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Abstract

We develop a probability model for natural images, based on empirical observation of their
statistics in the wavelet transform domain. Pairs of wavelet coefficients, corresponding to basis
functions at adjacent spatial locations, orientations, and scales, are found to be non-Gaussian in
both their marginal and joint statistical properties. Specifically, their marginals are heavy-tailed,
and although they are typically decorrelated, their magnitudes are highly correlated. We propose
a Markov model that explains these dependencies using a linear predictor for magnitude coupled
with both multiplicative and additive uncertainties, and show that it accounts for the statistics of a
wide variety of images including photographic images, graphical images, and medical images. In
order to directly demonstrate the power of the model, we construct an image coder called EPWIC
(Embedded Predictive Wavelet Image Coder), in which subband coefficients are encoded one
bitplane at a time using a non-adaptive arithmetic encoder that utilizes conditional probabilities
calculated from the model. Bitplanes are ordered using a greedy algorithm that considers the
MSE reduction per encoded bit. The decoder uses the statistical model to predict coefficient
values based on the bits it has received. Despite the simplicity of the model, the rate-distortion
performance of the coder is roughly comparable to the best image coders in the literature.

Many applications in image processing require a prior probability model. This is especially true for
the application of image compression, in which the theoretical limits of an algorithm are determined
by the underlying prior model. In this paper, we describe an explicit prior probability model for
photographic images, and test this model by using it as the basis for an image compression algorithm.
The resulting algorithm is quite flexible, and well-suited for encoding of images that must be retrieved
over a variety of communication links.

Wavelet representations, in which images are decomposed using basis functions localized in spatial
position, orientation, and spatial frequency (scale), have proven to be extremely effective for image
compression [e.g., 33, 35, 8, 1, 25, 23]. We believe there are several statistical reasons for this success.
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vania. EPS was supported by NSF CAREER grant MIP-9796040, ARO/MURI DAAH04-96-1-0007, and the Sloan Center
for Theoretical Neurobiology at NYU.
� Preliminary versions of this work have been published in [3] and [31].



The most widely known of these is that wavelet transforms are reasonable approximations to the
Karhunen-Loève expansion for fractal signals [36], such as natural images [22]. The subbands of an
orthonormal wavelet decomposition have a wide range of variances whose sum is equal to that of the
original image. If the subbands are encoded with a simple first-order entropy encoder, the minimum
coding size of the image representation is sum of the entropies of the subbands. Since entropy is a
concave function, the differences in subband variances result in a coding cost significantly less than
the first-order entropy of the original image pixels.

In addition to this redistribution of variance, the coefficients of wavelet transforms have significantly
non-Gaussian marginal statistics for typical images, and thus have lower entropy than a Gaussian-
distributed signal of the same variance. This property has been exploited in compression, noise re-
moval and texture synthesis [e.g., 15, 6, 10, 9, 38, 30]. We discuss it in greater detail in section 1, and
provide an explicit model for these marginals.

Finally, wavelet decompositions exhibit joint statistical regularities that have been utilized in a number
of recent image coding algorithms [17, 25, 21, 24, 12, 4, 37]. These regularities are the primary topic
of this paper. We discuss them in greater detail in section 2, and develop an explicit model to describe
the relationships between coefficients of different subbands.

In order to demonstrate the quality of our statistical model, the latter half of the paper describes an
embedded predictive wavelet image coder that directly utilizes the model. Section 3 describes the
compression algorithm, and the details of the coder implementation. Finally, section 4 analyzes the
performance of the coder, and compares it to several standard coders.

1 First-order Subband Statistics

A number of authors have observed that wavelet subband coefficients have highly non-Gaussian statis-
tics [e.g., 15, 7, 16, 30]. Histograms1 for subbands of separable wavelet decompositions of several
images are plotted in figure 1. Compared to a Gaussian, these densities are more sharply peaked at
zero, with more extensive tails. The intuitive explanation for this is that images typically have spatial
structure consisting of smooth areas interspersed with occasional edges or other abrupt transitions.
The smooth regions lead to near-zero coefficients, and the structures give occasional large-amplitude
coefficients.

To quantify this, we give the sample kurtosis� (fourth moment divided by squared second moment)
below each histogram. The estimated kurtoses of all of the subbands are significantly larger than the
value of three expected for a Gaussian distribution. These examples were computed for subbands of
an orthonormal separable wavelet decomposition (see section 3 for details), but we find that they are
similar for any octave-bandwidth subbands.

These non-Gaussian densities should be contrasted with statistics of frequency-based decompositions
which are approximately Gaussian. Since the Gaussian is the maximal-entropy distribution for a given
variance, wavelet-based coders are able to achieve higher degrees of compression than frequency-
based coders such as JPEG. The non-Gaussianity of wavelet marginals may be taken as an indication
that the Wavelet basis is more appropriate for image representation than either pixel or Fourier repre-

1By considering these as representative of the underlying coefficient densities, we are making implicit assumptions of
strict-sense stationarity and ergodicity.
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Figure 1: Examples of 256-bin subband coefficient histograms (solid lines) fitted with the density of
equation (1) (dotted lines), plotted in the log domain. Subbands correspond to four different images
(a landscape, a texture, a medical image, and a synthetic image) and two different orientations (top:
vertical, bottom: diagonal), at the second highest frequency scale. Below each graph is the sample kur-
tosis,� (fourth moment divided by squared variance), the model exponent,r, and the relative entropy,
�H (Kullback-Leibler divergence) between the histogram and the model as a fraction of the empirical
(histogram) entropy,H. The Bark image had the most Gaussian marginals in our image set, and the
CTscan image gave the worst model fit (in terms of relative entropy).

sentations.

Wavelet coefficient marginals have been previously modeled [15, 10, 30, 13, 11] using a two-parameter
“generalized Laplacian” (or “stretched exponential”) density function of the form:2

fs;r(c) =
e�jc=sj

r

N(s; r)
; (1)

whereN(s; r) = 2s�(1=r)=r, and�(x) =
R1
0 tx�1e�t dt, the Gamma function. The parameters

fs; rg are directly related to the second and fourth moments. Specifically:

�2 =
s2�(3r )

�(1r )
; � =

�(1r )�(
5
r )

�2(3r )
; (2)

where�2 is the distribution variance, and� is the kurtosis.

For each subband, we solve (numerically) for the parametersfs; rg by minimizing the relative en-
tropy (i.e., the Kullback-Leibler divergence) between a discretized model distribution and the 256-bin

2This model is appropriate for the bandpass coefficient marginals. The lowpass subband coefficients are modeled using
a uniform distribution.
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Figure 2: Comparison of encoding costs. Plotted are encoding cost assuming the generalized Laplacian
density of equation (1) (O’s), and the encoding cost assuming a Gaussian density (X’s), versus the
encoding cost using a 256-bin histogram. Points are plotted for 9 bands (3 scales, 3 orientations) of the
13 images in the sample set of figure 10. The average relative entropy (Kullback-Leibler divergence)
of the Gaussian model is 0.592 bits/coefficient, while the average relative entropy of the generalized
Laplacian model is 0.035 bits/coefficient.

coefficient histogram:

�H(s; r) = �
256X
n=1

hn log2
�fs;r(cn)

hn
;

where �fs;r(cn) is the integral of the density given in equation (1) over thenth histogram bin (centered
at valuecn), andhn is the normalized histogram count (frequency) for thenth histogram bin. The
measure�H(s; r) corresponds to the cost (in bits) of encoding the data with an entropy coder that
assumes the distributionfs;r(c). For the images in our sample set,�2 is roughly proportional to�l

(wherel indicates the scale or “pyramid level”), with� 2 [3:5; 10]. The exponentr is typically in the
range[0:5; 1:0], corresponding to kurtosis values in the range[6; 25:2].

We make no claim of optimality for this model: Other authors [e.g., 38] have used alternative density
functions to describe these distributions. Nevertheless, the fits are surprisingly good. Figure 1 shows
the log-domain plots of the sample histograms together with plots of the fitted density function of
equation (1). We have included both the best and worst cases from the set of images in our test set
(shown in figure 10). Below each figure is the relative entropy between the histograms and fitted
densities.

Figure 2 shows a scatterplot comparing the encoding cost using the model of equation (1), and the
encoding cost assuming a Gaussian density vs. the encoding cost assuming accurate knowledge of
a 256-bin histogram. The Gaussian examples were computed with the distribution variance matched
to the sample variance. Note that the relative entropy of the generalized Laplacian model is less than
0:25 bits/coefficient for our sample images, as compared with the Gaussian density model which often
has a relative entropy greater than1:0 bit/coefficient.
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Figure 3: Coefficient magnitudes of a wavelet decomposition. Shown are absolute values of subband
coefficients at three scales, and three orientations of a separable wavelet decomposition of the Einstein
image. Also shown is the lowpass residual subband (upper left). Note that high-magnitude coefficients
of the subbands tend to be located in the same (relative) spatial positions.

2 Joint Subband Statistics

As mentioned in the introduction, the coefficients of wavelet subbands are approximately decorre-
lated. Nevertheless, it is clear from visual inspection that wavelet coefficients arenot statistically
independent. Figure 3 shows the magnitudes of wavelet coefficients in a four-scale decomposition.
Large-magnitude coefficients tend to occur at neighboring spatial locations, and also at the same rel-
ative spatial locations of subbands at adjacent scales and orientations [3].

Spatial and scale-to-scale dependencies are utilized implicitly in a number of recent image compres-
sion schemes. Shapiro [25] constructed the Embedded Zerotree Wavelet (EZW) coder to exploit the
fact that a coefficient is likely to have small magnitude if the coefficients at coarser scales have small
magnitudes. The Zerotree technique encodes entire trees of zeros with a single symbol, thus captur-
ing a portion of the conditional distribution of a coefficient given its coarser scale neighbors (parent,
grandparent, etc). Several authors [18, 17, 21] have used vectorized lookup tables to predict blocks
of fine coefficients from blocks of coarse coefficients. Schwartz et. al. [24] used adaptive entropy
coding to capture conditional statistics of coefficients based on the most significant bits of each of the
eight spatial neighbors and the coefficient at a coarser scale. Chrysafis and Ortega [4] switch between
multiple probability models depending on values of neighboring coefficients. Said and Pearlman [23]
use a predictive scheme to give high-quality zerotree coding results, and Wu and Chen [37] have ex-
tended the EZW coder to use local coefficient “contexts”. LoPresto et. al. [13] model the coefficients
as being chosen from a generalized Laplacian density and estimate the model parameters from local
neighborhoods. Joshi et. al. [11] adaptively condition the encoding of classification maps of regions
of coefficients based upon the classes of the left and parent regions.
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2.1 Joint Magnitude Statistics

We wish to explicitly examine and utilize the statistical relationship between wavelet coefficient mag-
nitudes. Consider two coefficients representing information at adjacent scales, but the same orien-
tation (e.g, horizontal) and spatial location. As in the previous section, we will assume strict-sense
stationarity and ergodicity, which allows us to consider the joint histogram of this pair of coefficients,
gathered over the spatial extent of the image, as representative of the underlying statistics. Figure 4A
shows the conditional histogramh (CjP ) of the “child” coefficient conditioned on the coarser-scale
“parent” coefficient. The histogram illustrates several important aspects of the relationship between
the two coefficients. First, they are (approximately) second-order decorrelated, since the expected
value ofC is roughly zero for all values ofP . Second, the variance ofC exhibits a strong dependence
on the value ofP . Thus, althoughC andP are uncorrelated,they are still statistically dependent.
Furthermore, this dependency cannot be eliminated through further linear transformation.

The structure of the relationship betweenC andP becomes more apparent upon transforming to the
log domain. Figure 4B shows the conditional histogramh (log2(C

0)j log2(Q)), whereQ = jP j and
C 0 = jCj. The right side of the distribution is unimodal and concentrated along a unit-slope line.
This suggests that in this region, the conditional expectation,E(C 0jQ), is approximately proportional
to Q. Furthermore, vertical cross sections (i.e., conditional histogram for a fixed value ofQ) have
approximately the same shape for different values ofQ. Finally, the left side of the distribution
is concentrated about a horizontal line, suggesting thatC 0 is independent ofQ in this region. We
suspect these low-amplitude coefficients are dominated by quantization errors and other sources of
uncertainty.

The intuition for the right side of the distribution is that typical localized image structures (e.g., edges)
tend to have substantial power across many scales at the same spatial location. These structures will
be represented in the wavelet domain via a superposition of basis functions at these scales. The signs
and relative magnitudes of the coefficients associated with these basis functions will depend on the
precise location, orientation and scale of the structure. The absolute magnitudes will also scale with
the contrast of the structure. Thus, measurement of a large coefficient at one scale means that large
coefficients at adjacent scales are more likely.

The form of the histograms shown in figure 4 is surprisingly robust across a wide range of images.
Furthermore, the qualitative form of these statistical relationships also holds for pairs of coefficients at
adjacent spatial locations (which we call “siblings”), adjacent orientations (“cousins”), and adjacent
orientations at a coarser scale (“aunts”). This set of potential conditioning coefficients (we refer to
these as “neighbors”) is illustrated in figure 5.

2.2 Linear Magnitude Predictor

Given the linear relationship between the magnitudes of large-amplitude coefficients, and the diffi-
culty of characterizing the full multi-dimensional density, we chose to examine a linear predictor for
coefficient magnitude:

l( ~Q) � ~w � ~Q =
X
k

wkQk; (3)

where the coefficient magnitude setfQkg corresponds to a subset of the potential conditioning neigh-
bors, as depicted in figure 5. For a single subband, the weightswk used to compute the predictor are
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Figure 4: Conditional histograms for a fine scale horizontal coefficient from the Boats image. Bright-
ness corresponds to probability, except that each column has been independently rescaled to fill the
full range of display intensities.A: Conditioned on the Parent (same location and orientation, coarser
scale) coefficient.B: Same asA, but in the log domain. C: Conditioned on a linear combination of
neighboring coefficient magnitudes.
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Figure 5: Subset of wavelet coefficients surrounding a given coefficient (C) that are potentially suitable
for conditioning.
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Child subband Last neighbor included in predictor

Horizontal Left Up Parent DiagCousin LeftLeft DiagAunt
0.3322 0.4308 0.4635 0.4804 0.4903 0.4939

Vertical Up Left Parent DiagCousin UpUp DiagAunt
0.3513 0.4356 0.4675 0.4865 0.4929 0.4987

Diagonal Up Left Parent Horiz Cousin Vert Cousin Left Left
0.2175 0.2792 0.3134 0.3235 0.3294 0.3356

Table 1: Cumulative mutual information between coefficient magnitude,C, and a linear combination
of neighbor magnitudes,l( ~Q). Each entry gives the mutual information for a subset containing the
neighbors indicated at the top of that column and all columns to the left. Notice that the local neighbors
within the subband (Left and Up), the Parent, and the Cousins contribute most to the mutual informa-
tion. Values are averaged over the two finest pyramid scales of three training images (Lena, Boats,
Baboon).

chosen to minimize the expected squared error. That is:

~w = E( ~Q~QT )�1 � E(C 0 � ~Q); (4)

whereE(�) indicates the expected value of a random variable,C 0 corresponds to the coefficient mag-
nitude being estimated, and~Q is a vector containing the magnitudes of the conditioning neighbors. In
practice, the expectation is estimated by summing spatially over the subband.

Figure 4C shows a conditional histogram,h
�
log2(C

0)j log2(l( ~Q))
�

based on magnitudes of eight
adjacent coefficients in the same subband, two cousin coefficients, and one parent coefficient (inter-
polated to the correct position using bilinear interpolation). Note that the distribution has a similar
appearance to the single-parent distribution of figure 4A, but the linear region is extended and the
conditional variance is greatly reduced.

In order to determine which coefficients to include in the conditioning set, we calculated the mutual
information betweenC and l( ~Q) for a variety of choices of interband and intraband coefficients in
fQkg. The mutual information gives the theoretical coding gain (in bits per coefficient) obtained

when encodingC using the conditional histogramh
�
C j l( ~Q)

�
(i.e., assumingl( ~Q) is known to

the receiver) compared with encodingC using only the marginal histogramh (C). Rather than
exhaustively explore all possible neighbor subsets, we used a greedy algorithm. Specifically, the set
is constructed incrementally: at each step, we incorporate the remaining neighbor whose inclusion
maximizes the mutual information. Table 1 shows the greedy optimal neighbor subset for the three
oriented subbands. Using this analysis, and imposing causality (assuming a standard scanline ordering
of the coefficients), we decided to include neighbors corresponding to the first four table columns
when coding the horizontal and vertical bands, and the first five columns for the diagonal bands.

2.3 Conditional Probability Model

We wish to construct a probability model for a coefficient conditioned on its neighbors. We were
surprised to observe that the conditional distribution in the log domain, when normalized for mean
and variance, is highly consistent across subbands of an image, and even across a wide range of
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Figure 6: Comparison of conditional distributions in the log domain of different subbands and images.
Distributions were normalized (in the log domain) to have mean 0 and variance 1.Left: Comparison
of distributions for different subbands of the Boats image.Right: Comparison of distributions for
different images (Lena, Goldhill, CTscan, Christmas).

images. Figure 6 shows a comparison of these conditional distributions for four subbands from the
“Boats” image, and also a comparison of a single band across four different images. We included only
the right portion of each conditional histogram (i.e., the region in whichC 0 is proportional tol( ~Q)).

The fact that the conditional histograms seem to have a constant shape that shifts linearly with the
predictor in the log domain suggests a model of multiplicative uncertainty. In particular, we use the
following model for the conditional density:

C = M � l( ~Q) +N; (5)

wherel( ~Q) is the linear magnitude predictor described previously, andM andN are two mutually
independent zero-mean random variables. This implies that the variance ofC is a linear function of
l2( ~Q). In addition to the Markov assumption, we also assume that the coefficient is conditionally

independent of the neighbors, given the value of the linear predictor:P (C j fQng) = P
�
C j l( ~Q)

�
.

To model the distribution ofM , we used a discretized lookup table obtained by averaging the mean-
and variance-normalized conditional histograms (as shown in figure 4) of three training images (Lena,
Boats, Baboon), at two scales (levels 2 and 3) and all three orientations. We assumeN is independent
of M , and Gaussian-distributed. Given these distributional assumptions, the model described by
equation (5) is characterized by the linear weightsfwkg, and the variance,�2, of N .

In order to fit the model to a given set of data, the linear weights are chosen via equation (4) to be
least-squares optimal. The variance,�2 is then estimated by minimizing the relative entropy between
the joint model density and the joint histogram. Figure 7 shows comparisons of joint histograms of
the second-level horizontal subband of four different images, with plots of the fitted density function
generated by equation (5). The estimated densities are a reasonable fit, although several of the actual
histograms show a narrowing of the conditional density for large predictor values. We believe this is
due to small amounts of residual linear correlation between coefficients.

An entropy calculation shows the value and quality of the model. Figure 8 shows a scatterplot compar-
ing encoding cost based on the joint probability model of equation (5) vs. the encoding cost assuming
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Figure 7: Top: Examples of log-domain conditional histograms for the second-level horizontal sub-
band of different images, conditioned on an optimal linear combination of coefficient magnitudes from
adjacent spatial positions, orientations, and scales.Bottom: Model of equation (5) fitted to the con-
ditional histograms in the top row. Intensity corresponds to probability, except that each column has
been independently rescaled to fill the full range of intensities. Also given is the relative entropy,�H,
between the histogram and the model as a fraction of the histogram entropy,H.

precise knowledge of a256 � 256-bin histogram. Also included is a comparison to the first-order
histogram entropies. The conditional model falls short of the empirical entropy by less than 0.7 bit. In
these situations, the empirical conditional histogram for large-magnitude predictors is sparse and has
high variance. The predictive models, however, are based onsmoothhigh-variance densities. Thus,
the empirical values are deceptively low due to detailed knowledge of the coefficient values for this
specific subband. Nevertheless, the linear-predictive model is substantially better than the first-order
model, consistent with the mutual entropy estimates of table 1.

Finally, we should consider the signs of the coefficients. As mentioned in the previous section, we
model the lowpass coefficient distribution as a uniform density. The values are almost entirely posi-
tive: Over our sample set of 13 images, only 2.4% of the coefficients are negative. For the bandpass
subbands, the probability of positive and negative coefficients is equal. They are, however, not spa-
tially independent. In the horizontal bands, for example, the probability of the “Up” neighbor having
the same sign is 36%. We utilize this simple single-neighbor conditioning in our coder. There are
also more complex relationships between sign bits in neighboring subbands, but we do not attempt to
characterize those in this paper.

3 Implementation of a Progressive Image Coder

In this section we describe the implementation of our Embedded Predictive Wavelet Image Coder
(EPWIC), based on the conditional probability model developed in Section 2.3. Our implementation
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Figure 8: Comparison of encoding cost using the conditional probability model of equation (5), and
the encoding cost using the first-order histogram as a function of the encoding cost using a256 �
256-bin joint histogram. Points are plotted for 6 bands (2 scales, 3 orientations) of the 13 images in
our sample set. The average relative entropy (Kullback-Leibler divergence) of the empirical marginal
histogram is 0.548 bits/coefficient, while the average relative entropy of the conditional model is 0.129
bits/coefficient.

is simple and reasonably efficient, but comes quite close to the theoretical entropy associated with the
probability model. In addition, its performance is roughly comparable to the current best coders in the
image processing literature.

3.1 Separable Wavelet Decomposition

We utilize a recursive pyramid decomposition based on separable 9/7 tap biorthogonal filter set of
[2] which satisfies the one-dimensional system diagram shown in figure 9. These filters have become
quite popular in the compression literature. The two one-dimensional kernels,L9(!) andH7(!), are
applied separably along the axes of the image sampling lattice in order to generate a single level of
a wavelet pyramid. This consists of lowpass, vertical, horizontal and diagonal subbands. Subsequent
pyramid levels (i.e., subbands at different scales) are created by applying this 4-band splitting proce-
dure recursively to the lowpass subband. Convolution boundaries are handled by symmetric reflection
of the image about the edge pixels, as described in [27]. Reconstruction is achieved as shown in the
diagram, using filters related to the analysis filters via the expressions:

H9(!) = ej!L9(! + �)

H7(!) = ej!L7(! + �)

We denote the basis functions in the separable wavelet transform asws(x�n; y�m), wheres indicates
the subband (determined by the orientation and scale) and(n;m) indicates the spatial location of the
basis function. All functions are scaled to have unityL2-norm. The wavelet representation consists
of the set of coefficients,fcs(n;m)g, associated with these basis functions.
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Figure 9: One-dimensional analysis/synthesis diagram for the dyadic biorthogonal wavelet decompo-
sition used in EPWIC.

3.2 Coefficient Bitplane Encoding

In order to have maximal control over the ordering of image information, we map each subband
coefficient to a 16-bit binary integer (including sign bit). That is:

cs(n;m) = as�s(n;m)
X
k

2kbs(n;m; k);

whereas is a scalar multiplier for subbands (used to rescale the values for 16-bit integer representa-
tion), �s(n;m) is the sign (�1), andbs(n;m; k) corresponds to thekth bit of the coefficientcs(n;m).

The wavelet decomposition describes the imageI(x; y) as a linear combination of the basis functions:

I(x; y) =
X
s;n;m

as �s(n;m)
X
k

2k bs(n;m; k) ws(x� n; y �m)

=
X

s;n;m;k

bs(n;m; k)
h
as�s(n;m)2kws(x� n; y �m)

i
:

The second expression suggests that we may view this as a type of representation in which the coef-
ficients are restricted to the setf0; 1g (i.e., they are single-bit quantities). The basis functions of this
representation arew0

s(n;m; k) = as�s(n;m)2kws(x� n; y �m), which are related to each other by
translation, dilation, Fourier modulation, negation, andmultiplication by powers of two.

Progressive transmission of an image requires us to choose an ordering of the coefficient bits. In order
to keep the complexity of the coder down, we assume that all bits at a given significance levelk of a
subband will be sent consecutively, in raster order. We refer to this collection of bits as abitplane. We
also assume that the bitplanes of a given subband will be sent in order from most to least significant.
Since most of the coefficient values are close to zero, the sign bit of each coefficient is sent only when
needed, immediately after the first non-zero magnitude bit, as in [24].

In general, the ordering of bitplanes across subbands should take into account both the encoded size
of the bitplane and the improvement in decoded image quality resulting from the incorporation of that
bitplane. We use a greedy algorithm (which we refer to as a “bang-for-the-buck” algorithm), in which
we select at each step the remaining bitplane that gives the maximum reduction in mean squared error
(MSE) per encoded bit. That is, we choose the bitplane that produces the steepest descent of the
rate-distortion curve. Wang and Kuo [34] use a similar technique designed specifically for successive
approximation quantization, in which they related the steepest rate-distortion curve with the highest
quantization threshold. Our “bang-for-the-buck” algorithm is a generalization of this concept.

The bitplanes are encoded with a static arithmetic encoder whose probabilities are determined directly
from our image model. The algorithm is similar to that described in [20], which encodes a data
stream using a probability distribution that is adaptively computed and stored in a histogram. Instead
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of computing such a histogram, our encoder uses the distribution specified by our statistical model.
Since the “symbols” of our input stream are single bits, the probability that a bit is non-zero is all that
is needed to construct the arithmetic code.

3.3 Calculation of Bit Probabilities

Our encoding technique makes direct use of the model joint probability density described earlier.
In particular, both encoder and decoder must use this distribution to compute the conditional mean
estimate for each coefficient, given the bits that have been sent/received thus far. In addition, as
described above, the arithmetic coder and decoder must know the probability that a given bit will be
non-zero.

Consider the arithmetic encoding of thekth bit of a particular subband coefficient,Ck. The encoder
must calculate the probability that the bit is nonzero, given the set of all coefficient bits that have
already been received. The set of bits received constrains the magnitude of the coefficient of interest,
C 0, and constraints the magnitudes of each of the conditioning coefficients,fQng, to lie in particular
ranges:

C 0 2 [l0; h0]

Qn 2 [ln; hn]; n = 1; 2; : : : ; N: (6)

The probability that we wish to calculate is:

P (Ck = 1 j bits received thus far)

= P
�
m0 < C 0 < h0 j l0 < C 0 < h0; ln < Qn < hn; 8n

�
=

P (m0 < C 0 < h0 j ln < Qn < hn; 8n)

P (l0 < C 0 < h0 j ln < Qn < hn; 8n)

=

R
dp P

�
m0 < C 0 < h0 j l( ~Q) = p

�
P
�
l( ~Q) = p j ln < Qn < hn; 8n

�
R
dp P

�
l0 < C 0 < h0 j l( ~Q) = p

�
P
�
l( ~Q) = p j ln < Qn < hn; 8n

� ; (7)

wherem0 = (l0 + h0)=2. The last expression uses the assumption of our joint probability model:
given l( ~Q), the individual components of~Q do not provide additional information aboutC 0. Thus,

P
�
l0 < C 0 < h0 j l( ~Q) = p; ln < Qn < hn; 8n

�
� P

�
l0 < C 0 < h0 j l( ~Q) = p

�
:

In order to avoid the computationally expensive integration overp, we introduce two approximations
in the conditional probability ofC 0 that allow us to perform a simple one-dimensional calculation.
First, we assume that the density ofC 0 (see equation (5)) has a constant shape, independent of the

magnitude predictorl( ~Q). In this case, we may divideC 0 by its standard deviation,
q
l2( ~Q) + �2, to

get a scalar random variable that is independent ofl( ~Q). We compute a lookup table,G(�), containing
the average of the mean- and variance-normalized log-domain cumulative histograms of this quantity
for three training images (Lena, Boats, Baboon) at two scales (levels 2 and 3) and all three orientations.
We can then useG(�) as a parameterized model for the conditional cumulative:

P
�
C 0 < c j l( ~Q) = p

�
� G

 
log2(c=

p
p2 + �2)

�

!
; (8)
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where�2 is the variance ofN , and�2 is the second moment oflog2(M).

Second, we eliminate the need for integration by replacing the integration variablep by its conditional
mean. Specifically, we rewrite the model of equation (5) in terms of the current estimate of the
magnitude predictor (̂p), and the error of that estimate (ep):

C = M � (p̂+ ep) +N:

Assumingep is independent ofM andN , the variance of this expression isp̂2 + �2p̂ + �2, where�2p̂
is the variance of the error betweenp andp̂, and the numerator integral becomes:

Z
dp P

�
m0 < C 0 < h0jl( ~Q) = p

�
W (p) (9)

�

�
G

�
log2(h0)�log2(

p
p̂2+�2

p̂
+�2)

�

�
�G

�
log2(m0)�log2(

p
p̂2+�2

p̂
+�2)

�

�� Z
dp W (p);

where
W (p) = P

�
l( ~Q) = p j ln < Qn < hn; 8n

�
:

The current estimate of the predictorp̂ is computed from the current estimates of the neighbor magni-
tudesq̂n (described below in equation (11)):

p̂ =
X
n

wnq̂n;

and the estimate error�2p̂ is defined by the magnitude error estimates�2q̂n (described below in equa-
tion (12)), assuming the neighbors are uncorrelated:

�2p̂ =
X
n

w2
n�

2
q̂n

Finally, substituting the approximation of equation (9) into equation (7) and eliminating common
factors gives:

P (Ck = 1jbits received thus far)

�
G

�
log2(h0)�log2(

p
p̂2+�2

p̂
+�2)

�

�
�G

�
log2(m0)�log2(

p
p̂2+�2

p̂
+�2)

�

�

G

�
log2(h0)�log2(

p
p̂2+�2

p̂
+�2)

�

�
�G

�
log2(l0)�log2(

p
p̂2+�2

p̂
+�2)

�

� : (10)

This is the expression used for the calculation of bit probabilities in the coder.

After a bit is sent or received for a coefficient magnitude, the conditional mean estimateĉ given its
new range(l; h) is calculated from the joint probability density. As before, we avoid computationally
expensive integration overp through the use of its estimatêp:

ĉ =

Z h

l
dc P

�
C 0 = c j l( ~Q) = p̂

�
c: (11)
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Similarly, the variance of the error betweenĉ and the actual magnitude is:

�ĉ
2 =

Z h

l
dc P

�
C 0 = c j l( ~Q) = p̂

�
(ĉ� c)2: (12)

In the coder, the integrals in equations (11) and (12) are approximated by summing over a uniform
partitioning of the range(l; h) and calculating the probability of each bin using the cumulative density
function given in equation (8).

3.4 Summary and Complexity Analysis of EPWIC

The following is an summary of the EPWIC compression algorithm.

1. Choose a termination MSE level (we typically use the variance associated with the quantization
of the original image pixels).

2. Calculate the coefficientscs(n;m) of the wavelet decomposition.

3. For each subband in the decomposition, quantize coefficients (to 16 bits) and retain the quanti-
zation binsize,1=as.

4. Characterize the statistics for each subband:

(a) Calculate least-squares optimal weights~w of the linear predictorl( ~Q) using equation (4).

(b) Calculate�2 and�2 that minimize the relative entropy between the joint coefficient
histogram and the probability density described by equation (5).

5. Transmit an EPWIC identification tag (16 bits), the number of levels (scales) in the pyramid (3
bits), width and height of the image (5 bits each), and�2 (8 bits, representing[2�5; 25]).

6. While the decoded MSE is greater than the termination MSE:

(a) Determine which of the set of candidate bitplanes (i.e., the most significant remaining
bitplane of each subband) should be encoded next, by comparing the “bang-for-the-buck”
(MSE reduction / encoding size). For each candidate bitplane (typically one per subband):

� Compute the conditional means of all coefficients in the subband assuming the bit-
plane is sent (using equation (11)). Compute the reduction in MSE that results when
the image is reconstructed from the resulting wavelet pyramid.

� For each bit in the bitplane, calculate the probability of the bit being nonzero (using
equation (10)), and construct a code stream using the arithmetic coder.

(b) Update the conditional variances of the subband to be transmitted (using equation (12)).

(c) Transmit a tag identifying the subband to which the bitplane belongs (log2(number of subbands)
bits).

(d) If this is the first encoded bitplane of this subband, transmit:

� The quantization binsize1=as (7 bits, representing the interval[2�15; 216]),

� fwkg (8 bits each, representing[�0:1; 1:1]).

� and�2 (8 bits, representing[2:7; 4]).
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(e) Transmit the encoded data.

The memory overhead of the algorithm is quite reasonable. The Wavelet pyramid requires as much
space as the original image, as do the current estimates of coefficient conditional mean and variance.
In addition, a lookup table containing153 floating point numbers is used for the conditional cumula-
tive function,G(�).

For our implementation of EPWIC running in MatLab on a 300 megahertz Pentium workstation,
encoding a512 � 512 image to 64Kbytes using a 5-level pyramid takes approximately 5 minutes.
Roughly 7 seconds of this time is used to estimate the parameters, 16 seconds for arithmetic encoding
of the bitplanes, and 4.5 minutes are used to calculate the “bang-for-the-buck” for the next candidate
bitplanes. In order to accommodate the testing of non-orthonormal filters, the MSE was calculated by
reconstructing the pyramid twice, with and without the candidate bitplane. Thus, the calculation cost
could be significantly reduced through use of orthonormal filters, for which the MSE improvement
can be estimated directly from the coefficients. Decoding the image takes approximately 16 seconds,
8 of which are used in the calculation of the magnitude estimates and the conditional probabilities.

4 Results

In order to demonstrate the performance of EPWIC, we encoded the set of 13 images shown in fig-
ure 10. Each image was decomposed into a discrete wavelet pyramid containing 5 scales. For com-
parison purposes, we considered four other image coders:

1. EPWIC-1: we implemented a progressive encoder utilizing the marginal (generalized Lapla-
cian) density of equation (1) as a model of the first order distribution. The coder is otherwise
similar to the conditional implementation (EPWIC-2), in that it uses the same greedy algorithm
for ordering of bitplanes, and uses the same arithmetic coding scheme.

2. JPEG: we used version 5b of CJPEG, a standard non-progressive JPEG image coder from the
Independent JPEG Group.

3. EZW3: as described in [25].

4. SPIHT: as described in [23].

Table 2 lists the PSNR values for EPWIC-2, EPWIC-1, EZW, SPIHT, and JPEG for five of the images.
It should be noted that these PSNR values were calculated directly from the decompressed images,
and the bitrates indicate actual encoding sizes, not entropy estimates. We were surprised to find that
EPWIC-1 surpasses EZW for most images, since the model for this coder incorporates no joint statis-
tical information, while EZW exploits some of the joint conditional relationships between coefficients
at different scales. EPWIC-2 surpasses EZW at nearly all compression levels, and approaches the
encoding capability of SPIHT at the higher compression rates. Figure 11 summarizes these results, by
showing the PSNR of each coder (relative to EZW), averaged over the 13 images in our set. EPWIC-1
outperforms EZW for most compression ratios by about 0.3dB, and EPWIC-2 outperforms EZW by
0.5dB at 1 Kbyte, and nearly 1.5dB at 16 Kbytes and above.

3We thank the David Sarnoff Research Center for their assistance in the EZW comparisons.
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Figure 10: Full set of grayscale images used in our experiments. Left to right, top to bottom: Baboon,
Bark, Boats, Brain, Brownie, Cantrell, Earth, Flowers, Goldhill, Lena, MtWill, Vein, and Wedding.
Images contain512� 512 8-bit pixels.

Bits/Pixel
Image Coder 0.008 0.016 0.031 0.063 0.125 0.25 0.5 1.0 2.0
Boats EPWIC-2 21.67 23.36 25.21 27.24 29.72 32.97 37.04 41.69 46.96

SPIHT 22.28 23.75 25.46 27.46 29.85 33.07 37.16 41.73 46.81
EPWIC-1 21.55 23.30 24.98 26.92 29.09 31.95 35.80 39.97 45.11

EZW 21.34 22.83 24.81 26.86 28.87 31.69 35.58 40.00 45.82
JPEG NA NA 18.29 21.83 27.76 30.88 34.63 39.10 43.54

Baboon EPWIC-2 18.89 19.48 19.89 20.64 21.61 23.19 25.25 28.86 34.49
SPIHT 19.18 19.57 19.98 20.74 21.72 23.27 25.65 29.17 34.98

EPWIC-1 18.94 19.47 19.92 20.55 21.46 22.95 24.90 28.25 33.69
EZW 18.89 19.37 19.87 20.36 21.50 22.53 24.90 28.45 34.06
JPEG NA NA 16.51 19.01 20.87 22.03 24.13 26.65 30.97

Lena EPWIC-2 21.68 23.54 25.70 28.03 30.85 33.78 37.15 40.34 45.06
SPIHT 22.07 23.95 25.95 28.36 31.10 34.12 37.23 40.43 45.11

EPWIC-1 21.26 23.35 25.41 27.61 30.18 33.04 35.99 39.27 44.04
EZW 21.03 22.99 25.01 27.46 30.26 33.32 36.46 39.79 44.64
JPEG NA NA 17.95 21.92 28.24 31.42 34.84 37.95 41.62

Goldhill EPWIC-2 22.00 23.54 24.93 26.59 28.23 30.08 32.83 36.25 41.78
SPIHT 22.56 23.89 25.26 26.70 28.39 30.45 32.99 36.44 41.99

EPWIC-1 22.12 23.63 24.95 26.52 28.07 29.92 32.38 35.73 40.98
EZW 21.66 23.41 24.66 26.10 27.88 29.73 31.92 35.09 39.82
JPEG NA NA 17.92 23.96 26.85 29.18 31.59 34.46 38.46

Table 2: PSNR values10 � log
10
(2552=MSE) at different compression ratios for EPWIC-2, EPWIC-1,

EZW, SPIHT, and JPEG. Original images are shown in figure 10.
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Figure 11: Relative rate-distortion tradeoff for five image coders (JPEG, EZW, SPIHT, EPWIC-1,
and EPWIC-2).Left : PSNR values (in dB), relative to EZW (horizontal line), as a function of the
number of encoded bytes.Right: Number of bytes necessary to achieve a given PSNR, relative to
EZW (horizontal line). All curves are averages over the set of13 images shown in figure 10.

Also shown in figure 11 is the encoding size (relative to that of EZW) as a function of target SNR.
This gives a sense of how long one would wait during progressive transmission for a result of a given
quality. For example, EZW would have a transmission time roughly 15% higher than EPWIC-2 for
an image quality of 26dB.

In figure 12, an EPWIC-2 progressive transmission series is given for the Boats image. Wavelet
aliasing artifacts are quite noticeable in the early stages of the transmission: these are a consequence
of using a critically sampled subband representation. At 16 Kbytes (compared with an original image
size of 256 Kbytes), the reconstructed image is remarkably close to the original. We find that EPWIC-
2 compressed images are visually indistinguishable from SPIHT compressed images at all bitrates.

One would like to know how much encoding performance is being lost in the integration approxima-
tions of equation (10), and how much is lost in the overhead of sending the model parameters. In
order to measure the cost of the approximations, we developed a non-progressive version of the coder
called “EPWIC-2 NP”. Instead of encoding the pyramid bitplane by bitplane, EPWIC-2 NP encodes
the subbands simultaneously, at a fixed quantization level. In order to measure the cost of the model
parameters, the PSNR values for EPWIC-2 NP were re-calculated without the overhead of encoding
the parameters.

Figure 13 shows the results of this analysis. The non-progressive coder gives an improvement of
roughly 0.1 dB over progressive EPWIC-2. Thus, we conclude that the integration approximations
do not greatly penalize the progressive encoding performance. In addition, removing the overhead
of sending the model parameters improves the performance at lower encoding sizes. In particular,
EPWIC-2 NP is comparable to SPIHT for encoding sizes up to 8K.
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0.25 Kbytes 0.5 Kbytes 1.0 Kbytes

4 Kbytes 16 Kbytes 141 Kbytes (final)

Figure 12: Progressive decoding of the Boats image. Each image is an approximation of the original
image computed by decoding the indicated number of bytes from an EPWIC-2 code stream.
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Figure 13: Coding loss due to EPWIC-2 integration approximations and parameter overhead. EPWIC-
2 NP is a non-progressive version of EPWIC-2, which avoids the integration approximations of equa-
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the number of encoded bytes.Right: Number of bytes necessary to achieve a given PSNR, relative to
EPWIC-2 (horizontal line). All curves are averages over the set of13 images shown in figure 10.

5 Conclusion

We have presented a conditional probability model for images based on a linear combination of the
magnitudes of neighboring coefficients in a wavelet decomposition. The model characterizes the
magnitude statistics of a wide variety of images, and provides a useful framework for understanding
the compression capabilities of other coders. We have demonstrated the power of the model by us-
ing it explicitly in the implementation of an image coder (EPWIC-2). The compression results are
surprisingly good, especially given the simplicity of the encoding scheme.

We believe that there two are main reasons that EPWIC-2 falls slightly below the encoding capabil-
ities of SPHIT. First, by using a non-adaptive model of the statistics, EPWIC-2 has the overhead of
encoding model parameters in the bit stream. As shown in figure 13, removal of this overhead nearly
eliminates the gap in performance for low bitrates. Second, EPWIC-2 utilizes a conditional density
that depends only on a single value (the linear combination of neighbor magnitudes). SPHIT and
related recent encoders [e.g., 23, 37, 13, 11] utilize zero trees and adaptive conditional techniques,
allowing them to take advantage of multi-dimensional joint statistical relationships.

There are a number of improvements that could be made in the implementation of EPWIC. TheL1-
norm combination of neighboring magnitudes (described in equation (3)) could be replaced with an
Lp-norm predictor, withp chosen to optimize the coding gain. Our preliminary examination of this
possibility suggests that the resulting improvements are minimal. In addition, the overhead associated
with the model parameters could be reduced by entropy coding these values. Finally, more sophisti-
cated exploitation of sign statistics could yield significant improvements in compression. In particular,
the current coder does not make predictions of coefficients before receiving the sign bits. A model
that allowed prediction of sign bits from causal neighbors (including those at coarser scales), would
allow the coder to fabricate image detail early in a progressive transmission sequence. This type of
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prediction would also allow the creation of synthetic images with statistics matched to a given sample
image.

We believe the explicit conditional probability model used in EPWIC-2 is well-suited for other im-
age processing problems such as image denoising or enhancement, texture segmentation, and tex-
ture synthesis. We have begun to explore some of these applications, and the results are encourag-
ing [28, 26, 29, 19]. We do find, however, that most of these applications require a translation-invariant
representation, such as an overcomplete multi-scale pyramid [e.g., 32] or an image-specific adaptive
basis [e.g., 14, 5].
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