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Image Compression via Joint Statistical
Characterization in the Wavelet Domain

Robert W. BuccigrossiMember, IEEE,and Eero P. Simoncelliyjember, IEEE

Abstract—We develop a probability model for natural images, and spatial frequency (scale), have proven to be extremely
based on empirical observation of their statistics in the wavelet effective for image compression, e.g., [1], [8], [23], [25], [33],
transform domain. Pairs of wavelet coefficients, corresponding [35] e believe there are several statistical reasons for this
to basis functions at adjacent spatial locations, orientations, and . .
scales, are found to be non-Gaussian in both their marginal success. The most widely knoiwn Qf these is that wavel\et trans-
and joint statistical properties. Specifically, their marginals are forms are reasonable approximations to the Karhuneevé&o
heavy-tailed, and although they are typically decorrelated, their expansion for fractal signals [36], such as natural images [22].
magnitudes are highly correlated. We propose a Markov model The subbands of an orthonormal wavelet decomposition have
that explains these dependencies using a linear predictor for a wide range of variances whose sum is equal to that of the

magnitude coupled with both multiplicative and additive un- iginal i If th bband ded with imol
certainties, and show that it accounts for the statistics of a original image. € subbands are encoded wiih a simple

wide variety of images including photographic images, graphical first-order entropy encoder, the minimum coding size of the
images, and medical images. In order to directly demonstrate image representation is sum of the entropies of the subbands.

the power of the model, we construct an image coder called Since entropy is a concave function, the differences in subband

EPWIC (embedded predictive wavelet image coder), in which \4iances result in a coding cost significantly less than the
subband coefficients are encoded one bitplane at a time using g ot-order entropy of the original image pixels

nonadaptive arithmetic encoder that utilizes conditional proba- " . R ; .
bilities calculated from the model. Bitplanes are ordered using a N addition to this redistribution of variance, the coefficients

greedy algorithm that considers the MSE reduction per encoded of wavelet transforms have significantly non-Gaussian mar-
bit. The decoder uses.th.e statistica! model to .predict poeffigient ginal statistics for typical images, and thus have lower entropy
values based on the bits it has received. Despite the simplicity of i 5 Gaussian-distributed signal of the same variance. This
the model, the rate-distortion performance of the coder is roughly - h . -
comparable to the best image coders in the literature. property has been _epr0|ted in compression, noise removal
and texture synthesis, e.qg., [6], [9], [10], [15], [30], [38]. We
discuss it in greater detail in Section |, and provide an explicit
model for these marginals.
Finally, wavelet decompositions exhibit joint statistical reg-
|. INTRODUCTION ularities that have been utilized in a number of recent image
ANY APPLICATIONS in image processing require acding algorithms [4], [12], [17], [21], [24], [25], [37]. These
prior probability model. This is especially true for thd@gularities are the primary topic of this paper. We discuss
application of image compression, in which the theoreticfem in greater detail in Section Il, and develop an explicit
limits of an algorithm are determined by the underlying priolpodel to describe the relationships between coefficients of
model. In this paper, we describe an explicit prior probabilit§ifferent subbands. _ o
model for photographic images, and test this model by using itIn order to demonstrate the qual!ty of our statistical mode_l,
as the basis for an image compression algorithm. The resultif¥§ 1atter half of the paper describes an embedded predic-
algorithm is quite flexible, and well-suited for encoding ofVe Wavelet image coder that directly utilizes the model.

images that must be retrieved over a variety of communicatigifction !l describes the compression algorithm, and the de-
links. tails of the coder implementation. Finally, Section IV analyzes

Wavelet representations, in which images are decompodBf Performance of the coder, and compares it to several
using basis functions localized in spatial position, orientatiofitandard coders.

Index Terms—Context modeling, image compression, image
modeling, subband image coding, wavelets.
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Fig. 1. Examples of 256-bin subband coefficient histograms (solid lines) fitted with the density of (1) (dotted lines), plotted in the log domaids Subba
correspond to four different images (a landscape, a texture, a medical image, and a synthetic image) and two different orientations (topotiertical, b
diagonal), at the second highest frequency scale. Below each graph is the sample ku(fosigh moment divided by squared variance), the model exponent,
r, and the relative entropyAH (Kullback—-Leibler divergence) between the histogram and the model as a fraction of the empirical (histogram) &htropy,
The Bark image had the most Gaussian marginals in our image set and the CT scan image gave the worst model fit (in terms of relative entropy).

of smooth areas interspersed with occasional edges or otredated to the second and fourth moments. Specifically

abrupt transitions. The smooth regions lead to near-zero co- 3 1 5

efficients, and the structures give occasional large-amplitude sﬂ“(—)) F<—)>F<—)>

coefficients. or= N NN/ 2)
To quantify this, we give the sample kurtosis (fourth p<1> Iz <§>

moment divided by squared second moment) below each r r

histogram. The estimated kurtoses of all of the subbangfere 2 is the distribution variance, anelis the kurtosis.

are significantly larger than the value of three expected forgq, each subband, we solve (numerically) for the param-

a Gaussian distribution. These examples were computed. é‘{’érs {s, 7} by minimizing the relative entropy (i.e., the

subbands of an orthonormal separable wavelet decompositiqfback-Leibler divergence) between a discretized model

(see Section IIl for details), but we find that they are similafisripution and the 256-bin coefficient histogram
for any octave-bandwidth subbands. - _
& fo,n(n)
h

These non-Gaussian densities should be contrasted with sta- AH(s, 1) = — Z b loe
tistics of frequency-based decompositions which are approxi- T — n 082
mately Gaussian. Since the Gaussian is the maximal-entropy -
distribution for a given variance, wavelet-based coders asheref, ,(c.) is the integral of the density given in (1) over
able to achieve higher degrees of compression than frequeriy nth histogram bin (centered at valug), and &,, is the
based coders such as JPEG. The non-Gaussianity of wavel@malized histogram count (frequency) for th histogram
marginals may be taken as an indication that the wavelet basig. The measure\H(s, r) corresponds to the cost (in bits)
is more appropriate for image representation than either pixdlencoding the data with an entropy coder that assumes the
or Fourier representations. distribution £, .(c). For the images in our sample set?
Wavelet coefficient marginals have been previously modelé roughly proportional tos’ (where [ indicates the scale
[10], [11], [13], [15], [30] using a two-parameter “generalizedr “pyramid level”), with 3 € [3.5, 10]. The exponent- is
Laplacian” (or “stretched exponential”) density function of théypically in the range[0.5, 1.0], corresponding to kurtosis

n

form:2 values in the rangés, 25.2].
e—le/sl” We make no claim of optimality for this model: other
fs,r(0) = N(s,7) (1) authors, e.g., [38] have used alternative density functions to

describe these distributions. Nevertheless, the fits are surpris-
where N(s, r) = 2s['(1/r)/r, andI'(z) = [;~t*te~"dt, ingly good. Fig. 1 shows the log-domain plots of the sample
the Gamma function. The parametefs, »} are directly histograms together with plots of the fitted density function
2This model is appropriate for the bandpass coefficient marginals. TF?é 1). we have 'nC_IUded both the best anq WQI’SI cases from
lowpass subband coefficients are modeled using a uniform distribution.  the set of images in our test set (shown in Fig. 10). Below



1690 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 8, NO. 12, DECEMBER 1999

X
551 X X x
X X%
Xx x XBi X
5 Xy <
x XX M )§<
% xX x X X 2
4.5 WX
(&1
2 * X
S 4 X X X
g x X X
o
2
E35
o
)
3 o
X Gaussian Model
25 O Generalized Laplacian

3 5

4
Ideal First Order Entropy

Fig. 2. Comparison of encoding costs. Plotted are encoding cost assuming

the generalized Laplacian density of (1) (O's), and the encoding cost @5 3. Coefficient magnitudes of a wavelet decomposition. Shown are
suming a Gaussian density (X's), versus the encoding cost using a 256-Bifq|ute values of subband coefficients at three scales, and three orientations
histogram. Points are plotted for nine bands (three scales, three orientatiq}s) separable wavelet decomposition of the Einstein image. Also shown is the

of the 13 images in the sample set of Fig. 10. The average relative entrqgy nass residual subband (upper left). Note that high-magnitude coefficients

(Kullback-Leibler divergence) of the Gaussian model is 0.592 b/coefficienjs the subbands tend to be located in the same (relative) spatial positions.
while the average relative entropy of the generalized Laplacian model is 0.035

b/coefficient.

significant bits of each of the eight spatial neighbors and

each figure is the relative entropy between the histograms 4h8 coefficient at a coarser scale. Chrysafis and Ortega [4]
fitted densities. switch between multiple probability models depending on

Fig. 2 shows a scatterplot comparing the encoding coilues of neighboring coefficients. Said and Pearlman [23]
using the model of (1), and the encoding cost assumingUYg€ & predictive scheme to give high-quality zerotree coding
Gaussian density versus the encoding cost assuming accuf@@/lts, and Wu and Chen [37] have extended the EZW
knowledge of a 256-bin histogram. The Gaussian exampl@ader to use local coefficient “contexts.” LoPrestoal. [13]
were computed with the distribution variance matched t§0del the coefficients as being chosen from a generalized
the sample variance. Note that the relative entropy of thé@placian density and estimate the model parameters from
generalized Laplacian model is less than 0.25 b/coefficient #8fal neighborhoods. Josht al. [11] adaptively condition the
our sample images, as compared with the Gaussian den§i'f5¢0d'”9 of classification maps of regions of_coefflments based
model which often has a relative entropy greater than 140N the classes of the left and parent regions.
b/coefficient.

A. Joint Magnitude Statistics

IIl. JOINT SUBBAND STATISTICS We wish to explicitly examine and utilize the statistical rela-

As mentioned in the Introduction, the coefficients of waveldtonship between wavelet coefficient magnitudes. Consider two
subbands are approximately decorrelated. Nevertheless, itégfficients representing information at adjacent scales, but the
clear from visual inspection that wavelet coefficients amame orientation (e.g., horizontal) and spatial location. As in
not statistically independent. Fig. 3 shows the magnitudéise previous section, we will assume strict-sense stationarity
of wavelet coefficients in a four-scale decomposition. Largend ergodicity, which allows us to consider the joint histogram
magnitude coefficients tend to occur at neighboring spatiafl this pair of coefficients, gathered over the spatial extent
locations, and also at the same relative spatial locations aff the image, as representative of the underlying statistics.
subbands at adjacent scales and orientations [3]. Fig. 4(a) shows the conditional histograb(C|P) of the

Spatial and scale-to-scale dependencies are utilized implichild” coefficient conditioned on the coarser-scale “parent”
itly in a number of recent image compression schemes. Shapimefficient. The histogram illustrates several important aspects
[25] constructed the embedded zerotree wavelet (EZW) coddrthe relationship between the two coefficients. First, they are
to exploit the fact that a coefficient is likely to have smal{approximately) second-order decorrelated, since the expected
magnitude if the coefficients at coarser scales have smalue of C is roughly zero for all values of’. Second, the
magnitudes. The zerotree technique encodes entire treesrarfance ofC exhibits a strong dependence on the value of
zeros with a single symbol, thus capturing a portion aP. Thus, althoughC' and P are uncorrelatedthey are still
the conditional distribution of a coefficient given its coarsestatistically dependent-urthermore, this dependency cannot
scale neighbors (parent, grandparent, etc.). Several authmrseliminated through further linear transformation.

[17], [18], [21] have used vectorized lookup tables to predict The structure of the relationship betwe€rand P becomes
blocks of fine coefficients from blocks of coarse coefficientsnore apparent upon transforming to the log domain. Fig. 4(b)
Schwartzet al. [24] used adaptive entropy coding to capshows the conditional histograh{log,(C")|log,(@)), where
ture conditional statistics of coefficients based on the mogt= |P| andC’ = |C|. The right side of the distribution is
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Fig. 4. Conditional histograms for a fine scale horizontal coefficient from the boats image. Brightness corresponds to probability, exceptdhahedesc
been independently rescaled to fill the full range of display intensities. (a) Conditioned on the parent (same location and orientation, e)arseffistait.
(b) Same as (a), but in the log domain, and (c) conditioned on a linear combination of neighboring coefficient magnitudes.

unimodal and concentrated along a unit-slope line. This sug- Level i1 Levell
gests that in this region, the conditional expectat®{;’|Q),

is approximately proportional t@. Furthermore, vertical cross 7
sections (i.e., conditional histogram for a fixed value(f
have approximately the same shape for different values of

Q. Finally, the left side of the distribution is concentrated

about a horizontal line, suggesting that is independent of

Q in this region. We suspect these low-amplitude coefficients

are dominated by quantization errors and other sources of
uncertainty.

The intuition for the right side of the distribution is that
typical localized image structures (e.g., edges) tend to have
substantial power across many scales at the same spatial
location. These structures will be represented in the wavelet
domain via a superposition of basis functions at these scales.
The signs and relative magnitudes of the coefficients asso-
ciated with these basis functions will depend on the precif®. 5. Subset of wavelet coefficients surrounding a given coefficiédt (
location, orientation and scale of the structure. The absol({fat a'¢ potentially suitable for conditioning.
magnitudes will also scale with the contrast of the structure.

Thus, measurement of a large coefficient at one scale megq§ 5. For a single subband, the weights used to compute
that large coefficients at adjacent scales are more likely. the predictor are chosen to minimize the expected squared

The form of the histograms shown in Fig. 4 is surprisinglérror. That is
robust across a wide range of images. Furthermore, the qual- .. .
itative form of these statistical relationships also holds for @ =EQQT) - E(C-Q) (4)

pairs of coefficients at adjacent spatial locations (which we

call “siblings”), adjacent orientations (“cousins”), and adjaceffnere£ (") indicates the expected value of a random variable,

. - . ) :
orientations at a coarser scale (“aunts”). This set of potentgl coIresponds to the coefficient magnitude being estimated,

conditioning coefficients (we refer to these as “neighbors”) Rd @ is @ vector containing the magnitudes of the condi-
illustrated in Fig. 5. tioning neighbors. In practice, the expectation is estimated by

summing spatially over the subband.
. o : RV
B. Linear Magnitude Predictor Fig. 4(c) shows a con_dltlonal h|sf[ograrh('log2(0 )| long'
_ : _ _ _ (I(@))) based on magnitudes of eight adjacent coefficients
Given the linear relationship between the magnitudes pf the same subband, two cousin coefficients, and one parent
large-amplitude coefficients, and the difficulty of charactegpefficient (interpolated to the correct position using bilinear

izing the full multidimensional density, we chose to examingterpolation). Note that the distribution has a similar appear-

Horizontal

Vertical Diagonal

a linear predictor for coefficient magnitude: ance to the single-parent distribution of Fig. 4(a), but the linear
= L o= region is extended, and the conditional variance is greatl
(D =w-G=3 wQu @) eduoed greaty

k In order to determine which coefficients to include in

where the coefficient magnitude sgf),} corresponds to a the conditioning set, we calculated the mutual information

—

subset of the potential conditioning neighbors, as depictedbetweenC and I(@}) for a variety of choices of interband
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TABLE |
CUMULATIVE MUTUAL INFORMATION BETWEEN COEFFICIENT MAGNITUDE C' AND A LINEAR COMBINATION OF NEIGHBOR MAGNITUDES I(Q). EacH ENTRY GIVES
THE MUTUAL INFORMATION FOR A SUBSET CONTAINING THE NEIGHBORS INDICATED AT THE TOP OF THAT COLUMN AND ALL COLUMNS TO THE LEFT. NOTICE
THAT THE LocAL NEIGHBORS WITHIN THE SUBBAND (LEFT AND UP), THE PARENT, AND THE COUSINS CONTRIBUTE MOST TO THE MUTUAL
INFORMATION. VALUES ARE AVERAGED OVER THE TWO FINEST PYRAMID SCALES OF THREE TRAINING IMAGES (LENA, BOATS, AND BABOON)

Child subband Last neighbor included in predictor
Horizontal Left Up Parent | DiagCousin LeftLeft DiagAunt
0.3322 | 0.4308 | 0.4635 0.4804 0.4903 0.4939
Vertical Up Left | Parent | DiagCousin UpUp DiagAunt
0.3513 | 0.4356 | 0.4675 0.4865 0.4929 0.4987
Diagonal Up Left | Parent | Horiz Cousin | Vert Cousin | Left Left
0.2175 | 0.2792 | 0.3134 0.3235 0.3294 0.3356
0.04 0.035 —
' fi
0.035 —boats H2 | | 0.03} | - Lena H1
0.03 — boats H1 4 -+ CTscan H1
-~ boats V1 0.0251_ - Gholdhill H1
50'025 - -boats D1 | | E 0.02} |[— Christmas H1
o o]
g o002 g
[ £0.015
2 0.015 x
0.01 0.01r
0 3 - 0 : . -
-10 -5 0 5 10 -10 -5 0 5 10
Log2(C) - Log2(Linear Predictor) Loa2(C) — Log2(Linear Predictor)

Fig. 6. Comparison of conditional distributions in the log domain of different subbands and images. Distributions were normalized (in the Igg domain
to have mean zero and variance one. Left: comparison of distributions for different subbands of the boats image. Right: comparison of distributions f
different images (Lena, Goldhill, CT scan, Christmas).

and intraband coefficients ifiQ;}. The mutual information for four subbands from the boats image, and also a comparison
gives the theoretical coding gain (in b/coefficient) obtaineaf a single band across four different images. We included only
when encoding” using the conditional histograthr(CU(Q)) the right portion of each conditional histogram [i.e., the region
[i.e., assuming(Q) is known to the receiver] compared within which C’ is proportional tol(@)].

encodingC using only the marginal histograin(C). Rather ~ The fact that the conditional histograms seem to have a
than exhaustively explore all possible neighbor subsets, wenstant shape that shifts linearly with the predictor in the
used a greedy algorithm. Specifically, the set is constructkgy domain suggests a model of multiplicative uncertainty.
incrementally: at each step, we incorporate the remainiiig particular, we use the following model for the conditional
neighbor whose inclusion maximizes the mutual informatiodensity:

Table | shows the greedy optimal neighbor subset for the three . =

oriented subbands. Using this analysis, and imposing causality C=M-U(Q)+N ®)
(assuming a standard scanline ordering of the coefficients), Wherel((}) is the linear magnitude predictor described previ-
decided to include neighbors corresponding to the first fogusly, andd/ and NV are two mutually independent zero-mean
table columns when coding the horizontal and vertical bandandom variables. This implies that the varianc€a$ a linear

and the first five columns for the diagonal bands. function of 12(@). In addition to the Markov assumption, we
- B also assume that the coefficient is conditionally independent
C. Conditional Probability Model of the neighbors, given the value of the linear predictor:

We wish to construct a probability model for a coefficienP(C|{Q,.}) = P(CI(Q)).
conditioned on its neighbors. We were surprised to observeTo model the distribution ofA/, we used a discretized
that the conditional distribution in the log domain, whetookup table obtained by averaging the mean- and variance-
normalized for mean and variance, is highly consistent acrassrmalized conditional histograms (as shown in Fig. 4) of
subbands of an image, and even across a wide range of imaffage training images (Lena, boats, baboon), at two scales
Fig. 6 shows a comparison of these conditional distributiorfevels 2 and 3) and all three orientations. We assu¥he



BUCCIGROSSI AND SIMONCELLI: IMAGE COMPRESSION 1693

Boats Goldhill CTscan Toys

AH/H =0.0292 0.0212 0.231 0.0317

Fig. 7. Top: examples of log-domain conditional histograms for the second-level horizontal subband of different images, conditioned on amegtimal |
combination of coefficient magnitudes from adjacent spatial positions, orientations, and scales. Bottom: model of (5) fitted to the conditipaaishist

the top row. Intensity corresponds to probability, except that each column has been independently rescaled to fill the full range of intengjfiem &lso
the relative entropyAH, between the histogram and the model as a fraction of the histogram entiopy,

is independent oft/, and Gaussian-distributed. Given these 6
distributional assumptions, the model described by (5) is
characterized by the linear weigh{su; }, and the variance, X0
0'2, of N. %

In order to fit the model to a given set of data, the linear
weights are chosen via (4) to be least-squares optimal. The
variance,o? is then estimated by minimizing the relative en-
tropy between the joint model density and the joint histogram.
Fig. 7 shows comparisons of joint histograms of the second-
level horizontal subband of four different images, with plots
of the fitted density function generated by (5). The estimated ol o
densities are a reasonable fit, although several of the actual o % First Order Ideal
histograms show a narrowing of the conditional density for © Conditional Model
large predictor values. We believe this is due to small amounts 1 . : - .
of residual linear correlation between coefficients. ! 2 Ideal Cinditionaémmpy > 6

An entropy calculation shows the value and quality of

he m l. Fiq. how ol moarin n iRlg- 8- Comparison of encoding cost using the conditional probability model
the mode g- 8 shows a scatterplot comparing encod of”(5), and the encoding cost using the first-order histogram as a function of

cost based on the joint probability model of (5) versus thge encoding cost using a 256256-bin joint histogram. Points are plotted for
encoding cost assuming precise knowledge of a 25866-bin  six bands (two scales, three orientations) of the 13 images in our sample set.

histogram. Also included is a comparison to the first-orddfi€ average relative entropy (Kullback-Leibler divergence) of the empirical
. . . marginal histogram is 0.548 b/coefficient, while the average relative entropy

histogram entropies. The conditional model falls short of thg the conditional model is 0.129 b/coefficient.

empirical entropy by less than 0.7 b. In these situations, the

empirical conditional histogram for large-magnitude predic-

tors is sparse and has high variance. The predictive modé&gefficient distribution as a uniform density. The values are

however, are based @moothhigh-variance densities. Thus,almost entirely positive: over our sample set of 13 images,

the empirical values are deceptively low due to detaile@nly 2.4% of the coefficients are negative. For the bandpass

knowledge of the coefficient values for this specific subbangubbands, the probability of positive and negative coefficients

Nevertheless, the linear-predictive model is substantially betierequal. They are, however, not spatially independent. In the

than the first-order model, consistent with the mutual entrofrizontal bands, for example, the probability of the “Up”

estimates of Table I. neighbor having the same sign is 36%. We utilize this simple
Finally, we should consider the signs of the coefficientsingle-neighbor conditioning in our coder. There are also

As mentioned in the previous section, we model the lowpas®re complex relationships between sign bits in neighboring

B
X
§

w
%
Qx

o

Entropy (bits/coeff)
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sign @&1), andb,(n, m, k) corresponds to théth bit of the
Lotw) [ 24 O—1 2t [ L) coefficient ¢,(n, m).
The wavelet decomposition describes the imége y) as

Hy(-0) F— 24 O 21— Ho(a) a linear combination of the following basis functions:

. A . o . Iz, y)= >
Fig. 9. One-dimensional analysis/synthesis diagram for the dyadic biorthog-
onal wavelet decomposition used in EPWIC. 81, m

asps(n, m) Z 2kbs(n7 m, k)
k

ws(x —n, y —m)

subbands, but we do not attempt to characterize those in this = Z bs(n, m, k)
paper. s,n,m, k
: [asps(nv m)2kw5(x -y m)] :

IV. IMPLEMENTATION OF A PROGRESSIVEIMAGE CODER . . .
The second expression suggests that we may view this as a

In this section, we describe the implementation of ougpe of representation in which the coefficients are restricted
embedded predictive wavelet image coder (EPWIC), basedt@nthe set{0, 1} (i.e., they are single-bit quantities). The
the conditional probability model developed in Section Il-Qpasis functions of this representation aé(n, m, k) =
Our implementation is simple and reasonably efficient, but p, (n, m)2¥w.(z — n, v — m), which are related to each
comes quite close to the theoretical entropy associated wilther by translation, dilation, Fourier modulation, negation,
the probability model. In addition, its performance is roughlgnd multiplication by powers of two.
comparable to the current best coders in the image processingrogressive transmission of an image requires us to choose

literature. an ordering of the coefficient bits. In order to keep the com-
plexity of the coder down, we assume that all bits at a given
A. Separable Wavelet Decomposition significance levek of a subband will be sent consecutively,

We utilize a recursive pyramid decomposition based dR raster order. We refer to this collection of bits alsitnlane
separable 9/7 tap biorthogonal filter set of [2] which satisfiéde also assume that the bitplanes of a given subband will
the one-dimensional system diagram shown in Fig. 9. Thel@ sent in order from most to least significant. Since most of
filters have become quite popular in the compression literatuf@e coefficient values are close to zero, the sign bit of each
The two one-dimensional (1-D) kernelfy(w) and H(w), Coefficient is sent only when needed, immediately after the
are applied separably along the axes of the image samplfif§t nonzero magnitude bit, as in [24].
lattice in order to generate a single level of a wavelet pyramid. !N general, the ordering of bitplanes across subbands should
This consists of lowpass, vertical, horizontal, and diagont@ke into account both the encoded size of the bitplane and
subbands. Subsequent pyramid levels (i.e., subbands at Hg improvement in decoded image quality resulting from the
ferent scales) are created by applying this four-band splittifidcorporation of that bitplane. We use a greedy algorithm
procedure recursively to the lowpass subband. Convolutigfhich we refer to as a “bang-for-the-buck” algorithm), in
boundaries are handled by symmetric reflection of the ima#éich we select at each step the remaining bitplane that gives
about the edge pixels, as described in [27]. Reconstruction®® maximum reduction in mean squared error (MSE) per

achieved as shown in the diagram, using filters related to tB&coded bit. That is, we choose the bitplane that produces
analysis filters via the expressions the steepest descent of the rate-distortion curve. Wang and

% _ivg Kuo [34] use a similar technique designed specifically for
o(w) _6' o(w +7) successive approximation quantization, in which they related
H7(w) = e’ Lr(w + 7). the steepest rate-distortion curve with the highest quantization

We denote the basis functions in the separable wavelBfeshold. Our “bang-for-the-buck” algorithm is a generaliza-
transform asw,(z —n, y —m), wheres indicates the subband to" of this concept. _ o _
(determined by the orientation and scale) &ndm) indicates The bltplane_st are encoded w_lth a s_tat|c arithmetic e_ncoder
the spatial location of the basis function. All functions ar@/Nose probabilities are determined directly from our image

scaled to have unityl..-norm. The wavelet representatiorodel. The algorithm is similar to the algorithm found in [20],
consists of the set of coefficients;, (n, m)}, associated with which encodes a data stream using a probability distribution
these basis functions. that is adaptively computed and stored in a histogram. Instead

of computing such a histogram, our encoder uses the distri-
bution specified by our statistical model. Since the “symbols”

of our input stream are single bits, the probability that a bit is

~ Inorder to have maximal control over the ordering of imagg, .\ erq is all that is needed to construct the arithmetic code.
information, we map each subband coefficient to a 16-b binary

integer (including sign bit). That is

B. Coefficient Bitplane Encoding

C. Calculation of Bit Probabilities

ca(n, m) = asps(n, m) > _ 2¥b.(n, m, k) Our encoding technique makes direct use of the model

k joint probability density described earlier. In particular, both
wherea, is a scalar multiplier for subbands (used to rescancoder and decoder must use this distribution to compute
the values for 16-b integer representatiop)(n, m) is the the conditional mean estimate for each coefficient, given the
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bits that have been sent/received thus far. In addition, asAssuminge, is independent of\/ and V, the variance of
described above, the arithmetic coder and decoder must kribwg expression i* +o7 +o2, wheres? is the variance of the

the probability that a given bit will be nonzero. error betweerp andp, and the numefator integral becomes
Consider the arithmetic encoding of ti¢h bit of a par-
ticular subband coefficient,. The encoder must calculate / dpP(mo < C' < holl(Q) :p)W(p)
the probability that the bit is nonzero, given the set of all
coefficient bits that have already been received. The set of bits log,(ho) — logs (, /p? + o]% + 02)
received constrains the magnitude of the coefficient of interest, =~ |G o
C’, and constraints the magnitudes of each of the conditioning
coefficients,{ (@, }, to lie in particular ranges: log,(mo) — log, ( /ﬁ2 T ffp% T 02)
¢’ € o, hol —¢ o
Qr € [ln; hal, n=12 -, N. (6)
The probability that we wish to calculate is in (7), shown at / W (p) ©)
the bottom of the page, whereo = (Ip + ho)/2. The last

expressign uses the assumption of our joLnt probability modt\é\f:here
given [(Q), the individual components aff do not provide W(p) = 73(1((}) = plln < Qn < hn, Vn).

additional information abou€’. Thus
. = The current estimate of the predictpris computed from the
P(lo <O <holl@) =Py ln < Qn < oy Vn) current estimates of the neighbor magnitudgs[described

A 73(10 < O < holl(Q) :p). below in (11)]:

In order to avoid the computationally expensive integration p= Z Wnln,
over p, we introduce two approximations in the conditional "
probability of ¢’ that allow us to perform a simple 1-Dand the estimate errer? is defined by the magnitude error es-
calculation. First, we assume that the density (0f [see timatess? [described below in (12)], assuming the neighbors
(5)] has a constant shape, independent of the magnitugle uncorrelated:
predictor/(Q)). In this case, we may dividé” by its standard ) ) s
deviation, /12(Q) + 02, to get a scalar random variable that o =2 W,

—

is independent of(Q)). We compute a lookup table7(-), . _ L .
containing the average of the mean and variance-normalized INally, substituting the approximation of (9) into (7) and

log-domain cumulative histograms of this quantity for thre§liMminating common factors gives (10), shown at the bottom
training images (Lena, boats, baboon) at two scales (Ievel?fzthe next page. This is the expression used for the calculation

and 3) and all three orientations. We can then G%€ as a of bit proba}bilities in the cher. o .
parameterized model for the conditional cumulative After a bit is sent or received for a coefficient magnitude,

the conditional mean estimategiven its new rangél, h) is
. log, (c/, /p? +0—2) calculated from the joint probability density. As before, we
P(C’ < (@) —p) ~ G o (8) avoid computationally expensive integration oyethrough
the use of its estimatg:

g i 9 I o
whereo“ is the variance ofV, and«~” is the second moment P / deP (C’ — di(F) = ﬁ) . (11)
l

of log,(M).

Second, we eliminate the need for integration by replaci
the integration variablg by its conditional mean. Specifically,
we rewrite the model of (5) in terms of the current estimate
the magnitude predictop), and the error of that estimate,j:

n
Sg|milarly, the variance of the error betweérand the actual
519agnitude is:

I
2 , SN
C=M-(p+e,) +N. o3 —/l ch(C’ —C|Z(Q)—p> (¢—c)°. (12)

P(Cy, = 1] bits received thus far="P(mo < C’ < hollo < C’' < ho, b, < Qp < by, V1)
Plmo < C" < holl, < Qn < Iy, Y1)
Pl < C" < holly, < Qp, < by, V1)

) /dpP(mo < O < holl(D) :p)P(z@) = plln < Q. < B, vn)
- /dpP(lo < O < holl(D) :p)P(Z(c}) = plln < Qp < B, vn)

(7)
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In the coder, the integrals in (11) and (12) are approximated by  ¢) Transmit a tag identifying the subband to which the

summing over a uniform partitioning of the ran¢le 1) and bitplane belongslpg, (number of subbands) b].
calculating the probability of each bin using the cumulative d) If this is the first encoded bitplane of this subband,
density function given in (8). transmit:
» the quantization binsizé/as (7 b, represent-
D. Summary and Complexity Analysis of EPWIC ing the interval[2—15, 216]);
The following is a summary of the EPWIC compression *  {wx} (8 b each, representing-0.1, 1.1]);
algorithm. « (8 b, representind2.7, 4]).

1) Choose a termination MSE level (we typically use the e) Transmit the encoded data.

yariancel associated with the quantization of the original T memory overhead of the algorithm is quite reasonable.
image pixels). . The wavelet pyramid requires as much space as the original
2) Caleulate the coefficients;(n, m) of the wavelet de- jnage, as do the current estimates of coefficient conditional

composition. mean and variance. In addition, a lookup table containing 153

3) For each subband in the decomposition, quantize qgsating point numbers is used for the conditional cumulative
efficients (to 16 b) and retain the quantization b'”s'z?unction, G(-).

1/as. ) o For our implementation of EPWIC running in MatLab on
4) Characterize the statistics for each subband: a 300 megahertz Pentium workstation, encoding a §1212
a) calculate least-squares optimal weightsof the image to 64 kB using a five-level pyramid takes approximately
linear predictorl(QQ) using (4); 5 min. Roughly 7 s of this time is used to estimate the
b) calculates? and o? that minimize the relative en- parameters, 16 s for arithmetic encoding of the bitplanes,
tropy between the joint coefficient histogram and thand 4.5 min are used to calculate the “bang-for-the-buck”
probability density described by (5). for the next candidate bitplanes. In order to accommodate the
5) Transmit an EPWIC identification tag (16 b), the numbdgsting of nonorthonormal filters, the MSE was calculated by
of levels (scales) in the pyramid (3 b), width and heigH€constructing the pyramid twice, with and without the candi-
of the image (5 b each), and? (8 b, representing date bitplane. Thus, the calculation cost could be significantly

[2-3, 29)). reduced through use of orthonormal filters, for which the MSE
6) While the decoded MSE is greater than the terminatidfprovement can be estimated directly from the coefficients.
MSE, perform the following. Decoding the image takes approximately 16 s, 8 of which are

a) Determine which of the set of candidate bitplanéésed in the calculation of the magnitude estimates and the
(i.e., the most significant remaining bitplane of eacfonditional probabilities.
subband) should be encoded next, by comparing

V. RESULTS
the “bang-for-the-buck” (MSE reductionfencoding |, rger to demonstrate the performance of EPWIC, we en-
size). For each candidate bitplane (typically one pel

bband): lbded the set of 13 images shown in Fig. 10. Each image was

subband): decomposed into a discrete wavelet pyramid containing five

«  compute the conditional means of all coeffiScales. For comparison purposes, we considered the following
cients in the subband assuming the bitplanf@Ur Other image coglers: . .
is sent [using (11)]. Compute the reduction in 1) EPWIC-1: We implemented a progressive encoder uti-

MSE that results when the image is recon- lizing the marginal (generalized Laplacian) density of
structed from the resulting wavelet pyramid,; (1) as a model of the first order distribution. The coder

« for each bit in the bitplane, calculate the is otherwise similar to the conditional implementation
probability of the bit being nonzero [using (EPWIC—?), in that it uses the same greedy algorithm
(10)], and construct a code stream using the ~ for (_)rdermg of bitplanes, and uses the same arithmetic
arithmetic coder. coding scheme.

2) JPEG: We used version 5b of CJPEG, a standard nonpro-
b) Update the conditional variances of the subband to  gressive JPEG image coder from the Independent JPEG
be transmitted [using (12)]. Group.

P(C, = 1| bits received thus far)

logy(ho) —logy (/P2 + 03 + o2 logy(mo) — logy (/P2 + 02 + 02
G( ( r ) e ( p )

«

. <1Og2(ho) — log, (\/132 +0%+o? )) iy <log2(lo) — log, (, [p? + 0% + 02 ))

~

(10)

< <
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Fig. 10. Full set of greyscale images used in our experiments. Left to right, top to bottom: baboon, bark, boats, brain, brownie, Cantrell, earth, flowe
Goldhill, Lena, Mt. Will, vein, and wedding. Images contain 5¥2512 8-b pixels.

3) EZW?3 As described in [25]. representation. At 16 kB (compared with an original image

4) SPIHT: As described in [23]. size of 256 kB), the reconstructed image is remarkably close

Table Il lists the PSNR values for EPWIC-2, EPWIC-1t0 the original. We find that EPWIC-2 compressed images are
EZW, SPIHT, and JPEG for five of the images. It should bésually indistinguishable from SPIHT compressed images at
noted that these PSNR values were calculated directly from @ bitrates.
decompressed images, and the bitrates indicate actual encodirfgne would like to know how much encoding performance
sizes, not entropy estimates. We were surprised to find ti&tbeing lost in the integration approximations of (10), and
EPWIC-1 surpasses EZW for most images, since the modi@w much is lost in the overhead of sending the model
for this coder incorporates no joint statistical informatiorparameters. In order to measure the cost of the approximations,
while EZW exploits some of the joint conditional relationshipg/e developed a nonprogressive version of the coder called
between coefficients at different scales. EPWIC-2 surpassB®WIC-2 NP.” Instead of encoding the pyramid bitplane by
EZW at nearly all compression levels, and approaches thi#gplane, EPWIC-2 NP encodes the subbands simultaneously,
encoding capability of SPIHT at the higher compression rated. @ fixed quantization level. In order to measure the cost
Fig. 11 summarizes these results, by showing the PSNR af the model parameters, the PSNR values for EPWIC-2
each coder (relative to EZW), averaged over the 13 imagl§ were recalculated without the overhead of encoding the
in our set. EPWIC-1 outperforms EZW for most compressidparameters.
ratios by about 0.3 dB, and EPWIC-2 outperforms EZW by Fig. 13 shows the results of this analysis. The nonprogres-
0.5 dB at 1 kB, and nearly 1.5 dB at 16 kB and above. Sive coder gives an improvement of roughly 0.1 dB over

Also shown in Fig. 11 is the encoding size (relative to thdrogressive EPWIC-2. Thus, we conclude that the integra-
of EZW) as a function of target SNR. This gives a sense §pn approximations do not greatly penalize the progressive
how long one would wait during progressive transmission f@ncoding performance. In addition, removing the overhead of
a result of a given quality. For example, EZW would have $ending the model parameters improves the performance at
transmission time roughly 15% higher than EPWIC-2 for al@wer encoding sizes. In particular, EPWIC-2 NP is compara-
image quality of 26 dB. ble to SPIHT for encoding sizes up to 8K.

In Fig. 12, an EPWIC-2 progressive transmission series
is given for the Boats image. Wavelet aliasing artifacts are
quite noticeable in the early stages of the transmission: these V1. CONCLUSION
are a consequence of using a critically sampled subbandVe have presented a conditional probability model for

images based on a linear combination of the magnitudes

3We thank the David Sarnoff Research Center for their assistance in fﬂg ne'ghbormg qoefﬂments n a WaveleF Qecompos!tlon. T_he
EZW comparisons. model characterizes the magnitude statistics of a wide variety
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TABLE I
PSNR \ALUES [10-log,, (255 /MSE)] AT DIFFERENT COMPRESSIONRATIOS FOR EPWIC-2,
EPWIC-1, EZW, SPIHT, AND JPEG. RGINAL IMAGES ARE SHOWN IN FIG. 10
Bits/Pixel
Image | Coder [ 0.008 | 0.016[0.031 ]0.063 [0125] 025 | 05 [ 10 | 20
Boats | EPWIC-2 (| 21.67 | 23.36 | 25.21 | 27.24 | 29.72 | 3297 | 37.04 | 41.69 | 46.96
SPIHT 22.28 | 23.75 | 25.46 | 27.46 | 29.85 | 33.07 | 37.16 | 41.73 | 46.81
EPWIC-1 || 21.55 | 23.30 | 24.98 | 26.92 | 29.09 | 31.95 | 35.80 | 39.97 | 45.11
EZw 21.34 | 22.83 | 24.81 | 26.86 | 28.87 | 31.69 | 35.58 | 40.00 | 45.82
JPEG NA NA | 1829 | 21.83 | 27.76 | 30.88 | 34.63 | 39.10 | 43.54
Baboon | EPWIC-2 || 18.89 | 19.48 | 19.89 | 20.64 | 21.61 | 23.19 | 25.25 | 28.86 | 34.49
SPIHT 19.18 | 19.57 | 19.98 | 20.74 | 21.72 | 23.27 | 25.65 | 29.17 | 34.98
EPWIC-1 || 18.94 | 1947 | 19.92 | 20.55 | 21.46 | 22.95 | 24.90 | 28.25 | 33.69
EZW 18.89 | 19.37 | 19.87 | 20.36 | 21.50 | 22.53 | 24.90 | 28.45 | 34.06
JPEG NA NA | 16.51 | 19.01 | 20.87 | 22.03 | 24.13 | 26.65 | 30.97
Lena EPWIC-2 || 21.68 | 23.54 | 25.70 | 28.03 | 30.85 | 33.78 | 37.15 | 40.34 | 45.06
SPIHT 22.07 | 23.95 | 25.95 | 28.36 | 31.10 | 34.12 | 37.23 | 4043 | 45.11
EPWIC-1 || 21.26 | 23.35 | 25.41 | 27.61 | 30.18 | 33.04 | 35.99 | 39.27 | 44.04
EZW 21.03 | 22.99 | 25.01 | 27.46 | 30.26 | 33.32 | 36.46 | 39.79 | 44.64
JPEG NA NA | 1795 | 21.92 | 28.24 | 31.42 | 34.84 | 3795 | 41.62
Goldhill | EPWIC-2 || 22.00 | 23.54 | 24.93 | 26.59 | 28.23 | 30.08 | 32.83 | 36.25 | 41.78
SPIHT 22.56 | 23.89 | 25.26 | 26.70 | 28.39 | 3045 | 32.99 | 36.44 | 41.99
EPWIC-1 || 22.12 | 23.63 | 24.95 | 26.52 | 28.07 | 29.92 | 32.38 | 35.73 | 40.98
EZW 21.66 | 23.41 | 24.66 | 26.10 | 27.88 | 29.73 | 31.92 | 35.09 | 39.82
JPEG NA NA | 1792 | 23.96 | 26.85 | 29.18 | 31.59 | 34.46 | 38.46
. 40
30t
£ 20
& @ e JPEG
hA 17} 4+t EZW
z 2 ok EPWIC-1
& ‘-g e EPWIC-2
% 2 +—-—+ SPIHT
2 ]
s £ ot +
o ~ -
g //" e ) e
1) m‘ s
—1f e P PR — 3 et
—20p AT k,,.-+——+—+—+—+“"4 -
82 o 1 2 R 8 6 a2 o4 22 2 26 % 30 a2 ” 36 38
Kilobytes PSNR(dB)
Fig. 11. Relative rate-distortion tradeoff for five image coders (JPEG, EZW, SPIHT, EPWIC-1, and EPWIC-2). Left: PSNR values (in dB), relative to

EZW (horizontal line), as a function of the number of encoded bytes. Right: Number of bytes necessary to achieve a given PSNR, relative to EZW
(horizontal line). All curves are averages over the set of 13 images shown in Fig. 10.

of images, and provides a useful framework for understanidas the overhead of encoding model parameters in the bit
ing the compression capabilities of other coders. We hasteam. As shown in Fig. 13, removal of this overhead nearly
demonstrated the power of the model by using it explicitlgliminates the gap in performance for low bitrates. Second,
in the implementation of an image coder (EPWIC-2). ThEPWIC-2 utilizes a conditional density that depends only on a
compression results are surprisingly good, especially given tsiagle value (the linear combination of neighbor magnitudes).
simplicity of the encoding scheme. SPHIT and related recent encoders, (e.g., [11], [13], [23], [37])

We believe that there two are main reasons that EPWIQ4fllize zero trees and adaptive conditional techniques, allowing
falls slightly below the encoding capabilities of SPHIT. Firsthem to take advantage of multidimensional joint statistical
by using a nonadaptive model of the statistics, EPWIC+2lationships.
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0.25 Kbytes 0.5 Kbytes 1.0 Kbytes

4 Kbytes

-t

Fig. 12. Progressive decoding of the boats image. Each image is an approximation of the original image computed by decoding the indicated number
of bytes from an EPWIC-2 code stream.
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Fig. 13. Coding loss due to EPWIC-2 integration approximations and parameter overhead. EPWIC-2 NP is a nonprogressive version of EPWIC-2, which
avoids the integration approximations of (10). Also shown are the PSNR values for EPWIC-2 NP, excluding the overhead of encoding the model parameters
Left: PSNR values (in dB), relative to EPWIC-2 (horizontal line), as a function of the number of encoded bytes. Right: number of bytes necessay to achi

a given PSNR, relative to EPWIC-2 (horizontal line). All curves are averages over the set of 13 images shown in Fig. 10.

There are a number of improvements that could be madeaddition, the overhead associated with the model parameters
the implementation of EPWIC. Th&;-norm combination of could be reduced by entropy coding these values. Finally,
neighboring magnitudes [described in (3)] could be replaceadore sophisticated exploitation of sign statistics could yield
with an L,-norm predictor, withp chosen to optimize the significant improvements in compression. In particular, the
coding gain. Our preliminary examination of this possibilitcurrent coder does not make predictions of coefficients before
suggests that the resulting improvements are minimal. deceiving the sign bits. A model that allowed prediction of
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sign bits from causal neighbors (including those at coars@s] A. P. Pentland, E. P. Simoncelli, and T. Stephenson, “Fractal-based
scales), would allow the coder to fabricate image detail early
in a progressive transmission sequence. This type of predigg; 3 portila and E. P. Simoncelli, “Texture modeling and synthesis using
tion would also allow the creation of synthetic images with
statistics matched to a given sample image.

We believe the explicit conditional probability model used i)
EPWIC-2 is well-suited for other image processing problems Numerical Recipes in @nd ed. Cambridge, U.K: Cambridge Univ.

such as image denoising or enhancement, texture segme&tﬁ-

tion, and texture synthesis. We have begun to explore some
of these applications, and the results are encouraging [1%]2
[26], [28], [29]. We do find, however, that most of thesé

applications require a translation-invariant representation, suesi

as an overcomplete multi-scale pyramid (e.g.,
image-specific adaptive basis (e.g., [5], [14]).

[32]) or an
[24]

[25]
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