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ABSTRACT

Transparent motions can be isolated in the Fourier domain, using derivative prefilters
that selectively null the spatio-temporal energy consistent with the gradient constraint
imposed by each component velocity. We use these “nulling” prefilters to robustly com-
pute the support a particular velocity has at a point despite other velocities that may also
be present at that point. Images are decomposed into a set of global constraints that ac-
count for a maximal amount of the motion information in the sequence. Adopting global
motion hypotheses and a selection mechanism based on finding a parsimonious subset of
these hypotheses, we show results separating motion stimuli into their constituent layers,
even when those layers are transparently combined in the stimuli.

1 Introduction

The human visual system can easily distinguish multiple motions that are transparently
combined in an image sequence. A model for the perception of transparent motion must
address two questions: 1) what local motion measurements are made? and 2) how are
these local estimates used to group coherently moving regions of the scene?

Several current computational approaches provide interesting insights into these is-
sues. The algorithm of Shizawa and Mase [13, 14] directly computes two velocity vectors
for each location in the image, but does not address the problem of perceptual grouping
of coherently moving regions of the scene. The algorithms of Bergen et. al. [3] and Irani
and Peleg [9] compute global affine optical flow fields, but use local measurements that
are only capable of determining a single velocity estimate at each point.

We have adopted a model that combines the best of both approaches, using a global



constraint mechanism with arbitrary spatial grouping, and local measurements that are
robust in the presence of transparent motion. Our grouping mechanism is based on the
idea of a “layered representation” proposed by Adelson [2, 1], in which each object or
process in a scene is represented by a data structure describing aspects of the image
attributable to that object.

In [7] we used the layered representation idea for the processing of motion information,
allowing for arbitrary occlusion using layers with explicit regions of support for each
moving object in the scene. While this work also applied to some forms of motion
transparency, such as transparent random-dot displays ([8]), the local measurements used
did not allow for true motion transparency. Here we remedy this deficit, incorporating
a model of local motion measurements that accounts for motion transparency using the
principle of superposition [13] together with a probabilistic model of velocity computation
[15].

The grouping mechanism adopted in [7] assumed a purely spatial notion of support
and thus could not explicitly represent transparent phenomena, since the support was
constrained to be non-overlapping in the final solution. This paper extends the definition
of support from an exclusively spatial notion, to include the spatio-temporal energy
domain. The key insight is that when processing transparent motion displays, the support
of a motion hypotheses should exist over both a region of space and velocity, so that it
can be isolated both spatially and in terms of local velocity. With this formulation, two
layers can have spatially overlapping support, but not be “conflicting” since they are
distinct in the spatio-temporal energy domain.

2 Integration of Motion Information

The integration of motion information over a scene is is an essential part of any motion
perception mechanism for two reasons. First, typical scenes have many regions for which
the velocity is underconstrained (i.e., the intensity function is either one-dimensional or
zero-dimensional). The motion in these regions must be disambiguated by combining con-
straints spatially and/or temporally. Second, combining constraints produces estimates
that are more robust to noise that may corrupt the imaging or measurement processes.

If the motion in a scene is smooth, and there are no discontinuities in the optic flow,
then this integration may be performed using a regularization process. When there are
discontinuities, a grouping mechanism must determine which portions of the image are
moving coherently, and thus should be integrated together. A common approach to
motion grouping has been to use an edge field in combination with a velocity field, and
use a smoothing mechanism that does not integrate information across edge boundaries
[4].

This type of “line-process” approach works well when the scene contains only simple
occlusion, in which each object projects to a relatively large, connected region in the
image. But in more complicated situations, such as when the projected regions of an
object are very small and disjoint (i.e. random dot displays) and/or overlapping with
other objects (i.e., when looking through a window with reflections), this approach cannot



adequately model or recover the stimulus. To accommodate these types of phenomena,
one needs a representation that allows for multiple velocities in a single neighborhood,
and for the integration of information across disjoint regions of an image.

Instead of a line-process, we have advocated the use of a set of layered “support
processes” [5, 6]. Based on the notion of support found in the robust estimation literature
[10], the support for a given global motion is computed as the conditional probability of
the velocity field implied by the motion given the observed image sequence. Typically,
this reduces to a weighted (normalized) residual error computation.

Our approach to computing a layered representation involves a generate-and-test
strategy to produce multiple layer hypotheses, followed by a pruning optimization to
select a parsimonious set of these hypotheses. We assume a global model of motion in
the scene, described by a parametrized flow field. Further, we assume that the space of
flow fields is sufficiently smooth that a relatively coarse sampling of the flow parameter(s)
will produce a set of vector fields that can be combined to reasonably approximate the
actual motions in the scene.

In the next section, we will develop in detail the mechanism for computing the support
of a given flow field in a particular image sequence. Following that we will review the
clustering mechanism that selects an optimal set of candidate layers, and present the
extension to handle the case of transparency.

3 Local Measurements of Motion Information

For a global motion hypothesis in the form of a velocity field, we wish to determine the
set of points in the scene that have a motion that is consistent with the velocity field.
If the scene contains only a single motion at every point, this is a straightforward task
using the well-known gradient-based models of velocity computation [12].

3.1 The gradient constraint

Given a particular velocity field v(x,y) and an image sequence I(z,y,t), we wish to
compute the support field s(z,y) indicating those regions of the sequence with motion
matching v(z,y) (at a particular time ty). According to the gradient constraint, the
spatial and temporal image derivatives at a point obey the following equation:

9l(z,y,1) 9l(z,y,t) dl(x,y,t)
’Uw(fcay)T + 'vy(:c,y)T = T (1)
Using an operator notation,
v
‘ 0 0 0
D(v) = 'Uly V_(Uq;a + Uya_y + 5)7 (2)
we can express eq. (1) as
Dlo(,y))(z,y,1) = 0 5
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Figure 1: Idealized depiction of the spectrum of a directional derivative operator. The
operator “nulls” energy along the line specified by the constraint velocity v, and passes
any other energy. Thus the operator will have zero output, D(v)I = 0, if all of the energy
lies on the constraint line.

Taken in the Fourier domain, the gradient constraint implies that all energy associated
with a velocity v lies on a plane in space-time [17]. From eqgs. (2,3) we can see D(v)
is a linear operator, and that it must have zero response for spatio-temporal frequencies
on the constraint plane. We thus call D(v) a “nulling” filter, as it removes any energy
along the constraint plane from the image sequence. Figure 1 shows a plot of the spectral
response of this filter for a 1D velocity; in this case, all energy is constrained to lie along
a line in space-time.

3.2 Computing velocity support

We define the support for a velocity at a point as the conditional probability that a
velocity is present given the observed image derivatives. Following [15], we introduce a
noise model into the gradient constraint equation:

D(v(z,y) 4+ ni(z,y))I(z,y,t) = na(x,y) n;=N(0,0;), (4)

where the noise term n; describes errors in the planarity assumption, and n, accounts
for any remaining errors in the temporal derivative measurement.

Assuming there i1s only a single motion in the neighborhood, the conditional proba-
bility of a velocity v given the image gradient VI is given by

D) ol
o1||VI||* 4+ o3 o

—log P(v|VI) x , (5)

where we assume a prior distribution of velocities of the form P(v) & N(0,0,). In this
case our support function is simply the conditional probability:

s(z,y) = Plo(z,y) | VI(z,y,1)). (6)
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Figure 2: Idealized spectrum of a second-order derivative operator, constructed by com-
posing two first-order directional derivatives. The operator “nulls” energy along the two
lines specified by the constraint velocities v and v’. Thus the operator will have zero
output, Dy(v,v’) = 0, if all of the image energy lies on the constrained lines.

3.3 Additive models of motion transparency

When there is motion transparency in a scene, more than one constraint must be specified
at each point in the image. To compute the support of a velocity field in the presence
of transparency, we need to rely on local measurements that are robust in the presence
of multiple motions at a given point. To derive these measurements, we need a local
model of multiple (transparent) motion. For image sequences that have been additively
combined, we can simply chain the constraint operators of the constituent velocities:

D(Ul(xay))D(v2($7y))I($7y7t) =0 (7)

In the spatio-temporal domain, this corresponds to the dual constraint that all of the
energy in the signal lie on either of the planes specified by the two velocities.

Shizawa and Mase [13] introduced this formulation and proceeded to develop methods
for the analytic estimation of two velocities at each point given the local image derivative
information. Our focus, however, is on the computation of support, i.e. the likelihood of
a velocity given the image information.

Constructing the dual-motion constraint operator, we have
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and in this notation the dual motion constraint is simply
DQ(U1($,y),vg(.?,y))f(.f,y,t) =0 (9)

This operator “nulls” two constraint planes (or lines, in the 1D case). Figure 2 shows a
spectral plot of D, for two velocities.



3.4 Computing transparent support with “nulling” prefilters

If one of the motions in a sequence is known, perhaps due to known background motion,
we can use the constraint operator as a “nulling prefilter” to remove the energy corre-
sponding to that motion. This operation is similar in spirit to the predictive cancellation
of Bergen et. al [3], however we perform the computation locally rather than globally.

We want to find the conditional probability of v given the observed image gradient
and a known transparent velocity v/, P(v|VI,v'). To compute this, we first construct an
intermediate sequence,

I'=D(v")I, (10)

that removes any contribution of v’ to the spatio-temporal spectrum of I. Neglecting
any overlap in the energy distributions of v and v’, we approximate

P(v|VI W) ~ P(v|VI). (11)
We then compute P(v|VI'), using eq. 5:
D(v)I'|* [Jv][*
—log P(v|VI' I 12
os P91 o« —PUHIE 1] (12)
I D(0) (D) )| [* [loll*

| [V(D))|[? + 02 0oy

Typically we don’t know any of the motions in a sequence a priori. However, if
we assume that there are only a small number of motions at a given point, ! then we
can quantize and enumerate the possible conflicting motions at a point, and selectively
discount them using appropriately tuned “nulling” pre-filters.

For example, if two motions are possible at a single point, then to test the support
for a velocity v we evaluate P(v|VI, v') over the range of possible v’. Because we are
computing the conditional probability with nulling filters, we define the support to be
the maximum value of this conditional probability over the range of possible conflicting
motions, v'. This can be justified by the observation that the choice of an incorrect
nulling filter (one corresponding to a velocity that does is not in the image at that point)
will always yield a lower likelihood than the correct nulling filter. The dual-motion
transparent support function is thus:

s(x,y) = II%)E/LXP( o(z,y) | VI(z,y,t), v"). (13)

For three motions, we could similarly construct P(v|VI, v’ v"):

D)D) DE)D)IF | [lo]f?

PV, 0" , 14
VL) S R DD E+ o T .

for which the support function would be:
s(z,y) = max P( v(z,y) | VI(z,y,1), o' 0" ). (15)

!Mulligan [11] has shown that most human observers cannot discriminate more than 2 local motions
at a single point.



Higher-order support functions are possible, but at the expense of considerably increasing
computational complexity. In practice we have limited our implementation to assume
only two possible motions at a single point (however many different motions may be
present in the overall scene.)

4 Selecting a set of Global Velocity Fields

A key issue in the recovery of a multi-layer representation of an image is the question
of how many layers to use in describing that image. One approach, presented by [9], is
to assume a spatially dominant “background” whose parameters can be estimated based
on the entire image data, since the outlier contamination from the foreground will be
relatively small. The support of the background is then computed using the weighted
residual error computation given above. The background estimate can be further refined
using an iterative robust estimation technique, re-estimating the parameters based only
on the newly supported points. The motion of a foreground object can be similarly
computed by initializing its support to be the complement of the background support.
With multiple objects, this approach fails when two of the objects exist at the same
scale. (In this case the percentage of outliers — the foreground support — will exceed the
breakdown point of the robust estimation method [10].)

4.1 Hypothesize and select methods

An alternative approach is to test many different motion hypotheses for a given image
sequence and decide which are worth retaining. With this approach, one has to specify
a method of generating the initial set of hypothetical motion fields, and a selection
mechanism that acts upon them.

Wang et. al. [16] have developed a layer description algorithm that fits motion
parameters to initial patches of the image, and then computes the support associated
with the estimated parameters. They have a computationally efficient mechanism that
iteratively selects the layer with the largest support among uncovered portions of the
image, and then marks the pixels associated with that layer as covered.

In [7], we presented a method that generated initial hypotheses either by sampling
the parameter space, or by sampling the image domain (into small patches, for example)
and fitting parameters to each sample. If one has knowledge about the spatial properties
of the objects in a scene, e.g. that they have relatively large unobscured subregions, then
this latter approach has advantages. However when this is not the case, for example with
transparent phenomena, assumptions on the spatial geometry of the support fields are
untenable. For scenes with transparent phenomena, direct initialization of hypotheses
in the parameter space is thus appropriate. To find a subset of layers from the initial
hypothesis set, we have adopted a selection mechanism that attempts to choose the
smallest set of layers whose support covers as much of the scene as possible.



4.1.1 Subset selection method

Given a set of velocity fields and an image sequence, we compute the corresponding
support each velocity field receives from the image using eq. 13. This gives us an initial
hypothesis set H:

H = {lo, 11, . Int) (16)
l; = {v,»(m,y),s,'(x,y)} (17)

where v;(z,y) and s;(x,y) are the velocity field and support map (respectively) of the
1th layer.

We attempt to find a subset £ C H that maximizes the amount of support covered
by the layers in £ minus a penalty term on the cardinality of £. We maximize a criterion
function:

S(£) = C(L) - ol £] (18)

where C'(£) is the amount of support covered by the given subset, and « is the penalty
term for adding a new layer to the representation.

We thus need an expression for the amount of support covered by a given subset £. If
there happens to be no overlapping support among the elements of £ (a rather unlikely
proposition), then this is quite trivial:

)= ¥ (TTsten). (19)

{e|l;ec} \ =z y

When support does overlap, we do not want to count twice the support for the same
velocity at the same point. We therefore introduce a weighting term, defined as the cosine
of the angle between the two velocities, to determine how much they conflict.

Somewhat counter-intuitively, we do not count a supported point pixel as being cov-
ered if that point has conflicting support from more than one velocity hypothesis in L.
The optimization we perform incrementally updates a confidence value for each candidate
layer based on the number of points it covers. Since it is difficult to attribute a point with
conflicting support to a single hypothesis, we adopt a “least commitment” strategy and
allocate it to neither. We have found that the alternative approach of normalizing the
contribution of support point by the number of layers with conflicting support does not
lead to a criterion function that can be successtully maximized using a gradient descent
method.

We compute the set of points that have conflicting support by the following product:

C,’(I,y) = H (1 - ¢ki($,y)5k($,y)) (20)

{klkilreC)

where ¢r; measures whether two velocities are “conflicting”, and is defined to be the
cosine of the angle between the normal vectors of velocity planes corresponding to vy and
Uyt

vk(:ﬂfy) ' 'Ui('ray) +1

= e I+ 1yl P+ 1

bri(T,y) (21)
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This quantity ¢;(x,y) is used to indicate when there is conflicting support for a point; if
more than one hypothesis in £ shares the same spatio-temporal support at a point (z,y)
then ¢;(x,y) will equal 0 for those hypotheses. Using this to discount conflicting support,
the amount of support covered by £ is

cw)= ¥ (STatwnstan) 2

{z|l €L}

4.1.2 Numerical solution

To maximize S numerically, we represent £ by enumerating those elements of H that are
in £ using a vector a, and then performing gradient descent on a . The sign of each a;
indicates whether a layer hypothesis [; € H is an element of the layer subset £ C H: a
positive value means [; € £, and a negative value means [; ¢ £. Initially a; is set to zero
for each description.

For a subset represented by a, the amount of covered support is

Cl0) = X ota) (X aten)stann) (23)
2 z oy
with

C,‘(I, y) = H(l - U(ak)¢ki(x7 y)Sk($7 y)) (24)

k#i

where o() transforms the a; values into a multiplicative weight between 0 and 1. Ideally,
o() would be the unit step function centered at the origin. However, this hard non-
linearity makes it very difficult to find a maxima of S using traditional methods. Instead,
we use the “softer” sigmoid function,

(25)

S(0) = Y o(a) (X X)) ) (2)

zr oy

Using the shorthand notation A; = o(a;), we update the values of a; with the following
update rule:

da; 1dS(a
ik dA chl”y Y) = (27)

where k is an integration constant. This rule increments a; whenever the velocity layer
has enough “unconflicted” support to offset the overhead cost penalty a. The convergence

of the a; values to a local maxima of S(a) is shown in Appendix A.



5 An Example Recovering the Support of Trans-
parent Motions

5.1 Velocity model

In our implementation, we adopt a simple yet non-trivial model of velocity fields in the
scene. We use a linear combination of horizontal and vertical shifts together with a

looming field: Ve —al 0 v —d
I’y)_al0]+b[1]+cl ] (28)

y—e
where a, b, ¢, d, e are the parameters of the model. Other authors have experimented with
higher-order approaches, such as affine models (see [9, 16]).

In previously reported work [7], we demonstrated a system that used this velocity
model, a simple version of the the support computation described in eq. 6, and a selec-
tion method equivalent to the one presented above without the model of non-conflicting
velocities (thus it could not handle pure transparency). This system could recover the
segmentation of multiple moving objects in a scene, as long as they obeyed the parametric
model given above.

We have extended this implementation to use the transparent support mechanisms
presented above. Support is computed using a fixed set of single-stage prefilters, as
in eq 13. For the following examples we used a set of eight prefilters, with velocities
{(_17 _1)7 (_170)7 (_17 1)7 (07 _1)7 (07 1)7 (17 _1)7 (170)7 (17 1)} Since we have not
yet implemented a coarse-to-fine strategy in our support computation, we assume the
range of motions in the sequences to be processed are small, on the order of one or two
pixels per frame.

5.2 Hypothesis initialization

Similarly, we adopted an initial set of velocity field hypotheses corresponding to 8 planar

shifts:

{(a,b,¢)} = {(-1,-1,0), (-1,0,0), (—1,1,0), (0,-1,0), (0,1,0),
(1,-1,0), (1,0,0), (1,1,0)}

plus a full field looming hypothesis {(0,0, 1)} with fixed offsets at the center of the image
(d = 64, = 64). ?

2For more complicated scenes than those used in the examples below a set of initial hypotheses that
more finely samples our field model may be needed, but empirically we have found that a small number
of hypotheses, typically less than the 64 our implementation can manage, will usually suffice to find
support fields for an image sequence. Additionally, the examples presented here do not demonstrate the
recovery of a transparently looming object, since although it is a valid instance of our motion model we
did not have a sequence with transparent looming motion available as of the writing of this paper. We
expect to report results on such scenes shortly. Results on sequences with non-transparent looming are
reported in [7].
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5.3 Results

We ran our system on several example images. We constructed sequences that contain
two additively combined subimages moving over each other in different directions: vy =
(0.8,—0.8), va = (0.0,0.8). In the sequence used for Figure 3, each subimage is a patch
of bandpassed random noise. Figure 3(a) shows the first frame of the sequence used,
and Figure 3(b) shows the support fields for the selected velocity fields. Figure 4 shows
similar results, using two well-known face images.

Having a support function that is robust to a second transparent motion is usetful
both for cases of pure transparency, and to compute support near regions of occlusion
(points of an image whose distance to an occluding boundary is within the filter radius
of the derivative operator can be functionally considered to be transparent with respect
to the multiple motion model described above). Thus we can recover more accurate
support maps on images that only contain occlusion than we could using the original
support function. Figure 5 shows an example sequence with a person moving behind a
stationary plant. The support field computed using the non-transparent support function
(eq. 6) is shown in Figure 5(b), as was reported in [7]. The support field computed using
the transparent support function, eq. 13, captures the true area of the person more
accurately, and is shown in Figure 5(c).
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Figure 3: (a) image from sequence with transparently combined moving patches. (b)
support fields found by selection mechanism.
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(b)

Figure 4: (a) image from sequence with transparently combined moving face images. (b)
support fields found by selection mechanism.
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(¢)

Figure 5: (a) image from sequence with person moving behind a plant. (b) support
for person computed using non-transparent support function. (c) support for person
computed using support function that is robust to transparent motion.
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7 Summary and Conclusion

We have presented a new approach to the separation of transparent motions, using deriva-
tive prefilters to selectively null the spatio-temporal energy due to component velocities.
In this paper we focus on the computation of support for a single velocity hypotheses in a
manner that is robust to other transparent motions, rather than attempt to analytically
estimate all the motions in a local patch. Using global motion hypotheses and a selec-
tion mechanism based on finding a parsimonious subset of these hypotheses, we are able
to successtully decompose motion stimuli that contain additively combined transparent
layers.
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A. Convergence of selection method

Using eq. (27), S(a) will converge to a local maxima. We can see this by noting that

dS(a) dS(a)dA;

= . 29
dt El: dA; dt (29)
From 27 we have
dS(a) da;
=k 30
dA; dt (30)
and thus
= k 31
dt z@: dt dt (31)
But a; = 071 (A;), so
da; _ dO'_l(A,') _ dO'_l(AZ’) dA; (32)
a — dt dA; dt
and so
dS(a) do=1(4;) (dA;\*
a Z ¢ dA; dt (33)
Since o7!() is monotonically increasing,
dO'_l(A,') dA, ? .
k >0 VY 34
dA; ( dt ) =0 (34)
and thus d‘z(ta) > 0, and S(a) will never decrease under eq. (27). Since the values of A;

are bounded, S(a) is bounded, and thus must converge.
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