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Image Compression via Joint Statistical
Characterization in the Wavelet Domain
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Abstract—We develop a probability model for natural images,
based on empirical observation of their statistics in the wavelet
transform domain. Pairs of wavelet coefficients, corresponding
to basis functions at adjacent spatial locations, orientations, and
scales, are found to be non-Gaussian in both their marginal
and joint statistical properties. Specifically, their marginals are
heavy-tailed, and although they are typically decorrelated, their
magnitudes are highly correlated. We propose a Markov model
that explains these dependencies using a linear predictor for
magnitude coupled with both multiplicative and additive un-
certainties, and show that it accounts for the statistics of a
wide variety of images including photographic images, graphical
images, and medical images. In order to directly demonstrate
the power of the model, we construct an image coder called
EPWIC (embedded predictive wavelet image coder), in which
subband coefficients are encoded one bitplane at a time using a
nonadaptive arithmetic encoder that utilizes conditional proba-
bilities calculated from the model. Bitplanes are ordered using a
greedy algorithm that considers the MSE reduction per encoded
bit. The decoder uses the statistical model to predict coefficient
values based on the bits it has received. Despite the simplicity of
the model, the rate-distortion performance of the coder is roughly
comparable to the best image coders in the literature.

Index Terms—Context modeling, image compression, image
modeling, subband image coding, wavelets.

I. INTRODUCTION

M ANY APPLICATIONS in image processing require a
prior probability model. This is especially true for the

application of image compression, in which the theoretical
limits of an algorithm are determined by the underlying prior
model. In this paper, we describe an explicit prior probability
model for photographic images, and test this model by using it
as the basis for an image compression algorithm. The resulting
algorithm is quite flexible, and well-suited for encoding of
images that must be retrieved over a variety of communication
links.

Wavelet representations, in which images are decomposed
using basis functions localized in spatial position, orientation,

Manuscript received June 9, 1997; revised March 17, 1999. The work
of R. W. Buccigrossi was supported by the National Science Foundation
Graduate Fellowship GER93-55018 and the GRASP Laboratory, University of
Pennsylvania. The work of E. P. Simoncelli was supported by NSF CAREER
Grant MIP-9796040, ARO/MURI DAAH04-96-1-0007, and the Sloan Center
for Theoretical Neurobiology at New York University. Preliminary versions of
this work were published in the Proceedings of ICASSP, Munich, Germany,
April 1997, and in the Proceedings of the 4th International Conference on
Image Processing, Santa Barbara, CA, Oct. 1997.

R. W. Buccigrossi is with the Turner Consulting Group, Washington, DC
20008 USA (e-mail: butch@tcg-inc.com)

E. P. Simoncelli is with the Center for Neural Science and Courant Institute
of Mathematical Sciences, New York University, New York, NY 10003 USA
(e-mail: eero.simoncelli@nyu.edu).

Publisher Item Identifier S 1057-7149(99)09354-9.

and spatial frequency (scale), have proven to be extremely
effective for image compression, e.g., [1], [8], [23], [25], [33],
[35]. We believe there are several statistical reasons for this
success. The most widely known of these is that wavelet trans-
forms are reasonable approximations to the Karhunen–Loève
expansion for fractal signals [36], such as natural images [22].
The subbands of an orthonormal wavelet decomposition have
a wide range of variances whose sum is equal to that of the
original image. If the subbands are encoded with a simple
first-order entropy encoder, the minimum coding size of the
image representation is sum of the entropies of the subbands.
Since entropy is a concave function, the differences in subband
variances result in a coding cost significantly less than the
first-order entropy of the original image pixels.

In addition to this redistribution of variance, the coefficients
of wavelet transforms have significantly non-Gaussian mar-
ginal statistics for typical images, and thus have lower entropy
than a Gaussian-distributed signal of the same variance. This
property has been exploited in compression, noise removal
and texture synthesis, e.g., [6], [9], [10], [15], [30], [38]. We
discuss it in greater detail in Section I, and provide an explicit
model for these marginals.

Finally, wavelet decompositions exhibit joint statistical reg-
ularities that have been utilized in a number of recent image
coding algorithms [4], [12], [17], [21], [24], [25], [37]. These
regularities are the primary topic of this paper. We discuss
them in greater detail in Section II, and develop an explicit
model to describe the relationships between coefficients of
different subbands.

In order to demonstrate the quality of our statistical model,
the latter half of the paper describes an embedded predic-
tive wavelet image coder that directly utilizes the model.
Section III describes the compression algorithm, and the de-
tails of the coder implementation. Finally, Section IV analyzes
the performance of the coder, and compares it to several
standard coders.

II. FIRST-ORDER SUBBAND STATISTICS

A number of authors have observed that wavelet subband
coefficients have highly non-Gaussian statistics, e.g., [7], [15],
[16], [30]. Histograms1 for subbands of separable wavelet
decompositions of several images are plotted in Fig. 1. Com-
pared to a Gaussian, these densities are more sharply peaked at
zero, with more extensive tails. The intuitive explanation for
this is that images typically have spatial structure consisting

1By considering these as representative of the underlying coefficient
densities, we are making implicit assumptions of strict-sense stationarity and
ergodicity.
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Fig. 1. Examples of 256-bin subband coefficient histograms (solid lines) fitted with the density of (1) (dotted lines), plotted in the log domain. Subbands
correspond to four different images (a landscape, a texture, a medical image, and a synthetic image) and two different orientations (top: vertical, bottom:
diagonal), at the second highest frequency scale. Below each graph is the sample kurtosis,� (fourth moment divided by squared variance), the model exponent,
r, and the relative entropy,�H (Kullback–Leibler divergence) between the histogram and the model as a fraction of the empirical (histogram) entropy,H.
The Bark image had the most Gaussian marginals in our image set and the CT scan image gave the worst model fit (in terms of relative entropy).

of smooth areas interspersed with occasional edges or other
abrupt transitions. The smooth regions lead to near-zero co-
efficients, and the structures give occasional large-amplitude
coefficients.

To quantify this, we give the sample kurtosis (fourth
moment divided by squared second moment) below each
histogram. The estimated kurtoses of all of the subbands
are significantly larger than the value of three expected for
a Gaussian distribution. These examples were computed for
subbands of an orthonormal separable wavelet decomposition
(see Section III for details), but we find that they are similar
for any octave-bandwidth subbands.

These non-Gaussian densities should be contrasted with sta-
tistics of frequency-based decompositions which are approxi-
mately Gaussian. Since the Gaussian is the maximal-entropy
distribution for a given variance, wavelet-based coders are
able to achieve higher degrees of compression than frequency-
based coders such as JPEG. The non-Gaussianity of wavelet
marginals may be taken as an indication that the wavelet basis
is more appropriate for image representation than either pixel
or Fourier representations.

Wavelet coefficient marginals have been previously modeled
[10], [11], [13], [15], [30] using a two-parameter “generalized
Laplacian” (or “stretched exponential”) density function of the
form:2

(1)

where , and ,
the Gamma function. The parameters are directly

2This model is appropriate for the bandpass coefficient marginals. The
lowpass subband coefficients are modeled using a uniform distribution.

related to the second and fourth moments. Specifically

(2)

where is the distribution variance, and is the kurtosis.
For each subband, we solve (numerically) for the param-

eters by minimizing the relative entropy (i.e., the
Kullback–Leibler divergence) between a discretized model
distribution and the 256-bin coefficient histogram

where is the integral of the density given in (1) over
the th histogram bin (centered at value), and is the
normalized histogram count (frequency) for theth histogram
bin. The measure corresponds to the cost (in bits)
of encoding the data with an entropy coder that assumes the
distribution . For the images in our sample set,
is roughly proportional to (where indicates the scale
or “pyramid level”), with . The exponent is
typically in the range , corresponding to kurtosis
values in the range .

We make no claim of optimality for this model: other
authors, e.g., [38] have used alternative density functions to
describe these distributions. Nevertheless, the fits are surpris-
ingly good. Fig. 1 shows the log-domain plots of the sample
histograms together with plots of the fitted density function
of (1). We have included both the best and worst cases from
the set of images in our test set (shown in Fig. 10). Below
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Fig. 2. Comparison of encoding costs. Plotted are encoding cost assuming
the generalized Laplacian density of (1) (O’s), and the encoding cost as-
suming a Gaussian density (X’s), versus the encoding cost using a 256-bin
histogram. Points are plotted for nine bands (three scales, three orientations)
of the 13 images in the sample set of Fig. 10. The average relative entropy
(Kullback–Leibler divergence) of the Gaussian model is 0.592 b/coefficient,
while the average relative entropy of the generalized Laplacian model is 0.035
b/coefficient.

each figure is the relative entropy between the histograms and
fitted densities.

Fig. 2 shows a scatterplot comparing the encoding cost
using the model of (1), and the encoding cost assuming a
Gaussian density versus the encoding cost assuming accurate
knowledge of a 256-bin histogram. The Gaussian examples
were computed with the distribution variance matched to
the sample variance. Note that the relative entropy of the
generalized Laplacian model is less than 0.25 b/coefficient for
our sample images, as compared with the Gaussian density
model which often has a relative entropy greater than 1.0
b/coefficient.

III. JOINT SUBBAND STATISTICS

As mentioned in the Introduction, the coefficients of wavelet
subbands are approximately decorrelated. Nevertheless, it is
clear from visual inspection that wavelet coefficients are
not statistically independent. Fig. 3 shows the magnitudes
of wavelet coefficients in a four-scale decomposition. Large-
magnitude coefficients tend to occur at neighboring spatial
locations, and also at the same relative spatial locations of
subbands at adjacent scales and orientations [3].

Spatial and scale-to-scale dependencies are utilized implic-
itly in a number of recent image compression schemes. Shapiro
[25] constructed the embedded zerotree wavelet (EZW) coder
to exploit the fact that a coefficient is likely to have small
magnitude if the coefficients at coarser scales have small
magnitudes. The zerotree technique encodes entire trees of
zeros with a single symbol, thus capturing a portion of
the conditional distribution of a coefficient given its coarser
scale neighbors (parent, grandparent, etc.). Several authors
[17], [18], [21] have used vectorized lookup tables to predict
blocks of fine coefficients from blocks of coarse coefficients.
Schwartzet al. [24] used adaptive entropy coding to cap-
ture conditional statistics of coefficients based on the most

Fig. 3. Coefficient magnitudes of a wavelet decomposition. Shown are
absolute values of subband coefficients at three scales, and three orientations
of a separable wavelet decomposition of the Einstein image. Also shown is the
lowpass residual subband (upper left). Note that high-magnitude coefficients
of the subbands tend to be located in the same (relative) spatial positions.

significant bits of each of the eight spatial neighbors and
the coefficient at a coarser scale. Chrysafis and Ortega [4]
switch between multiple probability models depending on
values of neighboring coefficients. Said and Pearlman [23]
use a predictive scheme to give high-quality zerotree coding
results, and Wu and Chen [37] have extended the EZW
coder to use local coefficient “contexts.” LoPrestoet al. [13]
model the coefficients as being chosen from a generalized
Laplacian density and estimate the model parameters from
local neighborhoods. Joshiet al. [11] adaptively condition the
encoding of classification maps of regions of coefficients based
upon the classes of the left and parent regions.

A. Joint Magnitude Statistics

We wish to explicitly examine and utilize the statistical rela-
tionship between wavelet coefficient magnitudes. Consider two
coefficients representing information at adjacent scales, but the
same orientation (e.g., horizontal) and spatial location. As in
the previous section, we will assume strict-sense stationarity
and ergodicity, which allows us to consider the joint histogram
of this pair of coefficients, gathered over the spatial extent
of the image, as representative of the underlying statistics.
Fig. 4(a) shows the conditional histogram of the
“child” coefficient conditioned on the coarser-scale “parent”
coefficient. The histogram illustrates several important aspects
of the relationship between the two coefficients. First, they are
(approximately) second-order decorrelated, since the expected
value of is roughly zero for all values of . Second, the
variance of exhibits a strong dependence on the value of

. Thus, although and are uncorrelated,they are still
statistically dependent. Furthermore, this dependency cannot
be eliminated through further linear transformation.

The structure of the relationship betweenand becomes
more apparent upon transforming to the log domain. Fig. 4(b)
shows the conditional histogram , where

and . The right side of the distribution is
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(a) (b) (c)

Fig. 4. Conditional histograms for a fine scale horizontal coefficient from the boats image. Brightness corresponds to probability, except that each column has
been independently rescaled to fill the full range of display intensities. (a) Conditioned on the parent (same location and orientation, coarser scale) coefficient.
(b) Same as (a), but in the log domain, and (c) conditioned on a linear combination of neighboring coefficient magnitudes.

unimodal and concentrated along a unit-slope line. This sug-
gests that in this region, the conditional expectation, ,
is approximately proportional to . Furthermore, vertical cross
sections (i.e., conditional histogram for a fixed value of)
have approximately the same shape for different values of

. Finally, the left side of the distribution is concentrated
about a horizontal line, suggesting that is independent of

in this region. We suspect these low-amplitude coefficients
are dominated by quantization errors and other sources of
uncertainty.

The intuition for the right side of the distribution is that
typical localized image structures (e.g., edges) tend to have
substantial power across many scales at the same spatial
location. These structures will be represented in the wavelet
domain via a superposition of basis functions at these scales.
The signs and relative magnitudes of the coefficients asso-
ciated with these basis functions will depend on the precise
location, orientation and scale of the structure. The absolute
magnitudes will also scale with the contrast of the structure.
Thus, measurement of a large coefficient at one scale means
that large coefficients at adjacent scales are more likely.

The form of the histograms shown in Fig. 4 is surprisingly
robust across a wide range of images. Furthermore, the qual-
itative form of these statistical relationships also holds for
pairs of coefficients at adjacent spatial locations (which we
call “siblings”), adjacent orientations (“cousins”), and adjacent
orientations at a coarser scale (“aunts”). This set of potential
conditioning coefficients (we refer to these as “neighbors”) is
illustrated in Fig. 5.

B. Linear Magnitude Predictor

Given the linear relationship between the magnitudes of
large-amplitude coefficients, and the difficulty of character-
izing the full multidimensional density, we chose to examine
a linear predictor for coefficient magnitude:

(3)

where the coefficient magnitude set corresponds to a
subset of the potential conditioning neighbors, as depicted in

Fig. 5. Subset of wavelet coefficients surrounding a given coefficient (C)
that are potentially suitable for conditioning.

Fig. 5. For a single subband, the weights used to compute
the predictor are chosen to minimize the expected squared
error. That is

(4)

where indicates the expected value of a random variable,
corresponds to the coefficient magnitude being estimated,

and is a vector containing the magnitudes of the condi-
tioning neighbors. In practice, the expectation is estimated by
summing spatially over the subband.

Fig. 4(c) shows a conditional histogram,
based on magnitudes of eight adjacent coefficients

in the same subband, two cousin coefficients, and one parent
coefficient (interpolated to the correct position using bilinear
interpolation). Note that the distribution has a similar appear-
ance to the single-parent distribution of Fig. 4(a), but the linear
region is extended, and the conditional variance is greatly
reduced.

In order to determine which coefficients to include in
the conditioning set, we calculated the mutual information
between and for a variety of choices of interband
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TABLE I
CUMULATIVE MUTUAL INFORMATION BETWEEN COEFFICIENT MAGNITUDE C AND A LINEAR COMBINATION OF NEIGHBOR MAGNITUDES l(~Q). EACH ENTRY GIVES

THE MUTUAL INFORMATION FOR A SUBSET CONTAINING THE NEIGHBORS INDICATED AT THE TOP OF THAT COLUMN AND ALL COLUMNS TO THE LEFT. NOTICE

THAT THE LOCAL NEIGHBORS WITHIN THE SUBBAND (LEFT AND UP), THE PARENT, AND THE COUSINS CONTRIBUTE MOST TO THE MUTUAL

INFORMATION. VALUES ARE AVERAGED OVER THE TWO FINEST PYRAMID SCALES OF THREE TRAINING IMAGES (LENA, BOATS, AND BABOON)

Fig. 6. Comparison of conditional distributions in the log domain of different subbands and images. Distributions were normalized (in the log domain)
to have mean zero and variance one. Left: comparison of distributions for different subbands of the boats image. Right: comparison of distributions for
different images (Lena, Goldhill, CT scan, Christmas).

and intraband coefficients in . The mutual information
gives the theoretical coding gain (in b/coefficient) obtained
when encoding using the conditional histogram
[i.e., assuming is known to the receiver] compared with
encoding using only the marginal histogram . Rather
than exhaustively explore all possible neighbor subsets, we
used a greedy algorithm. Specifically, the set is constructed
incrementally: at each step, we incorporate the remaining
neighbor whose inclusion maximizes the mutual information.
Table I shows the greedy optimal neighbor subset for the three
oriented subbands. Using this analysis, and imposing causality
(assuming a standard scanline ordering of the coefficients), we
decided to include neighbors corresponding to the first four
table columns when coding the horizontal and vertical bands,
and the first five columns for the diagonal bands.

C. Conditional Probability Model

We wish to construct a probability model for a coefficient
conditioned on its neighbors. We were surprised to observe
that the conditional distribution in the log domain, when
normalized for mean and variance, is highly consistent across
subbands of an image, and even across a wide range of images.
Fig. 6 shows a comparison of these conditional distributions

for four subbands from the boats image, and also a comparison
of a single band across four different images. We included only
the right portion of each conditional histogram [i.e., the region
in which is proportional to ].

The fact that the conditional histograms seem to have a
constant shape that shifts linearly with the predictor in the
log domain suggests a model of multiplicative uncertainty.
In particular, we use the following model for the conditional
density:

(5)

where is the linear magnitude predictor described previ-
ously, and and are two mutually independent zero-mean
random variables. This implies that the variance ofis a linear
function of . In addition to the Markov assumption, we
also assume that the coefficient is conditionally independent
of the neighbors, given the value of the linear predictor:

.
To model the distribution of , we used a discretized

lookup table obtained by averaging the mean- and variance-
normalized conditional histograms (as shown in Fig. 4) of
three training images (Lena, boats, baboon), at two scales
(levels 2 and 3) and all three orientations. We assume
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Fig. 7. Top: examples of log-domain conditional histograms for the second-level horizontal subband of different images, conditioned on an optimal linear
combination of coefficient magnitudes from adjacent spatial positions, orientations, and scales. Bottom: model of (5) fitted to the conditional histograms in
the top row. Intensity corresponds to probability, except that each column has been independently rescaled to fill the full range of intensities. Alsogiven is
the relative entropy,�H, between the histogram and the model as a fraction of the histogram entropy,H.

is independent of , and Gaussian-distributed. Given these
distributional assumptions, the model described by (5) is
characterized by the linear weights , and the variance,

, of .
In order to fit the model to a given set of data, the linear

weights are chosen via (4) to be least-squares optimal. The
variance, is then estimated by minimizing the relative en-
tropy between the joint model density and the joint histogram.
Fig. 7 shows comparisons of joint histograms of the second-
level horizontal subband of four different images, with plots
of the fitted density function generated by (5). The estimated
densities are a reasonable fit, although several of the actual
histograms show a narrowing of the conditional density for
large predictor values. We believe this is due to small amounts
of residual linear correlation between coefficients.

An entropy calculation shows the value and quality of
the model. Fig. 8 shows a scatterplot comparing encoding
cost based on the joint probability model of (5) versus the
encoding cost assuming precise knowledge of a 256256-bin
histogram. Also included is a comparison to the first-order
histogram entropies. The conditional model falls short of the
empirical entropy by less than 0.7 b. In these situations, the
empirical conditional histogram for large-magnitude predic-
tors is sparse and has high variance. The predictive models,
however, are based onsmoothhigh-variance densities. Thus,
the empirical values are deceptively low due to detailed
knowledge of the coefficient values for this specific subband.
Nevertheless, the linear-predictive model is substantially better
than the first-order model, consistent with the mutual entropy
estimates of Table I.

Finally, we should consider the signs of the coefficients.
As mentioned in the previous section, we model the lowpass

Fig. 8. Comparison of encoding cost using the conditional probability model
of (5), and the encoding cost using the first-order histogram as a function of
the encoding cost using a 256� 256-bin joint histogram. Points are plotted for
six bands (two scales, three orientations) of the 13 images in our sample set.
The average relative entropy (Kullback–Leibler divergence) of the empirical
marginal histogram is 0.548 b/coefficient, while the average relative entropy
of the conditional model is 0.129 b/coefficient.

coefficient distribution as a uniform density. The values are
almost entirely positive: over our sample set of 13 images,
only 2.4% of the coefficients are negative. For the bandpass
subbands, the probability of positive and negative coefficients
is equal. They are, however, not spatially independent. In the
horizontal bands, for example, the probability of the “Up”
neighbor having the same sign is 36%. We utilize this simple
single-neighbor conditioning in our coder. There are also
more complex relationships between sign bits in neighboring
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Fig. 9. One-dimensional analysis/synthesis diagram for the dyadic biorthog-
onal wavelet decomposition used in EPWIC.

subbands, but we do not attempt to characterize those in this
paper.

IV. I MPLEMENTATION OF A PROGRESSIVEIMAGE CODER

In this section, we describe the implementation of our
embedded predictive wavelet image coder (EPWIC), based on
the conditional probability model developed in Section II-C.
Our implementation is simple and reasonably efficient, but
comes quite close to the theoretical entropy associated with
the probability model. In addition, its performance is roughly
comparable to the current best coders in the image processing
literature.

A. Separable Wavelet Decomposition

We utilize a recursive pyramid decomposition based on
separable 9/7 tap biorthogonal filter set of [2] which satisfies
the one-dimensional system diagram shown in Fig. 9. These
filters have become quite popular in the compression literature.
The two one-dimensional (1-D) kernels, and ,
are applied separably along the axes of the image sampling
lattice in order to generate a single level of a wavelet pyramid.
This consists of lowpass, vertical, horizontal, and diagonal
subbands. Subsequent pyramid levels (i.e., subbands at dif-
ferent scales) are created by applying this four-band splitting
procedure recursively to the lowpass subband. Convolution
boundaries are handled by symmetric reflection of the image
about the edge pixels, as described in [27]. Reconstruction is
achieved as shown in the diagram, using filters related to the
analysis filters via the expressions

We denote the basis functions in the separable wavelet
transform as , where indicates the subband
(determined by the orientation and scale) and indicates
the spatial location of the basis function. All functions are
scaled to have unity -norm. The wavelet representation
consists of the set of coefficients, , associated with
these basis functions.

B. Coefficient Bitplane Encoding

In order to have maximal control over the ordering of image
information, we map each subband coefficient to a 16-b binary
integer (including sign bit). That is

where is a scalar multiplier for subbands (used to rescale
the values for 16-b integer representation), is the

sign (±1), and corresponds to theth bit of the
coefficient .

The wavelet decomposition describes the image as
a linear combination of the following basis functions:

The second expression suggests that we may view this as a
type of representation in which the coefficients are restricted
to the set (i.e., they are single-bit quantities). The
basis functions of this representation are

, which are related to each
other by translation, dilation, Fourier modulation, negation,
and multiplication by powers of two.

Progressive transmission of an image requires us to choose
an ordering of the coefficient bits. In order to keep the com-
plexity of the coder down, we assume that all bits at a given
significance level of a subband will be sent consecutively,
in raster order. We refer to this collection of bits as abitplane.
We also assume that the bitplanes of a given subband will
be sent in order from most to least significant. Since most of
the coefficient values are close to zero, the sign bit of each
coefficient is sent only when needed, immediately after the
first nonzero magnitude bit, as in [24].

In general, the ordering of bitplanes across subbands should
take into account both the encoded size of the bitplane and
the improvement in decoded image quality resulting from the
incorporation of that bitplane. We use a greedy algorithm
(which we refer to as a “bang-for-the-buck” algorithm), in
which we select at each step the remaining bitplane that gives
the maximum reduction in mean squared error (MSE) per
encoded bit. That is, we choose the bitplane that produces
the steepest descent of the rate-distortion curve. Wang and
Kuo [34] use a similar technique designed specifically for
successive approximation quantization, in which they related
the steepest rate-distortion curve with the highest quantization
threshold. Our “bang-for-the-buck” algorithm is a generaliza-
tion of this concept.

The bitplanes are encoded with a static arithmetic encoder
whose probabilities are determined directly from our image
model. The algorithm is similar to the algorithm found in [20],
which encodes a data stream using a probability distribution
that is adaptively computed and stored in a histogram. Instead
of computing such a histogram, our encoder uses the distri-
bution specified by our statistical model. Since the “symbols”
of our input stream are single bits, the probability that a bit is
nonzero is all that is needed to construct the arithmetic code.

C. Calculation of Bit Probabilities

Our encoding technique makes direct use of the model
joint probability density described earlier. In particular, both
encoder and decoder must use this distribution to compute
the conditional mean estimate for each coefficient, given the
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bits that have been sent/received thus far. In addition, as
described above, the arithmetic coder and decoder must know
the probability that a given bit will be nonzero.

Consider the arithmetic encoding of theth bit of a par-
ticular subband coefficient, . The encoder must calculate
the probability that the bit is nonzero, given the set of all
coefficient bits that have already been received. The set of bits
received constrains the magnitude of the coefficient of interest,

, and constraints the magnitudes of each of the conditioning
coefficients, , to lie in particular ranges:

(6)

The probability that we wish to calculate is in (7), shown at
the bottom of the page, where . The last
expression uses the assumption of our joint probability model:
given , the individual components of do not provide
additional information about . Thus

In order to avoid the computationally expensive integration
over , we introduce two approximations in the conditional
probability of that allow us to perform a simple 1-D
calculation. First, we assume that the density of [see
(5)] has a constant shape, independent of the magnitude
predictor . In this case, we may divide by its standard

deviation, , to get a scalar random variable that

is independent of . We compute a lookup table, ,
containing the average of the mean and variance-normalized
log-domain cumulative histograms of this quantity for three
training images (Lena, boats, baboon) at two scales (levels 2
and 3) and all three orientations. We can then use as a
parameterized model for the conditional cumulative

(8)

where is the variance of , and is the second moment
of .

Second, we eliminate the need for integration by replacing
the integration variable by its conditional mean. Specifically,
we rewrite the model of (5) in terms of the current estimate of
the magnitude predictor (), and the error of that estimate ():

Assuming is independent of and , the variance of
this expression is , where is the variance of the
error between and , and the numerator integral becomes

(9)

where

The current estimate of the predictoris computed from the
current estimates of the neighbor magnitudes[described
below in (11)]:

and the estimate error is defined by the magnitude error es-
timates [described below in (12)], assuming the neighbors
are uncorrelated:

Finally, substituting the approximation of (9) into (7) and
eliminating common factors gives (10), shown at the bottom
of the next page. This is the expression used for the calculation
of bit probabilities in the coder.

After a bit is sent or received for a coefficient magnitude,
the conditional mean estimategiven its new range is
calculated from the joint probability density. As before, we
avoid computationally expensive integration overthrough
the use of its estimate:

(11)

Similarly, the variance of the error betweenand the actual
magnitude is:

(12)

bits received thus far

(7)
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In the coder, the integrals in (11) and (12) are approximated by
summing over a uniform partitioning of the range and
calculating the probability of each bin using the cumulative
density function given in (8).

D. Summary and Complexity Analysis of EPWIC

The following is a summary of the EPWIC compression
algorithm.

1) Choose a termination MSE level (we typically use the
variance associated with the quantization of the original
image pixels).

2) Calculate the coefficients of the wavelet de-
composition.

3) For each subband in the decomposition, quantize co-
efficients (to 16 b) and retain the quantization binsize,

.
4) Characterize the statistics for each subband:

a) calculate least-squares optimal weightsof the
linear predictor using (4);

b) calculate and that minimize the relative en-
tropy between the joint coefficient histogram and the
probability density described by (5).

5) Transmit an EPWIC identification tag (16 b), the number
of levels (scales) in the pyramid (3 b), width and height
of the image (5 b each), and (8 b, representing

).
6) While the decoded MSE is greater than the termination

MSE, perform the following.

a) Determine which of the set of candidate bitplanes
(i.e., the most significant remaining bitplane of each
subband) should be encoded next, by comparing
the “bang-for-the-buck” (MSE reduction/encoding
size). For each candidate bitplane (typically one per
subband):

• compute the conditional means of all coeffi-
cients in the subband assuming the bitplane
is sent [using (11)]. Compute the reduction in
MSE that results when the image is recon-
structed from the resulting wavelet pyramid;

• for each bit in the bitplane, calculate the
probability of the bit being nonzero [using
(10)], and construct a code stream using the
arithmetic coder.

b) Update the conditional variances of the subband to
be transmitted [using (12)].

c) Transmit a tag identifying the subband to which the
bitplane belongs [ (number of subbands) b].

d) If this is the first encoded bitplane of this subband,
transmit:

• the quantization binsize (7 b, represent-
ing the interval );

• (8 b each, representing );
• (8 b, representing ).

e) Transmit the encoded data.

The memory overhead of the algorithm is quite reasonable.
The wavelet pyramid requires as much space as the original
image, as do the current estimates of coefficient conditional
mean and variance. In addition, a lookup table containing 153
floating point numbers is used for the conditional cumulative
function, .

For our implementation of EPWIC running in MatLab on
a 300 megahertz Pentium workstation, encoding a 512512
image to 64 kB using a five-level pyramid takes approximately
5 min. Roughly 7 s of this time is used to estimate the
parameters, 16 s for arithmetic encoding of the bitplanes,
and 4.5 min are used to calculate the “bang-for-the-buck”
for the next candidate bitplanes. In order to accommodate the
testing of nonorthonormal filters, the MSE was calculated by
reconstructing the pyramid twice, with and without the candi-
date bitplane. Thus, the calculation cost could be significantly
reduced through use of orthonormal filters, for which the MSE
improvement can be estimated directly from the coefficients.
Decoding the image takes approximately 16 s, 8 of which are
used in the calculation of the magnitude estimates and the
conditional probabilities.

V. RESULTS

In order to demonstrate the performance of EPWIC, we en-
coded the set of 13 images shown in Fig. 10. Each image was
decomposed into a discrete wavelet pyramid containing five
scales. For comparison purposes, we considered the following
four other image coders:

1) EPWIC-1: We implemented a progressive encoder uti-
lizing the marginal (generalized Laplacian) density of
(1) as a model of the first order distribution. The coder
is otherwise similar to the conditional implementation
(EPWIC-2), in that it uses the same greedy algorithm
for ordering of bitplanes, and uses the same arithmetic
coding scheme.

2) JPEG: We used version 5b of CJPEG, a standard nonpro-
gressive JPEG image coder from the Independent JPEG
Group.

bits received thus far)

(10)
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Fig. 10. Full set of greyscale images used in our experiments. Left to right, top to bottom: baboon, bark, boats, brain, brownie, Cantrell, earth, flowers,
Goldhill, Lena, Mt. Will, vein, and wedding. Images contain 512� 512 8-b pixels.

3) EZW:3 As described in [25].
4) SPIHT: As described in [23].

Table II lists the PSNR values for EPWIC-2, EPWIC-1,
EZW, SPIHT, and JPEG for five of the images. It should be
noted that these PSNR values were calculated directly from the
decompressed images, and the bitrates indicate actual encoding
sizes, not entropy estimates. We were surprised to find that
EPWIC-1 surpasses EZW for most images, since the model
for this coder incorporates no joint statistical information,
while EZW exploits some of the joint conditional relationships
between coefficients at different scales. EPWIC-2 surpasses
EZW at nearly all compression levels, and approaches the
encoding capability of SPIHT at the higher compression rates.
Fig. 11 summarizes these results, by showing the PSNR of
each coder (relative to EZW), averaged over the 13 images
in our set. EPWIC-1 outperforms EZW for most compression
ratios by about 0.3 dB, and EPWIC-2 outperforms EZW by
0.5 dB at 1 kB, and nearly 1.5 dB at 16 kB and above.

Also shown in Fig. 11 is the encoding size (relative to that
of EZW) as a function of target SNR. This gives a sense of
how long one would wait during progressive transmission for
a result of a given quality. For example, EZW would have a
transmission time roughly 15% higher than EPWIC-2 for an
image quality of 26 dB.

In Fig. 12, an EPWIC-2 progressive transmission series
is given for the Boats image. Wavelet aliasing artifacts are
quite noticeable in the early stages of the transmission: these
are a consequence of using a critically sampled subband

3We thank the David Sarnoff Research Center for their assistance in the
EZW comparisons.

representation. At 16 kB (compared with an original image
size of 256 kB), the reconstructed image is remarkably close
to the original. We find that EPWIC-2 compressed images are
visually indistinguishable from SPIHT compressed images at
all bitrates.

One would like to know how much encoding performance
is being lost in the integration approximations of (10), and
how much is lost in the overhead of sending the model
parameters. In order to measure the cost of the approximations,
we developed a nonprogressive version of the coder called
“EPWIC-2 NP.” Instead of encoding the pyramid bitplane by
bitplane, EPWIC-2 NP encodes the subbands simultaneously,
at a fixed quantization level. In order to measure the cost
of the model parameters, the PSNR values for EPWIC-2
NP were recalculated without the overhead of encoding the
parameters.

Fig. 13 shows the results of this analysis. The nonprogres-
sive coder gives an improvement of roughly 0.1 dB over
progressive EPWIC-2. Thus, we conclude that the integra-
tion approximations do not greatly penalize the progressive
encoding performance. In addition, removing the overhead of
sending the model parameters improves the performance at
lower encoding sizes. In particular, EPWIC-2 NP is compara-
ble to SPIHT for encoding sizes up to 8K.

VI. CONCLUSION

We have presented a conditional probability model for
images based on a linear combination of the magnitudes
of neighboring coefficients in a wavelet decomposition. The
model characterizes the magnitude statistics of a wide variety
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TABLE II
PSNR VALUES [10� log

10
(2552/MSE)] AT DIFFERENT COMPRESSIONRATIOS FOR EPWIC-2,

EPWIC-1, EZW, SPIHT, AND JPEG. ORIGINAL IMAGES ARE SHOWN IN FIG. 10

Fig. 11. Relative rate-distortion tradeoff for five image coders (JPEG, EZW, SPIHT, EPWIC-1, and EPWIC-2). Left: PSNR values (in dB), relative to
EZW (horizontal line), as a function of the number of encoded bytes. Right: Number of bytes necessary to achieve a given PSNR, relative to EZW
(horizontal line). All curves are averages over the set of 13 images shown in Fig. 10.

of images, and provides a useful framework for understand-
ing the compression capabilities of other coders. We have
demonstrated the power of the model by using it explicitly
in the implementation of an image coder (EPWIC-2). The
compression results are surprisingly good, especially given the
simplicity of the encoding scheme.

We believe that there two are main reasons that EPWIC-2
falls slightly below the encoding capabilities of SPHIT. First,
by using a nonadaptive model of the statistics, EPWIC-2

has the overhead of encoding model parameters in the bit
stream. As shown in Fig. 13, removal of this overhead nearly
eliminates the gap in performance for low bitrates. Second,
EPWIC-2 utilizes a conditional density that depends only on a
single value (the linear combination of neighbor magnitudes).
SPHIT and related recent encoders, (e.g., [11], [13], [23], [37])
utilize zero trees and adaptive conditional techniques, allowing
them to take advantage of multidimensional joint statistical
relationships.
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Fig. 12. Progressive decoding of the boats image. Each image is an approximation of the original image computed by decoding the indicated number
of bytes from an EPWIC-2 code stream.

Fig. 13. Coding loss due to EPWIC-2 integration approximations and parameter overhead. EPWIC-2 NP is a nonprogressive version of EPWIC-2, which
avoids the integration approximations of (10). Also shown are the PSNR values for EPWIC-2 NP, excluding the overhead of encoding the model parameters.
Left: PSNR values (in dB), relative to EPWIC-2 (horizontal line), as a function of the number of encoded bytes. Right: number of bytes necessary to achieve
a given PSNR, relative to EPWIC-2 (horizontal line). All curves are averages over the set of 13 images shown in Fig. 10.

There are a number of improvements that could be made in
the implementation of EPWIC. The -norm combination of
neighboring magnitudes [described in (3)] could be replaced
with an -norm predictor, with chosen to optimize the
coding gain. Our preliminary examination of this possibility
suggests that the resulting improvements are minimal. In

addition, the overhead associated with the model parameters
could be reduced by entropy coding these values. Finally,
more sophisticated exploitation of sign statistics could yield
significant improvements in compression. In particular, the
current coder does not make predictions of coefficients before
receiving the sign bits. A model that allowed prediction of
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sign bits from causal neighbors (including those at coarser
scales), would allow the coder to fabricate image detail early
in a progressive transmission sequence. This type of predic-
tion would also allow the creation of synthetic images with
statistics matched to a given sample image.

We believe the explicit conditional probability model used in
EPWIC-2 is well-suited for other image processing problems
such as image denoising or enhancement, texture segmenta-
tion, and texture synthesis. We have begun to explore some
of these applications, and the results are encouraging [19],
[26], [28], [29]. We do find, however, that most of these
applications require a translation-invariant representation, such
as an overcomplete multi-scale pyramid (e.g., [32]) or an
image-specific adaptive basis (e.g., [5], [14]).
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