous regions with repeated elements, often subject
to some randomization in their location, size, color, and
orientation [15]. Different images of the same texture can
look nearly the same to the human eye, while differing
substantially at the level of pixel intensities. Research on
visual texture has a long history, and can be partitioned into
four problems: texture classification, texture segmentation,
texture synthesis, and shape from texture. At the core of
texture analysis is an efficient description (i.e., representa-
tion) that matches human perception of visual textures. In
this paper, we aim to measure perceptual texture similarity,
a goal first elucidated and explored in [28], [29].

The response amplitudes and variances of computa-
tional texture features (e.g., Gabor basis functions [30], lo-
cal binary patterns [31]) have achieved good performance
for texture classification, but are not well correlated with
human perceptual ratings of texture similarity [28], [29].
Texture representations that incorporate more sophisticated
statistical features, such as correlations of complex wavelet
coefficients [15], have shown significantly more power for
texture synthesis, suggesting that they may provide a good
substrate for similarity measures. In recent years, the use
of such statistics extracted from CNN-based representa-
tions [32]–[34] has led to even richer texture description.

2 THE DISTS INDEX

Our goal is to develop a new full-reference IQA model that
combines sensitivity to structural distortions (e.g., artifacts
due to noise, blur, or compression) with a tolerance of tex-
ture resampling (exchanging the content of a texture region
with a new sample of the same texture). As is common in
many IQA methods, we first transform the reference and
distorted images to a new representation, using a CNN.
Within this representation, we develop a set of measure-
ments that are sufficient to capture the appearance of a
variety of different visual textures. Finally, we combine these
texture parameters with global structural measurements to
form an IQA measure.

2.1 Initial Transformation

Our model is built on an initial transformation, f : Rn 7→
Rr , that maps the reference and distorted images (x and
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y, respectively) to “perceptual” representations (x̃ and ỹ,
respectively). The primary motivation is that perceptual dis-
tances are non-uniform in the pixel space [35], [36], and this
is the main reason that MSE is inadequate as a perceptual
IQA model. The purpose of function f is to transform the
pixel representation to a space that is more perceptually
uniform. Previous IQA methods have used filter banks to
capture the frequency-dependence of error visibility [5],
[21]. Others have used transformations that mimic the early
visual system [22], [37]–[39]. More recently, deep CNNs
have shown surprising power in representing perceptual
image distortions [7], [8], [13]. In particular, Zhang et al. [7]
have demonstrated that pre-trained deep features from
VGG can be used as a substrate for quantifying perceptual
quality.

As such, we also chose to base our model on the
VGG16 CNN [14], pre-trained for object recognition [40]
on the ImageNet database [41]. The VGG transformation
is constructed by a feedforward cascade of layers, each
including spatial convolution, halfwave rectification, and
downsampling. All operations are continuous and differen-
tiable, both advantageous for an IQA method that is to be
used in optimizing image processing systems. We modified
the VGG architecture to achieve two additional desired
properties. First, in order to provide a good substrate for
the invariances needed for texture resampling, we wanted
the initial transformation to be aliasing-free. The “max pool-
ing” operation of the original VGG architecture has been
shown to introduce visible aliasing artifacts when used to
interpolate between images with geodesic sequences [42].
To avoid aliasing when subsampling by a factor of two, the
Nyquist theorem requires blurring with a filter whose cutoff
frequency is below π

2 radians/sample [43]. Following this
principle, we replaced all max pooling layers in VGG with
weighted `2 pooling [42]:

P (x) =
√
g ∗ (x� x), (1)

where� denotes pointwise product, and the blurring kernel
g(·) was implemented by a Hanning window that approx-
imately enforces the Nyquist criterion with a stride of 2.
As additional motivation, we note that `2 pooling has been
used to describe the behavior of complex cells in primary
visual cortex [44], and is also closely related to the complex
modulus used in the scattering transform [45].

A second desired property for our transformation is
that it should be injective: distinct inputs should map to
distinct outputs. This is necessary to ensure that the final
quality measure is a proper metric (in the mathematical
sense) - if the representation of an image is non-unique,
then equality of the output representations will not imply
equality of the input images. This property has proven use-
ful in perceptual optimization, although it is not present in
many recent methods. For example, the mapping function
in GMSD [12] extracts image gradients, discarding local
luminance information that is essential to human perception
of image quality. Similarly, GTI-CNN [19], makes deliberate
use of a surjective transformation, in an attempt to achieve
invariance to mild geometric transformations, but throws
away a substantial amount of structural information that is
perceptually important.

Considerable effort has been made in developing invert-
ible CNN-based transformations in the context of density
modeling [46]–[49]. These methods place strict constraints
on either network architectures [46], [48] or network param-
eters [49], which limit the expressiveness in learning quality-
relevant representations. Ma et al. [50] proved that under
Gaussian-distributed random weights and ReLU nonlinear-
ity, a two-layer CNN is injective provided that it is suffi-
ciently expansive (i.e., the output dimension of each layer
should increase by at least a logarithmic factor). Although
mathematically appealing, this result does not constrain
parameter settings of CNNs of more than two layers. In
addition, a Gaussian-weighted CNN is less likely to be
perceptually relevant [19], [32].

Like most CNNs, VGG discards information at each
stage of transformation. To ensure an injective mapping, we
simply included the input image as an additional feature
map (the “zeroth” layer of the network). The representation
then consists of the input image x, concatenated with the
convolution responses of five VGG layers (labelled conv1 2,
conv2 2, conv3 3, conv4 3, and conv5 3):

f(x) = {x̃(i)j ; i = 0, . . . ,m; j = 1, . . . , ni}, (2)

where m = 5 denotes the number of convolution layers
chosen to construct f , ni is the number of feature maps in
the i-th convolution layer, and x̃(0) = x. Similarly, we also
computed the representation of the distorted image:

f(y) = {ỹ(i)j ; i = 0, . . . ,m; j = 1, . . . , ni}. (3)

We used a naı̈ve task – reference image recovery –
to visually demonstrate the necessity of injective feature
transformations. Specifically, given an original image x and
an initial image y0, we aim to recover x by numerically
optimizing y? = argminyD(x, y), where D denotes a
full-reference IQA measure with a lower score indicating
higher predicted quality, and y? is the recovered image. For
example, if D is the MSE, the (trivial) analytical solution
is y? = x, indicating full recoverability. For the majority
of existing IQA models, which are continuous and differen-
tiable, solutions must be sought numerically, using gradient-
based iterative solvers. Fig. 2 shows the recovery results
of our method from a JPEG-corrupted copy of the original
image and a white Gaussian noise image, respectively, in
comparison to three state-of-the-art models: GTI-CNN [19],
GMSD [12], and LPIPS [7]. The first two, which are based
on surjective mappings, fail dramatically on this simple task
when initialized with purely white Gaussian noise. LPIPS,
which is built on VGG but with no enforcement of the
injective property, recovers most structures and details, but
leaves some visible artifacts in the converged image (Fig.
2 (j)). In contrast, DISTS successfully recovers the reference
image from any initialization.

2.2 Texture Representation
The visual appearance of textures is often characterized in
terms of sets of local statistics [16] that are presumably
measured by the HVS. Models consisting of various sets of
features [15], [32], [51], [52] have been tested using synthesis:
one generates an image with statistics that match those of a
texture photograph. If the set of statistical measurements is
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(a) Reference

(b) Initial (c) GTI-CNN [19] (d) GMSD [12] (e) LPIPS [7] (f) DISTS (ours)

(g) Initial (h) GTI-CNN [19] (i) GMSD [12] (j) LPIPS [7] (k) DISTS (ours)

Fig. 2. Recovery of a reference image by optimization of IQA measures. Recovery is implemented by solving y? = argminy D(x, y) with gradient
descent, where D is an IQA distortion measure and x is a given reference image. (a) Reference image. (b) Corrupted initial image y0, obtained by
compressing the reference image using JPEG at a low bitrate. (c)-(f) Images recovered from (b) by optimizing different metrics (as indicated). (g)
Corrupted initial image, obtained by adding white Gaussian noise. (h)-(k) Images recovered from (g) by optimizing indicated metrics. In all cases,
the optimization converges, yielding a distortion score substantially lower than that of the initial.

a complete description of the appearance of the texture, then
the synthesized image should be perceptually indistinguish-
able from the original [16], at least based on preattentive
judgments [53].

Portilla and Simoncelli [15] found that the local corre-
lations (and other pairwise statistics) of complex wavelet
responses were sufficient to capture the visual appearance
of a wide variety of textures, while at the same time being
of low enough dimensionality (∼ 700 dimensions). Gatys
et al. [32] used correlations across channels of many layers
in a VGG network, and were able to synthesize consistently
better textures, albeit with a much larger set of statistics
(∼ 306K parameters). Since the number of statistics is
typically larger than that of pixels in the input image, it
is likely that this image was unique in matching these
statistics. In this case, diversity in the synthesis results
reflects local optima of the optimization procedure, rather
than the entropy of the implicitly represented probability
distribution. Ustyuzhaninov et al. [54] provided more direct
evidence of this hypothesis: If the number of the statistical
measurements is sufficiently large (on the order of millions),
a single-layer CNN with random filters can always produce
textures that are visually indiscernible to the human eye.
Subsequent results suggest that a reduced set of statistics,
containing only the mean and variance of CNN channels, is
sufficient for texture classification or style transfer [55]–[57].

In our experiments, we found that an even more reduced
set, containing only the spatial means of the feature maps (a
total of 1, 475 statistics), provides an effective parametric
model for visual textures. Specifically, we used this model
to synthesize textures [15] by solving

y? = argmin
y

D(x, y) = argmin
y

∑
i,j

(
µ
(i)
x̃j
− µ(i)

ỹj

)2
, (4)

where x is the target texture image, and y? is the synthesized
texture image, obtained by gradient descent optimization
from a random initialization. µ(i)

x̃j
and µ

(i)
ỹj

are the spatial

averages of channels x̃(i)j and ỹ(i)j , respectively. Fig. 3 shows
the synthesis results of our texture model using statisti-
cal constraints from individual and combined convolution
layers of the pre-trained VGG. Similar to observations in
Gatys et al. [32], we found that measurements from early
layers appear to capture basic intensity and color informa-
tion, and those from later layers summarize the shape and
structure information. When matching statistics up to layer
conv5 3, the synthesized texture appears visually similar to
the reference.

Fig. 4 shows three synthesis results of our 1475-
parameter texture model in comparison with the 710-
parameter texture model of Portilla & Simoncelli [15] and
the ∼ 306k-parameter model of Gatys et al. [32]. As one
might expect, the visual quality of samples synthesized by
our model lies between the other two.

2.3 Perceptual Distance Measure
Next, we specified quality measurements based on f(x)
and f(y). Fig. 5 visualizes some feature maps of the six
stages of the reference image “Buildings”. As can been seen,
spatial structures are present at all stages, indicating strong
statistical dependencies between neighbouring coefficients.
Therefore, use of an `p-norm, that assumes statistical inde-
pendence of errors at different locations, is not appropriate.
Inspired by the form of SSIM [3], we defined separate qual-
ity measurements for the texture (using the global means)
and the structure (using the global correlations) of each pair
of corresponding feature maps:

l(x̃
(i)
j , ỹ

(i)
j ) =

2µ
(i)
x̃j
µ
(i)
ỹj

+ c1(
µ
(i)
x̃j

)2
+
(
µ
(i)
ỹj

)2
+ c1

, (5)

s(x̃
(i)
j , ỹ

(i)
j ) =

2σ
(i)
x̃j ỹj

+ c2(
σ
(i)
x̃j

)2
+
(
σ
(i)
ỹj

)2
+ c2

, (6)
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(a)

(b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Fig. 3. Images synthesized to match the mean values of channels up to a given layer (top) or from individual layers (bottom) of the pre-trained VGG
network. (a) Reference texture. (b) Up to conv1 2. (c) Up to conv2 2. (d) Up to conv3 3. (e) Up to conv4 3. (f) Up to conv5 3. (g) Only conv1 2.
(h) Only conv2 2. (i) Only conv3 3. (j) Only conv4 3. (k) Only conv5 3.

(a) (b) (c) (d)

Fig. 4. Synthesis results for three example texture photographs. (a)
Reference textures. (b) Images synthesized using the method of Portilla
& Simoncelli [15]. (c) Images synthesized using Gatys et al. [32]. (d)
Images synthesized using our texture model (Eq. (4)).

where µ
(i)
x̃j

, µ(i)
ỹj

, (σ
(i)
x̃j
)2, (σ

(i)
ỹj
)2, and σ

(i)
x̃j ỹj

represent the

global means and variances of x̃(i)j and ỹ
(i)
j , and the global

covariance between x̃
(i)
j and ỹ

(i)
j , respectively. Two small

positive constants, c1 and c2, are included to avoid numeri-
cal instability when the denominators are close to zero. The
normalization mechanisms in Eq. (5) and Eq. (6) serve to
equalize the magnitudes of feature maps at different stages.

Finally, the proposed DISTS model combines the quality
measurements from different convolution layers using a
weighted sum:

D(x, y;α, β) = 1−
m∑
i=0

ni∑
j=1

(
αij l(x̃

(i)
j , ỹ

(i)
j ) + βijs(x̃

(i)
j , ỹ

(i)
j )
)
,

(7)

(a) (b) (c)

(d) (e) (f)

Fig. 5. Selected feature maps from the six layers of the VGG decom-
position of the “buildings” image. (a) Zeroth stage (original image). (b)
First stage. (c) Second stage. (d) Third stage. (e) Fourth stage. (f) Fifth
stage. The feature map intensities are re-scaled for better visibility.

where {αij , βij} are positive learnable weights, satisfying∑m
i=0

∑ni

j=1(αij + βij) = 1. Note that the convolution ker-
nels are fixed throughout the development of the method.
Fig. 6 shows the full computation diagram of our quality
assessment system.

Lemma 1. For ∀ x̃(i)j , ỹ
(i)
j ∈ Rn+ (as is the case for responses

after ReLU nonlinearity), it can be shown that

d(x, y) =
√
D(x, y) (8)

is a proper metric, satisfying

• non-negativity: d(x, y) ≥ 0;
• symmetry: d(x, y) = d(y, x);
• triangle inequality: d(x, z) ≤ d(x, y) + d(y, z);
• identity of indiscernibles (i.e., unique minimum):

d(x, y) = 0⇔ x = y.

Proof. The non-negative and symmetric properties are im-
mediately apparent. The identity of indiscernibles is guar-
anteed due to the injective mapping function and the use
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𝑥 𝑦𝛼𝑖𝑗 𝛽𝑖𝑗

෤𝑥𝑗
(𝑖)

෤𝑦𝑗
(𝑖)

𝐷 𝑥, 𝑦

l s

Fig. 6. VGG-based perceptual representation for the proposed DISTS
model. It contains a total of six stages (including the zeroth stage of raw
pixels), and the numbers of feature maps at each stage are 3, 64, 128,
256, 512 and 512, respectively. Global texture and structure similarity
measurements are made at each stage, and combined with a weighted
summation, giving rise to the final model defined in Eq. (7).

of SSIM-motivated quality measurements. To verify the
triangle inequality, we first rewrite d(x, y) as

d(x, y) =

√√√√ m∑
i=0

ni∑
j=1

d2ij(x, y), (9)

where

dij(x, y) =
√
αij(1− l(x̃(i)j , ỹ

(i)
j )) + βij(1− s(x̃(i)j , ỹ

(i)
j )).

(10)

Brunet et al. [58] have proved that dij(x, y) is a metric for
αij ≥ 0 and βij ≥ 0. Then,

d(x, y) ≤
√∑

i,j

(dij(x, z) + dij(z, y))2 (11)

≤
√∑

i,j

d2ij(x, z) +

√∑
i,j

d2ij(y, z) (12)

= d(x, z) + d(z, y), (13)

where Eq. (12) follows from the Cauchy–Schwarz inequality.

2.4 Model Training

The perceptual weights {α, β} in Eq. (7) were jointly opti-
mized for human perception of image quality and texture
invariance. Specifically, for image quality, we minimized
the absolute error between model predictions and human
ratings:

E1(x, y;α, β) = |D(x, y;α, β)− q(y))|, (14)

where q(y) denotes the normalized ground-truth quality
score of y collected from psychophysical experiments. We
chose the large-scale IQA dataset KADID-10k [59] as the

training set, which contains 81 reference images, each of
which is distorted by 25 distortion types at 5 distortion
levels. In addition, we explicitly enforced the model to be
invariant to texture substitution in a data-driven fashion.
We minimized the distance (measured by Eq. (7)) between
two patches (z1, z2) sampled from the same texture image
z:

E2(z;α, β) = D(z1, z2;α, β). (15)

We selected texture images from the describable textures
dataset (DTD) [60], consisting of 5, 640 images (47 categories
and 120 images for each category). In practice, we randomly
sampled two minibatches Q and T from KADID-10k and
DTD, respectively, and used a variant of stochastic gradient
descent to adjust the parameters {α, β}:

E(Q, T ;α, β) = 1

|Q|
∑
x,y∈Q

E1(x, y;α, β) + λ
1

|T |
∑
z∈T

E2(z;α, β)

(16)

where λ governs the trade-off between the two terms.

2.5 Connections to Other Full-Reference IQA Methods

The proposed DISTS model has a close relationship to a
number of existing IQA methods.

• SSIM and its variants [3], [25], [63]: The multi-scale
extension of SSIM [63] incorporates the variations
of viewing conditions in IQA, and calibrates the
cross-scale parameters via subjective testing on ar-
tificially synthesized images. Our model follows a
similar approach, building on a multi-scale hierar-
chical representation and directly calibrating cross-
scale parameters (i.e., α, β) using subject-rated natu-
ral images with various distortions. The extension of
SSIM into the complex wavelet domain [25] gains
invariance to small geometric transformations by
measuring relative phase patterns of the wavelet
coefficients. As we show in Section 3.5, by optimizing
for texture invariance, DISTS inherits insensitivity to
mild geometric transformations. It is worth noting
that unlike SSIM and its variants, DISTS is based on
global spatial statistics, and thus does not provide a
spatial map of quality.

• The adaptive linear system framework [18] decomposes
the distortion between two images into a linear
combination of components that are adapted to lo-
cal image structures, separating structural and non-
structural distortions. It generalizes many IQA mod-
els, including MSE, space/frequency weighting [20],
[65], transform domain masking [22], and the tangent
distance [66]. DISTS can be seen as an adaptive non-
linear system, where structure comparison captures
structural distortions, and texture comparison mea-
sures non-structural distortions, with basis functions
adapted to global image content.

• Style and content separation [55] based on the pre-
trained VGG network has reignited the field of style
transfer. Specifically, the style loss is built upon the
correlations between convolution responses at the
same stages (i.e., the Gram matrix) while the content
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TABLE 1
Performance comparison on three standard IQA databases. Larger PLCC, SRCC and KRCC values indicate better performance. CNN-based

methods are highlighted in italics

Method
LIVE [61] CSIQ [5] TID2013 [62]

PLCC SRCC KRCC PLCC SRCC KRCC PLCC SRCC KRCC
PSNR 0.865 0.873 0.680 0.819 0.810 0.601 0.677 0.687 0.496
SSIM [3] 0.937 0.948 0.796 0.852 0.865 0.680 0.777 0.727 0.545
MS-SSIM [63] 0.940 0.951 0.805 0.889 0.906 0.730 0.830 0.786 0.605
VSI [64] 0.948 0.952 0.806 0.928 0.942 0.786 0.900 0.897 0.718
MAD [5] 0.968 0.967 0.842 0.950 0.947 0.797 0.827 0.781 0.604
VIF [4] 0.960 0.964 0.828 0.913 0.911 0.743 0.771 0.677 0.518
FSIMc [11] 0.961 0.965 0.836 0.919 0.931 0.769 0.877 0.851 0.667
NLPD [39] 0.932 0.937 0.778 0.923 0.932 0.769 0.839 0.800 0.625
GMSD [12] 0.957 0.960 0.827 0.945 0.950 0.804 0.855 0.804 0.634
DeepIQA [13] 0.940 0.947 0.791 0.901 0.909 0.732 0.834 0.831 0.631
PieAPP [8] 0.908 0.919 0.750 0.877 0.892 0.715 0.859 0.876 0.683
LPIPS [7] 0.934 0.932 0.765 0.896 0.876 0.689 0.749 0.670 0.497
DISTS (ours) 0.954 0.954 0.811 0.928 0.929 0.767 0.855 0.830 0.639

loss is defined by the MSE between the two represen-
tations. These two components are redundant, and
the combined loss does not have the desired property
of unique minima we seek.

• Image restoration losses [67] in the era of deep learning
are typically defined as a weighted sum of `p-norm
distances computed on the raw pixels and several
stages of VGG feature maps, where the weights are
manually tuned for tasks at hand. Later stages of
the VGG representation are often preferred so as to
incorporate image semantics into low-level vision,
encouraging perceptually meaningful details that are
not necessarily aligned with the underlying image.
This type of loss does not achieve the level of texture
invariance we are looking for.

3 EXPERIMENTS

In this section, we present the implementation details of
the proposed DISTS. We then compare our method with a
wide range of image similarity models in terms of quality
prediction, texture similarity, texture classification/retrieval,
and invariance of geometric transformations.

3.1 Implementation Details
We fixed the filter kernels of the pre-trained VGG, and
learned the perceptual weights {α, β}. The training was
carried out by optimizing the objective function in Eq. (16),
assuming a value of λ = 1, using Adam [68] with a batch
size of 32 and an initial learning rate of 1×10−4. After every
1K iterations, we reduced the learning rate by a factor of 2.
We trained DISTS for 5K iterations, which takes approxi-
mately one hour on an NVIDIA GTX 2080 GPU. To ensure a
unique minimum of our model, we projected the weights
of the zeroth stage onto the interval [0.02, 1] after each
gradient step. We chose a 5× 5 Hanning window to reduce
subsampling-induced aliasing in the VGG representation.
Both c1 in Eq. (5) and c2 in Eq. (6) were set to 10−6. During
training and testing, we followed the suggestions in [3], and
re-scaled the input images such that the smaller dimension
has 256 pixels. The size of texture patches as input to Eq. (15)
was 256× 256× 3, cropped from the same texture images.

3.2 Performance on Quality Prediction

After training on the entire KADID dataset [59], DISTS was
tested on the other three standard IQA databases LIVE [61],
CSIQ [5] and TID2013 [62]. We used the Pearson linear
correlation coefficient (PLCC), the Spearman rank correla-
tion coefficient (SRCC), and the Kendall rank correlation
coefficient (KRCC) as evaluation criteria. Before computing
PLCC, we fitted a four-parameter function to allow and
compensate for a smooth nonlinear relationship:

D̂ = (η1 − η2) / (1 + exp (− (D − η3) / |η4|)) + η2, (17)

where {ηi}4i=1 are parameters. We compared DISTS against
a set of full-reference IQA methods, including nine
knowledge-driven models and three data-driven CNN-
based models. The implementations of all methods were ob-
tained from the respective authors, except for DeepIQA [13],
which was retrained on KADID for fair comparison. As
LPIPS [7] has different configurations, we chose the default
one (known as LPIPS-VGG-lin).

Results, reported in Table 1, demonstrate that DISTS
performs favorably in comparison to both classic methods
(e.g., PSNR and SSIM [3]) and CNN-based models (e.g.,
DeepIQA [13] and LPIPS [7]). Overall, the best performances
across all three databases and all comparison metrics are ob-
tained with MAD [5], FSIMc [11] and GMSD [12]. It is worth
noting that these three databases have been re-used for
many years throughout the algorithm design processes, and
recent full-reference IQA methods may be unintentionally
over-adapting via extensive computational module selec-
tion, raising the risk of over-fitting (see Fig. 2). Fig. 7 shows
scatter plots of raw model predictions of representative IQA
methods versus subjective mean opinion scores (MOSs) on
the TID2013 database. From the fitted functions (Eq. (17)),
one can observe that DISTS is nearly linear in MOS.

We also tested DISTS on BAPPS [7], a large-scale and
highly-varied patch similarity dataset. BAPPS contains tra-
ditional synthetic distortions, such as geometric and pho-
tometric manipulation, noise contamination, blurring and
compression, CNN-based distortions (e.g., from denoising
autoencoders and image restoration tasks), and distortions
generated by real-world image processing systems. The hu-
man judgments are obtained from a two-alternative forced
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Fig. 7. Comparison of human mean opinion scores (MOSs) against SSIM, FSIMc, VSI, and DISTS (ours) on the TID2013 database.

choice (2AFC) experiment. The evaluation criterion is the
2AFC score [7], which quantifies the proportion of human
agreement with the IQA model, computed as pp̂+(1−p)(1−
p̂), where p is the percentage of human choices in favor of
a given image in each pair, and p̂ ∈ {0, 1} is the preference
of the IQA model. Larger values indicate better agreement
between model predictions and human judgments. Results
are compiled in Table 2, showing that DISTS (which was
not trained on BAPPS, or any similar database) achieves a
comparable performance to LPIPS [7] (which was trained
on BAPPS). We conclude that DISTS predicts image quality
well, and generalizes well to challenging unseen distortions,
such as those caused by real-world algorithms.

3.3 Performance on Texture Similarity
We also tested the performance of DISTS on texture qual-
ity assessment. Since most knowledge-driven full-reference
IQA models are not good at measuring texture similarity
(see Fig 1), we only included a subset for reference. To these
we added CW-SSIM [25] and three computational models
specifically designed for texture similarity - STSIM [29],
NPTSM [69] and IGSTQA [70]. STSIM is available in several
configurations, and we chose local STSIM-2 that is publicly
available1.

We used a synthesized texture quality assessment
database SynTEX [71], consisting of 21 reference textures
with 105 synthesized versions generated by five texture
synthesis algorithms. Table 3 shows the results of correlation
coefficients, where we can see that texture similarity models

1. https://github.com/andreydung/Steerable-filter

generally perform better than IQA models. Focusing on
texture similarity, IGSTQA [70] achieves a relatively high
performance, but is still inferior to DISTS. This indicates
that the VGG-based global measurements of DISTS capture
the essential features and attributes of visual textures.

To further test the capabilities of DISTS in quantify-
ing texture distortions, we constructed a texture quality
database (TQD), based on 10 texture images selected from
Pixabay2. Each texture image was corrupted with seven
traditional synthetic distortions: additive white Gaussian
noise, Gaussian blur, JPEG compression, JPEG2000 com-
pression, pink noise, chromatic aberration, and image color
quantization. For each distortion type, we randomly se-
lected one distortion level from a set of three levels, and
applied it to each texture image. We then created four copies
of each texture using different texture synthesis algorithms,
including two classical ones (a parametric model [15] and
a non-parametric model [72]) and two CNN-based algo-
rithms [32], [73]. Last, to produce “high-quality” images,
we randomly cropped four subimages from each of the
original textures. In total, TQD has 10 × 15 images. We
gathered human data from 10 subjects, who had general
knowledge of image processing but were unaware of the
detailed purpose of the study. The viewing distance was
fixed to enforce a visual resolution 32 pixels per degree of
visual angle. Each subject was shown all ten sets of images,
one set at a time, starting with the reference image, and
was asked to rank the images according to their perceptual
similarity to the reference. Rather than simply averaging

2. https://pixabay.com/images/search/texture

https://github.com/andreydung/Steerable-filter
https://pixabay.com/images/search/texture
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TABLE 2
Performance comparison of various IQA methods on the BAPPS [7] dataset using the 2AFC score, which quantifies the agreement with human

judgments. Values lie in the range [0, 1], with a higher value indicating better agreement

Method
Synthetic distortions Distortions by real-world algorithms

All
Traditional CNN-based All Super

resolution
Video

deblurring Colorization Frame
interpolation All

Human 0.808 0.844 0.826 0.734 0.671 0.688 0.686 0.695 0.739
PSNR 0.573 0.801 0.687 0.642 0.590 0.624 0.543 0.614 0.633
SSIM [3] 0.605 0.806 0.705 0.647 0.589 0.624 0.573 0.617 0.640
MS-SSIM [63] 0.585 0.768 0.676 0.638 0.589 0.524 0.572 0.596 0.617
VSI [64] 0.630 0.818 0.724 0.668 0.592 0.597 0.568 0.622 0.648
MAD [5] 0.598 0.770 0.684 0.655 0.593 0.490 0.581 0.599 0.621
VIF [4] 0.556 0.744 0.650 0.651 0.594 0.515 0.597 0.603 0.615
FSIMc [11] 0.627 0.794 0.710 0.660 0.590 0.573 0.581 0.615 0.640
NLPD [39] 0.550 0.764 0.657 0.655 0.584 0.528 0.552 0.600 0.615
GMSD [12] 0.609 0.772 0.690 0.677 0.594 0.517 0.575 0.613 0.633
DeepIQA [13] 0.703 0.794 0.748 0.660 0.582 0.585 0.598 0.615 0.650
PieAPP [8] 0.727 0.770 0.746 0.684 0.585 0.594 0.598 0.627 0.659
LPIPS [7] 0.760 0.828 0.794 0.705 0.605 0.625 0.630 0.641 0.692
DISTS (ours) 0.772 0.822 0.797 0.710 0.600 0.627 0.625 0.651 0.689

TABLE 3
Performance comparison on two texture quality databases. Texture

similarity models are highlighted in italics

Method
SynTEX [71] TQD (proposed)

PLCC SRCC KRCC PLCC SRCC KRCC
SSIM [3] 0.619 0.620 0.446 0.330 0.307 0.185
CW-SSIM [25] 0.532 0.497 0.335 0.344 0.325 0.238
DeepIQA [13] 0.550 0.512 0.354 0.458 0.444 0.323
PieAPP [8] 0.719 0.715 0.532 0.721 0.718 0.556
LPIPS [7] 0.674 0.663 0.478 0.402 0.392 0.301
STSIM [29] 0.650 0.643 0.469 0.422 0.408 0.315
NPTSM [69] 0.505 0.496 0.361 0.678 0.679 0.547
IGSTQA [70] 0.816 0.820 0.621 0.804 0.802 0.651
DISTS (ours) 0.901 0.923 0.759 0.903 0.910 0.785

the human opinions, we used reciprocal rank fusion [74]
to obtain the final ranking

r(x) =
K∑
k=1

1

γ + rk(x)
, (18)

where rk(x) is the rank of x given by the k-th subject and γ
is an additive constant that helps to mitigate the impact of
outliers [74]. Table 3 lists the results, where we computed the
correlations within each texture pattern and averaged them
across textures. We found that nearly all existing models
perform poorly on the new database, including those tai-
lored for texture similarity. In contrast, DISTS significantly
outperforms these methods by a large margin. Fig. 8 shows
a set of texture examples, where we noticed that DISTS gives
high rankings to resampled images and low rankings to
images suffering from visible distortions. This demonstrates
that DISTS is in close agreement with human perception of
texture quality, and suggests potential uses in other texture
analysis problems, such as high-quality texture retrieval.

3.4 Applications to Texture Classification and Retrieval
We also applied DISTS to texture classification and re-
trieval. We used the grayscale and color Brodatz texture
databases [75] (denoted by GBT and CBT, respectively),
each of which contains 112 different texture images. We

resampled nine non-overlapping 256×256×3 patches from
each texture pattern. Fig. 9 shows a representative texture
image from CBT, partitioned into nine patches.

The texture classification problem consists of assigning
an unknown sample image to one of the known texture
classes. For each texture, we randomly chose five patches
for training, two for validation, and the remaining two for
testing. A simple k-nearest neighbors (k-NN) classification
algorithm was implemented, which allowed us to incorpo-
rate and compare different similarity models as distance
measures. The predicted label of a test image was deter-
mined by a majority vote over its k nearest neighbors in
the training set, where the value of k was chosen using the
validation set. We implemented a baseline model - the bag-
of-words of SIFT features [76] with k-NN. The classification
accuracy results are listed in Table 4, where we can see that
this baseline model beats most image similarity-based k-NN
classifiers, except LPIPS (on CBT) and DISTS. This shows
that our model is effective at discriminating and classifying
textures that are visually different to the human eye.

The content-based texture retrieval problem consists of
searching for images from a large database that are visually
similar. In our experiment, for each texture, we set three
patches as the queries, and aimed to retrieve the remaining
six patches. Specifically, the distances between each query
and the remaining images in the dataset were computed
and ranked so as to retrieve the images with minimal
distances. To evaluate the retrieval performance, we used
mean average precision (mAP), which is defined by

mAP =
1

Q

Q∑
q=1

(
1

K

K∑
k=1

P (k)× rel(k)

)
, (19)

where Q is the number of queries, K is the number of
similar images in the database, P (k) is the precision at cut-
off k in the ranked list, and rel(k) is an indicator function
equal to one if the item at rank k is a similar image and
zero otherwise. As seen in Table 4, DISTS achieves the best
performance on both CBT and GBT datasets. The classifi-
cation/retrieval errors are primarily due to textures with
noticeable inhomogeneities (e.g., middle patch in Fig. 9).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 8. One set of texture images from TQD, ordered according to their rankings by DISTS. (a) Reference image. (b)-(p) Corrupted images ranked
by DISTS from high quality to low quality, respectively.

In addition, the performance on GBT is slightly reduced
compared with that on CBT, indicating the importance of
color information in these tasks.

Classification and retrieval of texture patches resampled
from the same images are relatively easy tasks. We also
tested DISTS on a more challenging large-scale texture
database, the Amsterdam Library of Textures (ALOT) [77],
containing photographs of 250 textured surfaces, from 100
different viewing angles and illumination conditions. Again,
we adopted a naı̈ve k-NN method (k = 100) using our
model as the measure of distance, and tested it on 20% of
the samples randomly selected from the database. Without
training on ALOT, DISTS achieves a reasonable classification
accuracy of 0.926, albeit lower than the value of 0.959
achieved by a knowledge-driven method [78] with hand-
crafted features and support vector machines, and the value
of 0.993 achieved by a data-driven CNN-based method [79].
The primary cause of errors when using DISTS in this task is

that images from the same textured surface can appear quite
different under different lighting or viewpoint conditions, as
seen in the example in Fig. 10. DISTS, which is designed to
capture visual appearance only, could likely be improved
for this task by fine-tuning the perceptual weights (along
with the VGG network parameters) on a small subset of
human-labelled ALOT images.

3.5 Invariance to Geometric Transformations

Apart from texture similarity, most full-reference IQA mea-
sures fail dramatically when the original and distorted
images are misregistered, either globally or locally. The
underlying reason is again reliance on the assumption of
pixel alignment. Although pre-registration can alleviate this
issue, it comes with substantial computational complexity,
and does not work well in the presence of severe distor-
tions [19]. In this subsection, we investigated the degree of
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Fig. 9. Nine non-overlapping patches sampled from an example texture
photograph in the Brodatz color texture dataset.

TABLE 4
Classification and retrieval performance comparison on the Brodatz

texture dataset [75]

Method
Classification acc. Retrieval mAP

CBT GBT CBT GBT
SSIM [3] 0.397 0.210 0.371 0.145
CW-SSIM [25] - 0.424 - 0.351
DeepIQA [13] 0.388 0.308 0.389 0.293
PieAPP [8] 0.173 0.115 0.257 0.153
LPIPS [7] 0.960 0.861 0.951 0.839
STSIM [29] - 0.708 - 0.632
NPTSM [69] - 0.895 - 0.837
IGSTQA [70] - 0.862 - 0.798
SIFT [76] 0.924 0.928 0.859 0.865
DISTS (ours) 0.995 0.968 0.988 0.951

invariance of DISTS to geometric transformations that are
imperceptible to the visual system.

As there are no subject-rated IQA databases designed for
this specific purpose, we augmented the LIVE database [61]
(LIVE Aug) with geometric transformations. In real-world
scenarios, an image should first undergo geometric transfor-
mations (e.g., camera movement) and then distortions (e.g.,
JPEG compression). We followed the suggestion in [19], and
implemented an equivalent but much simpler approach -
directly applying the transformations to the original image.
Specifically, we augmented reference images using four ge-
ometric transformations: 1) shift by 5% pixels in horizontal
direction, 2) clockwise rotation by a degree of 3◦, 3) dilation
by a factor of 1.05, and 4) their combination. This yields
a set of (4 + 1) × 779 reference-distortion pairs in the
augmented LIVE database. Since the transformations are
modest, the quality scores of distorted images with respect
to the modified reference images are assumed to be the same
as with respect to the original reference image.

The SRCC results of the augmented LIVE database are
shown in Table 5. We found that data-driven methods based
on CNNs significantly outperform traditional ones. Even
so, their performance is often made worse by sensitivity to
transformations that arises during downsampling without
proper Nyquist band limiting. Trained on augmented data

TABLE 5
SRCC comparison of IQA models to human perception using the LIVE

database augmented with geometric transformations

Method Translation Rotation Dilation Mixed Total
PSNR 0.159 0.153 0.152 0.146 0.195
SSIM [3] 0.171 0.168 0.177 0.166 0.190
MS-SSIM [63] 0.165 0.174 0.198 0.174 0.177
CW-SSIM [25] 0.207 0.312 0.364 0.219 0.194
VSI [64] 0.282 0.360 0.372 0.297 0.309
MAD [5] 0.354 0.630 0.587 0.453 0.327
VIF [4] 0.296 0.433 0.522 0.387 0.294
FSIMc [11] 0.380 0.396 0.408 0.365 0.339
NLPD [39] 0.062 0.074 0.083 0.066 0.112
GMSD [12] 0.252 0.299 0.303 0.247 0.288
DeepIQA [13] 0.822 0.919 0.918 0.881 0.859
PieAPP [8] 0.850 0.903 0.902 0.879 0.874
LPIPS [7] 0.811 0.908 0.893 0.861 0.779
GTI-CNN [19] 0.864 0.906 0.904 0.890 0.875
DISTS (ours) 0.948 0.939 0.946 0.937 0.928

by geometric transformations, GTI-CNN [19] achieves desir-
able invariance at the cost of discarding perceptually impor-
tant features (see Fig. 2). DISTS is seen to perform extremely
well across all distortions and exhibit a high degree of
robustness to geometric transformations, which we believe
arises from 1) replacing max pooling with `2 pooling, 2)
using global quality measurements, and 3) optimizing for
invariance to texture resampling (see also Fig. 11).

3.6 Ablation Study
In this subsection, we conducted ablation experiments to
single out the individual contributions of key modifications
of DISTS, in comparison to the most closely related alter-
native - LPIPS. We trained a series of intermediate models
between LPIPS and DISTS:

(a) Original LPIPS;
(b) Replace max pooling in LPIPS with `2 pooling;
(c) Add the input image on the top of (b);
(d) Replace the Euclidean distance in LPIPS with local

SSIM measurements (within a sliding window of size
11× 11) on top of (c);

(e) Replace the Euclidean distance in LPIPS with global
SSIM measurements on top of (c);

(f) Train (c) by adding the E2 term in Eq. (15);
(g) Train (d) by adding the E2 term;
(h) Train (e) by adding the E2 term, which is equivalent

to DISTS.

Performance of these models is shown in Table 6, from
which we draw several conclusions. First, `2 pooling is
slightly better than max pooling. The main motivation of
adopting `2 pooling is to de-alias the intermediate represen-
tations, as documented in [42]. Second, incorporating the
input image in the representation has little impact on the
performance, but it ensures a unique minimum of DISTS,
which is beneficial in perceptual optimization [80]. Third,
the global SSIM-like distance outperforms the Euclidean
distance, especially in measuring similarity of visual tex-
tures and invariance to geometric transformations. We also
tested local SSIM measurements within a sliding window
size of 11 × 11 (d), which gives inferior performance. Last,
training with the E2 term is important for texture-related
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(a) Reference (b) D = 0.173 (c) D = 0.255 (d) D = 0.398 (e) D = 0.427

Fig. 10. Five images of “soil”, photographed under different lighting and viewpoint conditions, from the ALOT dataset. We computed the DISTS
score for each of the images (b)-(e) with respect to the reference (a). Consistent with the significantly higher values, (d) and (e) are visually distinct
from (a), although all of these images are drawn from the same category.

(a) SSIM↑ / DISTS↓

(b) 0.486 / 0.057 (c) 0.482 / 0.063 (d) 0.493 / 0.064 (e) 0.630 / 0.069

(f) 0.539 / 0.161 (g) 0.637/0.329 (h) 0.705 / 0.270 (i) 0.730 / 0.284

Fig. 11. A visual example to demonstrate robustness of DISTS to geometric transformations. (a) Reference image. (b) Translated rightward by 5%
pixels. (c) Dilated by a factor 1.05. (d) Rotated by 3 degrees. (e) Cloud movement. (f) Corrupted with additive Gaussian noise. (g) Gaussian blur.
(h) JPEG compression. (i) JPEG2000 compression. Below each image are the values of SSIM and DISTS, respectively. SSIM values are similar or
better (larger) for the bottom row, whereas our model reports better (smaller) values for the top row, consistent with human perception.

tasks, improving invariance to geometric transformations,
although it slightly hurts the performance on standard IQA
databases. We concluded that the improved quality predic-
tion and texture similarity performance of DISTS relative to
LPIPS is due to the combination of these key modifications.

4 CONCLUSIONS

We have presented a new full-reference IQA method, DISTS,
which is the first of its kind with built-in tolerance to
texture resampling. Our model unifies structure and texture
similarity, providing good predictions of human quality
ratings on both textures and natural photographs, is robust
to mild geometric distortions, and performs well in texture
classification and retrieval.

DISTS is based on the pre-trained VGG network for
object recognition. By computing the global means of con-
volution responses at each stage, we established a universal
parametric texture model similar to that of Portilla & Si-
moncelli [15]. These statistical measurements provide a rich
but relatively low-dimensional characterization of texture
appearance, as verified using synthesis (Fig. 4). Despite the
empirical success, we believe an important direction for
future work is to analyze this “black box” to understand
1) what and how certain texture features and attributes are
captured by the pre-trained network, and 2) the importance
of cascaded convolution and subsampled pooling in sum-
marizing useful texture information. It is also of interest to

extend the current model to measure distortions locally, as
is done in SSIM. In this case, the distance measure could be
reformulated to adaptively select between structure and tex-
ture measures as appropriate, instead of linearly combining
them with fixed weights.

The most direct use of IQA measures is for perfor-
mance assessment and comparison of image processing
systems. But perhaps more importantly, they may be used
to optimize image processing methods, so as to improve
the visual quality of their results. In this context, most
existing IQA measures present major obstacles due to the
fact that they lack desired mathematical properties that
aid optimization (e.g., injectivity, differentiability and con-
vexity). In many cases, they rely on surjective mappings,
and minima are non-unique (see Fig. 2). Although DISTS
enjoys several advantageous mathematical properties, it is
still highly non-convex (with abundant saddle points and
plateaus), and recovery from random noise using stochastic
gradient descent methods (see Fig. 2) requires many more
iterations than for SSIM. In practice, the larger the weight
of the structure term s at the zeroth stage (β0j in Eq. (6)),
the faster the optimization converges. However, to reach a
reasonable level of texture invariance, the learned

∑
i,j αij

should be larger than
∑
i,j βij , hindering optimization. We

are currently analyzing DISTS in the context of perceptual
optimization. Our initial results indicate that DISTS-based
optimization of image processing applications, including
denoising, deblurring, super-resolution, and compression,
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TABLE 6
Ablation experiments: proposed DISTS model (last line) compared to LPIPS (first line), and intermediate variations. All models trained on KADID

Model
Quality prediction Texture similarity Geometric invariance

LIVE [61] TID2013 [62] SynTEX [71] TQD (proposed) LIVE Aug

PLCC SRCC KRCC PLCC SRCC KRCC PLCC SRCC KRCC PLCC SRCC KRCC PLCC SRCC KRCC
(a) LPIPS 0.934 0.936 0.769 0.850 0.824 0.626 0.591 0.589 0.452 0.403 0.401 0.302 0.801 0.793 0.629
(b) a + `2 pooling 0.937 0.938 0.770 0.851 0.824 0.626 0.594 0.592 0.459 0.410 0.406 0.305 0.807 0.802 0.633
(c) b + input image 0.935 0.935 0.768 0.851 0.825 0.627 0.582 0.581 0.449 0.410 0.409 0.303 0.795 0.789 0.625
(d) c + local SSIM 0.950 0.951 0.797 0.853 0.828 0.631 0.738 0.744 0.602 0.664 0.667 0.559 0.798 0.790 0.626
(e) c + global SSIM 0.955 0.957 0.816 0.859 0.835 0.641 0.868 0.877 0.739 0.780 0.795 0.698 0.899 0.881 0.724
(f) c + E2 term 0.934 0.935 0.768 0.791 0.776 0.608 0.780 0.782 0.630 0.680 0.685 0.588 0.830 0.823 0.655
(g) d + E2 term 0.929 0.931 0.766 0.801 0.783 0.615 0.774 0.778 0.625 0.672 0.678 0.579 0.820 0.816 0.649
(h) e + E2 = DISTS 0.954 0.954 0.811 0.855 0.830 0.639 0.901 0.923 0.759 0.903 0.910 0.785 0.931 0.928 0.762

can lead to noticeable improvements in visual quality [80].
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