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. . . In that Empire, the Art of Cartography attained such Perfection that the map of a single Province

occupied the entirety of a City, and the map of the Empire, the entirety of a Province. In time,

those Unconscionable Maps no longer satis�ed, and the Cartographers Guilds struck a Map of the

Empire whose size was that of the Empire, and which coincided point for point with it. The following

Generations, who were not so fond of the Study of Cartography as their Forebears had been, saw that

that vast map was Useless, and not without some Pitilessness was it, that they delivered it up to the

Inclemencies of Sun and Winters. In the Deserts of the West, still today, there are Tattered Ruins of

that Map, inhabited by Animals and Beggars; in all the Land there is no other Relic of the Disciplines

of Geography.

—Suarez Miranda, Viajes de varones prudentes, Libro IV, Cap. XLV, Lerida, 1658

— Jorge Luis Borges, “Del rigor en la ciencia”
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Abstract

Human vision is far from uniform across the visual �eld. At �xation, we have a region of

high acuity known as the fovea, and acuity decreases with distance from the fovea. However, it

is not true that peripheral vision is just a blurrier version of foveal vision, and �nding a precise

description of how exactly they di�er has been challenging. This thesis presents two investigations

into how the processing of visual information changes with location in the visual �eld, both focused

on the early visual system, as well as a description of a software package developed to support

studies of the type found in the second study. In the �rst study, we use functional magnetic

resonace imaging (fMRI) to measure how spatial frequency tuning changes with orientation and

visual �eld location in human primary visual cortex (V1). V1 is among the best-characterized

regions of the primate brain, and we know that nearly every neuron in V1 is selective for spatial

frequency and orientation. We also know that V1 neurons’ preferred spatial frequencies decrease

with eccentricity, which aligns with the decrease in peak spatial frequency sensitivity found

in perception. However, precise descriptions of this relationship have been elusive, due to the

di�culty of characterizing tuning properties across the whole �eld. By utilizing fMRI’s ability to

measure responses across the entire cortex at once to a set of stimuli designed to e�ciently map

spatial frequency preferences, along with a novel analysis method which �ts the responses of all

voxels simultaneously, we present a compact description of this property, providing an important

building block for future work.

In the second study, we build perceptual pooling models of the entire visual �eld from simple
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�lter models inspired by retinal ganglion cells and V1 neurons. We then synthesize a large

number of images to investigate how the sensitivities and invariances of these models align with

those of the human visual system. This allows us to investigate to what extent the change in

perception across the visual �eld can be accounted for by well-understood models of low-level

visual processing, rather than requiring more cognitive phenomena or models with millions of

parameters. Finally, I describe an open-source software package developed by members of the

Simoncelli lab that provides four image synthesis methods in a shared, general framework. These

methods were all developed in the lab over the past several decades and have been described in

the literature, but their widespread use has been limited by the di�culty of applying them to new

models. By leveraging the automatic di�erentiation built into a popular deep learning library, our

package allows for the use of synthesis method with arbitrary models, providing an important

resource for the vision science community. Altogether, this thesis presents a step forward in

understanding how visual processing di�ers across the visual �eld and, with the e�ort to share the

code, data, and computational environment of the projects, provides resources for future scientists

to build on.
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1 | Introduction

Human vision is far from uniform across the visual �eld. Humans have a central region of high

acuity, the fovea, which we move constantly and rapidly around visual scenes in order to acquire

information. This is a feature we share with other primates, carnivores, many birds (some species

of which, such as hawks, have two foveas, [132]), and jumping spiders (though the anatomical

implementation is vastly di�erent, [146]). Not all animals, however, share this feature. Many

mammals, such as rabbits and ungulates, have a visual streak: their region of highest retinal

ganglion cell density is a horizontal strip in the center of the retina [132]. Rodents, despite being

closely related to humans, lack a fovea (though they have an area centralis, with slightly increased

retinal ganglion cell density, [132]). This diversity suggests that the fovea has evolved multiple

times over the course of evolution, and that the spatial sampling of the light that enters the eye

has important consequences for behavior.

This thesis presents two investigations into how the processing of visual information changes

across the visual �eld, focusing on the early visual system, that is, the stages after the photorecep-

tors and before the secondary visual cortex (V2). These stages, including retinal ganglion cells

(RGCs) and primary visual cortex (V1), are among the best characterized of the primate central

nervous system, with decades of study into how they respond to visual input using a variety of

techniques. However, much of the foundational work comes from single-unit electrophysiology,

the use of which for characterizing visual �eld maps was described by David Hubel as “a dismaying

exercise in tedium, like trying to cut the back lawn with a pair of nail scissors” [103]. We thus have
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a much less complete picture of how processing in these areas changes across the visual �eld than

one might hope. In the second chapter of this thesis, I use functional magnetic resonance imaging

(fMRI) to investigate how spatial frequency tuning varies with population receptive �eld (pRF)

location, making use of the fact that both these properties vary smoothly across the cortical map

and are thus well suited for fMRI, with which we can gather the responses of the full cortical map

to a full-�eld stimulus. In the third chapter, I extend upon earlier work which uses computational

models and behavioral experiments to estimate the spatial scale of pooling of image statistics [7,

70, 219], investigating in more detail the information discarded in the beginning of the visual

system. The �nal chapter discusses an open-source software package, plenoptic, that has been

developed to support studies like those found in the third chapter, as well as the importance of

open-source software to science more generally.

1.1 A brief history of models of the early visual system

The work presented in this thesis builds o� a long literature in the visual sciences, which built

up the classic models of neurons in the early visual system from linear receptive �elds, adding

non-linearities to account for additional phenomena. The concept of receptive �elds begins with

Sherrington [194], who used the term to describe the patch of skin that elicits muscle re�ex in

dogs when touched. Hartline [87] brought this concept into visual neuroscience with his studies of

the frog retina, de�ning it as “the region of the retina which must be illuminated in order to obtain

a response in any given [optic] �ber”. By 1953, Ku�er [129] was using an expanded version of

the concept, which “include[d] all areas in functional connection with a ganglion cell” (emphasis

original). Ku�er [129] emphasized that, while the anatomical con�guration of a receptive �eld

(the actual receptors connected to a ganglion cell) are �xed, this functional receptive �eld depends

upon the experiment which de�nes it, especially the properties of the stimulus and the state of

the cell’s light adaptation. This conceptual shift demonstrates the �eld’s focus on a computational
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or functional account of neural activity, rather than an anatomical or biophysical one

This functional focus can also be seen by the �eld’s long investigation into receptive �eld

linearity. A linear shift-invariant (LSI) system can be completely characterized by its impulse

response, making it exceedingly computationally tractable: if neuronal responses were both linear

and shift-invariant, the response of a given neuron to a single stimulus would allow neuroscientists

to predict its response to any stimulus they could present. There’s a variety of work through

the 1950s and 1960s on these questions, culminating in the investigation by Enroth-Cugell and

Robson [64], which split cat RGCs into two classes: approximately linear (X) and very non-linear

(Y; in particular, their response to drifting gratings did not vary with phase in a linear manner).

These studies do not investigate how linear responses are achieved, and linearity’s mathematic

simplicity belies biological complexity in its implementation. But by this point, a simple standard

model of RGCs was forming: a linear receptive �eld consisting of concentric rings of excitatory

and inhibitory regions, referred to as the “on” center and “o�” periphery, or vice versa. This

linear model fails to capture some nonlinearities [193, 216], the most obvious of which is the

spike threshold: neuronal �ring rate cannot go negative, and thus a simple static nonlinearity

(recti�cation) is applied to clip negative responses [45].

Similar investigations into linearity were also carried out in the lateral geniculate nucleus (LGN)

of the thalamus and the primary visual cortex, the next two steps in the visual pathway. Hubel

and Wiesel [104] �rst investigated the receptive �elds of cat V1, mapping their separate inhibitory

and excitatory areas, explicitly referencing the earlier work of Ku�er [129] in the cat retina.

They classi�ed the cells they characterized into two categories, “simple” and “complex”: “these

�elds were termed ‘simple’ because like retinal and geniculate �elds (1) they were subdivided into

distinct excitatory and inhibitory regions; (2) there was summation within the separate excitatory

and inhibitory parts; (3) there was antagonism between excitatory and inhibitory regions; and

(4) it was possible to predict responses to stationary or moving spots of various shapes from a

map of the excitatory and inhibitory areas.” [105]. A neuron which failed any of these four parts
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was classi�ed as “complex”. The last point, though it does not say so explicitly, is about the cell’s

linearity: if a cell’s response is linear, a complete map of the receptive �eld is su�cient to predict

its response to arbitrary stimuli. These papers from Hubel and Wiesel also demonstrated that,

unlike RGCs and LGN neurons, both simple and complex cell receptive �elds are oriented: in

Hubel and Wiesel’s Nobel prize-winning experiments, V1 neurons responded most strongly to

oriented bars of light, demonstrating an orientation tuning that would be further characerized

in later studies. By 1978, Movshon and colleagues were characterizing the primary di�erence

between simple and complex cells with reference to phase sensitivity, the now standard method for

classifying cells as simple or complex (e.g., [81]): complex cell responses “vary little in amplitude

or wave form as the spatial phase of the grating is varied” [152], while simple cells “chang[e] their

response amplitude sinusoidally as the spatial phase of the grating is changed” [153].

Figure 1.1: Schematic showing basic models of neurons in the early visual system. Each model starts by taking
the dot product of a linear filter with an input image, followed by a static nonlinearity. (A) Retinal ganglion cell
and lateral geniculate nucleus model. The receptive field is unoriented, with an excitatory center and an inhibitory
surround (or vice versa). The static nonlinearity is a rectification: all negative outputs are set to 0. (B) V1 simple cell
model. The receptive field is oriented and bandpass, tuned for both orientation and spatial frequency. The static
nonlinearity is also a rectification, though the displayed one is a nonlinear rectification. (C) V1 complex cell model.
This model squares and sums the output of two simple cell-like subunits whose phases are o�set by 90 degrees to
compute the local energy, selective for orientation and spatial frequency, but insensitive to phase. Unlike the RGC
and simple cell models, the rectification here is “full-wave” (rather than discarding the negative outputs of the linear
filter), which is equivalent to taking the half-wave rectified outputs of the sign-flipped version of the subunit filter,
as shown underneath the nonlinearity schematic. Adapted from [37]

These two papers from Movshon and colleagues also appear to be the �rst to put models of V1
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simple and complex cells to quantitative test: “None of these [previous] groups used the powerful

technique of Fourier analysis to interpret their data, or to relate neuronal responses to gratings

with those to simpler types of geometric stimuli.” [153]. The �gures in these papers therefore

include not only summaries of neuronal responses, but also lines showing the predictions of

implementations of the verbal models informing this line of research, showing clearly where

neural data matched or diverged from model predictions. This line of work, along with the work

on RGCs described earlier, led to the crystallization of basic models of neurons in the early visual

system, shown in �gure 1.1. All these models start by passing the input image through a linear

�lter, then applying a static nonlinearity. These are the only steps for models for RGCs (A, [64])

and V1 simple cells (B, [152]), which di�er primarily in the structure of their receptive �elds

(unoriented vs. oriented), while the complex cell model (C) sums the squared outputs of two

subunits, represented by a quadrature pair of simple cell-like �lters (with matched orientation

and spatial frequency selectivity) to get the “energy model”, which is phase-insensitive [1].

1.2 On the importance of computational models

Having computational models is invaluable for scienti�c research: they are tools to help

scientists think better [185], require us to think more deeply about the system that we are

modeling [84], and force us to make our assumptions explicit [200]. As Smaldino [200] put it,

“models are, by and large, stupid. . . [yet] stupid models are extremely useful. They are useful

because humans are boundedly rational and because language is imprecise.” This “stupidity”

is a feature, not a bug: implementation removes the ambiguities found in verbal descriptions

and provides the scientist with speci�c predictions to test against. In models of the early visual

system, early work focused on whether the system was linear and, because linear systems are

well-de�ned and well-understood, this was fairly straightforward to do even without an explicit

model. Pretty quickly, however, researchers noticed nonlinearities in the V1 neurons beyond
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those accounted for by recti�cation or the energy model, including response saturation [4] and

nonspeci�c suppression [21]. Computational models allow researchers to ensure that these

phenomena are not accounted for by existing models and, when an improved model comes along,

to see how many such phenomena it can account for. The divisive normalization model proposed by

Heeger [88] accounted for many such nonlinear behaviors, unifying disparate-seeming phenomena.

Such an improvement requires implementing and testing a model: by reasoning alone, it is far

from obvious that adding division to the basic models outlined in �gure 1.1 would predict such

behavior. This speaks to a broader point: even relatively simple models have surprising behaviors.

Sometimes, as in this case, these are encouraging, and sometimes they are disappointing, but in

either case we understand the models better for having encountered them.

Despite their e�ectiveness in the study of perception, the theory-�rst approach described

above, exempli�ed by the �eld’s focus on linearity and computational models, is not universally

valued in neuroscience and psychology. There are many who espouse a naive empiricism, which

holds that “scienti�c ‘facts’ can be derived from observation or empirical tests, independent of

theoretical commitments” [185]. These include such luminaries as Santiago Ramon y Cajal, who

advised young scientists that: “A scholar’s positive contribution is measured by the sum of the

original data that he contributes. Hypotheses come and go but data remain. Theories desert us,

while data defend us” [181] (this position seems somewhat ironic given Ramon y Cajal’s position

as a key �gure in the debate over the neuron doctrine, one of the earliest theoretical debates

in neuroscience), and György Buzsáki, who suggests that neuroscience should “start with the

brain (independent variable) and de�ne descriptors of behavior (dependent variables) that are free

from philosophical connotations and can be communicated across laboratories, languages, and

cultures.” [34]. Gershman [76] (from whence the previous two examples are drawn) characterizes

this viewpoint as a belief in the scientist’s “innocent eye”, wherein “if one just looks at the data,

then facts can be documented and progress can be made.”

This view seems particularly misplaced in the context of the line of research presented earlier
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in this section. An open question hanging around the edge of these early results is how we should

then understand visual neurons: what is it that they do? The two main schools of thought can

be summarized as “features” vs. “�lters”: are visual neurons detectors of certain features in the

world (features which can be understood and simply described by humans) or are they better

understood as �lters with some extra non-linearities? As De Valois, Albrecht, and Thorell [55]

summarize in their aptly-titled paper: “[Hubel and Wiesel [105]] describe the optimal stimulus for

cortical cells as being an elongated light or dark bar of a particular width and orientation, or a

sharp, correctly oriented edge between light and dark. Their descriptions of optimal stimuli in

such semi-naturalistic terms. . . led others to develop theories of pattern perception in which a

complex pattern would be dissected into simple units such as bars of particular widths, and edges;

these units would then be combined into more complex combinations of bars and edges. Such an

approach seems intuitively reasonable and was readily accepted.” On the other hand, “[Campbell

and Robson [35]] proposed that the visual system analyzed spatial variation in light in terms of

spatial frequency content of the pattern, rather than in terms of more naturalistic features such as

edges. . . In essence it was proposed, the visual cortex would behave in a manner similar to the

cochlea in the auditory system — as a crude Fourier analyzer.” Adelson and Bergen described this

distinction as between “stu�” and “things”, when they assert their preference for the �lter view by

saying “we are interested in how early vision measures ‘stu�’ rather than in how it labels ‘things’.”

[2], though allegiance is rarely stated so explicitly. Most often, researchers’ preference for one of

these views lurks in the background, informing the questions they �nd interesting, the stimuli

they present, and their interpretation of the results.

These di�ering views demonstrate, at the very least, that di�erent researchers, trained in the

same discipline and working at the same time, can look at the same data and arrive at very di�erent

interpretations. That is, they demonstrate that the facts do not emerge from simple examination of

the data. And these di�ering interpretations led researchers to conceptualize of the visual system

in di�erent ways. As De Valois, Albrecht, and Thorell [55] note above, the feature view led to
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hypotheses that had edges serving as the most basic unit of visual perception, combining them

into more and more complicated forms until the emergence of objects represented in cortical

areas at the end of the ventral stream (Marr [143] provides one version of this). The �lter view,

on the other hand, invites researchers to think of subsequent stages performing similar �ltering

operations, taking di�erences (i.e., derivatives) across the dimensions of earlier �lter selectivities

(e.g., orientation or scale), as presented in Adelson and Bergen [2].

Figure 1.2: Illustration of edge detector performance from Canny [36], figure 7. (a) shows the original image, (b)
and (c) the outputs of the proposed edge detection algorithm thresholded at two di�erent values, and (d) the outputs
thresholded with hysteresis using both the thresholds in (b) and (c). All three proposed edges maps include edges in
the reflection of the metal and shadow while missing boundaries between the objects and the background (nut and
bolt on the top le�). No human comparison is present, but it seems unlikely that humans would assign edges in the
same way. I posit that “edges” is more likely to be a higher-order property, such as object boundaries, rather than a
low-level image property. The computer vision field’s di�iculty in developing a reliable algorithm for edge detection
supports this possibility.

Even if we restrict ourselves to V1, the �lter interpretation is more useful. The outputs of a

�lter or �lter with some nonlinearities are well-understood, even to stimuli far from the test set,
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with a long literature in signal processing investigating their properties. It is less clear what a

“feature detector” should do in more general situations. How should an edge detector respond to a

curved line, which contains multiple orientations? How should it respond to a two-dimensional

sine wave grating, which has no hard edges? Calling a V1 neuron an edge detector does not

clarify matters. Additionally, no one has an implementation of an edge detector as such. There

is a long history of edge detection in computer vision, and most algorithms use some bandpass

�lter selective to high frequencies. That is, the “edge detectors” are actually just the sort of �lters

described for V1 neurons above, and their outputs do not align with the edges that humans assign

to images. Human-assigned edges seem to be hierarchical and a property of objects, rather than a

low-level image property one could use to build objects: as can be seen in �gure 1.2, edge detectors

often highlight a variety of edges that humans consider unimportant, such as re�ection patterns

and shadows, while occasionally missing those considered important, like edges that separate

an object from the background, often in areas of low contrast (a psychophysical experiment to

validate this is necessary). If we conceptualize V1 neurons as �lters, rather than feature detectors,

we thus have a more useful frame for understanding the early visual system.

The distinction between the two perspectives may seem rather small, especially when compared

to the rest of neuroscience. After all, one could say that both give rise to models that are far too

simple: they are feedforward, with no recurrence or feedback, they often ignore or assume the

linearity of the temporal dimension (though not always), and they ignore completely the question

of biological implementation. As Heeger, Simoncelli, and Movshon [89] point out, our knowledge

of the circuitry is nowhere near the level of detail required to build any sort of “biologically

accurate” model without a large number of assumptions. But these models do ignore a good deal

of the knowledge we do have about the brain, and, perhaps unintuitively, the fact that they do so

is a strength. These simpli�cations are what the philosopher of science Angela Potochnik calls

idealizations: “assumptions made without regard for whether they are true and often with full

knowledge they are false. . . we arti�cially simplify the parts of accounts that we aren’t interested
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in to improve our access in a variety of ways to the parts we are interested in” [179]. These

�lter-based models typically ignore many components of cortical processing, such as feedback, to

focus on what can be accomplished with simple �ltering and nonlinearities. As neuroscientists

and psychologists have a tendency to say a surprising result requires some poorly-understood

high-level process, when, in actuality, a low-level process su�ces, this is an important bene�t.

Bergen and Adelson [18] provides a simple example with texture perception, demonstrating that

knowledge of features such as terminators, corners, and intersections are unnecessary to explain

human performance; a linear center-surround �lter followed by full-wave recti�cation accounts

for human discriminability on patterns of randomly oriented Xs, Ts, and Ls. The use of idealized

models pushes back against this tendency among researchers to assume something higher-level,

more “cognitive”, or more “human” must be required to explain patterns of behavior.

This thesis takes the position that such simple models can be used fruitfully and that, despite

their long history, their usefulness has not been expended. We should take them seriously, push

them as far as they can go, and seek to understand their predictions and their foibles. The third

chapter takes the energy model of V1 discussed above and uses it as the basis for a psychophysical

model of the whole visual �eld. How well does this model align with human perception? In what

ways does the model’s sensitivites and invariances align with those of the human visual system

and in what ways do they diverge? What does this imply about our understanding of the early

visual system? This simple model provides a handle onto these questions and thus proves a useful

tool for understanding the visual system.

1.3 The change of visual processing with eccentricity is

poorly characterized

Another major theme of this thesis is how the processing of visual information changes across

the visual �eld. The work described in the �rst section of this introduction, which serves as the
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basis for the models discussed in the following chapters, was all performed using single unit

electrophysiology. While this method has many bene�ts, a broad sampling of eccentricities is not

among them. Studies that look across many eccentricities do exist (e.g., [74]), but owing to their

increased di�culty, they are not as common and thus not all properties have been characterized.

In particular, spatial frequency selectivity has not been characterized across the visual �eld. In

the basic V1 models discussed in the previous section, the �rst step involves a bandpass, oriented

linear �lter, which models the fact that the majority of V1 simple and complex cells are tuned

for both orientation and spatial frequency. Thus, characterizing V1 neurons’ spatial frequency

selectivity is important. We know neuronal receptive �eld size increases with eccentricity, and

there are a variety of behavioral performance measures whose performance “gets larger” with

eccentricity (e.g., acuity decreases, crowding distance increases), which suggest that spatial

frequency preferences shift to lower spatial frequencies as eccentricity grows larger. There is

some evidence of this from physiology (e.g., De Valois, Albrecht, and Thorell [54] show lower peak

spatial frequency for parafoveal than foveal cells), but with too limitated a range of eccentricities

to get a sense for what this relationship looks like. As this property likely changes smoothly, fMRI,

which measures responses from the entire brain at once, is well-suited to the task, but existing

studies mostly viewed it as an aside to their main research question and found wildly di�erent

values.

If we would like to create cumulative knowledge, able to build on each other’s results to

improve our understanding, a vague sense that “spatial frequency preferences decrease” is not

enough. Indeed, the work presented in my second chapter was inspired by an attempt to build a

model of fMRI responses in V1, which would require knowing what this relationship looked like,

and our resulting surprise that we could �nd no such data in the literature. The second chapter

of my dissertation examines how spatial frequency tuning changes as a function of visual �eld

location and stimulus orientation, hopefully providing a jumping o� point for future models or

for comparisons with electrophysiological data of the same.
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1.4 The incentives do not promote cumulative science

The �nal chapter of this thesis is not an empirical study. Instead, it presents a software

package, plenoptic, that I have worked on over the past several years with other members of the

Laboratory for Computational Vision (LCV), discussing how it can be used for experiments and

why it is useful, as well as arguing for the importance and under-appreciation of open software in

academic science. The package facilitates the use of several stimulus synthesis methods that have

been developed by the lab over the years. These methods enable researchers to better understand

their computational models, helping them explore stimulus space to get a sense for the model’s

sensitivities and invariances. This approach has a long history in vision science, dating back to

the color-matching experiments of the 19th century, but is less common in the �eld today. The

goal of plenoptic is to provide reliable, general implementations of these methods, allowing

more researchers to apply them to their own models and to carry out experiments like the one

presented in the third chapter.

Importantly, nothing present in the package (or in that chapter) is scienti�cally novel: the

methods and models have all been described in the literature before, and we make use of an

existing python package (pytorch, [168]) to perform the automatic di�erentiation that enables

our general implementation. This was a conscious decision on the part of the developers, which

we stand by for several reasons. A particularly relevant one is that, like most academic labs, LCV

has trouble with knowledge loss, “the frequent turnover of researchers. . . [ensures] capturing and

retaining knowledge is a continuous struggle” [147]. Each of the synthesis methods included in

the package were the result of a former graduate student or postdoc’s research, and the software

that supported the original publication was not intended or suitable for broader use. plenoptic

serves as a central repository of knowledge about these methods, enabling future students and

postdocs to not only use the software, but also to bene�t from our hard-won expertise through

the tests, documentation, and comments that accompany the code.
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However, this decision stands in contrast with the focus of academic science (and those of

the industrial research groups that have become increasingly involved in the machine learning

community), where the incentives are to publish as many novel �ndings as possible (see [160]

for a discussion of this in psychology). These incentives have begun to be questioned among the

scienti�c community more broadly with the increasing awareness of how they have contributed

to an alarmingly large number irreproducible results across the sciences (e.g., [46]), but it is worth

stepping back to consider these how these misaligned incentives a�ect science beyond the single

issue of reproducibility.

Most scientists view their actions as increasing humanity’s store of knowledge, as increasing

our understanding of the world, an endeavor which requires, in Newton’s classic turn of phrase,

“standing on the shoulders of giants” [144]. That is, we wish to be part of a cumulative science.

Yet the incentives for individual researchers do not promote this. Publications are not su�cient

for reproducibility, regardless of whether reproduction is the end goal or is the starting point for

an extension or comparison. In an anecdote which will sound familiar to any researcher who

has tried to implement a model or a novel method based solely on the description found in a

paper, Topalidou et al. [210] describe the di�culty they had in reproducing a model of the basal

ganglia from the literature, which eventually required three months of work and collaboration with

the original authors. This is clearly insu�cient if we wish to build on the work of other researchers,

yet publications are the currency of academic science. Van Dijk, Manor, and Carey [213] found

that the most predictive factors for whether a researcher becomes a principal investigator (PI) are

their number of publications, the impact factor of the journals in which they published, and the

number of papers that received more citations than average for the journal. In Tregoning and

McDermott [211], the authors’ number two rule for how to become a PI is to publish papers (only

“have ideas” ranks as more important), and they advise early career researchers not to “start any

work unless you can see the route to publication.” Nowhere do they discuss steps a researcher can

take to ensure their colleagues can make use of their results. This aligns with the sense among
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junior researchers I have talked to that the most important criterion on which a prospective PI

will be judged is their publication record, and the importance many scholars place on the idea of

�nding “the best journal” (i.e., the one with the highest impact factor) that will accept their paper.

If one wishes to go beyond publication, whether that’s sharing data or ensuring their code

can be run by others, this will take time which the researcher could have used to work on other

publications. Prof. Russ Poldrack, well-known in the neuroimaging �eld for his advocacy of open

practices and his support of a variety of open-source tools, says “in my discussions with ECRs,

I also try not to sugarcoat the fact that some of the remedies [to increase reproducibility] we

advocate are likely to make them less competitive on the job market in the short term... the current

incentives toward a large quantity of high-impact publications cut directly against this kind of

integrity” [174]. We have not, as a �eld, decided that these e�orts are worth rewarding, even if

many scientists support them in principal.

Even if one wishes take these steps, this unsupported state makes it di�cult to learn how to

do so and to decide how much e�ort should be spent on them. Let us focus on computational

reproducibility, which should be relatively low-hanging fruit: ensuring that some other researcher

can rerun your analysis and get the same results (without requiring your consultation). Software

engineering has developed a suite of tools that can facilitate this goal, and, due to the open source

movement, most are freely-available with plenty of documentation and examples. However, most

neuroscientists are not software engineers, and so translating them to our use cases is not trivial.

Furthermore, we quickly run into the question of longevity: how long should we ensure that

results are computationally reproducible? The scienti�c result is generally understood as being

timeless (until overturned by some later result), but technology moves fast and code written �fty

years ago will not run today without serious e�ort. So should we expect scienti�c analyses to

be computationally reproducible for 1 year? 5 years? 10? The more future-proof you wish your

analysis to be, the more time and e�ort will be required. Perhaps we should think of this in a

tiered manner, where all analyses should be reproducible for a few years, and then the �eld should
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maintain the most important results for as long as they are considered relevant. However, we have

not begun to have these conversations as a �eld. Since the scienti�c community has not viewed

computational reproducibility as an important goal for the �eld, researchers have no guidance on

what to share or how much e�ort to spend sharing it.

My intent here is not to critique the behaviors of any individual researcher attempting to �nd

a job (given the scarcity of tenure-track positions, focusing on publications is understandable), but

to highlight how the incentives with which we have structured our scienti�c communities do not

serve us well. What alternatives are there? The simplest would be to change how academic hiring

and tenure decisions are made: departments could explicitly reward or require data sharing or

software development and they could only consider an applicant’s N self-selected best publications

rather than all of them, with N increasing with seniority [68]. These two proposals could be

combined in some way, for example, considering N papers or N /2 papers all with data sharing

or N /2 papers and one widely-used software package, etc. Other proposals have targeted the

system of academic journals themselves, questioning how we could build a system of scholarly

communication that better serves our interests (see [27] for a representative example). Finally, we

could include a broader array of long term scienti�c academic jobs beyond tenure-track faculty.

NYU’s Center for Brain Imaging provides one example of this, and the US Research Software

Engineer Association lobbies for another, the university support of research software engineers

(note my emphasis on long term jobs: one of the problems with the proliferation and lengthening

of postdoc positions is the instability they engender in researchers’ lives, and we should seek to

combat this trend).

The community could also re-evaluate how we think about individual research projects. In most

of neuroscience and psychology, the emphasis is placed on being the �rst author of a publication,

which incentivizes smaller author lists and thus, smaller projects. Furthermore, in most graduate

student projects the data is collected either by the student themselves or by a close collaborator.

But neither of these are necessary: high-energy physics, for example, frequently has author lists
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extending into the hundreds, with large-scale experiments at particle accelerators generating data

used by the entire �eld. Machine learning regularly utilizes what Mark Liberman refers to as the

“common task method” or common task framework (CTF) [139], wherein a dataset is created for

the evaluation of a speci�c task that members of the community attempt to solve, ImageNet being

perhaps the most well-known to vision scientists [56]. Both of these provide alternatives that

depend upon the research community collectively agreeing on what problems are worth solving,

what dataset would be helpful for doing so, and how to evaluate success. BrainScore [190] is

one laudable attempt at providing a CTF for evaluating computational models of the macaque

visual system, but it is largely the work of a single lab and, for V1 at least, consists largely of data

summaries (distribution of response properties) rather than complete datasets. E�ort must be

taken when constructing CTFs, especially in a �eld unused to them, to get the buy-in of a wide

number of investigators, to think deeply about the goals and how to evaluate success, and to avoid

a variant of what Box [23] calls “mathematistry”: de�ning a technical problem with a well-de�ned

data set and objective and con�ating it with the broader scienti�c question, such that when one

solves the technical problem, one can pretend they have solved the scienti�c one (e.g., assuming

that near-perfect performance on ImageNet means that we understand human object recognition).

That is, we must be willing to regularly question the link between our technical and scienti�c

measures of success [155], just as I am proposing that we must reconsider what kind of scienti�c

community our incentive structure helps construct, and how we may change the incentives to

encourage the science we wish to see.

We could also take computational models, not just the papers that describe them, more

seriously as objects of the scienti�c record. As described earlier in this introduction, having

common models that multiple researchers can investigate from di�erent angles is enormously

bene�cial for increasing understanding of a system. But, in vision science, these models have

gotten more complex over the years (e.g., [81, 173, 217]), and so the chance that future researchers

will be able to reimplement them from only the description provided in the paper has become

17



more and more remote. This makes it di�cult to achieve the cumulative success found in the early

days of the research program: each lab is working with slightly di�erent variants of the model,

wasting time reinventing the wheel, unsure exactly how their models di�er from those of other

labs and to what extent it matters. This situation makes it di�cult to tell to what extent a new

phenomena can be accounted for by existing models or whether a new tweak is necessary. And

the di�culty for those who specialize in early vision is nothing compared to that of researchers

who study the rest of the brain or computer vision: researchers who study face perception are

unable to build models that have a “V1 frontend” without essentially being an expert in V1 as well,

and the machine learning community would love to compare their models against the predictions

of a “classic neuroscience model”, but often end up with one that looks like a strawman. If,

instead, we considered the models themselves important scienti�c objects, we could provide

standard implementations in multiple languages, with notes on variants that are preferred by some

investigators and phenomena that are well-accounted or unaccounted for. We could regularly

test the models to ensure the implementations continue to be usable and that the analyses that

use them are reproducible. Such a system would mesh nicely with a common task framework for

evaluation of such models and would serve as a source of institutional knowledge for the �eld,

but accomplishing it would require a radical shift from how we currently evaluate and reward

scienti�c activities.

All of the above proposals would involve reimagining what our scienti�c system looks like and

cannot be achieved quickly. However, smaller steps can be taken by individual researchers, labs,

and departments. Providing o�cial recognition for some of these activities, such as allowing them

to count for a chapter of a thesis like found here, is one such step. Explicitly seeking applicants for

faculty positions who support such practices is another. PIs can also build a culture of data sharing,

providing support themselves and encouraging students to help each other. The work presented

in this thesis is my attempt to take a tiny step in this direction, presenting empirical studies that

can be built upon in later work through their shared data and models (with parameter values),
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along with a software package providing usable implementations of existing methods. Hopefully

it does so, moving us towards the ultimate goal of a scienti�c culture wherein researchers produce

fewer papers, but better science.
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2 | Mapping Spatial Freqency

Preferences Across Human Primary

Visual Cortex

2.1 Abstract

Neurons in primate visual cortex (area V1) are tuned for spatial frequency, in a manner that

depends on their position in the visual �eld. Several studies have examined this dependency using

fMRI, reporting preferred spatial frequencies (tuning curve peaks) of V1 voxels as a function of

eccentricity, but their results di�er by as much as two octaves, presumably due to di�erences

in stimuli, measurements, and analysis methodology. Here, we characterize spatial frequency

tuning at a millimeter resolution within human primary visual cortex, across stimulus orientation

and visual �eld locations. We measured fMRI responses to a novel set of stimuli, constructed as

sinusoidal gratings in log-polar coordinates, which include circular, radial, and spiral geometries.

For each individual stimulus, the local spatial frequency varies inversely with eccentricity, and for

any given location in the visual �eld, the full set of stimuli span a broad range of spatial frequencies

and orientations. Over the measured range of eccentricities, the preferred spatial frequency is

well-�t by a function that varies as the inverse of the eccentricity plus a small constant. We also

�nd small but systematic e�ects of local stimulus orientation, de�ned in both absolute coordinates
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and relative to visual �eld location. Speci�cally, peak spatial frequency is higher for pinwheel

than annular stimuli and for horizontal than vertical stimuli.

2.2 Introduction

A fundamental goal of visual neuroscience is to quantify the relationship between stimulus

properties and neural responses, across the visual �eld and across visual areas. Studies of primary

visual cortex (V1) have been especially fruitful in this regard, with electrophysiological measure-

ments providing good characterizations of the responses of individual neurons to a variety of

stimulus attributes [43, 54, 105, 184]. Nearly every neuron in V1 is selective for the local orienta-

tion and spatial frequency of visual input, and this has been captured with simple computational

models built from oriented bandpass �lters [53, 88, 115, 175, 188, 217].

The characterization of individual neural responses provides only a partial picture of the

representation of visual information in V1. In particular, we know that the representation is not

homogeneous – receptive �eld sizes grow and spatial frequency preferences decrease with distance

from the fovea (eccentricity, [54]) – but we do not have a general quantitative description of the

relationship between these response properties and location in the visual �eld. There are hundreds

of millions of neurons in V1 [221], and thus, single-unit electrophysiology is unappealing as a

methodology for addressing this question.1 Functional magnetic resonance imaging (fMRI) o�ers

complementary strengths and weaknesses, allowing simultaneous measurement of responses

across all of visual cortex, but at a resolution in which each measurement represents the combined

responses of thousands of neurons, limiting the characterization to properties that change smoothly

across the cortical surface. Fortuitously, core properties of V1 such as position and spatial frequency

tuning do vary smoothly across the cortical map [105, 107], and so are well suited for summary

measures with fMRI. This has led to successful characterization of “population receptive �elds”
1David Hubel described the process of characterizing visual �eld maps using single-unit electrophysiology as "a

dismaying exercise in tedium, like trying to cut the back lawn with a pair of nail scissors" [103].
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(pRFs), which specify the location and size in visual space of voxel responses [222]. A recent

study [3] characterized voxel-wise spatial frequency tuning in early visual cortex, but did not

provide an overall description of the dependence of this tuning on retinotopic location or stimulus

orientation.

Here, we provide a compact parametric characterization of the spatial frequency and orienta-

tion preferences of population receptive �elds in area V1, across the visual �eld. How compact a

description can one expect? The information processing of a cortical area such as V1 would be

simplest to study and describe if each location in the map analyzed the image with the same com-

putations. This assumption of homogeneous processing is central to signal and image processing,

and underlies recent developments in computer vision based on Convolutional Neural Networks

[134]. But this assumption can be immediately rejected for primate visual systems, since we know

that resolution declines precipitously with eccentricity. At the other extreme, if each part of the

map analyzed the image in an entirely unique way, the prospect of understanding its function

would be hopeless. Fortunately, many properties, such as receptive �eld size, vary smoothly and

systematically with receptive �eld position, and similar types of models are able to successfully

describe neural data across species, individuals, and map locations (e.g., [37]).

An attractive intermediate possibility is that cortical processing is conserved across the visual

�eld, up to a dilational scale factor. One hypothesis is that eccentricity-dependent RF scaling

emerges �rst in the RGCs, and then all subsequent stages simply perform a homogeneous (convolu-

tional) transform on their a�erents, thus inheriting the eccentricity-scaling of RF sizes. This would

result in all neuronal tuning across the cortex being scaled versions of each other. For example,

if V1 neurons were tuned such that their preferred spatial frequency was always p periods per

receptive �eld, and their receptive �elds grew linearly as they moved away from the fovea, such

that s = ar (where s is the diameter of the receptive �eld and r is the eccentricity), then neuronal

peak spatial frequency would equal f = p/s = p/ar . If this approximates the true relationship

between spatial frequency tuning and eccentricity, then sinusoidal gratings, which have a constant
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Figure 2.1: (A) Illustration of two extremal models for spatial frequency preferences across the visual field. Top:
preferences are conserved across the visual field (despite changes in receptive field size). Bo�om: preferred spatial
period (inverse of spatial frequency) is proportional to eccentricity (along with receptive field size). Tile image is an
original photograph from author’s collection. (B) Preferred SF (le�) and period (right) as a function of eccentricity,
for the two models (red and green curves). (C) E�iciency of stimuli (dashed lines) for probing the scaling model. Top:
If preferences scale with eccentricity, conventional full-field two-dimensional sine gratings are an ine�icient way to
measure spatial frequency tuning: gratings with a large period will be ine�ective at driving responses in the fovea
and those with a low period will be ine�ective for the periphery. Bo�om: Oscillating stimuli whose period grows
linearly with eccentricity provide a more e�icient choice .

frequency everywhere in the image, are an ine�cient choice of stimulus to measure this, as high

frequencies will be shown at the periphery and low frequencies at the fovea, neither of which will

drive responses e�ectively.

To enable e�cient characterization of local spatial frequency preferences, we develop a novel

set of global stimuli in which local frequency scales inversely with eccentricity, and which span

a variety of orientations. We use these stimuli to probe the dependency of spatial frequency

preferences on orientation and retinal location, and summarize this using a compact functional

description that is jointly �t to data over the whole visual �eld. The model parameterization allows

spatial frequency tuning to vary with eccentricity, and allows both spatial frequency tuning and

BOLD amplitude to vary with retinotopic angle and stimulus orientation. This modeling approach

allows �exibility for our parameters of interest, but is not arbitrarily �exible. This is necessary in
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order to be able to concisely describe how spatial frequency is encoded across the whole visual

�eld and to enable extrapolation to stimuli or visual �eld positions not included in the study.

2.3 Methods

All experimental materials, data, and code for this project can be found online under the MIT or

similarly permissive license. Speci�cally, minimally pre-processed data are found on OpenNeuro

[141], code on GitHub, and other materials on OSF and the NYU Faculty Digital Archive (view

README in the software repository for download and usage instructions).

2.3.1 Stimulus design

To e�ciently estimate preferred spatial frequency across the visual �eld, we use a novel set of

grating stimuli with spatially-varying frequency and orientation. Figure 2.1 illustrates the logic

of the stimulus construction, which is designed for e�cient characterization of a system whose

preferred spatial frequency falls with eccentricity. Conventional large-�eld two-dimensional sine

gratings will be ine�cient for such a system, since the stimulus set will include low-frequency

stimuli which are ine�ective for the fovea, and high-frequency stimuli which are ine�ective for

the periphery. Instead, we construct “scaled” log-polar stimuli, such that local spatial frequency

decreases in inverse proportion to eccentricity (�gure 2.2B). Speci�cally, all stimuli are of the form

f (r ,θ ) = cos(ωr ln(r ) + ωaθ + ϕ), (2.1)

where coordinates (r ,θ ) specify the eccentricity and polar angle of a retinal position, relative to

the fovea. The angular frequency ωa is an integer specifying the number of grating cycles per

revolution around the image, while the radial frequency ωr speci�es the number of radians per

unit increase in ln(r ). The parameter ϕ speci�es the phase, in radians. The local spatial frequency
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A

C

B

Figure 2.2: Stimuli. (A) Base frequencies (ωr ,ωa) of experimental stimuli. Stimulus category is determined by the
relationship between ωa and ωr , which determines local orientation information (Eq. 2.3). (B) Example stimuli from
four primary classes, at two di�erent base frequencies. These stimuli correspond to the dots outlined in black in
panel A. (C) Local spatial frequencies (in cycles per degree) as a function of eccentricity. Each curve represents stimuli
with a specific base frequency,

√
ω2
r + ω

2
a , corresponding to one of the semi-circular contours in panel A. The two

rows of stimuli in panel B correspond to the bo�om and 3rd-from-bo�om curves.
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is equal to the magnitude of the gradient of the argument of cos(·) with respect to retinal position

(see Supplement 2.7.1):

ωl (r ,θ ) =

√
ω2
r + ω

2
a

r
. (2.2)

That is, local frequency is equal to Euclidean norm of the frequency vector (ωr ,ωa) divided by

eccentricity (in units of radians per pixel or radians per degree, depending on the units of r ), which

implies that the local spatial period of the stimuli grows linearly with eccentricity. Similarly, the

local orientation can be obtained by taking the angle of the gradient of the argument of cos(·)

with respect to retinal position (see Supplement 2.7.1):

θl (r ,θ ) = θ + tan−1
(
ωa

ωr

)
. (2.3)

That is, the local grating orientation is the angular position relative to the fovea, plus the angle

of the two-dimensional frequency vector (ωr ,ωa). Note that θl is in absolute units (e.g., θl = 0

indicates local orientation is vertical, regardless of location). For our stimuli, this depends on the

polar angle, but a uniform grating has the same θl value everywhere in the image (its orientation

thus does not depend on polar angle).

We generated stimuli corresponding to 48 di�erent frequency vectors (see Fig. 2.2), at 8

di�erent phases ϕ ∈ {0,π/4,π/2, . . . , 7π/4}. The frequency vectors were organized into �ve

di�erent categories:

1. Pinwheels:

ωr = 0, ωa ∈ {6, 8, 11, 16, 23, 32, 45, 64, 91, 128}

2. Annuli:

ωa = 0, ωr ∈ {6, 8, 11, 16, 23, 32, 45, 64, 91, 128}

3. Forward spirals:

ωr = ωa ∈ {4, 6, 8, 11, 16, 23, 32, 45, 64, 91}
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4. Reverse spirals:

ωr = −ωa ∈ {4, 6, 8, 11, 16, 23, 32, 45, 64, 91}

5. Fixed-frequency mixtures:

(ωr ,ωa) ∈ {(8, 31), (16, 28), (28, 16), (31, 8), (31,−8), (28,−16), (16,−28), (8,−31)}

Note that ωa values must be integers (since they specify cycles per revolution around the image),

and we chose matching integer values for ωr . Because of this constraint, the pinwheel/annulus

and the forward/reverse spiral stimuli have slightly di�erent local spatial frequencies. For the

same reason, the local spatial frequency of the mixture stimuli is only approximately matched

across stimuli (
√
ω2
a + ω

2
r ≈ 32). Across all stimuli, the spatial frequencies presented at any given

eccentricity span a 20-fold range (�gure 2.2C). For example, at the most foveal portion of the

stimuli (from 1 to 2 deg) the frequencies are log-spaced from 0.6 to 13.65 cpd. In the most peripheral

region (11 to 12 deg)), the range is 0.078 to 1.78 cpd.

2.3.2 Display Calibration

The projector used to display stimuli in our experiments was calibrated to produce light

intensities proportional to luminance. In addition, we wanted to compensate for spatial blur (due

to a combination of display electronics or optics) that could systematically alter the frequency

content of our stimuli. We estimated the modulation transfer function (MTF) of the projector (i.e.,

the Michelson contrast as a function of spatial frequency), shown in �gure 2.3. We used a calibrated

camera and developed custom software to process and analyze photographs of full-contrast square-

wave gratings. We found that the contrast of the projected image decreased by roughly 50% as it

approached the Nyquist frequency of 0.5 cycles per display pixel. We compensated for these e�ects

by rescaling the amplitude of low frequency content in our stimuli, by an amount proportional to

the inverse MTF (note that the more natural procedure of increasing the high frequency content

is not practical, as it could exceed the maximum contrast that can be displayed).
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Figure 2.3: Estimated modulation transfer function (MTF) of the projector used in our experiments. Michelson
contrast was measured for periods from 2 to 256 pixels (blue points) and then fit with a univariate spline (blue curve)
with smoothing degree 1 [218]. The fi�ed spline was used for calibration.

2.3.3 Participants

Twelve participants (7 women and 5 men, aged 22 to 35), including an author (W.F.B.), par-

ticipated in the study and were recruited from New York University. All subjects had normal

or corrected-to-normal vision. Each subject completed 12 runs, except for sub-04, who only

completed 7 of the 12 runs due to technical issues. The quality of their GLMdenoise �ts and their

�nal model �ts do not vary much from those of the other subjects. All subjects provided informed

consent before participating in the study. The experiment was conducted in accordance with

the Declaration of Helsinki and was approved by the New York University ethics committee on

activities involving human subjects.

2.3.4 Experimental Design

The experiment was run on an Apple MacIntosh computer, using custom scripts with PsychoPy

[171], presented on a luminance-calibrated MTF-corrected VPixx ProPixx projector. Images were

projected onto a screen, which the subject viewed through a mirror. The screen was 36.2 cm

high and 83.5 cm from the subject’s eyes (73.5 cm from screen to mirror, and approximately 10

cm from mirror to eyes). Stimuli were constrained to a circular aperture �lling the height of the

display (12 deg radius), with an anti-aliasing mask at the center (0.96 deg radius). Each stimulus
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class was presented in a 4-s trial, during which the 8 images with di�erent phases were shown

in randomized order. Each of the 8 images was presented once, cycled on and o� (300-msec on,

200-msec o�) in order to minimize adaptation. A movie of a single run can be viewed online.

Each of the 48 stimulus classes was presented once in each of 12 runs, with the presentation order

of the stimulus classes and of the phases randomized across runs. Subjects viewed these stimuli

while performing a one-back task on a stream of alternating black and white digits (1-sec on,

1-sec o�) at the center of the screen in order to ensure accurate �xation, minimize attentional

e�ects, and maintain a constant cognitive state. Thus, the central one degree of vision always

contained either a blank midgrey screen or a black or white digit. This lessens the possibility of

di�erences in �xational eye movements that might arise from di�erences in stimulus structure

near the fovea. Behavioral responses were recorded using a button box (see supplement 2.7.2 for

behavioral analysis).

2.3.5 fMRI Scanning Protocol

All MRI data for the spatial frequency experiment were acquired at the NYU Center for Brain

Imaging using a 3T Siemens Prisma scanner with a Siemens 64 channel head/neck coil. For fMRI

scans, we used the CMRR MultiBand Accelerated EPI Pulse Sequence (Release R015a) (TR, 1000

ms; TE, 37 ms; voxel size, 2mm3; �ip angle, 68 degrees; multiband acceleration factor, 6; phase-

encoding, posterior-anterior) [67, 148, 234]. High resolution whole-brain anatomical T1-weighted

images (1 mm3 isotropic voxels) were acquired from each subject for registration and segmentation

using a 3D rapid gradient echo sequence (MPRAGE). Two additional scans were collected with

reversed phase-encoded blips, resulting in spatial distortions in opposite directions. These scans

were used to estimate and correct for spatial distortions in the EPI runs using a method similar to

Andersson, Skare, and Ashburner [6], as implemented in FSL [201].
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2.3.6 Preprocessing

fMRI data were minimally preprocessed using a custom script (available from the Winawer

lab) which builds a Nipype [79, 80] pipeline. Brain surfaces were reconstructed using recon-all

from FreeSurfer v6.0.0 [51]. Functional images were motion corrected using mcflirt (FSL v5.0.10

[113]) to the single-band reference image gathered for each scan. Each single-band reference

image was then registered to the distortion scan with the same phase-encoding direction using

flirt (FSL v5.0.10 [82, 112, 113]). Distortion correction was performed using an implementation

of the TOPUP technique [6] using TOPUP and ApplyTOPUP (FSL v5.0.10 [201]). The unwarped

distortion scan was co-registered to the corresponding T1w using boundary-based registration

[82] with 9 degrees of freedom, using bbregister (FreeSurfer v6.0.0). The motion correcting

transformations and BOLD-to-T1w transformation were concatenated using ConvertXFM (FSL

v5.0.10) and then were applied to the functional runs in a single step along with the unwarping

warp�elds using ApplyWarp (FSL v5.0.10). Applying the corrections in a single step minimizes

blurring from the multiple interpolations.

2.3.7 Retinotopy

A separate retinotopy experiment was used to obtain the population receptive �eld (pRF)

location and size for V1 voxels in each subject [222]. This experiment consisted of six standard pRF

mapping runs, with sweeping bar contrast apertures �lled with a variety of colorful objects, faces

and textures. This stimulus has been shown to be e�ective in evoking BOLD responses across

many of the retinotopic maps in visual cortices [14, 16, 98]. The results of this pRF mapping were

combined with a retinotopic atlas [12] in order to improve the accuracy of the retinotopic map

(see Benson and Winawer [14] for a description of this method). The stimulus, fMRI acquisition

parameters, and fMRI pre-processing for the retinotopy experiments are described in detail in

Benson and Winawer [14] and Himmelberg et al. [98].
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2.3.8 Stimulus response estimation

Response amplitudes were estimated using the GLMdenoise MATLAB toolbox [118]. The

algorithm �ts an observer-speci�c hemodynamic response function (HRF), estimating response

amplitudes (in units of percent BOLD signal change) for each voxel and for each stimulus, with

100 bootstraps across runs. Thus for each voxel we estimate 48 responses (one for each unique

pair (ωa,ωr ), averaged over the 8 phases shown within the trials). The algorithm also includes

three polynomial regressors (degrees 0 through 2) to capture the signal mean and slow drift, and

noise regressors derived from brain voxels that are not well �t by the GLM.

The combined retinotopy and GLMdenoise measurements consist of (for each voxel): the

visual area, population receptive �eld location and size, and 100 bootstrapped response amplitudes

to each of the 48 stimuli.

2.3.9 One-Dimensional Tuning Curves

We �t one-dimensional log-normal tuning curves to the responses of groups of voxels at

di�erent eccentricities (lying within one-degree eccentricity bins):

β̂b(ωl ) = Ab · exp

(
−

(
log2(ωl ) + log2(pb)

)2
2σ 2

b

)
(2.4)

where β̂b(ωl ) is the average BOLD response in eccentricity bin b at spatial frequency ωl (in

cycles per degree), Ab is the response gain, pb is the preferred period (the reciprocal of the peak

spatial frequency, ωb , which is the mode of the tuning curve), and σb is the bandwidth, in octaves.

Fits were obtained separately for the four primary stimulus classes (pinwheel, annulus, forward

spiral, and reverse spiral).

We �t these tuning curves 100 times per subject, per stimulus class, and per eccentricity,

bootstrapping across the fMRI runs (12 per subject).

31

https://github.com/kendrickkay/GLMdenoise


2.3.10 Two-Dimensional Tuning Curves

Our one-dimensional tuning curves are averaged over stimulus orientation and retinotopic

angle. To capture the e�ect of these additional stimulus attributes, we developed a two-dimensional

model for individual voxel responses as a function of stimulus local spatial frequency (in cycles per

degree), ωl , stimulus local orientation, θl , voxel eccentricity (in degrees), rv , and voxel retinotopic

angle, θv (�gure 2.4A). Responses are again assumed to be log-normal with respect to spatial

frequency:

β̂v(ωl ,θl ) = Av · exp

(
−

(
log2(ωl ) + log2(pv)

)2
2σ 2

)
(2.5)
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A B

Figure 2.4: (A) Local stimulus parameterization for the two-dimensional model. The model is a function of four
variables, two related to voxel population receptive field location and two related to stimulus properties. rv and θv
specify the eccentricity (in degrees) and the retinotopic angle of the location of the center of the voxel’s population
receptive field, relative to the fovea. ωl and θl , specify the local spatial frequency (in cycles per degree) and the
local orientation (in radians, counter-clockwise relative to horizontal) of the stimulus, at the center of that voxel’s
population receptive field (dashed line). (B) Schematic showing the e�ects of pi parameters on preferred period
as a function of retinotopic angle at a single eccentricity for the four main stimulus types used in this experiment.
When p1 > p2 > 0 (and p3 = p4 = 0), the e�ect of orientation on preferred period is in the absolute reference frame
only, i.e., preferred period only depends on absolute orientation (e.g., vertical or horizontal). In this plot, preferred
period varies with retinotopic angle because the absolute orientation of our stimuli vary with retinotopic angle (for
another example, see fig 2.10, where the relative amplitude e�ect is also only in the absolute reference frame; thus
the relative amplitude is always higher for vertical than horizontal stimuli). When p3 > p4 > 0 (and p1 = p2 = 0),
the e�ect of orientation is in the relative reference frame only, and annulus stimuli will always have the highest
preferred period. Finally, when all pi , 0, the e�ects are mixed.

In our one-dimensional analysis, we �t parameters {p,A,σ } separately to each eccentricity

band and stimulus class. Based on the results of that analysis (see 2.4), we assume σ is constant

across eccentricities, retinal position, and local stimulus spatial frequency (while others have found

some variation in bandwidth with respect to these variables, this study focuses on peak spatial

frequency tuning and we do not include extra �exibilty in model bandwidth, in order to avoid

over�tting). We assume functional forms for the dependencies of parameters p and A on retinal

position, local stimulus spatial frequency, and local stimulus orientation. First, we parameterize

the e�ect of eccentricity, �tting the preferred period as an a�ne function of a voxel’s eccentricity

rv : pv = arv + b. We assume that this baseline dependency is modulated by e�ects of retinotopic

33



angle and stimulus orientation, both of which are known to a�ect visual perception [10, 90, 231].

Speci�cally, we express preferred period as:

pv = [arv + b][1 + p1 cos(2θl ) + p2 cos(4θl )

+ p3 cos(2(θl − θv))

+ p4 cos(4(θl − θv))].

(2.6)

The parameters pi have the following interpretations:

p1: absolute cardinal e�ect, horizontal vs. vertical. A positive p1 means that voxels have a

higher preferred period for vertical than for horizontal stimuli.

p2: absolute cardinals vs. obliques e�ect, horizontal/vertical vs. diagonals. A positive p2 means

that voxels have a higher preferred period for cardinal than for oblique stimuli.

p3: relative cardinal e�ect, annuli vs. pinwheels. A positive p3 means that voxels have a higher

preferred period for annular than for pinwheel stimuli.

p4: relative cardinals vs. obliques e�ect, annuli/pinwheels vs. spirals. A positive p4 means that

voxels have a higher preferred period for annuli and pinwheels than for spirals.

p1 and p2 have e�ects in the absolute reference frame because they only depend on θl , the

orientation in absolute terms, whereas p3 and p4 additionally depend on θv and thus have e�ects

in the relative reference frame.

To illustrate these e�ects, we show tuning functions for several stimulus classes given a few

possible parameter combinations (�gure 2.4B). We also provide an interactive tool that enables the

user to set arbitrary values for all parameters and to probe how the parameter settings in�uence

the pattern of responses to various stimulus types.

We also express the gain of the BOLD responses as a function of voxel retinotopic angle and

stimulus orientation (without the eccentricity-dependent base term):
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Av = (1 +A1 cos(2θl ) +A2 cos(4θl )

+A3 cos(2(θl − θv))

+A4 cos(4(θl − θv))),

(2.7)

This parameterization allows the amplitude to vary depending on both absolute stimulus

orientation (θl ), and stimulus orientation relative to retinotopic angle (θl − θv ), but not on absolute

retinotopic location. This choice is premised on the fact that voxel-to-voxel variation in the

amplitude of the BOLD signal depends in part on factors that are not neural. For example, BOLD

amplitude is in�uenced by draining veins [121, 135] and the orientation of the gray matter surface

relative to the instrument magnetic �eld [72], as well as other factors not directly related to neural

responses.

In addition, the model cannot capture categorical di�erences across the visual �eld, e.g.,

between upper and lower, or foveal and parafoveal visual �eld, except insofar as the parametric

forms allow (linear function of eccentricity, harmonics of stimulus orientation).

2.3.11 Model fitting

We �t the 2D model to all V1 voxels simultaneously, excluding voxels whose population

receptive �eld (pRF) center lies outside the stimulus, those whose pRF center lies within one

standard deviation of the stimulus border, and those with an average negative response to our

stimuli. Voxels with negative responses but whose pRFs are centered within the stimulus extent

are likely dominated by artifacts such as those arising from draining veins [135, 233].

The remaining voxels vary widely in their signal to noise ratio. Typically in fMRI analyses,

all voxels whose noise level lies above some threshold are excluded from the analysis. Here, we

instead weight each voxels’ loss by its precision, so that noisier voxels will contribute less to the

parameter estimates. Speci�cally, we use a normalized mean-squared error loss over voxels:
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Lv(βv , β̂v) =
1
σ 2
v

n∑
i=1

1
n

(
βiv
| |βv | |2

−
β̂iv

| |β̂v | |2

)2
(2.8)

where i indexes the n di�erent stimulus classes, βiv is the response of voxel v (estimated

using GLMdenoise) to stimulus class i , β̂iv is the response to stimulus class i predicted by our

model, | |βv | |2 is the L2-norm of βv (across all stimulus classes), and σ 2
v is the variance of voxel

v’s response (that is, σ 2
v =

1
n

∑n
i=1 σ

2
vi , where σvi is half of the 68 percentile range of the response

of voxel v to stimulus class i , as estimated by GLMdenoise). This loss function is equivalent to

the cosine between response vectors βv and β̂v multiplied by 2
nσ 2

v
. Normalization of the βv and β̂v

vectors allows the �tting to be agnostic to variations in absolute response amplitude, capturing

the response dependency on stimulus and retinal location.

We minimize the average of this loss across all appropriate voxels, using custom code written

in PyTorch [169] and using the AMSGrad variant of the Adam optimization algorithm [124, 183].

To assess model accuracy, we use 12-fold cross-validation (see 2.5.0.1). Speci�cally, we �t the

model to 44 of the 48 stimulus classes, then get predictions for the 4 held-out classes. We do this

for each of the 12 subsets, which get us a complete β̂v that we can compare against βv .

2.3.12 Software

Data analysis, modeling, and �gure creation were done using a variety of custom scripts

written in Python 3.6.3 [215], all found in the software repository associated with this paper.

The following packages were used: snakemake [149], Jupyter Lab [125], numpy [86], matplotlib

[106], scipy [218], seaborn [227], pandas [145, 205], nipype [79, 80], nibabel [28], scikit-learn

[170], neuropythy [14], pytorch [169], psychopy [171], FSL [201], freesurfer [51], vistasoft, and

GLMdenoise [118].
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2.4 One-Dimensional Analysis

Figure 2.5: Example data and best-fi�ing log-normal tuning curves for responses of one subject (sub-01) to pinwheel
(le�) and annular (right) stimuli. The solid line and filled circles correspond to 9-10deg eccentricity, while dashed line
and empty circles correspond to 2-3deg.

We start by analyzing the data as a function of spatial frequency alone (i.e., averaging over

orientation), which requires fewer assumptions and is easier to visualize. We �t log-normal tuning

curves to averaged voxel responses at each eccentricity for each of the four main stimulus classes.

The log-normal function provides a reasonably good �t to the data (see �gure 2.5).
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A B

Figure 2.6: Spatial frequency tuning. (A) Preferred period of tuning curves (parameter pb in equation (2.9), n = 12),
as functions of eccentricity, fit separately for the four di�erent stimulus classes. Points and vertical bars indicate
the median and 68% confidence intervals obtained from bootstraps combining subjects using a precision-weighted
average (see text). Lines are the best linear fits. (B) Full-width half-maximum (in octaves) of tuning curves, as
functions of eccentricity, fit separately for the four di�erent stimulus classes. Points and vertical bars indicate the
median and 68% confidence intervals obtained from bootstraps combining subjects using a precision-weighted
average (see text). Lines are the best linear fits.

We then combined the preferred periods across subjects by bootstrapping a precision-weighted

mean: for each eccentricity and stimulus class, we selected 12 subjects at random with replacement,

multiplied each subject’s median preferred period by the precision of that estimate, and averaged

the resulting values:

p =

∑12
s=1

p̃s
σ 2
s∑12

s=1
1
σ 2
s

(2.9)

where p̃s is the median preferred period value for subject s and σs is the di�erence between the

16th and 84th percentile for that subject. This bootstrapping is done 100 times to obtain median

values and 68% con�dence intervals displayed in �gure 2.6A. The precision weighted average has

the virtue of giving more weight to better parameter estimates while not fully discarding data.

The preferred period for each stimulus class is well-described as an a�ne function of eccen-

tricity, with a positive o�set. Thus, the spatial frequency preferences of V1 do not scale perfectly

with eccentricity (e.g., the preferred frequency at 4 degrees is not half that of 2 degrees). There is
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also a noticeable dependence on stimulus orientation, with the annular stimuli exhibiting a larger

preferred period than the other three stimuli at each eccentricity. Di�erences between the other

stimulus types are more subtle, but perhaps indicate a slightly reduced slope for the two spiral

stimuli relative to the pinwheel.

We do the same precision-weighted bootstrapping process for the full-width half-maximum

(in octaves) of the tuning curves shown in 2.6B. We can see that the FWHM is mostly constant

across eccentricities, except for some larger, noisier values for the most foveal voxels. We believe

this apparent dip is due to how the �ts are constrained, rather than a real decline in tuning curve

width: as can be seen in �gure 2.8A, the presented frequencies shift from the right of the tuning

curve to the left for more peripheral voxels. In the periphery and the fovea, where most of the

presented frequencies fall on one side of the curve, the width is unlikely to be well-constrained,

resulting in the higher error bars seen in �gure 2.6B. FWHM additionally appears to be consistent

across stimulus types.

2.5 Two-Dimensional Model Results

The one-dimensional model provides a useful but limited overview of spatial frequency se-

lectivity. In particular, we’ve treated the four stimulus classes as discrete categories, rather than

members of a continuum over relative orientation. Moreover, this analysis con�ates the e�ects of

absolute orientation (relative to a global vertical/horizontal coordinate system) and orientation

relative to a voxel’s retinotopic angle. These might be systematically di�erent, and because there

are more voxels at some retinotopic angles than others (e.g., [15, 197]), the averaging might

cause systematic biases in the summary measures. Finally, the analysis examines peak spatial

frequency tuning but does not examine possible di�erences in BOLD amplitude for di�erent

stimulus orientations.

The two-dimensional model described in section 2.3.10 allows us to more directly and compre-
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hensively assess how spatial frequency tuning varies across the visual �eld. Instead of binning

voxels by eccentricity, we �t all voxels simultaneously, with each voxel’s contribution to the loss

function weighted by the precision of its responses. By �tting each voxel, we can tease apart

the e�ects of absolute and relative orientation (�gure 2.4B). We are able to parameterize these

e�ects on both preferred period and gain. Finally, the �tted model will generate predictions for

the response of any voxel in the visual �eld to any spatial frequency and orientation (though

its predictions will likely decrease in accuracy the farther the voxel’s retinotopic location and

stimulus properties move from the those included in this study).

2.5.0.1 Model selection

The full 2D model has 11 parameters, and we used cross-validation in order to determine which

are necessary to explain the data in V1. Omitting or including all combinations of parameters

would yield 211 possible models. To reduce this, we grouped the parameters into several small sets,

based on whether they a�ect the preferred period or gain and whether their e�ect is determined

by eccentricity, relative orientation, or absolute orientation. For example, p1 and p2 both a�ect

preferred period as a function of absolute orientation and so are always both present or both absent.

Moreover, we only tested parameter combinations that we considered plausible; for example,

we do not test relative preferred period and absolute gain. Figure 2.7A shows the 14 candidate

submodels considered. When �tting model 8, for example, the parameters σ ,a,b,p1,p2,A1,A2

are all �t, while p3,p4,A3,A4 are set to 0; this corresponds to modeling the preferred period as a

linear function of eccentricity, modulated by absolute orientation, and modeling the gain as also

modulated by absolute orientation.

Submodels are �t per subject, with 12-fold cross-validation, withholding four random stimuli

from �tting on each fold, using the same partitions across models and subjects. After training,

predictions are generated for these 4 stimuli, and the subject’s cross-validation loss for the model

is computed across all of the held-out data (12 folds). Cross-validation loss varies greatly across
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Figure 2.7: Nested model comparison via cross-validation. (A) 14 di�erent submodels are compared to determine
which of the 11 parameters, as defined in Equations (2.4), (2.6), and (2.7), are necessary. Model parameters are grouped
by whether they a�ect the period or the gain, and whether their e�ect relates to eccentricity, absolute orientation,
or relative orientation. Filled color boxes indicate parameter subset used for each submodel. (B) Cross-validated
loss for each submodel. Models are fit to each subject separately, using 12-fold cross-validation (each fold leaves
out 4 random stimuli). �ality of fit varies across subjects, so to combine subjects and view the e�ect of model, we
subtract each subject’s mean loss across models, then add back the average loss across subjects and models. Bars
show the 68% confidence intervals from bootstrapped mean across subjects.
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subjects, dependent on the subject’s signal to noise ratio. To combine across subjects, we normalize

the data by subtracting each subject’s mean cross-validation loss across models. For visualization,

we then add back the average loss across subjects. Figure 2.7B shows the median cross-validation

loss and 68% con�dence intervals of these losses. For some rows, two models are shown: the

model with and without �tting parameters A3,A4. (The variant that �ts those parameters is shown

in the desaturated color.) The results indicate that 9 of the 11 parameters contribute to accurately

predicting responses. By �tting each of the 14 candidate models to each subject individually, we

�nd that all parameter groupings improve performance except for A3 and A4: the loss is greater

whenever those two are included.

Comparing the losses of models 1, 2, and 3 reveals the importance of the two parameters

relating eccentricity to preferred period: while a line through the origin (model 2) captures the data

better than a constant value (model 1), the performance increases substantially with an a�ne model

using both terms (model 3). In sum, both parameters a and b are required to accurately explain

the data, and preferred period increases linearly with eccentricity with a non-zero intercept.

Beyond eccentricity, the e�ect of orientation on preferred period does not change performance

much unless one also adds the e�ect on gain (models 4 through 6 all have similar performance).

The e�ect of relative orientation on gain by itself has a negative e�ect on performance, as can

be seen by comparing the saturated and desaturated points for models 3, 5, 6, 7, and 9. Absolute

orientation, on the other hand, improves performance, as can be seen by comparing 6 and 9, 4 and

8, or 3 and 7. Therefore, for the remainder of this paper, we use the saturated point of model 9,

which has the lowest cross-validation loss and �ts all preferred period parameters, pk , as well as

those that capture the e�ect of absolute orientation on gain.

2.5.0.2 Spatial freqency tuning across stimulus orientation and visual field positions

Having selected model 9, we then re-�t it to each subject without cross-validation. Speci�cally,

we �t model 9 to each of 100 bootstraps from each subject separately, giving us 100 estimates of
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each model parameter per subject. Figure 2.8A shows three example voxels’ median responses

and model 9’s median predictions, as a function of local spatial frequency, from one subject. As

expected, the peak of the spatial frequency tuning function decreases with increasing eccentricity.

The bandwidth (in octaves) is comparable across eccentricities, and the plots indicate that the

stimuli sampled the local spatial frequencies appropriately at each eccentricity.

Overall, the log-Gaussian tuning function provided a good �t to the complete dataset. Figure

2.8B shows the responses of all voxels, across all subjects, as a two-dimensional histogram, aligned

to the peak spatial frequency per voxel, plotted together with the model’s predictions. We can see

the responses are symmetric about the peak, demonstrating that a log-Gaussian (as opposed to a

linear Gaussian) function is the better choice. The responses do appear to deviate slightly from the

model tuning curve: slightly �atter at the peak and falling faster away from it. A larger exponent

could potentially improve the �t, e.g., exp(− log2(x)4) instead of exp(− log2(x)2). However, such a

change will not have a large e�ect on the estimates of preferred spatial frequency, which is the

primary focus of this paper.

A B

Figure 2.8: (A) Three example voxels from a single subject (sub-01). Blue points indicate median voxel responses
across bootstraps. Error bars indicate variation as a function of orientation. Orange line shows model 9’s predictions,
in both cases as a function of the local spatial frequency at the center of each voxel’s pRF. (B) Responses of all voxels
across all subjects as two-dimensional histogram. For each voxel and stimulus orientation, responses are plo�ed as a
function of spatial frequency, relative to peak spatial frequency. Orange line shows model 9’s predictions.

To consolidate our �ndings, we combine the model parameters across subjects by bootstrapping

a precision-weighted mean. For each parameter, we select 12 subjects with replacement, multiply
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each subject’s median parameter estimate by the precision of their response amplitudes (as

estimated by GLMdenoise) averaged over all �t voxels, and average the resulting values. We

then take this set of parameters and generate a set of predictions for the preferred period and

gain across eccentricities and retinotopic angles, as well as for di�erent stimulus classes (which

determine the orientation seen by each voxel). We do this 100 times, plot the resulting median

and 68% CI predictions in Figure 2.10, and plot the resulting median and 68% CI for the parameter

values in Figure 2.9. We observe �ve distinct properties of the �tted functions:

Preferred period is an affine function of eccentricity. Speci�cally, the preferred period,

as a function of eccentricity, is well approximated by a line with a signi�cantly non-zero intercept.

As discussed in the introduction, preferred period cannot decrease to zero at the fovea, since

this would imply an in�nite preferred spatial frequency. However, our stimuli do not include the

region around the fovea, and thus our data do not constrain frequency tuning in that region. As

such, the �tting procedure could potentially have arrived at an intercept of zero, supporting a

"hinged line" model in which the preferred period decreases linearly with decreasing eccentricity

and levels out at some minimal value, as proposed in Freeman and Simoncelli [70].

Preferred period is largest for annular stimuli. As also seen in the 1D analysis (section 2.4),

the annular stimuli have the highest preferred period at each eccentricity (�gure 2.10A, left). Unlike

in the 1D analysis, we can now see that the di�erence between the annuli and pinwheel stimuli

varies as a function of retinotopic angle, with the largest di�erence at the horizontal meridian,

decreasing to almost 0 by the vertical meridian (�gure 2.10A, top right). At the horizontal meridian,

the median preferred period is 1.06 for annuli and 0.80 for pinwheels. This di�erence as a function

of stimulus angle is equivalent to about 2 degrees of eccentricity at a constant stimulus orientation.

Preferred period is largest for vertical stimuli. A similar pattern is seen for the model

predictions for horizontal and vertical stimuli, in which there is an overall di�erence, modulated
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Figure 2.9: Parameter values (A) combined across all subjects and (B) in individual subjects. In both panels, median
values ± 68% bootstrapped confidence intervals are plo�ed (note that A3 and A4 have been omi�ed, as determined
from the previous model-selection analysis). (A) Parameter values obtained by bootstrapping parameter values across
subjects from fits to the individual subject. A precision-weighted average is computed from each bootstrap. (B)
Individual subject parameter values, bootstrapped across scans (as computed by GLMdenoise). A csv file containing
these values (and instructions for use) can be found in the project so�ware repository.
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by retinotopic angle (�gure 2.10B): The di�erence between their preferred periods reaches its

maximal value at the horizontal meridian and decreases to almost 0 by the vertical meridian. This

dependency between the preferred period e�ect and retinotopic angle comes from the combination

of the vertical and annular biases: at the horizontal meridian, both go in the same direction (i.e., a

vertical stimulus is an annular stimulus) and thus the gap in preferred period between vertical /

annulus stimuli and horizontal / pinwheel stimuli is large. At the vertical meridian, on the other

hand, they oppose each other (i.e., a vertical stimulus is a pinwheel stimulus), and, since the size

of the two e�ects is roughly equal, the gap in preferred period between vertical / pinwheel stimuli

and horizontal / annulus stimuli is small.

Gain is largest for vertical stimuli. The e�ect of stimulus orientation on gain is smaller

than the e�ect on preferred period, but more consistent across subjects. According to the model

�ts, vertical orientations evoke the largest BOLD signal (highest gain) and horizontal orientations

the lowest. The two diagonal orientations are intermediate. The forward and reverse diagonal

stimuli do not di�er in gain because model 9 does not �t parameters A3 or A4, which would

di�erentiate them. The gain for annuli and pinwheels varies as a function of retinotopic angle,

based on where they align with the absolute orientation. Thus, the annuli have the highest gain

on the horizontal meridian (where their absolute orientation is vertical), the pinwheels have the

highest gain on the vertical meridian (where their absolute orientation is vertical), and the spirals

have the highest gain on their respective diagonals.

Spatial freqency tuning is broad. By examining Figure 2.9A, we see that the standard

deviation (σ ) of our model is about 2.2 octaves, equivalent to a full-width half-max of 5.1 octaves.

(The variability in the estimate comes from bootstrapping across subjects and across runs, not

from variation across voxels or stimulus orientation, neither of which we modeled.) The 2.2 octave

standard deviation of the tuning function is large relative to the variation in peak tuning across the

V1 map. For example, the di�erence in preferred period between a foveal voxel (0 deg eccentricity,
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Figure 2.10: Spatial frequency preferences across the visual field in (A) relative and (B) absolute reference frames. In
both panels, the le� shows the preferred period as a function of eccentricity, top right shows the preferred period as
a function of retinotopic angle at an eccentricity of 5 degrees, and bo�om right shows the relative gain as a function
of retinotopic angle (which does not depend on eccentricity; note that this relative gain does not change across
voxels, only within a given voxel for di�erent orientations). Only the extremal periods are shown in the le� plot, for
clarity (the others lie between the two plo�ed lines), and the cardinals and obliques are similarly plo�ed separately
in the right plot for clarity. The predictions come from the model with parameter values shown in figure 2.9A, with
the lines showing predictions from the median parameter and shaded region covering the 68% CI. Those parameters
result from bootstrapping a precision-weighted average to combine the parameters from each subject’s individual fit
with this model. Compare le� plot in panel (A) to figure 2.6B.
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0.35 deg period) and a 10 deg voxel (about 1.6 deg period) is equivalent to 1 standard deviation of

the foveal voxel’s tuning function (2.2 octaves).

2.5.0.3 Preferred period is uncorrelated with V1 surface area

We observed substantial di�erences in preferred period across subjects. For example, at 6

deg eccentricity, preferred period ranges from 0.78 to 1.49 deg across our 12 subjects. A natural

question is whether our measured preferred period is related to other functional or anatomical

measures in V1. We motivated our initial scaling hypothesis by presenting the idea that the

preferred spatial frequency may be a constant number of periods per population receptive �eld,

and thus should drop as pRF size increases. Could the variability in pRF size across subjects

account for the variability we see in preferred period? Estimated pRF size is far less reliable

than pRF location, and so instead we compare preferred period to V1 surface area, which gives

more robust estimates [98, 136]. The results can be seen in supplement �gure 2.12, comparing

the preferred period at 6 degrees eccentricity with the total V1 surface area across participants.

Both values span a range of 2:1, but they are essentially uncorrelated with each other (R2: median

−3.42 × 10−3, 68% CI: [−2.84 × 10−1, 9.75 × 10−2]).

2.5.0.4 Effect of retinotopic angle

To keep the model parameterization tractable, we excluded e�ects of retinotopic angle on

preferred spatial frequency (except as mediated via relative stimulus orientation). To get a sense

for whether retinotopic angle alone has additional explanatory power in our dataset, we �t

model 3 (p = arv + b, no e�ect of stimulus orientation and no modulation of gain) to the median

BOLD response estimates on the quarters of the visual �eld around the two horizontal meridians

(θv ∈ [0,π/4] ∪ (3π/4, 5π/4] ∪ (7π/4, 2π ]), and the quarters of the visual �eld around the two

vertical meridians (θv ∈ (π/4, 3π/4] ∪ (5π/4, 7π/4]). The bootstrapped average across subjects of

the preferred period as a function of eccentricity for these two variants is shown in �gure 2.13A.
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We can see that the model �t to voxels near the horizontal meridians has a higher preferred period

near the fovea and a lower preferred period in the periphery, with the two meridian-only variants

crossing at around 3 degrees. The error bars in that �gure represent both the within-subject

di�erence between the two variants and the between-subject di�erences in preferred period;

�gure 2.13B shows the di�erence between the two variants, calculated within subjects and then

bootstrapped across them. This e�ect is clearly reliable across subjects, and the di�erence of

approximately -.27 at 11 degrees is about 16% of the average preferred period there. Since our

stimuli are balanced across relative stimulus orientations, this suggests that there is an e�ect of

retinotopic angle alone on spatial frequency tuning, though further characterization is needed.

2.6 Discussion

We’ve used a set of log-polar grating stimuli to e�ciently estimate spatial frequency preference

in fMRI voxels of human V1. We quanti�ed the e�ects of eccentricity, retinotopic angle, and

stimulus orientation on voxel preferred period and response gain. As expected, the strongest

relationship is the dependency on eccentricity: on average–across stimulus orientation, retinotopic

angle, and subject–the preferred period is an a�ne function of eccentricity, which grows with a

slope of about 0.12 degrees per degree of eccentricity and an intercept of about 0.35 degrees at

the fovea. Preferred period is also modulated systematically by both stimulus orientation and

retinotopic angle. Along the horizontal meridian, the increase in preferred period from horizontal

to vertical stimuli (or, equivalently, from annular to pinwheel stimuli) is roughly equivalent to

that seen when increasing eccentricity by 2 deg. On the vertical meridian, preferred periods

of horizontal/vertical stimuli are indistinguishable. The response gain also exhibited small but

systematic variations with stimulus orientation. Horizontal stimuli have an approximately 8%

smaller response gain than vertical stimuli throughout the visual �eld.
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2.6.1 Strengths

Our results are obtained using a multivariate, stimulus-referred model. Typically, stimulus-

referred modeling of fMRI signals either �ts each voxel independently (voxel-wise modeling)

or �ts average responses across regions. Voxel-wise modeling (e.g., [119]) has the �exibility of

allowing researchers to place few or no constraints on the relationship of models across voxels.

This �exibility comes with high parameter dimensionality: even a single visual area like V1, would

typically require thousands of parameters, which can result in high noise sensitivity and lack

of interpretability. Fitting models to regions of interest rather than voxels (e.g,. [24]) reduces

dimensionality, but loses cortical (and thus, retinotopic) resolution. Our method combines positive

aspects of both approaches: it is sensitive to variability in the response properties across voxels,

while placing constraints on how the parameters relate to each other across voxels to generate a

useful and interpretable summary.

An advantage of the stimulus-referenced modeling approach is generalization. A 2D model of

spatial frequency tuning is likely to simplify development of a more complete image-computable

model of the visual cortex. Some image-computable models �t to fMRI or electrocorticography

responses operate only on band-pass �ltered images because they do not incorporate spatial

frequency tuning (e.g., [94, 117, 120]). The stimuli were band-passed in these experiments to

reduce the complexity of the image space. There have been some attempts to generalize models

across scale but these have not been informed by a comprehensive set of measurements or models

of spatial frequency tuning [13, 165]. A further advantage of the multivariate parametric approach

is that it helps reduce bias from skewed voxel sampling. For example, there are fewer voxels near

the vertical than near the horizontal meridian [15]. In a voxel-wise �tting approach, preferences of

voxels near the vertical meridian might be poorly �t or not �t at all (if no voxels have pRF centers

along the meridian). Here, the parametric approach uses all the data to estimate each parameter,

allowing better estimates for locations with limited data. Finally, a parametric model facilitates
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comparison across studies, as other measurements of spatial frequency tuning might not sample

the identical orientations, spatial frequencies, and visual �eld locations.

2.6.2 Limitations

Our modeling approach has at least two important limitations. First, the characterization of the

V1 maps is based on fMRI measurements, which combine the integration of the fMRI measurement

(blood oxygenation within voxels) and the selectivity of those neurons linked to the changes in

blood oxygenation. Some aspects of our results, such as the substantial additive o�set at the fovea,

may be particularly a�ected by these additional sources of integration. Comprehensive measures

of spatial tuning across the entire map at the level of individual neurons do not exist. Models that

explicitly account for both tuning of individual neurons and measurement pooling functions, such

as Haak, Cornelissen, and Morland [85] and Keliris et al. [122] will be important for clarifying the

relative contributions of these sources.

Second, our analysis assumes that for each voxel and each stimulus, there is a single spatial

frequency and orientation driving the response. Because both stimulus properties varied contin-

uously across our images, this use of the instantaneous frequency approximation is only valid

locally. We think the e�ects are likely small since V1 receptive �elds are relatively small and our

stimulus properties varied gradually. In later stages of the visual system, where receptive �elds

are substantially larger, this use of instantaneous frequency will become an increasingly worse

approximation to the range of spatial frequencies within the receptive �elds.

Finally, residual eye movements (microsaccades) could a�ect our results by increasing the

positional uncertainty of the stimuli, or by e�ectively blurring them due to temporal integration.

We think these e�ects are likely to be small (see supplement section 2.7.2 for more discussion),

but we cannot entirely rule them out.
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2.6.3 Related fMRI studies

Figure 2.11: Comparison to previously reported eccentricity-dependence of spatial frequency measured with fMRI.
All results show the preferred period at that eccentricity in V1 (all papers reported preferred spatial frequency; the
reciprocal of that is shown). All values were estimated from published figures and are thus approximate. Black line
represents our result, averaged across stimulus orientation and retinotopic angle, with line showing the median and
shaded region the 68% confidence interval from precision-weighted bootstrap across subjects, as in figure 2.10.

A number of previous studies have reported spatial frequency preferences at multiple eccen-

tricities in human V1 using fMRI. A comparison of those �ndings shows a wide range of estimates

(�gure 2.11; [3, 49, 65, 93, 189, 212]). With the exception of Aghajari, Vinke, and Ling [3] and

Henriksson et al. [93], these studies did not pursue the question of V1 spatial frequency tuning

as their main question. All studies agree that preferred period grows as an a�ne function of

eccentricity, but the exact values for the slope and intercept vary widely. Overall, our results are

most consistent with those of Aghajari, Vinke, and Ling [3]. These studies �t tuning curves to

di�erent voxels or bands of voxels and plotted the peak as a function of eccentricity (sometimes,

as in Aghajari, Vinke, and Ling [3], also separately plotting this for di�erent quadrants of the

visual �eld), similar to our 1D �ts shown in �gure 2.6A. The variability across studies could be due

to many factors, including display calibration, analysis methods, temporal frequency of stimulus

presentation, and the wide variety of spatial patterns used, from natural images in “Understanding

Visual Representation by Developing Receptive-Field Models” [212] to phase-scrambled noise
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in Farivar et al. [65] to plaids in Hess et al. [95]. Resolving the discrepancies may require use of

multiple stimulus classes and analysis methods in the same study.

Our 2D model assumes constant bandwidth in octaves. Aghajari, Vinke, and Ling [3] investigate

the bandwidth of voxel spatial frequency tuning in more detail, concluding that it grows at a

constant rate from approximately 3 octaves near the fovea to about 4.3 octaves at 9 degrees. Our

model, like theirs, assumes a log-Gaussian tuning curve (�gure 2.8B), but our bandwidth estimate

of 5 octaves is larger than any of the values they observe in V1. We see no obvious explanation

for the discrepancy. De Valois, Albrecht, and Thorell [54] measure spatial frequency bandwidth

in macaque V1 simple and complex cells at multiple retinotopic locations and �nd a median

bandwidth of approximately 1.5 octaves (similar across cell types and locations); they also show a

negative correlation between peak spatial frequency tuning and spatial frequency bandwidth, with

some low-pass neurons having a bandwidth of up to 3.25 octaves. Since neurons with a variety

of spatial frequency tunings are found at any given retinotopic location, it is expected that V1

voxels would exhibit broader tuning than individual V1 neurons. This parallels �ndings in spatial

receptive �elds, which show larger sizes when measured for voxels with fMRI than measured in

single units [59, 122].

2.6.4 Orientation tuning

There has been a long debate in the literature about whether orientation tuning is detectable

in the BOLD signal on the spatial scale of voxels and, if so, what that means [39, 69, 116, 187].

Our model is recovering some degree of orientation tuning: with non-zero A1 and A2 values,

response varies sinusoidally as a function of orientation. More speci�cally, we �nd an overall bias

for vertical gratings. Freeman, Heeger, and Merriam [69] found a mix of vertical bias near the

fovea and a radial bias (e.g., voxels along the horizontal meridian preferring horizontal gratings)

in the periphery. While our model agrees with the �rst �nding, we �nd no evidence for the second

(though our model does not allow for categorically distinct responses in the fovea and periphery,
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and �tting them separately may �nd some evidence for this, similar to the issue of retinotopic

angle, see 2.5.0.4 and �gure 2.13). However, we hesitate to interpret these results too strongly; as

Carlson [39] and Roth, Heeger, and Merriam [187] point out, orientation biases can be induced

in the BOLD response by the stimulus presentation even with unbiased underlying neuronal

responses. Further work is needed to tease out the source and implication of orientation tuning.

2.6.5 Scale and rotation invariance

An idealized model of visual system organization is that spatial frequency tuning (preferred

period) is proportional to eccentricity, while being independent of polar angle and stimulus

orientation. For example, the log-polar model of the warping of the visual �eld onto the V1 cortical

surface by Schwartz [192] has these properties. The scaling with eccentricity has been proposed

by Schwartz and others [214] to endow the system with invariance to dilation and rotation (for

transformations centered at the fovea), enabling perceptual generalization (but see Cavanagh [41]

for a di�erent interpretation). Our model �ts show systematic deviations from each of these three

properties.

First, we �nd that preferred period grows as an a�ne function of eccentricity, with a non-zero

intercept. Independent of any measurements, one would not expect basic properties such as

receptive �eld size to grow proportional to eccentricity due to limits at the fovea (the optics and

cone apertures set upper bounds on resolution.) One simple correction to the idealized scaling

model is adding an o�set, or a�ne transform, as we have done here. This is consistent with some

models of cortical magni�cation in V1 [14, 100]. An alternative model form is piece-wise linear

(e.g., a “hinged line”), that is �at in the vicinity of the fovea, and grows proportional to eccentricity

beyond that (as used by Freeman and Simoncelli [70] to describe ventral stream receptive �elds).

This allows scale invariance outside the �at, foveal region. Our data are better �t by an a�ne

function than a hinged line. The e�ect is relatively large: the o�set at the fovea (preferred period

of 0.35 deg) is equivalent to the di�erence in preferred period between 0 and 3 deg eccentricity. A
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substantial o�set implies that the human V1 representation in the center of the visual �eld does

not approximate a scaling rule, as also noted by Cavanagh [41]. Given the importance of foveal

vision for object recognition, the deviation from an idealized scaling rule at the fovea may have

important implications for perception. Size judgments are in fact not invariant to eccentricity

[156] and have been shown to track individual di�erences in the topography of V1 [151].

Second, we show spatial frequency tuning depends on orientation at the horizontal meridian,

but not at the vertical meridian (see Figure 2.10, right panel). This is because the preferred

period tuning for absolute orientation (vertical > horizontal) and for relative orientation (annuli >

pinwheels) add for locations on the horizontal meridian, but cancel for locations at the vertical.

In separate analyses, we also observed an overall higher peak spatial frequency for visual �eld

quadrants near the horizontal meridian than the vertical outside of the central 3 deg, consistent

with Aghajari, Vinke, and Ling [3]. These results suggest that the quality of spatial representation

will depend on polar angle. This is consistent with a large body of psychophysical results showing

that performance on various tasks, including spatial resolution and contrast sensitivity, depend

on stimulus polar angle, with better performance along the horizontal meridian than the vertical

meridian and better performance along the lower vertical meridian than the upper vertical meridian

(see Himmelberg, Winawer, and Carrasco [97] and the citations therein).

Finally, we show an overall annular bias in preferred spatial frequency: for any location in

the visual �eld, an annular stimulus will have the lowest preferred spatial frequency, this bias

varies across retinotopic angle, and increases with eccentricity. Few studies have examined the

combination of stimulus orientation and retinotopic angle with su�cient resolution to determine

whether an orientation e�ect is relative or absolute. An exception is Wilkinson et al. [230], who

used interference fringes to examine sinusoidal grating acuity changes across the visual �eld, and

found that it is proportional to the sampling of retinal ganglion cells everywhere in the retina.

Consistent with our study, they show that radial acuity is always higher than tangential acuity,

that this e�ect is largest along the nasal horizontal meridian, and that the minimum angle of
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resolution (.5 / cuto� spatial frequency) grows roughly linearly with eccentricity. All told, this

suggests that many, but not all, of the e�ects observed in the current study originate with the

sampling of the midget retinal ganglion cell lattice.

2.7 Appendix

2.7.1 Stimulus properties

The local spatial frequency of our stimuli is equal to the magnitude of the gradient of the

argument of cos(·) in Equation 2.1. Writing that argument as д(r ,θ ) = ωr ln(r ) + ωaθ + ϕ, we

di�erentiate to obtain the horizontal/vertical spatial frequency:

ωx =
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The local spatial frequency is then
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Thus, the local spatial frequency is proportional to the magnitude of the base frequency vector

(ωa,ωr ), decreasing as the inverse of eccentricity (r ). To convert this from radians per pixel to

cycles per degree, we multiply by a conversion factor, c = 1
2π

sizepix
sizedeg . We use this measure of local

spatial frequency when �tting tuning curves.

We can similarly �nd the local stimulus orientation, θl , by computing the angle of the frequency

vector (ωx ,ωy):
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θl = arctan
ωy

ωx

= arctan
yωr + xωa

xωr − yωa

= θ + arctan
ωa

ωr

(2.13)

where θ = arctan y
x . The local stimulus orientation is thus the sum of the angular location θ

and the angle of the base frequency vector (ωr ,ωa).

Figure 2.12: Sca�er plot showing the preferred period at 6 degrees eccentricity against the total V1 surface area
(both hemispheres) for all subjects. A middling eccentricity value was chosen so that the e�ects of both parameters
a and b are visible. The two variables are essentially uncorrelated (line shows the median and the shaded region the
68% CI linear regression, bootstrapped across subjects). Subject colors are as in figure 2.9B.

2.7.2 Behavior

Behavioral data is plotted in �gures 2.14 and 2.15, combining across subjects and plotting them

separately, respectively. When combining across subjects, there is no consistent pattern between

performance and stimulus type: all stimulus types show similar behavior. When looking on a

subject-by-subject basis, about half of the subjects show some di�erences across stimulus types.
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A B

Figure 2.13: Voxels near the vertical meridians have a higher preferred period in the periphery and a lower preferred
period near the fovea. Model 3 (p = arv + b, no e�ect of stimulus orientation or modulation of gain) was fit to each
subject’s median estimates of BOLD response. (A) Preferred period as a function of eccentricity for the two portions
of the visual field. Lines and shaded region show the median and 68% CI from combining the preferred period across
subjects by bootstrapping a precision-weighted average; uncertainty thus reflects both between-subject variance of
preferred period and within-subject variance of the two visual field segments. (B) Di�erence between the preferred
period in the voxels near the horizontal and vertical meridians, calculated within subjects, and then combined by
bootstrapping a precision-weighted average.
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We might then worry that di�erences in eye movements or �xation stability may a�ect our results,

such that any di�erences between spatial frequency tuning for annuli and pinwheels, say, are

actually the result in di�erences in eye movements between those conditions. However, there

appears to be no relationship between these behavioral patterns and the parameter values plotted

in �gure 2.9B. For example, sub-01 and sub-08 show similar behavioral patterns, with the highest

miss rates for pinwheels, followed by forward spirals, then annuli and reverse spirals. However,

their parameter values are not more similar to each other than to any other subject’s, making it

unlikely that our parameter �ts re�ect di�erences in eye movement across stimuli.

Similarly, one might worry that di�erences in stimulus-independent eye movements might

a�ect our results: �xational eye movements are known to be more common along the horizontal

than vertical meridian, occuring at a rate of about 6 per minute [207], with microsaccades in

both directions having a median amplitude of 20 arcmin when there is a �xation target [44].

These increase the uncertainty of the spatial frequency within a voxel’s pRF, but, whenever

voxels whose pRFs are on the right horizontal meridian see an increase in eccentricity due to a

horizontal eye movement, voxels on the left horizontal meridian will see a decrease in eccentricity

(and vice versa). Since our model does not allow left/right asymmetries in the �ts, these two

e�ects would approximately cancel. Moreover, even if they did not fully cancel, microsaccades are

relatively small compared to the observed e�ects of orientation (equivalent to about a 2 deg shift

in eccentricity).

In addition to the uncertainty in voxel location discussed above, microsaccades combined with

temporal averaging may blur the stimulus slightly, suppressing the high frequencies in our stimuli,

which may shift our measured tuning curves to slightly lower frequencies. This e�ect would be

most pronounced for those stimuli whose period is the same magnitude as the eye movements,

which are present in our stimuli. This would increase the preferred periods on our plots and would

have a larger e�ect on voxels at lower eccentricities. Eliminating or fully accounting for this e�ect

is impossible given our setup, and future studies are necessary to account for its magnitude. Given
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Figure 2.14: Summary of behavior combined across subjects. Stimulus type is indicated along the vertical axis
(“blank” means there was no stimulus on the screen; these trials were interleaved throughout the scan as well as
present at the very beginning and end), and outcome is indicated on the horizontal axis, with numbers giving the
percentage of trials that fall into that category. Percentages and color are normalized so that the sum of correct
rejections and false alarms is 1, as is the sum of hits and misses. During scans, subjects viewed a pseudo-random
stream of digits at fixation and their task was to press a bu�on whenever the digit repeated, which it did on one-sixth
of the trials (the same digit was never shown three trials in a row). Behavior was consistent across stimulus types.

the small size of �xational eye movements, we think their e�ects are likely to be small, but we

cannot entirely rule them out.

2.7.3 Individual fits

Figures 2.16 through 2.22 show the individual subject �ts for preferred period as a function

of eccentricity from the 1d analysis (�gure 2.16); preferred period as a function of eccentricity

from the 2d model for relative (�gure 2.17) and absolute (�gure 2.18) reference frames; preferred

period as a function of retinotopic angle (at 5 degrees eccentricity) for relative (�gure 2.19) and

absolute (�gure 2.20) reference frames; and the relative gain as a function of retinotopic angle for
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Figure 2.15: Summary of behavior on a per-subject basis. For details, see caption of 2.14. Performance varies across
subjects (though false alarm rates are consistently low), but as in 2.14, there is no consistent di�erence in behavior
across stimulus types.
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relative (�gure 2.21) and absolute (�gure 2.22) reference frames. In all, we show the median and

68% con�dence intervals obtained from bootstrapping across that subject’s fMRI runs.

Note that sub-12’s results are an outlier: their preferred period does not change as a function

of eccentricity (also visible in the parameter plots in �gure 2.9B; their a = 0). The noise in their

GLMdenoise �ts does not suggest any problems with the quality of this data, and the quality of

their retinopic maps is also consistent with the other subjects. Therefore, they have been included

in the analyses presented in this paper.
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Figure 2.16: Individual subjects’ preferred period as function of eccentricity from 1d fits (as in figure 2.6A), for
di�erent stimulus classes. Points and vertical bars indicate the median and 68% confidence interval obtained from
bootstrapping across fMRI runs.
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Figure 2.17: Individual subjects’ preferred period as function of eccentricity from 2d model for relative reference
frame (as in le� panel of figure 2.10A). Averaged across all angles, lines show the median parameter and shaded
regions cover the 68% confidence intervals obtained from bootstrapping across fMRI runs.
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Figure 2.18: Individual subjects’ preferred period as function of eccentricity from 2d model for absolute reference
frame (as in le� panel of figure 2.10B). Averaged across all angles, lines show the median parameter and shaded
regions cover the 68% confidence intervals obtained from bootstrapping across fMRI runs.
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Figure 2.19: Individual subjects’ preferred period as a function of retinotopic angle at an eccentricity of 5 degrees
for relative reference frame (as in top right panel of figure 2.10A). Lines show the median parameter and shaded
regions cover the 68% confidence intervals obtained from bootstrapping across fMRI runs.
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Figure 2.20: Individual subjects’ preferred period as a function of retinotopic angle at an eccentricity of 5 degrees
for absolute reference frame (as in top right panel of figure 2.10B). Lines show the median parameter and shaded
regions cover the 68% confidence intervals obtained from bootstrapping across fMRI runs.
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Figure 2.21: Individual subjects’ relative gain as a function of retinotopic angle for relative reference frame (as in
bo�om right panel of figure 2.10A). Lines show the median parameter and shaded regions cover the 68% confidence
intervals obtained from bootstrapping across fMRI runs.
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Figure 2.22: Individual subjects’ relative gain as a function of retinotopic angle for absolute reference frame (as in
bo�om right panel of figure 2.10B). Lines show the median parameter and shaded regions cover the 68% confidence
intervals obtained from bootstrapping across fMRI runs.
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3 | Foveated metamers of the early

visual system

3.1 Abstract

Human abilities to discriminate and identify many visual attributes vary across the visual

�eld, and are notably worse in the periphery compared to the fovea. Much work investigating

these phenomena focuses on either the earliest stages of vision (optics and receptor sampling) or

high-level cortical stages, but two important intermediate processes, spatial pooling of luminance

and the computation of local spectral energy, likely contribute to di�erences in performance

across the visual �eld as well. We built luminance and energy pooling models, which average

the relevant statistic in pooling windows whose diameters grow linearly with eccentricity, used

psychophysical experiments to measure the window size where human and model abilities to

discriminate match, and compared to physiological values from retinal ganglion cells (RGCs) and

primary visual cortex (V1), the brain areas most often associated with luminance and energy

pooling. We do so using much larger stimuli than previously used, subtending 53.6 by 42.2 degrees

of visual angle. We found the critical scaling for the luminance model was about four times smaller

than that of the energy model, and, consistent with earlier studies, that a smaller critical scaling

value was required when discriminating a synthesized image from a natural image than when

discriminating two synthesized images. Our results quantify the link between image statistics
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and the spatial scale of pooling, and raise questions about what makes some image pairs easy to

discriminate and some hard, when both sets are synthesized with the same image statistics and

scaling size.

3.2 Introduction

Vision science is often concerned with what things look like (appearance), but a long and

fruitful thread of research has investigated what humans cannot see, that is, the information

they are insensitive to. Perceptual metamers, images that are physically distinct but perceptually

identical, are used to demonstrate information that is lost in visual processing. Their use dates back

to the mid-19th century, when they were instrumental in the development of the Young-Helmholtz

theory of trichromacy [91]. These color metamers clari�ed human sensitivity to light wavelengths,

demonstrating that the human visual system projects the in�nite dimensionality of light to three

dimensions, though it would be more than a century before the physiological basis for this was

discovered: when the outputs of the three cone classes are matched, di�erences in the wavelength

composition of stimuli are invisible.

The visual system also discards a great deal of information about the spatial properties of

images. In this paper, we will examine human insensitivity to spatial information, which has

a strong eccentricity component: human ability to precisely resolve spatial features decreases

with retinal eccentricity, as demonstrated by decreasing acuity and increasing crowding distance,

among other measures. The loss of spatial information likely arises from pooling mechanisms

that are downstream from the photoreceptors, including retinal and cortical circuitry. To model

this decreasing sensitivity to spatial information with eccentricity, we built two “pooling models”

of the early visual system, which average image statistics in radially-oriented windows that grow

larger with eccentricity [70, 123]: one that approximates retinal ganglion cell spatial pooling

by averaging local luminance (luminance model) and one that approximates primary visual
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cortical neurons by averaging local spectral energy and luminance (energymodel). These models

represent the periphery as qualitatively similar to the fovea: the same computations are performed,

just over a larger area. We test these models using model metamers (images that are physically

distinct but with identical model representations) in a psychophysical experiment to determine

the largest parameter value for which model metamers are also perceptual metamers. This way of

model testing allows us determine whether the models’ sensitivities and insensitivities match that

of the human visual system, a stricter test than only checking sensitivities.

This procedure rests on the assumption that information processing in the visual system is

approximately hierarchical: information discarded at an early stage cannot be recovered later.

Color metamers produce identical cone responses and are thus indistinguishable. Analogously,

if two images generate identical responses in all retinal ganglion cells or primary visual cortical

neurons, they will be perceptually identical. Much work has been done to create perceptual

metamers by matching models of neural activity at a high level of the visual processing hierarchy

(extra-striate ventral areas, [66, 70, 109, 219]) and at a low level (photoreceptors). However, there

has been much less work creating perceptual metamers based on models of the levels in between.

Even for a given model, previous studies [31, 57, 219] have shown that the extent of maximal

spatial pooling able to generate perceptual metamers depends on the two images being compared.

First, if an image of a natural scene is being compared to a synthesized image, the pooling windows

must be smaller than if two synthesized images are being compared. Second, even within these

comparisons, the performance depends on the content of the natural scene. Neither of these e�ects

are captured by the models.

Here, we synthesize model metamers and measure their perceptual discriminability. We build

models that pool two types of image statistics, luminance and spectral energy, to capture some of

the processing between photoreceptor outputs and ventral stream representations. Moreover, we

test discriminability between di�erent types of image pairs, including images of natural scenes vs.

synthesized images and pairs of synthesized images. The two types of models and multiple types of
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comparisons shed light on and raise new questions about what makes such images distinguishable.

3.3 Methods

All experimental materials, data, and code for this project can be found online under the MIT

or similarly permissive licenses. Code is found on GitHub and a browser of synthesized metamers

online. View GitHub README for instructions on how to download and use data.

3.3.1 Metamers

In order to investigate the extent to which our foveated models capture human perception,

we synthesized sets of model metamers, physically distinct images with identical model repre-

sentations [70]. Such images allow us to better understand model representation and facilitate

comparisons with human perception [66]. While many model testing frameworks probe model rep-

resentations, model metamers highlight the model’s null space as well, as the resulting metamers

combine the features of the target image that the model is sensitive to with features of the initializa-

tion image that the model is insensitive to. A useful model of human perception will share not just

human sensitivities, but human invariances as well, and to e�ectively evaluate this our test images

must not just throw out such information, but randomize it as well. This way of approaching the

problem has the opposite feel of Bayesian inference or the use of a natural image prior, which seek

to �nd the most likely images that gave rise to a model representation; for metamer synthesis, we

want to explore the space of possible images much more widely and pay particular attention to

the least natural images, as these provide a more stringent test of the model.

We use these model metamers in a psychophysics experiment (3.3.5) in order to determine, for

each model, the largest parameter value at which these model metamers are perceptual metamers;

that is, we �nd the images that are the most physically distinct while being perceptually identical

under our experimental conditions.
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Throughout this paper, we will refer to the model metamers as such when discussing syn-

thesis or model details, and as “synthesized images” when discussing psychophysics and human

perception, in order to avoid confusion with perceptual metamers, which are a subset of those

synthesized images.

3.3.2 Models

We built foveated models of human perception that approximate the computations performed

in primary visual cortex (V1) and retinal ganglion cells (RGC), �gure 3.1. Both models are “pooling

models” [7, 70, 123, 219], which compute statistics across the image and then take the weighted

average in pooling windows. These pooling windows model neuronal receptive �elds: they are

laid out in a polar fashion and grow as you move away from the fovea. Like previous studies [70],

our pooling windows are overlapping and radially-elongated (twice as long in the radial direction),

but unlike previous studies, we use Gaussians for our pooling windows, which overlap more and

thus give a smoother representation, which resulted in higher-quality synthesized images. As

with previous pooling models, the statistics the models compute are chosen to correspond to

the representation of a visual area and are thus held �xed, while the rate at which the pooling

windows grow in size is the model’s only free parameter. This is the model’s scaling and gives

the slope between the pooling window diameter at full-width half-max in the radial direction and

the location of its center, both in degrees. Thus, the pooling windows of a model with scaling .1

will have a diameter of 1 at 10 degrees eccentricity, 2 at 20 degrees, etc.

Scaling can also be used to describe how neuronal receptive �elds [70] and voxel population

receptive �elds [222] grow with eccentricity. Pooling models have been proposed to identify visual

areas when their scaling values and computed statistics roughly match those of the corresponding

area, with the logic that, if a model and a visual area are computing the same summary statistics of

an image in the same size pooling regions, pairs of model metamers should be perceptual metamers

as well, because the feedforward outputs of the region should be identical. Thus, Freeman and
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Simoncelli [70] proposed that their mid-ventral model, which pooled Portilla-Simoncelli texture

statistics [178], provided evidence of texture representation in V2, as their scaling value of 0.5

matched the phsyiological scaling found in V2 (but see Wallis et al. [219] for additional nuance).

Local average luminance model

Local spectral energy model

...

...

...

...

...

...

Figure 3.1: Models pool image statistics in radially-oriented Gaussians whose width grows linearly with eccentricity,
the rate of which, scaling, is the models’ only free parameter. The luminance model (top) pools luminance, and so
has one statistic per window, approximating the spatial pooling performed by retinal ganglion cells. The spectral
energy model (bo�om) pools spectral energy at 4 orientation and 6 scales, as well as luminance, for a total of 25
statistics per window. This approximates the calculations performed by primary visual cortex (V1). Spectral energy is
computed using the complex steerable pyramid constructed in the Fourier domain, squaring and summing across
the real and imaginary components [198]. Full resolution version of this figure can found on the OSF.

What di�erentiates these models from each other is which statistics are averaged in the pooling

windows. The luminance model, which approximates retinal computation, simply pools pixel

values, which, in our setup, are proportional to luminance. Thus, a pair of luminance model

metamers have the same average luminance within each of the pooling windows. This is a

relatively loose constraint and, in particular, the Gaussian pooling windows are low-pass �lters

and thus insensitive to the highest frequencies. Luminance model metamers thus maintain high

frequency information from their initialization, as can be seen in �gure 3.4. This may seem

counter-intuitive, as one may expect luminance metamers to look like blurred versions of their

target image. In fact, such an image would be one possible metamer, but as the model is insensitive

to high frequencies, any modulation can be done to those statistics: removing them completely,
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as done by blurring the image, but also vastly increasing the power in those frequencies across

phases, as seen in �gure 3.4. The middle row of �gure 3.4 shows two example model metamers, one

for the model with a high scaling value and one with a low scaling value. While the high-scaling

model metamer is obviously perceptually distinct from the target image for humans, regardless

of where they �xate, the low-scaling image appears confusable when �xating at the center of

the image, i.e., when the human fovea is aligned with the model fovea. We can thus see that,

for a given model, it is the interaction between the scaling value and the pooled statistics that

determine possible perceptual metamers.

While the luminance model only pools pixel values, the spectral energy model pools spectral

energy at multiple scales and orientations, as well as pixel values. The energy model is built

directly on the image, not on the outputs of the luminance model. A complex steerable pyramid

with 6 scales and 4 orientations (constructed in the Fourier domain, [198]) is constructed on the

input image, then the energy is computed by squaring and summing across the real and imaginary

components (which correspond to even and odd �lters) for each sub-band. This energy is then

averaged in the pooling windows (a separate set of windows is constructed for each scale, as

coarser scales are constructed on progressively down-sampled and �ltered versions of the image).

Thus, a pair of energy model metamers have the same average oriented energy and luminance

within each of these windows. The bottom row of �gure 3.4 shows two model metamers, one with

a high scaling value and one with a low scaling value. The low scaling value is approximately that

of the high scaling value for the luminance model metamer shown in the middle row, while the

high scaling value is approximately the physiological value of V1 [70]. The high-scaling model

metamer is perceptually distinct from the target image, but its appearance is completely di�erent

than that of the high-scaling luminance model metamer – there is none of the high-frequency

speckled pattern and instead the far periphery appears somewhat like pink noise (as the energy

model is matching spectral energy, that is approximately what’s going on). The low-scaling model

metamer, on the other hand, again appears as a potential human metamer when �xating but,
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when the observer moves their eyes to the periphery, is clearly distinct from the target image. As

the pooling windows get larger towards the periphery, the model metamer does a poorer job of

matching the hard lines found in the target image, which require a precise alignment of phases

across scales, a feature that is not directly represented by our model but constrained when the

pooling windows are small enough.

As can be seen in �gure 3.4, both models can generate potential perceptual metamers and, in

fact, all pooling models should be able to generate perceptal metamers for some scaling value,

though for a poor model, that value may need to be so small as to result in pixel-to-pixel matching.

As the pooled statistics get more perceptually-relevant, larger windows are su�cient for generating

perceptual metamers, as we see with the example model metamers above, where the energy

model potential human metamer is generated with a scaling value about six times larger than

the luminance model one, and about �ve times smaller than those synthesized in Freeman and

Simoncelli [70] using texture statistics. The goal of the present study is to use psychophysics to

�nd the largest scaling value where the above two models generate perceptual metamers, a value

we call the critical scaling, and compare this value to the physiological one for the visual areas

we are attempting to model.

The central circle with a radius of .5 degree was not visible by the model and was matched

pixel-by-pixel in our synthesized images, approximating the fovea, where no pooling occurs.

Additionally, if the scaling value was small enough, windows for some distance beyond this region

would be smaller than a pixel and so the only solution is to match the pixel values in that region

directly. For our image resolution of 2048 by 2600 and display size of 53.6 by 42.2 degrees, models

with scaling value of 0.063 have windows whose area at FWHM is smaller than a pixel out to 0.52

degrees, with this number increasing quadratically as scaling decreases, reaching 3.29 degrees for

scaling 0.01 (see 3.6.3 for more discussion).
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3.3.3 Synthesis

We synthesized model metamers matching 20 di�erent natural images (the target images)

collected from the authors’ (W.F.B and E.P.S) personal collections, as well as from the UPenn

Natural Image Database [209] and from an unpublished collection by David Brainard. The photos

were chosen from these collections so that they were large, that pixel intensities were proportional

to luminance, that they were 16-bit images, and that they had not undergone compression, which

could result in artifacts. They were converted to grayscale using scikit-image’s color.rgb2gray

function [220], cropped to 2048 by 2600 pixels (the photos from Prof. Brainard were 2014 pixels

tall, so a small amount of re�ection padding was used to reach 2048 pixels), and had their pixel

values rescaled to lie between .05 and .95 (synthesized images were still allowed to have pixel

values between 0 and 1; without rescaling the target images, synthesis resulted in strange artifacts

with pixels near 0, as this was the minimum allowed value). The images were chosen to span a

variety of natural image content types, including buildings, animals, and natural textures (see

�gure 3.2).

We synthesized the model metamers using custom code written in PyTorch [169], using

the AMSGrad variant of the Adam optimization algorithm [124, 183], with learning rate 0.01.

Slightly di�erent approaches were used for the luminance and energy model metamers. For

the luminance model metamers, the objective function was to minimize the mean-squared error

between the model representation of the target and synthesized images, L(x , x̂) = (M(x) −M(x̂))2,

and synthesis was run for 5000 iterations. For the energy model metamers, the objective function

also contained a quadratic range penalty term, which penalized any pixel values outside of [0, 1],

L(x , x̂) = .5(M(x) − M(x̂))2 + .5B(x̂), and synthesis was run for 15000 iterations. Additionally,

energy model metamer synthesis used stochastic weight averaging [108], which helped avoid local

optima by averaging over pixel values as synthesis neared convergence, and used coarse-to-�ne

optimization [178]. Additionally, each statistic (in both models) was z-scored using the average

78



highway

quad

boats

graffiti

ivy

rocks

grooming

lettuce

llama

tiles

leaves

nyc

palm

treetop

terraces

troop

portrait

azulejos

bike

gnarled

53.6°

4
2
.2
°

Figure 3.2: Target images covered a variety of image content, including textures, objects, and scenes. The images were
selected because they are large 16-bit images, with pixel intensities proportional to luminance and no compression
artifacts. Images were converted to grayscale, cropped to 2048 by 2600 pixels, were displayed at 53.6 by 42.2 degrees,
and had their pixel values rescaled to lie between .05 and .95. Synthesized images discussed in this paper were all
synthesized so that their model representations matched that of one of these images. Full resolution version of this
figure can be found on the OSF.

statistic value computed across the entire image on a selection of grayscale texture images, which

improved synthesis performance. For both models, synthesis terminated early if the loss had

not decreased by more than 1e − 9 over the past 50 iterations. While not all model metamers

achieved the same loss values, with di�erences in synthesis loss across target images, there was

no relationship between the remaining loss and behavioral performance.

In order to avoid possible synthesis artifacts resulting from approximation errors, we performed

the pooling operation in an ine�cient manner: for each model, its windows were represented as
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two tensors, one representing the angular slices and one representing the radial annuli, which,

when multiplied together, would give the individual windows, with separate sets of windows for

each scale in the energy model. This required a large amount of memory, and so for scaling values

below 0.09, models were too large to perform synthesis on the available NVIDIA GPUs with 32GB

of memory. Thus, all luminance model metamers were computed on the CPU, and synthesis of

a single image took from about an hour for scaling 1.5 to 2 days for scaling 0.058 to 14 days for

scaling 0.01. For the energy model metamers, the lowest two scaling values were computed on the

CPU, with synthesis taking about a week. For those energy model metamers which were able to

be computed on the GPU, synthesis took from 5 hours for scaling 0.095 to 1.5 hours for scaling

0.27 and above.

Synthesized images for original vs. synth and synth vs. synth white noise comparisons (see

3.3.5) were initialized with full-�eld patches of white noise (each pixel sampled from a uniform

distribution between 0 and 1). For each model, scaling value, and target image, three di�erent

initialization seeds were used. A unique set of three seeds was used for each scaling value and

target image, except for the following, which all used {0, 1, 2}

• Luminance model: azulejos, bike, gra�ti, llama, terraces, tiles; scaling 0.01, 0.013, 0.017,

0.021, 0.027, 0.035, 0.045, 0.058, 0.075 and 0.5.

• Energy model: azulejos, bike, gra�ti, llama, terraces, tiles; scaling 0.095, 0.12, 0.14, 0.18, 0.22,

0.27, 0.33, 0.4, and 0.5.

For original vs. synth and synth vs. synth natural image comparison, synthesized images

for each model, scaling value, and target image were initialized with three random choices from

among the rest of the target images.
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3.3.4 Observers

Eight participants (5 women and 3 men, aged 24 to 33), including an author (W.F.B.), participated

in the study and were recruited from New York University. All subjects had normal or corrected-

to-normal vision. Each subject completed nine one-hour sessions. One subject (sub-00) also

performed seven additional sessions. All subjects provided informed consent before participating

in the study. The experiment was conducted in accordance with the Declaration of Helsinki

and was approved by the New York University ethics committee on activities involving human

subjects.

3.3.5 Psychophysics experiment

A psychophysics experiment was run in order to determine which of the synthesized model

metamers were also perceptual metamers, see �gure 3.3 for schematic. During the experiment,

observers viewed a series of grayscale 8-bit images on a monitor, at a size of 53.6 by 42.2 degrees.

An image would appear, divided in half by a vertical midgray bar 2 degrees wide, for 200 msecs,

before being replaced by a midgray screen for 500 msecs, followed by a second image for another

200 msecs, also divided by a vertical midgray bar. Images were presented for 200 msecs to minimize

the possibility of eye movements and have behavior depend on feedforward processes, and the

dividing bar prevented participants’ use of spatial edges to perform the task. After the second

image, in which one half was identical to the �rst image and one half had changed, a midgray

screen appeared with text prompting a response, and the observer’s task was to report which half

had changed; the observer had as much time as necessary to respond. The two compared images

were either two synthesized images (synthesized for identical models with the same scaling value

and target image, but di�erent initializations) or one synthesized image and its target image. Either

image could be presented �rst.

The midgray blank screen presented between images serves as a mask to prevent participants
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from using motion cues to discriminate the two images. Our models aim to capture the steady state

response, not the transient response, which would be necessary to predict whether changes to an

image would be visible. This mask forces the participants to use the image content to discriminate

between the two images, rather than relying on temporal edges (analogous to our use of the

vertical bar to prevent the use of spatial edges). This introduces a memory component to the

task (participants must remember the �rst image in order to compare it to the second image),

which is also present in previous metamer discrimination experiments [57, 70, 219], and also

prevents participants from exploiting any small calibration imperfections in our experimental set

up. We believe the precise duration of this mask is unimportant for our results: �rst, Bennett and

Cortese [11] found the duration of a blank screen did not a�ect thresholds in a spatial frequency

discrimination task over a range from 200 to 10,000 msec, and second, mask duration is likely

to have a similar e�ect on performance as image presentation duration, which Freeman and

Simoncelli [70] found a�ected asymptotic performance but not critical scaling.

We performed four di�erent comparisons:

1. Original vs. synth, white noise: the two images being compared were always one synthesized

image and its target image, and the synthesized image was initialized with a sample of white

noise.

2. Synth vs. synth, white noise: both images were synthesized, with the same model, scaling

value, and target image, but di�erent white noise seeds as synthesis initialization.

3. Original vs synth, natural image: the two images being compared were always one synthe-

sized image and its target image, and the synthesized image was initialized with a di�erent

natural image from our data set.

4. Synth vs synth, natural image: both images were synthesized, with the same model, scaling

value, and target image, but initialized with di�erent natural images from our data set.
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inter-tri
al interval

Figure 3.3: Schematic of psychophysics task. Top shows the structure for a single trial: a single image is presented
for 200 msec, bisected in the center by a gray bar, followed by a blank screen for 500 msec. The image returns,
with a random half of the image changed to the comparison image, for 200 msec. The participants then have as
long as needed to say which half of the image changed, followed by a 500 msec intertrial interval. Bo�om table
shows possible comparisons. In original vs. synth, one image was the target image whose model representation the
synthesized images match (see figure 3.2), and the other was one such synthesized image. In synth vs. synth, both
were synthesized images targeting the same original image, with the same model scaling, but di�erent initialization.
In experiments, dividing bar, blanks, and backgrounds were all midgray. For more details see text.

For a given model and comparison, the full data set consisted of three sessions, each of which

contained 5 runs of approximately 8 to 12 minutes each. Subjects were instructed to take a brief

rest between runs. Each session contained the synthesized images across all scaling values for

�ve target images, and each run contained all synthesized images for three target images, with a

single image rotating in and out on consecutive runs. For a given comparison (between either

two synthesized image or a synthesized image and its target), there are four possible stimulus

con�gurations, and each of these showed up once per run, so that each comparison was made 12
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times over the course of the session. Each subject saw synthesized images for 15 of the 20 target

images; all subjects saw the �rst ten, and the remaining sets of �ve were balanced across subjects.

Subjects completed several training runs. Before their �rst session, to demonstrate task

structure, they completed the task as described above, comparing two natural images and two

noise samples (one white, one pink). Then, before their �rst session of each comparison type

including a natural image, they completed a training run showing two natural images and two

synthesized images of the type included in the session, one with the largest scaling included

in the task and one with the smallest. Before their session of each comparison type comparing

two synthesized images, they similarly completed a training run comparing four synthesized

images, two with a low scaling value and two with a high scaling value, for each of two target

images. Each training run took one to two minutes and was repeated if performance on the high

scaling synthesized images were below 90% or subjects expressed uncertainty about their ability

to perform the task (participants were expected to perform close to chance for the low scaling

synthesized images). A video of a single energy model training run, original vs. Synth: white

noise comparison, can be found on the OSF.

All observers took part in original vs. synth and synth vs. synth white noise comparisons

for the energy model and original vs. synth white noise comparison for the luminance model.

Energy model synth vs. synth white noise comparison was always the last comparison, as it was

the most challenging. One observer, sub-00, also did a single session of luminance model synth vs.

synth white noise comparison, as well as three sessions of energy model original vs. synth and

synth vs. synth natural image comparisons. Before each session which included a natural image

(the original vs. synth comparisons), subjects were shown the �ve natural images that would

be part of that session, as well as two example synthesized images per target image, one with a

low scaling value, one with a high scaling value. Before each session comparing two synthesized

images (the synth vs. synth comparison), subjects were shown four example synthesized images

per target image, two with a low scaling value and two with a high scaling value. This was done
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so observers had some sense of what the images looked like and how they di�ered.

3.3.6 Apparatus

The stimuli were displayed on an Eizo CS2740 LED �at monitor running at 60 Hz with resolution

3840x2160. The monitor was gamma-corrected to yield a linear relationship between luminance

and pixel value. The maximum, minimum, and mean luminances were 147.73, .3939, and 77.31

cd/m2, respectively.

The experiment was run using custom code written in Python 3.7.0 using PsychoPy 3.1.5

[171], run on an Ubuntu 20.04 LTS desktop. A button box was used to record the psychophysical

response data. All stimuli were presented as 8-bit grayscale images.

The experiment was run with a viewing distance of 40 cm, giving 48.5 pixels per degree of

visual angle. A chin and forehead rest was used to maintain head position. No eyetracking was

used.

3.3.7 Data analysis

All trials were analyzed, a total of 4320 trials per subject per model per comparison (across 15

images and 8 scaling values) for all energy model comparisons and for luminance model original

vs. synth white noise comparison. Luminance model synth vs. synth, white noise comparison had

1440 trials (across 5 images and 8 scaling values) for a single subject. The luminance model natural

image comparisons were not run. Where behavioral data is plotted in this paper, the proportion

correct is the average across all relevant trials.

To quantify performance as a function of model scaling, we used the same 2-parameter function
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for discriminability d′ as Freeman and Simoncelli [70]:

d′(s;α , sc) =


α(1 − s2c

s2
), s > sc

0, s 6 sc

where sc is the critical scaling value (below which participants cannot discriminate the stimuli)

and α is the max d′ value (called the “proportionality factor” in Freeman and Simoncelli [70]).

We transform d′ into the probability correct using the same function as in Freeman and

Simoncelli [70]:

P(s;α , sc) = Φ

(
d′(s;α , sc)
√
2

)
Φ

(
d′(s;α , sc)

2

)
+ Φ

(
−d′(s;α , sc)
√
2

)
Φ

(
−d′(s;α , sc)

2

)
where Φ is the cumulative of the normal distribution. The probability correct is 50% when d′ = 0

(and thus when scaling is at or below the critical scaling), reaches about 79% when d′ = 2 and

98% when d′ = 4. As the α parameter above gives the maximum d′ value, it has a monotonic

relationship with the asymptotic performance.

The posterior distribution over parameters sc and α was estimated using a hierarchical, partial-

pooling model, with independent subject- and image-level e�ects for both sc and α , with each

model and comparison estimated separately. Subject responses were modeled as samples from

a Bernoulli distribution with probability (1 − π )P(s) + .5π , where π is the lapse rate, estimated

independently for each subject. Estimates were obtained using a Markov Chain Monte Carlo

(MCMC) procedure written in Python 3.7.10 [215] using the numpyro package, version 0.8.0 [20,

172]. MCMC sampling was conducted using the No U-Turn Sampler algorithm ([99], step size 1,

target acceptance probability 0.8, and max tree depth 10), with 4 chains, each with 20,000 samples

(10,000 of which were discarded as warmup). Convergence was assessed using the R̂ statistics ([30],

looking for R̂ < 1.1) and by examining traceplots. Parameters were given weakly-informative

priors and both sc and α were estimated on natural logarithmic scales.
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In sum, for modelm ∈ {E,L}, comparison t , subject x , image i , and scaling s:

y1, . . . ,yn ∼ Bernoulli((1 − πmtx )P(s;αmtxi , sc,mtxi) + .5πmtx )

logαmtxi = αmt + αmti + αmtx

log sc,mtxi = sc,mt + sc,mti + sc,mtx

with the following priors:

αmt ∼ N(1.6, 1)

sc,Et ∼ N(−1.38, 1)

sc,Lt ∼ N(−4, 1)

πmtx ∼ Beta(2, 50)

αmtx ∼ N(0,σα ,mtx )

αmti ∼ N(0,σα ,mti)

sc,mtx ∼ N(0,σsc ,mtx )

sc,mti ∼ N(0,σsc ,mti)

σα ,mtx ∼ HalfCauchy(.1)

σα ,mti ∼ HalfCauchy(.1)

σsc ,mtx ∼ HalfCauchy(.1)

σsc ,mti ∼ HalfCauchy(.1)

The priors for sc,mt of the energy and luminance models correspond to critical scales of .25

and .018, respectively, which are derived from the center of the V1 physiological range plotted in

Freeman and Simoncelli [70] �gure 5 and from the slope of a line �t to the dendritic �eld diameter

vs eccentricity of midget retinal ganglion cells in Dacey and Petersen [50] �gure 2B (see section

3.6.1). This captures our prediction that the models’ critical scaling values should match that of
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the physiological scaling in the corresponding brain area, should be independent of comparison

type and consistent across images and subjects, while not placing too much of a constraint on the

parameters.

The posterior distribution represents the model’s beliefs about the parameters given the priors

and data and is summarized throughout this paper as the posterior mean and 95% high density

intervals (the 95% HDI represents the 95% of a probability distribution with the highest probability

density, as opposed to the more common 95% equal-tailed interval, which has 2.5% of its density

on either side of its limits; for symmetric distributions, these will be identical, but can diverge

markedly if the distribution is highly skewed, [128]).

3.3.8 Software

This project was done using a variety of custom scripts written in Python 3.7.10 [215], all

found in the GitHub repository associated with this paper. The following packages were used:

snakemake [149], JAX [25], matplotlib [106], psychopy [171], scipy [218], scikit-image [220],

pytorch [169], arviz [130], numpyro [20, 172], pandas [145, 182], seaborn [227], jupyterlab

[125], and xarray [102].

3.4 Results

For a given model and comparison, performance increases with scaling in a monotonic fashion,

and is �t well by our choice of psychophysical curve (�gure 3.5(A)). The exception is the synth vs.

synth comparison for the luminance model, which we will return to later. First, let us focus on

the original vs. synth comparisons. For both models, performance is at or near chance for the

smallest tested scaling values tested and exceeds 90% for the largest. The critical scaling values,

as seen in �gure 3.5(B) are approximately 0.016 and 0.06, respectively. While this value for the

luminance model falls between the physiological scaling of midget and parasol retinal ganglion
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Figure 3.4: Synthesized model metamers are perceptual metamers with their target image at low scaling values,
but easily discriminable at high values. The top row shows the target image whose representation the four model
metamers have been synthesized to match; the di�erence between these four images is which model was used, as
well as that model’s scaling parameter (the ellipse on each image shows the pooling window contour at half-max
at that eccentricity). The middle row shows model metamers for the luminance model, while the bo�om shows
those for the energy model. In both, the le� image comes from the smallest scaling value tested in the original vs.
synth comparison, while the right comes from the highest. For both, the le� image is a perceptual metamer: when
fixating at the cross in the center of the image, the two images are perceptually identical to the target image at
the top. However, when looking at the cutout of the periphery in the blue box, we can clearly see that all three
images are di�erent. The luminance model metamer has small amounts of high-frequency noise remaining from
its initialization with a patch of uniform noise, since its windows e�ectively act as low-pass filters, they become
increasingly insensitive to high frequencies towards the periphery; however, this level of noise at this frequency is
imperceptible when fixating. Similarly, the energy model metamer’s periphery contains more complicated distortions
owing to its phase insensitivity. For both models, these pa�erns are exaggerated in the high-scaling model metamer,
to the level where they are easily detectable when fixating. Full resolution version of this figure can be found on the
OSF.
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A

B

Figure 3.5: Original vs. synth comparisons have smaller critical scaling values than synth vs. synth comparisons,
and the luminance model has smaller critical scaling than the energy model. (A) Probability correct as a function of
scaling for energy and luminance models, original vs. synth (solid line) and synth vs. synth (dashed line) comparisons.
Data points represent the average across subjects and images, 4320 trials per data point except for luminance model
synth vs. synth comparison, which have 180 per data point (one subject, five images). Lines represent the posterior
predictive means of psychophysics curves across subjects and images, with the shaded region giving the 95% HDI.
Labeled horizontal bars give the range of physiological scaling values for the associated retinal ganglion cell type or
cortical area (Freeman and Simoncelli [70] for V1, 3.6.1 for RGCs). (B) Parameter values for these comparisons. Top
row shows the critical scaling value and the bo�om the value of the max d ′ parameter. Le� column presents the
values for each image, averaged across subjects, while the right presents the values for each subject, averaged across
images. Points represent the posterior means, shaded regions the 95% HDI, and horizontal dashed lines and shaded
regions the global means and 95% HDI. Note that the luminance model, synth vs synth: white noise comparison is
not shown in this panel, because the data was poorly fit by this curve – as can be seen in panel A, the psychophysical
curve is essentially flat at chance and thus the fit had low max d ′ and low critical scaling), with high uncertainty.
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cells, the energy model’s critical scaling is approximately half the lower end of V1’s range.

3.4.1 Performance differs between original vs. synth and synth vs.

synth comparisons

We can also see that the di�erence between original vs. synth and synth vs. synth is large

for both models: comparing two synthesized images is much more di�cult than comparing a

synthesized image to its target image. For the luminance model, in fact, this discrimination is

impossible (preventing us from estimating either psychophysical curve parameter), regardless

of the scaling value. This discrimination is possible, though di�cult, for the energy model, with

performance reaching about 60%, on average (there are substantial di�erences across subjects in

this asymptotic performance, see �gure 3.5(B) and �gure 3.16). While the critical scaling value we

�nd for this comparison is comparable to the value found in Freeman and Simoncelli [70] (and

thus the physiological scaling value of V1), the asymptotic performance is much lower. We believe

this to be primarily the result of experimental di�erences, see section 3.6.2 for details.

The di�culty of di�erentiating between two synthesized images, for either model, is striking.

Figure 3.6 may help explain why: as the pooling windows grow very large for the luminance

model, identical model representations serve as a very lax constraint: there are many possible

images with matched average pixel values in regions that large. As our synthesized images were

initialized with white noise, the completed model metamers appear to be two di�erent samples

of white noise with matched large-scale pattern of dark and light splotches. Humans are bad at

di�erentiating between samples of white noise and thus this task is impossible, no matter how

large the windows grow. In the limit, if the scaling value was so large that the model had only

one pooling window, two model metamers would be two patches of white noise with the same

mean, and di�erentiating them would still be impossible (Wallis et al. [219] made a similar point

when discussing their preference for the original vs. synth task). Analogously, synthesis with the
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Figure 3.6: With the highest tested scaling value, 1.5, the original vs. synth comparison is trivial while the synth vs.
synth comparison is di�icult (energy model) or impossible (luminance model). This figure has the same arrangement as
figure 3.4, except the two model metamers both have the same scaling value, but di�erent uniform noise initializations.
All four of the model metamers can be easily distinguished from the natural image at top (original vs. synth), but are
di�icult to distinguish from each other, despite the fact that their pooling windows have grown very large (synth vs.
synth). Luminance model metamers with such a large scaling value are essentially patches of white noise, which are
impossible from humans to distinguish from each other, even when free-viewing with unlimited time, let alone when
fixating for 200 msec. Energy model metamers, on the other hand, have snake-like pa�erns, such that comparing two
of them is similar to comparing two gratings with the same orientation and spatial frequency but di�erent phases,
which is di�icult but not impossible. Full resolution version of this figure can be found on the OSF.
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energy model forces local orientated spectral energy to match, without explicitly constraining the

phase, and so as the windows grow larger, the resulting synthesized images look more and more

like samples of pink noise with oriented bands running through them. Comparing two samples of

pink noise is also extremely di�cult for humans, but here the task is possible, if just barely, by

comparing the exact positions of the bands; this is akin to comparing the phase of two gratings

with identical orientation and spatial frequency (see peripheral inset in bottom row of �gure 3.6).

3.4.2 The interaction between model sensitivities and image content

affects performance

The critical scaling, which is the focus of this project, does not vary much across images for a

given model and comparison. However, performance at super-threshold scaling values does vary

substantially across images, as quanti�ed by the max d′ parameter and demonstrated in �gure

3.7. When looking at the energy model data for original vs. synth, we can see that the llama and

nyc images are two ends of the continuum: the llama image (red) is the most di�cult (with the

lowest max d′), while the nyc image (purple) is the least (with the highest max d′). By examining

their respective target images in panel B, we can see why that might be the case: the llama image

looks pink-noise-like, almost cloud-like, while the nyc image is full of hard edges in the cardinal

directions, which require precise alignment of phases across scales to capture. As discussed above,

synthesizing energy model metamers involves matching local oriented spectral energy, which

discards phase information; in order to well-approximate the buildings of nyc, the windows must

be very small. Conversely, the �u�ness of llama is easy for the model to capture. Thus, we can

see that the di�culty of the task depends on the interaction between the synthesizing model and

the target image.

This point is emphasized by viewing the data in �gure 3.15, which shows data in the same

format as �gure 3.7A, but for both models and both comparisons. With the exception of the top
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A

B Target image Scaling = 0.063 Scaling = 0.27

Figure 3.7: The interaction between image content and model sensitivities greatly a�ects asymptotic performance,
most noticeably on the energy model synth vs. synth comparison, while critical scaling does not vary as much.
(A) Performance for each image, averaged across subjects, comparing synthesized images to natural images. Most
images show similar performance, with one obvious outlier whose performance never rises above 60%. Data points
represent the average across subjects, 288 trials per data point for half the images, 144 per data point for the other
half. Lines represent the posterior predictive means across subjects, with the shaded region giving the 95% HDI.
(B) Example model metamers for two extreme images. The top row (nyc) is the image with the best performance,
corresponding to the purple line in A, while the bo�om row (llama) is an outlier with by far the worst performance,
corresponding to the red line in A. In each row, the le�most image is the target image, and the next two show model
metamers with the lowest and highest tested scaling values for this comparison. The performance on the llama
image is so low because the image itself is very similar to pink noise, without a lot of phase structure. Thus, even
with larger scaling values, the model metamers are very di�icult to distinguish from the target image. The nyc image,
on the other hand, has a lot of phase structure, with hard edges that require precise alignment of phase across scales
to adequately represent. As the energy model discards phase information, this phase structure is di�icult to capture
in the model metamers, and so they are relatively easy to distinguish from the target image at all tested scaling
values. However, this pa�ern does not hold in the luminance model (since all target images have 1/f frequency
distributions, lacking the high-frequency noise the model is insensitive to) or synth vs. synth comparison (since all
model metamers lack the phase structure participants are using to identify the target image), where both images
have similar, middle-of-the-pack performance (see figure 3.15). Full resolution version of this figure can be found on
the OSF
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right panel, which is replotted from 3.7, llama and nyc no longer appear as the two ends of the

continuum, but lie instead in the middle. For these other models and comparisons, the hard edges

of the original nyc are less informative, either because they are no longer present to compare

against (in the synth vs. synth comparisons) or because they are no longer exceptionally di�cult

for the model to capture (for the luminance model original vs. synth comparison). We can also

see from this �gure that the between-image di�erences are smaller for these other models and

comparisons. For the luminance model, original vs. synth comparison, this is because there is

less interaction between the original image features and the model’s invariances: the model is

insensitive to high frequencies and thus requires smaller windows to adequately represent that

information, but all our target images are natural images, with 1/f power distributions, and thus

there is less information present in higher frequencies. For the energy model synth vs. synth

comparison, the two images to distinguish are both synthesized and thus neither contain the edge

information that allows subjects to readily distinguish the original from synthesized image in the

original vs. synth comparison.

3.4.3 Initializing synthesized images with natural images affects synth

vs. synth performance

The di�erence between the two comparisons shown in �gure 3.5 is concerning — which

comparison should we rely on when determining the model’s critical scaling factor for comparing

to human perception? It seems natural to choose the comparison with the smallest critical scaling

value, but how do we know there is not some other comparison we could do for these models

that would reveal an even smaller critical scaling value? The null space of the pooling models

is incredibly large, and so there are many possible model metamers we could synthesize, either

for comparison against each other or against the target image. E�ectively searching this space

is not feasible; we used one method at our disposal: the synthesized images’ initialization. All
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synthesized images discussed so far (and used in other studies, such as Freeman and Simoncelli

[70] and Wallis et al. [219]) were initialized with white noise and this may be biasing our search.

The rationale behind initializing with patches of white noise is that such images have maximum

entropy and close-to-uniform power across all frequencies. However, white noise images are

far from common in the natural world and so may be grouped together perceptually, both by

the human visual system and our pooling models, and a similar issue may be occuring for our

synthesized images initialized with white noise. In fact, synthesized images initialized with white

noise all have a smaller synthesis-model distance with each other than they do with their target

image, consistent with them lying clumped together in one portion of model representation

space. In an attempt to explore a di�erent portion of this space, we generated another set of

model metamers, initializing them with other natural images from our data set, and repeated the

comparisons between two synthesized images and a synthesized image and its target.

Figure 3.8(A) shows behavior for these additional comparisons in the energy model, for one

participant (note that the curves are di�erent than in �gure 3.5 because they only represent one

subject’s behavior). We can see that changing the initialization image does not a�ect behavior for

the original vs. synth comparison, but that it has a large e�ect on the synth vs. synth comparison:

performance lies between that in the original vs. synth and synth vs. synth comparisons when

their synthesized images were initialized with white noise. Importantly, as far as the energy model

is concerned, it makes no di�erence what was used to initialize the synthesized images, they are

all model metamers and should be equally confusable with each other and with the natural image

their representations match. Clearly, however, that is not the case for human behavior.

Figure 3.9 shows comparisons corresponding to three points that intersect the vertical line

on �gure 3.8(A). All synthesized images here have the same scaling value, 0.27, but human

performance on these comparisons varies from ceiling to chance. The top row shows the easiest

comparison, between the original image and a synthesized image initialized with a natural image;

sub-00 was able to distinguish these two images with near-perfect accuracy. The bottom row
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Figure 3.8: Initializing model metamers with natural images does not a�ect performance in original vs. synth
comparison, but reduces critical scaling and increases max d ′ for the synth vs. synth comparison. (A) Probability
correct for one subject, sub-00, as a function of scaling for energy and luminance models, all comparisons (note
curves are di�erent from figure 3.5, which averaged all subjects). Data points represent the average images, 540 trials
per data point (one subject, fi�een images) except for luminance model synth vs. Synth: white noise comparison,
which have 180 per data point (one subject, five images). Lines represent the posterior predictive means across
images, with the shaded region giving the 95% HDI. Labeled horizontal bars give the range of physiological scaling
values for the associated retinal ganglion cell type or cortical area. Vertical black line represents scaling value where
di�iculty ran from chance to 100%, based on initialization and comparison, as discussed further in figure 3.9. (B)
Parameter values for these comparisons. Top row shows the critical scaling value and the bo�om the value of the
max d ′ parameter. Le� column presents the values for each image separately for this one subject, while the right
presents the values for this subject, averaged across images. In this case, we only present the data for sub-00, as
they are the only subject to perform all comparisons. Points represent the posterior means, shaded regions the 95%
HDI, and horizontal dashed lines and shaded regions average across all shown images for this subject. Note that the
luminance model, synth vs synth: white noise comparison is not shown in this panel, because the data was poorly fit
by this curve – as can be seen in panel A, the psychophysical curve is essentially flat at chance and thus the fit had
low max d ′ and low critical scaling), with high uncertainty.
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Energy model metamer init with natural image 2 Energy model metamer init with natural image 3

Energy model metamer init with white noise 1 Energy model metamer init with white noise 2

Figure 3.9: With energy model metamers synthesized with scaling value 0.27, task performance varies from ceiling to
chance, depending on which comparison is being made, despite the fact that the model predicts all three comparisons
should be equivalent. The top row shows the easiest comparison, between the target image and a synthesized image
(here initialized with another natural image, bike, but performance is identical when initialized with white noise).
With pooling windows of this size, synthesized images are obviously not natural when fixating. The middle rows
shows a comparison with about 80% probability correct, between two synthesized images initialized with di�erent
natural images. Here, enough features remain from the initial images (tiles on the le�, highway on the right) to make
these images distinguishable. Finally, the bo�om row shows the most di�icult comparison, between two synthesized
images initialized with di�erent patches of white noise, and humans are insensitive to the di�erences between the
two. Full resolution version of this figure can be found on the OSF.

shows the hardest comparison, between two synthesized images initialized with di�erent samples

of white noise. As discussed above, comparing two images of this type is di�cult even with large

pooling windows; at this scaling level, humans are insensitive to the di�erences between them,
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Model Comparison Critical Scaling Number of Statistics
(percentage of image pixels)

Luminance Original vs. Synth: white noise 0.017 19.6 %
Synth vs. Synth: white noise N/A N/A

Energy

Original vs. Synth: white noise 0.065 34.7 %
Original vs. Synth: natural image 0.068 31.5 %
Synth vs. Synth: natural image 0.114 11.6 %
Synth vs. Synth: white noise 0.252 2.6%

Table 3.1: Models reach critical scaling at di�erent compression rates, and all are undercomplete. Table shows
critical scaling (posterior mean over all subjects and images) and number of statistics (as a percentage of number
of input image pixels), akin to the compression rate, for each model and comparison. Note that the critical scaling
for original vs. synth comparisons does not result in the same number of statistics across models and, in particular,
all models are undercomplete at their critical scaling values, i.e., their representations compress the image to some
degree. The luminance model synth vs. synth comparison has no critical scaling value, as performance was always
at chance. For a given model, the number of statistics decreases quadratically with scaling.

and so performance was at chance. The middle row shows two synthesized images, initialized

with di�erent natural images, which the subject was able to distinguish with middling accuracy.

When comparing these two images, one can see features in the periphery that remain from the

initial image (tiles and highway, respectively). Even when �xating, the subject was able to use

these features to distinguish the two images, i.e., the human was sensitive to them while the model

was not. This reinforces the notion that our pooling models are incomplete in an important way:

at the pooling level that approximately matches V1 receptive �elds, humans are sensitive to some

statistic present in natural images that our models are discarding.

3.4.4 The models reach critical scaling at different compression rates

Table 3.1 shows all the critical scaling values we were able to compute. We can see that

�nding a model’s critical scaling is not simply a matter of increasing the number of windows until

the model’s representation is overcomplete or until it reaches some threshold: for the original

vs. synth white noise comparison, the luminance model representation is slightly smaller than

two-thirds the energy model’s. We should also note that, if one were to use the model outputs
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as a compressed representation of the image, the number of statistics in each representation is

almost certainly an overcount, for several reasons. First, in order to ensure that the Gaussian

pooling windows uniformly tile the image, the most peripheral windows in the model have the

majority of their mass o� the image. This is important for metamer synthesis, to avoid artifacts at

the edge of the image, but may not be necessary for a compression application. Second, for the

energy model, we did not spend a lot of e�ort determining how the precise number of scales or

orientations a�ected metamer synthesis, and currently all scales are equally-weighted across the

image. As the human visual system is insensitive to high frequencies in the periphery and low

frequencies in the fovea, this is probably unnecessary, and so some of these statistics can likely

be discarded. Finally, our pooling windows are highly overlapping and thus the pooled statistics

are far from independent; this redundancy means that the e�ective dimensionality of our model

representations is far lower than the compression rates above.

3.5 Discussion

We synthesized sets of metamers for two foveated pooling models of human vision with

large �elds of view. We presented these images to observers in psychophysical experiments and

showed that our choice of scaling values spanned an appropriate range of values, and that behavior

depends signi�cantly on the nature of the comparison observers are making and to a lesser extent

on the natural image whose model representation the synthesized image matched. Critical scaling

is smaller for the luminance than for the energy model, and for both models critical scaling is

smaller and max d′ is larger when discriminating natural and synthesized images than when

discriminating two synthesized images. We also found intermediate behavior for synth vs. synth

but identical behavior for original vs. synth when the synthesized images were initialized with

other natural images.

100



3.5.1 Luminance pooling is smaller than energy pooling

The largest e�ect observed in this study is the di�erence in critical scaling between the energy

and luminance models in the original vs. synth condition: the energy model’s critical scaling is

approximately four times larger than that of the luminance model (�gure 3.5 and table 3.1). This

is a robust result, observed for all subjects and all target images (�gure 3.5(B)). Additionally, the

energy model scaling value found here is also smaller than that of the texture model found in

Wallis et al. [219] in the original vs. synth condition: the average energy model critical scaling is

about three times smaller than the average value for the texture model. Together, these results

suggest that the three models are approximating subsequent parts of the visual hierarchy, with

larger pooling regions for texture statistics than spectral energy, and larger pooling regions for

energy than luminance.

3.5.2 Critical scaling value is smaller for original vs. synth than

synth vs. synth comparisons

The di�erence between the original vs. synth and synth vs. synth comparisons is striking,

especially for those synthesized images initialized with white noise. Similar results were observed

by Wallis et al. [219] for the mid-ventral model from Freeman and Simoncelli [70] and by Deza,

Jonnalagadda, and Eckstein [57] for their deep neural network-derived model. For both the

luminance and energy models, original vs. synth was much easier than the synth vs. synth

comparison. This is most striking for the luminance model, where discriminating between two

synthesized images initialized with white noise is always impossible, regardless of the scaling

value. If we were to take the luminance model with its critical scaling value as an observer model,

this result is confusing: these synthesized images are not observer model metamers, and so should

be discriminable. This speaks to an asymmetry in the metamer testing framework: when we have

the correct critical scaling, two model metamers should also be perceptual metamers. However,
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when two images are not model metamers, we make no predictions about their discriminability;

the information that discriminates them at the stage of the visual system that corresponds to

our luminance model may still be thrown out further downstream. As the luminance model

approximates the retina, there are many brain areas afterwards whose null spaces the di�erences

between these images may still fall into. We can see this in �gure 3.6: two such images look like

di�erent patches of white noise and while they may be discriminable at the beginning of the

visual system, they are not at the level of behavior. In order to close the loop and make predictions

about how discriminable pairs of arbitrary images are (not just determining whether those pairs of

images will be perceived identically), a complete observer model is needed. The models presented

here may serve as the basis for such a model, but more work is needed, tying in with the literature

of observer models in vision science (e.g., [8, 26, 191]) and of image quality metrics in computer

vision (e.g., [58, 224]).

Combining our results with Wallis et al. [219], we have critical scaling values for both original

vs. synth and synth vs. synth comparisons for three pooling models of progressively deeper levels

of the visual system. We see that, while the critical scaling value is lower for the original vs. synth

comparison for all three models, the gap between the two decreases as the models go up the

hierarchy: in�nite for the luminance model, to about quadruple for energy, to less than double for

texture. One potential explanation for this observation is that there are progressively fewer stages

of visual processing to discard information as you go up the hierarchy: the di�erence between

V1 responses to a pair of images may fall into IT’s null space, but there are not many steps of

processing between IT and the perceptual read out where di�erences between IT responses can be

discarded. This may be why we see no overlap between the critical scaling values for original vs.

synth and synth vs. synth comparisons across images in �gure 3.5(B), whereas Wallis et al. [219]

see substantial overlap. Ultimately, physiological data is needed to investigate these possibilities.
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3.5.3 Interpreting the critical scaling value

When we have di�erent potential critical scaling values for a single model, as with the energy

model’s values from the original vs. synth and synth vs. synth comparisons, which should we

trust? We believe that the critical scaling value from the original vs. synth comparison, which

will almost certainly be smaller, should be used. Natural images are more likely than synthesized

images to include information that the human visual system as a whole has evolved to be sensitive

to, rather than information that is discarded at some later stage of processing. Using natural

images to initialize synthesis or the development of novel synthesis methods that better explore

the space of all possible metamers may reduce the discrepancy between the two conditions, but

the original vs. synth comparison provides the strongest test of these models.

We thus have a critical scaling value for our energy model that falls well below the range we

would expect from V1 neurons and above that of retinal ganglion cells. How should we interpret

this? This likely signi�es that the energy model is missing some key component of V1 computation.

Pooling models approximate statistics they do not have via smaller windows: for example, a Gabor

wavelet can be approximated either by matching its spatial frequency and orientation over its

whole extent or by matching the luminance of each of its component lobes. Analogously, our

energy model does not represent hard edges well, as seen in �gure 3.7B, but begins to approximate

them with small enough windows. Thus, we believe that the fact that our energy model’s critical

scaling fell far below the physiological scaling suggests that there is some important calculation

performed in V1 neurons beyond computing the local spectral energy and luminance. We added

additional local moments of the pixel values (second through fourth) to the model, and this did

not change the resulting model metamers perceptually.

One possible addition is divisive normalization, a “canonical neural computation” [38] �rst

proposed to explain neuronal responses in cat V1 [88]. If the normalization is global, such

that all responses are modulated together, this will have no e�ect on the metamers, but if the
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normalization is local, modulating responses based on those of nearby windows, it may have an

e�ect. Local normalization may allow for larger critical scaling values when comparing synthesized

against natural images, bringing the value more in alignment with that for the comparison

between two synthesized images. For example, one phenomenon captured by normalization is

cross-orientation suppression, exhibited by both simple and complex cells in V1 [47], where the

presence of orientations orthogonal to the preferred orientation suppress the �ring rate of the

cell. In order to capture this phenomenon in our normalization-free energy model, we would

need windows small enough to separately constrain the preferred orientation in the center and

the anti-preferred orientation in the surround, leading to pooling windows smaller than the

corresponding neuronal receptive �elds. With normalization, however, a larger window could

capture this phenomenon with appropriate suppression of the response corresponding to the

preferred orientation. Incorporating divisive normalization into the energy model may thus result

in a larger critical scaling value. However, implementing local normalization is not trivial, as it

requires making poorly-constrained decisions about how far the normalization pool should extend

in space, scale, and orientation. Future work is needed to test this and other possibilities.

The luminance model’s critical scaling falls between the physiological values for the two most

numerous retinal ganglion cell classes, suggesting that matching the mean luminance results in

approximately matched retinal outputs. This may seem surprising, as the textbook de�nition

of retinal ganglion cells emphasizes their center-surround nature, which would give rise to a

bandpass representation, as opposed to the lowpass representation used here. We used a simpler

model for technical reasons: we were unable to construct di�erence-of-Gaussian windows that

uniformly tiled the visual �eld (there were particular di�culties where windows began and at the

image edge), which led to synthesis artifacts. However, it is known that RGCs are not perfectly

balanced, that they have a luminance response: Croner and Kaplan [48], for example, show a

mean integrated sensitivity ratio between surround and center of 0.55 for both parasol and midget

RGCs, with a range of 0.1 to 0.9 (at 40 cdm−2, the low end of photopic sensitivity, and this balance
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changes with luminance). Furthermore, our goal was not to build a complete retina model but

to model spatial averaging of luminance, which we know is computed somewhere in the visual

system and is the simplest pooling model we can build, and then investigate potential connections

to the physiology. It is intriguing that the critical scaling of our luminance model, which is missing

obvious properties of retinal processing, matches the physiological scaling of retinal ganglion

cells, while that of our energy model, which better matches the functional properties of V1, is so

much lower than the corresponding physiological value, but we have no compelling explanation

as to why that might be.

3.5.4 The interaction between image content and model (in)sensitivity

affects performance

Similar to Brown et al. [31] and Wallis et al. [219], we �nd that image content matters. Both of

those studies synthesize model metamers based on pooled texture statistics, and Wallis et al. [219]

shows that texture-like original images are harder to distinguish from their synthesized images

than scene-like ones, while Brown et al. [31] show that, among their textures, original images

with higher global and local regularity are the easiest to distinguish from their synthesized images

(textures with high regularity include baskets, whereas those with low regularity include fur).

This aligns with our result: the most distinguishable pairs include natural images with features not

well-captured by the synthesizing model, whereas the least distinguishable include those natural

images whose features are all adequately captured.

However, we should note that we found this image-level variability largely in super-threshold

performance, and this variability does not constitute a failure of these pooling models. As pointed

out by Freeman and Simoncelli [70], asymptotic performance also varies with experimental

manipulation, while critical scaling remains relatively una�ected. The metamer paradigm makes

strong predictions about what happens when the representation of two stimuli are matched: they
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are indistinguishable, and so performance on a discrimination task will be at chance, as captured by

the critical scaling value. However, it makes no predictions about performance at super-threshold

levels, as captured by the max d′ parameter. An analogy with color vision might make this point

more clear: color matching experiments provide evidence for what spectral distributions of light

are perceived as identical colors, but provide no information about whether humans consider

blue more similar to green or to red; further investigations are necessary to understand color

appearance. Thus, while this image-level variability is worth investigating in order to better

understand the sensitivities of our model, it does not much a�ect the inferences we want to make

about the human visual system, and speaks more to the need for a complementary approach.

On the other hand, the di�erences between the original vs. synth and synth vs. synth

comparisons, as discussed in 3.5.3, do represent di�culties for our models, as do the e�ect of

initialization on results in the synth vs. synth comparison. This latter e�ect implies there are some

features present in the natural image seeds that the model is insensitive to, and so they remain in

the synthesized images, but that the human is sensitive to, and thus are able to use to discriminate

between two such synthesized images. The lack of such features is what makes discriminating

between two synthesized images initialized with white noise so di�cult. This provides further

support for the possibility that our energy model is missing some key statistics, as otherwise the

image the metamer is initialized with would have no e�ect. Initializing with natural images is an

attempt to sample a broader portion of the manifold of possible metamers, but a more principled

way of doing this would involve changing the synthesis procedure to better search image space,

resulting in more informative metamers.

To summarize, the metamer contains information the model is insensitive to from the initial

image and information the model is sensitive to from the target image. When performing the

synth vs. synth task, these are the only sources of information that subjects can use to distinguish

the two images, but when performing the original vs. synth task, subjects also have access to

model insensitive-information from the target image. The discrepancy between performance on
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these two tasks, as well as the outlier performance on certain images, result from this mismatch

between human and model sensitivities: humans are able to use this information which the model

has discarded.

3.5.5 Window mismodeling may also be an issue

Since pooling windows and statistics trade o� against one another, it is also possible that the

smaller than expected critical scaling for the energy model speaks to an issue with our pooling

windows, rather than with the statistics being pooled. When performing the task, especially the

original vs. synth comparisons, subjects reported that the most informative portions of the image

were in the mid-periphery, rather than close to �xation or at the edges of the image. This suggests

that our windows may be too large in that region (or, equivalently, too small near the fovea and

the far periphery), and that pooling window width is not best modeled by a linear function but by

something non-linear. Another possibility is that, rather than using the same size windows for

all statistics, di�erent statistics should have di�erent size windows, with window size varying

inversely with statistic scale, such that high frequency information has the smallest windows and

luminance the largest. Either variant will change the interpretation of the scaling parameter, and

so careful thought is necessary to determine how to relate such sizes to the linear, constant size

captured by the scaling parameter in this and similar studies.

3.5.6 The difficulties of linking physiology and psychophysics

The above issues demonstrate some of the di�culties in making inferences about the link

between physiology and psychophysical models. The linking proposition that underlies the

metamer paradigm is a “Converse Identity” proposition in the framework proposed by Teller

[206]: identical perceptual states imply identical physiological states. In fact, the use of pooling

models allows us to go one step further: once we have found the critical scaling value, we can say
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that identical model outputs imply identical perceptual states imply identical physiological states.

However, our linking proposition is silent on what is implied by distinct model outputs and so

a complementary approach is required, such as building observer models to predict perceptual

distance.

Furthermore, there is a general di�culty with the idea of linking psychophysical pooling to

physiological receptive �elds in order to �nd a matching visual area: there is not a single receptive

�eld scaling value for a given area. There are many reasons for this, the most important of which

is the heterogeneity of cell types in any given area: V1 cells do not belong to a single population

any more than retinal ganglion cells do. Simple and complex cells have di�erent receptive �eld

sizes [105], cells in di�erent layers act di�erently [204], and the cell sampling issues inherent in

electrophysiology mean we may have overlooked other populations [166]. Furthermore, even for

a single population of V1 cells, such as complex cells, there is still a fair amount of uncertainty

about receptive �eld size. This uncertainty may result from one of any number of reasons, but an

important possibility is the sensitivity of the receptive �eld size measurement to the stimuli and

experimental procedure. Many early receptive �eld mapping studies swept bars across the visual

�eld (e.g., [74]), de�ning the receptive �eld by the bar locations where response was �rst evoked,

resulting in a square receptive �eld. Later experiments (e.g., [42]) rarely use this method, instead

de�ning center and surround regions separately by enlarging circular stimuli until responses

saturate and shrinking annular stimuli until responses begin, respectively. These two methods

give fundamentally di�erent answers to the question “what is the size of the receptive �eld?”, and

reverse correlation, another common method, gives a third. Furthermore, Ziemba et al. [238] show

that, even when using a given method, di�erent types of stimuli (naturalistic textures, spectral

noise, or sinusoidal gratings) result in di�erent values for the size of the classical receptive �eld.

All of this suggests that receptive �eld scaling is, unfortunately, not a simple property of visual

areas, but is a function of at least the visual area, cell class, cortical layer, mapping method, and

stimulus type. Thus, we should understand that there is a large amount of meta-uncertainty on
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the measurements of the physiological scaling value, and this uncertainty may be part of the

reason for the mismatch between our psychophysical critical scaling value and the physiological

scaling ranges plotted throughout the �gures in this paper.

In this study, we measured the spatial extent of pooling for luminance and spectral energy

required to generate novel images that function as perceptual metamers for natural images, and

showed these critical scaling values were reasonably consistent across subjects and images, as

well as robust to initialization choices. While linking these values to physiology is di�cult, for

the reasons discussed above, we believe this consistency and robustness demonstrates that these

models capture important aspects of the foveated processing of visual information. Furthermore,

the increase in critical scaling and decrease in ratio between critical scaling for the synth vs. synth

and original vs. synth comparisons along with statistic complexity, from luminance to energy to

texture [219], suggest they do correspond to di�erent stages of visual processing. Further work is

needed to understand the source of the di�erences between the synth vs. synth and original vs.

synth comparisons and to understand the relationship between these perceptual pooling models

and neuronal processing.
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3.6 Appendix

3.6.1 Dacey data

Figure 3.10: Receptive field diameter as a function of eccentricity for retinal ganglion cells. Data includes both on
and o� subtypes, and is from Dacey and Petersen [50] figure 2B, extracted using WebPlotDigitizer, and then fit
with a hinged line through the origin using MCMC. Shaded region denotes the 95% HDI of the fit. The 95% HDI
of these slopes are plo�ed as the range of physiological scaling values in figures 3.5 and 3.8. Eccentricity of retinal
ganglion cells within 3 mm (approximately 10 deg) of the fovea have been converted to photoreceptor inner segment
eccentricity using a second-order polynomial equation from Curcio, personal communication to the authors of Dacey
and Petersen [50], based on direct measurement of human photoreceptor axons. While the hinged line through the
origin does not fit the data for the parasol RGCs as a line with a non-zero intercept, it does not qualitatively change
our interpretation of the physiological scaling value in this study, and is thus used to be consistent with the analysis
of V1 from Freeman and Simoncelli [70] and the definition of scaling for our pooling models.

The range of physiological scaling values for midget and parasol retinal ganglion cells plotted

in �gures 3.5 and 3.8 come from the data plotted in Dacey and Petersen [50] �gure 2B, replotted

in �gure 3.10 along with the hinged line whose slope we use as the physiological scaling value.

This is similar to the procedure used by the authors in Freeman and Simoncelli [70] to get

physiological scaling values for V1 and V2. The primary di�erence is that the Dacey data is

anatomical, measuring the diameter of the dendritic �eld in human postmortem retinal tissue
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([70] used electrophysiological measurements from macaques). Eccentricity of retinal ganglion

cells within 3 mm (approximately 10 deg) of the fovea have been converted to photoreceptor

inner segment eccentricity using a second-order polynomial equation from Curcio, personal

communication to the authors of Dacey and Petersen [50], based on direct measurement of human

photoreceptor axons. According to Brian Wandell’s list of useful vision science numbers, the

foveola (the region of the fovea that is completely rod- and capillary-free) is .3 mm (about 1 degree)

in diameter. As midget RGCs in the fovea are connected to a single cone, the foveal cone diameter

serves as a �oor for midget retinal ganglion cell spatial integration at the fovea. Foveal cones have

a diameter of 1 to 4 microns [221], which corresponds to .2 to .9 arcmin, two to nine times smaller

than the approximately 1.8 arcmin that our hinged line predicts for midget dendritic �eld diameter

at �xation.

As can be seen in �gure 3.10, the hinged line with zero intercept is not a good �t for the

parasol RGC data (though it does �t the midget data well). Using a non-zero intercept improves the

prediction and slightly increases the physiological scaling values much for both classes: the 95%

HDI is [0.0092, 0.01] vs. [.0091, .01] for midget RGCs and [.032, .036] vs. [.025, .028] for parasols.

However, this does not change how this data relates to our results, and does align our analysis

with that of Freeman and Simoncelli [70], as well as matching the hinged-line with zero intercept

construction of pooling windows in our models, so we present the slopes from the line with zero

intercept.

3.6.2 Differences with Freeman and Simoncelli, 2011

As noted in the text, while the critical scaling we found for the energy model comparing

two synthesized images initialized with white noise was comparable to that found in Freeman

and Simoncelli [70], subjects’ asymptotic performance was lower (average of 60% correct across

subjects and images, compared to 85%). This was also noted, for the “mid-ventral”, pooled texture-

statistic model, in Wallis et al. [219], who ran a control experiment to ensure it doesn’t come down
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to task di�erences. As our implementation of the pooling models is completely separate from

that of Freeman and Simoncelli [70], we investigated whether di�erences in window construction

or other implementation details could have led to any marked di�erence. A Jupyter notebook

investigating this can be found in the Github repo associated with this project, showing that

the windows appear comparable, as do energy model metamers with comparable scaling values.

Additionally, if our windows were signi�cantly di�erent from those in Freeman and Simoncelli

[70], we would expect them to a�ect the critical scaling, whose value relates window radial

diameter to eccentricity. However, the critical scaling value for the only comparison present in

both studies (energy model, synth vs synth white noise comparison) is consistent, so we believe it

is unlikely that the some detail of window construction is responsible for the di�erences between

the studies.

One possible explanation for the di�erence in asymptotic performance is the smaller pixel

pitch of our images: 48.5 pixels per degree, as compared to the 19.7 pixels per degree used in

Freeman and Simoncelli [70]. To investigate this possibility, we down-sampled our target images

by half (to a resolution of 1024 by 1300 pixels) using a Gaussian pyramid (via scikit-image’s

transform.pyramid_reduce function, [33, 220]) then synthesized energy model metamers with

identical scaling values and optimization hyperparameters to the energy model synth vs. synth

white noise comparison. The psychophysical experiment was run as before, with one subject (sub-

00), upsampling the images with nearest neighbor interpolation to present at the same physical

size as before, e�ectively doubling the pixel pitch.

As can be seen in �gure 3.11, which shows data for a single subject, the critical scaling value

did not change, but asymptotic performance increased slightly. For an intuition, see the example

images in �gure 3.12, which show that the patterns used to di�erentiate the two synthesized

images are slightly more obvious with a larger pixel pitch.

Beyond the di�erence in pixel pitch, there are several other potential factors that may contribute

to our lower asymptotic performance:
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A

B

Figure 3.11: Asymptotic performance on the synth vs. synth white noise comparison is slightly higher when images
have a larger pixel pitch. (A) Probability correct for one subject, sub-00, as a function of scaling for energy and
luminance models. Data points represent the average across images, 540 trials per data point (one subject, fi�een
images) except for luminance model synth vs. Synth: white noise comparison, which have 180 per data point (one
subject, five images). Lines represent the posterior predictive means across images, with the shaded region giving the
95% HDI. Labeled horizontal bars give the range of physiological scaling values for the associated retinal ganglion
cell type or cortical area. (B) Parameter values for these comparisons. Top row shows the critical scaling value and
the bo�om the value of the max d ′ parameter. Le� column presents the values for each image separately for this one
subject, while the right presents the values for this subject, averaged across images. In this case, we only present
the data for sub-00, as they are the only subject to perform the task with larger pixel pitch. Points represent the
posterior means, shaded regions the 95% HDI, and horizontal dashed lines and shaded regions average across all
shown images for this subject. Note that the luminance model, synth vs synth: white noise comparison is not shown
in this panel, because the data was poorly fit by this curve – as can be seen in panel A, the psychophysical curve is
essentially flat at chance and thus the fit had low max d ′ and low critical scaling), with high uncertainty.
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Figure 3.12: Energy model metamers synthesized with larger pixel pitch are slightly easier to distinguish from each
other at high scaling values. Top row shows the target image whose representation all presented model metamers
were synthesized to match. Middle row shows two energy model metamers initialized with di�erent patches of white
noise, which were shown in the synth vs. synth white noise comparison. Bo�om row shows two model metamers
initialized with same se�ings but half the pixel resolution, which were shown in the large pixel version of the synth
vs. synth white noise comparison. As these images have half the resolution in each direction as the middle row but
were presented at the same physical display size, their pixel pitch was doubled, making it comparable to that of
Freeman and Simoncelli [70]. With the larger pixel pitch, the snake-like pa�erns that can be used to distinguish
the two synthesized images have a lower spatial frequency (in cycles per degree), which, given their presence in
the periphery where spatial frequency sensitivities are lower, may account for the participant’s increased ability to
distinguish such images. Full resolution version of this figure can be found on the OSF.

• Experimental parameters were determined for the original vs. synth comparison, which is

an easier task than synth vs. synth comparison. Longer presentation times or some other

con�guration may increase asymptotic performance in synth vs. synth comparison (but, as
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Freeman and Simoncelli [70] showed, these sorts of experimental manipulations are unlikely

to have much e�ect on the critical scaling, which is the focus of this study).

• Our images are physically larger, with a diameter of 53.6 degrees compared to 26 degrees

in 26 in Freeman and Simoncelli [70]. In debrie�ng, participants reported performing

the task by �nding particular informative parts of the image (e.g., high contrast edges)

and attending there. Larger images may have made these regions harder to �nd, and the

attentional manipulation in Freeman and Simoncelli [70] shows that attending to the most

informative region of the image improves asymptotic performance (while leaving critical

scaling unchanged). Additionally, Ziemba and Simoncelli [237] showed that the probability

of correctly di�erentiating two samples from the same texture family decreases as those

samples get larger (conversely, performance increases with image size when participants

are di�erentiating between two di�erent texture families). Something analogous may be

happening here, with two synthesized images initialized with white noise acting similarly

to two samples from the same texture family.

• As seen both here and in previous studies [57, 70, 219], asymptotic performance varies more

across images and subjects than critical scaling. We have a di�erent subset of images and

subjects and so sampling issues may be partly at fault.

All told, there are multiple reasons why asymptotic performance di�ers between this study

and Freeman and Simoncelli [70], which we are unable to comprehensively track down.

3.6.3 Images are physically distinct

There are two properties that perceptual metamers must have: they must be perceptually

identical and physically distinct. We have shown our synthesized images are perceptually identical

and �gure 3.13 shows that the images are physically distinct. The image at the top of that �gure

is the original natural image whose representation the model metamers matches. The six lower

115



Figure 3.13: Luminance model metamers are substantially physically di�erent from original images. The six bo�om
images all have approximately the same mean-squared error to the top image, the original natural image. Notice
that the luminance model metamer synthesized with scaling value 0.01 (top le�) is by far the least discriminable with
the natural image when fixating on the center, the others are obviously distinct. This pair of original and synthesized
image was chosen to set the MSE because it has the lowest MSE for all luminance metamers when compared with
their original image. Full resolution version of this figure can be found on the OSF.

images all have approximately the same mean-squared error to that original image, yet only the

luminance model metamer, top left, is confusable with the natural image, the others are easily

discriminable from it. The top right image has had high-frequency noise added uniformly across

the image and thus shows the importance of foveation: the luminance model metamer also di�ers

from the original image primarily by the addition of high-frequency noise but, by concentrating

the noise in the periphery, it is undetectable.
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A

B

Figure 3.14: Mean-squared error (MSE) betwen model metamers and target images as a function of eccentricity,
averaged radially, for the luminance model (A) and energy model (B). Each scaling value is shown as a separate color,
and each target image is plo�ed on a separate axis. For the luminance model, the smallest scaling value has zero
MSE out to about 5 degrees, and all scaling values rise with eccentricity and then saturate. For the energy model, all
scaling values have non-zero MSE by 1 degree and are indistinguishable beyond that for most images, though for
some, such as gnarled and ivy, lower scaling values have higher MSE across eccentricities.
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In addition to global mean-squared error, we can also examine the mean-squared error at

each eccentricity, as plotted in �gure 3.14, which shows the mean-squared error between model

metamers and target images as a function of eccentricity for the range of scaling values used in

the original vs. synth comparison, for the luminance model (A) and the energy model (B). As

discussed earlier, when windows get smaller than a pixel, the only value that will have the same

model output is the original pixel value. One might have a similar concern for the energy model:

what is the smallest pooling window in which a given spatial frequency can be computed and so

will windows containing e.g., 16 pixels, also be uniquely constrained when matching 6 scales?

Panel (B) shows this is not the case for our energy model metamers: all scaling values have a

non-zero mean-squared error by 1 degree. However, panel (A) shows that the lowest scaling value

for the luminance model metamers has a zero mean-squared error until about 5 degrees, and rises

beyond that. While lower scaling values do have a smaller mean-squared error across much of

the image, that does not guarantee that they are less informative: mean-squared error is a poor

perceptual metric [226].

However, when mean-squared error is zero, two images cannot be discriminated between, and

so we might worry that the reduced performance for lower scaling values of the luminance model

do not re�ect the fact that we have found perceptual metamers but that we have removed all

information that participants could use to discriminate between the images because of sampling

issues with our display. We think this is unlikely for two reasons. First, participants are able

to use peripheral information to discriminate between stimuli, including letters [202], gratings,

and Vernier lines [60]. Second, our resolution is approximately 48.5 pixels per degree, giving a

Nyquist frequency of about 24 cycles per degree. Human grating acuity drops below this frequency

by an eccentricity of 2 or 3 degrees [5, 60], suggesting that participants would not be able to

use this information even if it were present. Additionally, participants reported that the most

informative portions of the image were in the mid-periphery, across all conditions, providing

additional evidence that they were not relying on the portion of the image where the lowest
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scaling values were matched to the target image in order to perform the task. Further experiments

investigating which portion of the image were the most informative in a more systematic way,

such as restricting the stimuli to annuli at di�erent eccentricities and comparing the resulting

psychophysical curves, would provide clarity on this matter.

3.6.4 Image and subject differences

Figures 3.15 and 3.16 show the performance for each image and subject separately, respectively

(collapsing over the other dimension). As can also be seen in �gure 3.8(B), there’s not much

variability in subjects’ critical scaling. Additionally, we see that the two extreme images (examined

in �gure 3.7) are only extremes for the energy model when comparing against natural and

synthesized images; there’s nothing special about the image contents in and of themselves.
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Figure 3.15: Image content only ma�ers for the energy model, original vs. synth comparison. Performance for each
image, averaged across subjects, is plo�ed separately. This is because the image content a�ects performance based
on how it interacts with the models’ sensitivities and insensitivities: llama contains li�le phase structure and is thus
easy for the energy model to capture even at larger scaling values, while nyc contains many hard edges, and is thus
di�icult for the energy model to capture even with the smallest tested windows. However, for the luminance model
original vs. synth comparison, the relevant interaction would be with the Fourier spectra: the model is insensitive to
high frequencies in its periphery. As all images have 1/f spectra everywhere in the image, none are outliers in terms
of di�iculty. For the synth vs. synth comparisons, on the other hand, by definition, neither displayed image contains
those features that the model is insensitive to, which is what enables correct performance in the original vs. synth
case. Thus, images are more interchangeable with each other. Colors and symbols are the same as in 3.5, except
for the two lines showing the nyc (purple) and llama (red) images, which are colored as in 3.7. Top right subplot is
reprinted from 3.7(A). Note that bo�om le� subplot only contains five images (and in particular does not include the
purple line representing nyc), as only a single session of that comparison was run.
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Figure 3.16: Performance does not vary much across subjects, and varies more in terms of max d ′ than critical
scaling. Each line represents the performance for a single subject, averaged across images. Colors and symbols are
the same as in 3.5. Note that bo�om le� subplot only contains a single subject, since only one subject completed this
comparison.
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4 | plenoptic: an open-source package

for image synthesis

4.1 Abstract

Computational models are powerful tools for understanding the visual system, enabling

researchers to implement their theories and providing speci�c predictions to test against. However,

any experiment or benchmark dataset is necessarily limited, and models often behave unexpectedly

on out-of-distribution data, underscoring the di�culty of understanding how a model transforms

input to output. Stimulus synthesis provides one method of doing so, by creating novel informative

stimuli to test or distinguish models, and several such methods have been developed in the Lab

for Computational Vision over the years. Although several of these have been released as source

code, they are not easliy generalized for wider usage, limiting their use by the broader scienti�c

community. plenoptic is a software package developed by graduate students and postdocs in

the lab to provide a uni�ed framework for four such synthesis methods, as well as several models

developed in the lab. This package does not provide novel algorithms or models, focusing instead

on well-documented, tested, and generalized implementations of methods and models already

described in the literature, many of which are demonstrably interesting to the community. This

focus on utility over novelty is deliberate, and speaks to a broader under-appreciation of the

importance of software and software maintenance within the scienti�c community more broadly,

122



which hampers our ability to build cumulative knowledge. This chapter will discuss these issues,

as well as the contents of plenoptic and the scienti�c investigations it enables, focusing on the

two methods which were my primary focus.

4.2 Introduction

Computational models are generally evaluated on their ability to perform a task, such as

classi�cation of images into pre-de�ned categories or predicting neural activity, but even when

performing well on such tasks, models can behave unexpectedly on out-of-distribution data. The

burgeoning literature on adversarial examples and robustness in machine learning provides many

examples of this, such as the addition of a small amount of noise (invisible to humans) changing

the predicted category [203] or the addition of a small elephant to a picture completely changing

detected objects’ identities and boundaries [186]. Furthermore, vastly di�erent models can perform

equivalently well on tasks. For example, Lescroart, Stansbury, and Gallant [138] show that models

of Fourier power, subjective distance-to-object, and object categories all account reasonably well

for BOLD activity in human mid-level visual areas. While factors such as number of parameters

can be used to adjudicate between similarly-performing models, it is unlikely that the models

would produce the same predictions for all possible images. Most likely, their similar overall

performance results from a limited stimulus set, yet �nding an e�ective set of stimuli for model

comparison or understanding is di�cult, owing to the huge number of possible images. Image

synthesis provides one way of generating a stimulus set that allows for e�ective evaluation of and

di�erentation between models.

The Lab for Computational Vision has developed multiple synthesis methods for better un-

derstanding model representations over the years but, while they all share a similar conceptual

framework, they were each developed in the context of a single research project, with limited gen-

eralizability beyond the project’s focus, and across a variety of programming languages, limiting
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interoperability.

plenoptic was developed to provide a uni�ed framework for image synthesis, and is available

on GitHub. This package relies on a python-based machine learning library pytorch [169] which

has taken o� in popularity within the research community. Its implementation of automatic di�er-

entiation allows us to implement synthesis methods without requiring the manual di�erentiation

that slowed the development of these synthesis methods and allows the methods to be used by

arbitrary models, as long as they meet a short list of requirements. The package also provides some

canonical models and computations, such as the steerable pyramid, Portilla-Simoncelli texture

statistics [178], and the FrontEnd models describe in Berardino et al. [17].

By providing open source, well-documented, and fairly general implementations of these

methods, we hope to enable scientists, especially within the vision science and machine learning

communities, to use these methods to better understand and ultimately improve their own models,

developing experiments for testing them and performing model comparison. While almost all

components of the package have been previously described in the literature, re-implementing them

is non-trivial. Thus, creating and maintaining high-quality versions of these methods provides

a valuable resource to the research community. Furthermore, simply uploading a zip folder of

research code online is not su�cient — to be most useful, the library should be freely available,

extendable, easy to install, regularly tested and maintained, thoroughly documented, and should

include tutorials to get users started.

This chapter will give an overview of plenoptic, using it as a case-study to discuss both the

importance of open source software in academic scienti�c research as well as the conceptual

framework of synthesis as a way of understanding computational visual models. plenoptic

includes four methods for synthesis, two of which, Metamer and MADCompetition, will be the

focus of this chapter, as they were my primary contributions to the package. Finally, we close

with a brief usage example in a Jupyter notebook.
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4.3 Open source software is critical and under-valued

Figure 4.1: Image of supermassive black hole M87, from [229] (image credit: Event Horizon Telescope Collaboration).
This image was created using tools from the scientific Python ecosystem, whose maintenance the National Science
Foundation subsequently refused to fund for lack of impact.

Open software is critical for modern science, but is under-valued. The anecdote that best

exempli�es this situation comes from April 2019. That month, a team of astrophysicists stitched

together images from the Event Horizon Telescope to create the �rst image of a black hole, �gure

4.1, a feat that captured headlines around the world. They did this using a pipeline based on

packages from the Python research software ecosystem, which includes Matplotlib [106] and

NumPy [86], among others. Yet, �ve days after that announcement, the US National Science

Foundation (NSF) denied a grant to support that ecosystem, saying the software did not have

“su�cient impact” [161].

These software projects persist largely through the e�orts of volunteers. While the NSF

awarded 9.6 billion dollars from 1995 to 2016 to grants with “software” in their abstract [40],

“grant-based funding is often exhausted shortly after new software is released, and without
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support, in-house maintenance of the software and the systems it depends on becomes a struggle”

[180]. This funding problem occurs, ironically, just when software is starting to be used by

the broader community and when its support becomes more important. The most mature and

widely-used projects, such as NumPy and Matplotlib, may seek grants from governmental and

non-governmental sources to support their ongoing work. NumFocus is a non-pro�t that supports

much of the Python scienti�c ecosystem, yet their revenue in 2020 was approximately 5 million

dollars [196] to support 44 “sponsored” open source projects (largely in Python, but also in R,

Julia, and more). NumFocus received a large grant from NASA that year, but most of their revenue

came from private foundations (primarily the Chan Zuckerberg Initiative and the Alfred P. Sloan

Foundation) and corporate donations. For comparison, that year New York University alone

received 41 million dollars from the NSF [162], and 77 million dollars from the National Institutes

of Health (NIH), with an additional 329 million dollars from the NIH for the NYU School of

Medicine [158]. In the �scal year 2020, the NSF disbursed a total of 7.75 billion dollars in grants

[164], while the NIH disbursed 30.75 billion in extramural research grants [157] (while these grants

support research and education in many �elds of science, so does NumFocus’s work). While

I was writing this chapter, the NSF announced a new funding initiative, Pathways to Enable

Open-Source Ecosystems, speci�cally to support open source ecosystems, rather than speci�c

tools [163]. While this is a positive step, the program is speci�cally not intended to fund existing

open-source communities and ecosystems, which is part of a recurring issue (not just limited to

software support) where funding sources prefer to support new initiatives rather than existing

ones. As a result, many scienti�c software packages rely on lone or small groups of maintainers

who support the package in their spare time, a situation captured by the popular webcomic xkcd

in �gure 4.2.

Yet this lack of investment stands in contrast with scientists’ heavy use and reliance on software.

A 2014 survey of British academics [96] found that 92% use research software, a number which is

almost certainly higher in the experimental sciences, where it is hard to imagine data analysis
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Figure 4.2: xkcd webcomic satirizing the state of support for crucial so�ware, from [154]. The webcomic discusses
“modern digital infrastructure”, of which scientific so�ware is but a small part, demonstrating that the problems
with supporting the maintenance of open source so�ware is not limited to academic science. This was made clear by
the discovery of the Heartbleed [61] and Log4Shell [228] vulnerabilities, in 2014 and 2021, respectively.

being performed without the use of software. Furthermore, 69% say their research would not

be practical without research software. And, in a 2014 analysis, the “vast majority” of the top

100 all-time cited papers (requiring at least 12,119 citations) describe experimental methods or

software [159]. The share of software in that analysis is almost certainly an undercount, given the

inconsistencies with which scientists cite software: Howison and Bullard [101] surveyed a random

sample of 90 biology articles and found that only 31% to 43% of the software mentions involved

formal citations; most were informal mentions that would not be counted by the aforementioned

analysis (and this practice of informal mentions holds across journal impact factors and software

types).

Software is important because scientists use it. A key goal of a scienti�c publication is to
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enable other researchers to understand and reproduce the steps that led to the result, yet many

computational analyses cannot be adequately translated into words or equations [111]. This

is even true for pseudocode, popularly used to represent algorithms in the computer science

literature, an example of which is Porter’s stemming algorithm [208]. Stemming is the process of

reducing in�ected words to their word stem (e.g., “stemming” has the stem “stem”), an important

problem in computational linguistics. In 1980, Martin Porter published the pseudocode for this

algorithm, which would go on to be very in�uential in the �eld [177]. Many implementations

of the algorithm were implemented and distributed, but the author put out an o�cial version

on a web site in 2000 because “unfortunately there were numerous variations in functionality

among these versions, and this web page was set up primarily to ‘put the record straight’and

establish a de�nitive version for distribution” [176]. A pseudocode description of an analysis is

often more detailed than those given in neuroscience and psychology journals, which reduces

the chance of being able to reproduce an analysis even further. Di�erent teams of scientists will

also choose di�erent analytic approaches and pipelines to address the same question, leading to

very di�erent outcomes [22, 195], emphasizing the importance of software to live up the ideal

of scienti�c communication enabling reproducibility. As Buckheit and Donoho [32] put it, “an

article about computational science in a scienti�c publication is not the scholarship itself, it is

merely advertising of the scholarship. The actual scholarship is the complete software development

environment and the complete set of instructions which generated the �gures.”

Modern scienti�c analyses are complicated and, while sharing code is an important step in

enabling computational reproducibility, it is often insu�cient. A zip �le full of uncommented

scripts with no instructions on how to set up the environment or how to run them is of little use.

Fortunately, multiple guides have been put together detailing simple steps to make shared code as

useful as possible (e.g., [62]). Scientists can leverage tools created speci�cally for reproducible

work�ows (e.g., [77, 80, 149]) as well as make use of or adapt tools from the �ourishing community

of open-source software development, such as git.
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When software becomes more general-purpose than the work�ow for a single publication,

scientists face additional di�culties. Since the early days of the neuroimaging �eld, a variety

of packages have been developed for the specialized analyses common to magnetic resonance

imaging (MRI). These packages are freely available and widely used, with the source code available

once one agrees to a simple license, but they do not follow the standard practices of contributorship

for open source (probably because they predate the widespread adoption of GitHub and similar

web tools which facilitate these practices). Many modern open source packages, including the

Python scienti�c ecosystem described earlier, host their source code on GitHub or similar websites,

which allow anyone to view the source code and the entire history of changes. Additionally, these

websites allow for easy integration with a variety of continuous integration tools, which run

regular tests, including before accepting any changes, to ensure consistent results across time and

di�erent systems (such as operating systems and software versions). They also allow for easy

versioning, tagging speci�c moments in the code with human-readable labels such as v1.2.1,

which allow scientists to specify which version was used in their analysis and, via archiving

services such as Zenodo, the creation of a persistent URL to that version (Freesurfer [51], to pick

one example, does version their code but does not use persistent URLs and only versions 5.3,

6.0.0, 7.1.1, and 7.2.0 are available on their website). Finally, anyone with a free account on

these websites can �le a public issue, asking for help or alerting contributors to di�culties with

or bugs in the code, as well as propose changes via a pull request, which can be reviewed by

developers and, if appropriate, merged into the main version of the code for later release. These

practices can be followed without the use of such websites, but the websites facilitate them and

make them transparent to users of the software.

Public tests, in particular, are useful. Among other issues, they allow users (and developers!) to

be sure that the same results are obtained across operating systems (which cannot be assumed, see

[19, 83]). Without public tests, users cannot be sure of what is being tested. Several studies have

highlighted the need for validation in fMRI analysis packages [63, 136, 137]; in an ideal world,
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the authors of those papers would be able to open a pull request adding their validation tests

to the testing suite of the packages they investigated. I have highlighted the tools and practices

that I believe would allow these packages to manage these issues, but in an environment where

software is under-valued and under-appreciated, validation tests are a likely casualty, as they are

more complicated to write and maintain than tests that e.g., check whether a line of code runs

without failing.

Scienti�c software lives in a strange gray area; it does not align well with the current incentives

of either industry or academia. Industry does a poor job even supporting open software that is

obviously and directly crucial to its bottom line, such as web infrastructure (see �gure 4.2), let

alone scienti�c software whose connections are less obvious. The exceptions are the large Python

deep learning libraries, such as TensorFlow (supported largely by Google) and PyTorch (supported

largely by Facebook). This may be because of the relatively porous boundary between industry

and academia in machine learning, with researchers moving between the two and often having

joint appointments. Industry’s support of these libraries may also reduce training costs: as the

libraries are open and standard in the �eld, companies can reasonably expect their interns and

full-time hires to already be familiar with them, instead of having to spend time training them.

Similarly, using an open source library allows them to accept contributions from a wide range

of machine learning practitioners and researchers, including many who do not work at their

companies. However, we should note that corporate interests are not those of academic scientists,

and so they will make di�erent choices about what to develop and prioritize. This is most obvious

for corporations selling closed software: MathWorks, for example, does not provide an o�cial

declarative dependency manager for MATLAB, which would facilitate the sharing of open source

code and reproducibility of analysis pipelines, and is common in modern open source languages;

this has led to the development of three uno�cial managers, all built by neuroscientists rather than

experts. But even in industry-supported open source software, companies are unlikely to pursue

the same objectives as academic scientists; while implementations of standard convolutional
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neural networks such as VGG-16 and AlexNet are found in every deep learning package, standard

vision science models are nowhere to be found. This is partly the fault of vision scientists, who

have not put great e�ort into sharing and standardizing such models (but see [13, 165]), but any

drive to do so is unlikely to come from Google or Facebook. Furthermore, this misalignment of

interests also means that for many packages that are essential to scienti�c practice, such as those

that specialize in running psychophysical experiments, industry is not a reliable source of support.

Unfortunately, neither is academia. Publications are the currency of academia, yet they are

a poor match for software [110]. Scienti�c publications serve as the source for a particular

scienti�c claim or evidence, and they almost never change after publication. However, software

is constantly evolving: new functionality is added, bugs are �xed, etc. Speci�c releases should

be archived, as described above, but the package as a whole is always in �ux. This is a strength

of software: Gardner et al. [73] found that active maintenance, not the journal impact factor or

number of citations for the corresponding article, was the most indicative measure of accuracy for

bioinformatic software. Fortunately, a variety of measures are being proposed and systems being

built to facilitate the recognition, support, and quality of software in science (e.g., [9, 131]), along

with a variety of organizations pushing for these changes, such as US Research Software Engineer

Association (and similar organizations in other countries), Software Sustainability Institute, and

Research Software Alliance. Scienti�c software is simply too important to be reliant on a handful

of over-worked postdocs and volunteers or the vagaries of industry: academic science must value

software as a scienti�c output in its own right [110, 126].
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4.4 Scientific motivation for plenoptic

4.4.1 plenoptic enables cumulative science

As described above, plenoptic is an open-source python library developed by a team of

graduate students and postdocs in the Lab for Computational Vision (LCV) over the past several

years. While the package contains no novel methods or models not already described in the

literature, it serves to standardize and generalize a variety of tools developed in the lab over the

past several decades, making them available and useful to the broader vision science community.

As is known, reimplementing a novel method or model from only the description in the paper is

exceedingly di�cult: Thimbleby [208] describes the proliferation and continued use of incorrect

implementations of Porter’s stemming algorithm, which was originally described in pseudo-code.

This example arose from pseudo-code, which is generally more explicit than the algorithmic

descriptions given in the vision science literature, and in the computer science community,

which is more skilled in developing software than the vision science community, so we can only

imagine what similar issues in our �eld must look like. Thus, providing a tested and maintained

implementation, when possible, is the ideal situation.

Furthermore, the shared framework provided by plenoptic allows researchers to make use

of the four provided synthesis methods with the same models, allowing for more expansive

experiments and model exploration. Our methods can be used with the models included as part

of plenoptic or user-created models. Models can be arbitrary: we only require that models

be implemented in pytorch, accept real-valued four-dimensional input (this (batch, channel,

height, width) shape is fairly standard in the deep learning community) and return real-valued

three- or four-dimensional output (either vector- or image-like). For synthesis results to make

sense, arbitrary input (and probably output) values should be interpretable. As the intended use

case of this library is for visual models, which often take images as input, this is not too big an ask.
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The package also provides tested, di�erentiable implementations of existing models. These can be

used as is or as building blocks in other models (e.g., the Steerable Pyramid is the �rst stage of the

foveated spectral energy model discussed in chapter 3).

Our package builds on pytorch [169], a deep learning library popular among researchers.

Previously, using a synthesis method required computing the gradients manually, a time-intensive

and error-prone process that would need to be repeated whenever the model or algorithm changed.

We are able to provide general implementations by leveraging pytorch’s automatic di�erentiation,

which automatically computes the gradient of any computational graph implemented in pytorch.

This powerful tool is supported by a large community of contributors, both in industry and

academia, providing a signi�cantly more robust pool of knowledgeable support than LCV would

be able to manage by itself. Furthermore, by building directly on top of pytorch, researchers

can use our synthesis methods with the wide array of standard deep learning models it provides.

These models can also be tweaked and their parameters learned, allowing researchers to train

on a large database, for example, and then, using the same code object, synthesize images using

those learned parameters.

plenoptic also follows open-source best practices: the code is available on GitHub under

an MIT license, allowing others to view, use, and modify it as they see �t, and invites users to

contribute their changes back to the package. Using GitHub and open source licenses also allows

us to make use of existing tools to run tests and validations on the CPU before any proposed

change, ensuring tutorials stay up-to-date and the code does not break unexpectedly. Through

partnership with the Flatiron Institute, we are able to use their computing resources to run all tests

on GPUs as well, ensuring consistency across both device types; as GPUs speed up the required

computations greatly (approximately 10 times faster for the foveated energy model metamers

in chapter 3), this is especially important. By using git (which functions as a public change log)

and semantic versioning (along with long-term archiving via Zenodo), we enable users to specify

which version of the code was used to generate a given result, facilitating reproducibility. While
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following the above requires more work than simply uploading a zip directory to a website, this

set of practices, along with regularly-built public documentation, is considered best practice for

open-source and research software development [114, 232], and increases the usefulness of the

package to the community.

Finally, plenoptic serves as a repository of institutional knowledge for LCV. Because of the

nature of academic research, with graduate students and postdocs arriving regularly, working on

individual projects, and then moving on, building institutional knowledge in a lab and facilitating

its transfer so that everything is not forgotten is incredibly di�cult. The PI can serve as a hub for

this knowledge, but as the lab grows and the PI gains more responsibilities, this tends to fall by

the wayside. This leads to students and postdocs wasting time when extending or using someone

else’s work. plenoptic serves as a repository for this knowledge about the included models and

synthesis methods: we have learned a lot about the steerable pyramid [198] and Portilla-Simoncelli

texture statistics [178], especially, as well as reproducing previously-published synthesis examples,

which increased our understanding of how best to use these methods. The comments within the

code, documentation, and tutorial notebooks serve as a record of our hard-won understanding,

and their central location ensures that all former, current, and future members can access them.

As LCV is an active member of the vision science community whose methods are used by labs

around the world, such knowledge will also bene�t the rest of the �eld.

4.4.2 Stimulus synthesis as a framework for model understanding

Synthesis is a framework for exploring models that takes advantage of the fact that we can

create stimuli, not just rely on existing ones. Computational models take a stimulus as input,

perform some computations based on parameters, and return an output. In visual models, the

focus of plenoptic, the inputs are typically images and the outputs are some abstractions of

representation, which are used to predict neural activity or behavior of some kind. Most commonly,

researchers use these models alongside experiments, simulating model responses (with �xed
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Synthesize stimuli:Fit parameters:Simulate responses:

stimulus parameters response

Figure 4.3: Schematic describing relationship between simulate, fit, and synthesis. Computational models take
a stimulus as an input and, given some parameters, simulate a response. In vision science, the stimulus is o�en
an image and the response is some behavioral measure, such as discriminability, or a neural response. The most
common ways of using these models is to simulate the response, where the stimulus and parameters are held fixed
to generate the response, or to fit the parameters, where the stimulus and responses are held fixed and optimization
is used to find the best-fi�ing parameters. However, there’s nothing special about the stimulus: we can also hold the
response and the parameters constant and use optimization to generate a novel stimulus. plenoptic provides a set
of tools for synthesizing images. Simulation is used during synthesis, while model fi�ing is typically done separately,
as part of the overall experiment in which synthesized images are used (see figure 4.6 for a psychophysical example
which fits parameters a�er synthesis, but a pre-trained model, such as a neural network trained on ImageNet, could
also be used). Original figure created by Eero Simoncelli.
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parameters) to a variety of stimuli that are compared against other models, neural responses, or

animal behavior. Researchers also often �t the parameters of their model, using optimization to

�nd the parameter values that best align model responses with the output of interest for the tested

set of inputs. However, stimuli are not special, and researchers can similarly hold parameters and

responses �xed, while using optimization to generate new stimuli (see �gure 4.3 for a schematic

comparing these procedures). We refer to this process as synthesis.

Figure 4.4: Screenshot of top 5 accuracy image classification performance on ImageNet from [167]. A�er rapid
advancement between 2011 and 2015, performance has approached the ceiling, with li�le improvement from one year
to the next and many models performing similarly, despite a large amount of work on this data set. While ImageNet
has been instrumental in stimulating work on this area, additional methods for investigating and comparing these
models are required.

The goal of synthesis is to explore the input space to improve our understanding of a model’s

representational space, exploring model insensitivities in various ways. plenoptic provides

four such methods, which provide di�erent ways to do so. We can generate sets of physically

distinct images with the same model representations, metamers, to better understand a model’s

insensitivities: while all synthesized images will share some features with each other and the

target image, features that the model is insensitive to will di�er. Eigendistortions show the most

and least noticeable changes to an image for a given model, highlighting the features that a model
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is the most and least sensitive to. Geodesics give you the shortest path between two images

in a model’s representational space. Finally, Maximally Di�erentiating (MAD) Competition

compares two models, synthesizing an image that one model’s �nds as di�erent or as similar to the

target as possible, while the other model’s representation is unchanging. Together, these methods

give researchers a set of tools to investigate what features of the input are considered important

and unimportant. This focus on model null spaces is often over-looked, but has a long history in

vision science, dating back to work on trichromacy in the 19th century [91], the understanding of

which allowed for the development of three-channel color displays.

What is the scienti�c value of generating stimuli? Computational models are generally

evaluated on their ability to accurately perform a task, such as predicting neural activity or

correctly classifying images, but this focus hides at least two di�culties. First, many competing

models can perform approximately equivalently on a task: for example, as of February, 2022, more

than 100 models have above 95% top 5 accuracy on ImageNet, with 9 models within a percent of

the top performer at 99.02% (see �gure 4.4, [167]). Furthermore, the state of the art top 5 accuracy

has been at or above 95% since 2016, with an improvement of only 4% in the past six years. With so

many models performing the task well, and state of the art performance already so close to ceiling,

we need some other way of discriminating between competing models. We could develop another

benchmark dataset or use meta-scienti�c concerns to choose among them (such as number of

parameters, training cost, etc.), but synthesis provides another way to do so. Second, models

can perform unexpectedly on out-of-distribution data: the burgeoning literature on adversarial

examples and robustness in machine learning provides many examples of this, such as the addition

of a small amount of noise (invisible to humans) changing the predicted category [203] or the

addition of a small elephant to a picture completely changing detected objects’ identities and

boundaries [186]. Exploring model behavior on all possible inputs is impossible, but synthesis

provides one mechanism for exploration in a targeted manner.

Note that, while many of the above examples come from the machine learning literature,
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similar problems, though less well-documented, occur for neuroscience researchers as well. For

example, neuronal responses in primate primary visual cortex are frequently modeled with a

linear receptive �eld followed by some non-linearities. This receptive �eld is generally modeled

as an oriented, bandpass �lter, two of the most popular being the steerable pyramid ([70, 198],

chapter 3 of this thesis) and a Gabor �lter bank [52, 115, 142]. Another approach that has gained

popularity in recent years is to predict neural responses using some linear combination of units in

a convolutional neural network (e.g., [235]), the �lters of which have no simple parametric form.

All of these models have been used in the literature, though generally not in direct competition

(but see [142] for a step in that direction), and perform adequately. Synthesis would provide an

additional tool to distinguish among competing models.

In addition to the synthesis methods present in plenoptic, a variety of related concepts have

developed over the years in both the vision science and machine learning literatures. These include

mongrels [7], eidolons [127], feature inversion [140], adversarial images [203], DeepDream [150],

deep visualization [236], style transfer [75], and controversial stimuli [78], among others. All of

these methods except for controversial stimuli (which is a variation on MAD Competition) can be

understood as either identical to or slight variants on metamers: they hold the representation of

the model constant and use optimization to generate novel inputs, starting with another image or a

patch of noise. When working with neural networks, many of these methods match representations

at various layers, not just the �nal output, either to understand that layer better [66, 236] or,

in the case of style transfer [75], to mix “content” and “style” features that are represented at

di�erent layers. Some methods add additional constraints or regularizations: Szegedy et al. [203],

the �rst paper showing adversarial examples, minimized the pixel-wise di�erence between their

initial and synthesized images, while many, such as Mahendran and Vedaldi [140], Mordvintsev,

Olah, and Tyka [150], and Yosinski et al. [236], use some form of natural image prior (though

the exact details vary) to produce more human-recognizable images (as Feather et al. [66] point

out, the importance of using such priors tells us there are important di�erences between the
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representations of these networks and those of humans). All of these examples fall under the

umbrella of metamers, synthesizing novel images that match a model’s representation.

4.5 Package contents and contributors

plenoptic contains three main components: synthesize, simulate, and metric. One of

the advantages of providing the implementations in simulate and metric is that these are

di�erentiable and GPU-compatible, enabling them to be used in our synthesis framework, as well

as other applications, and greatly speeding up their performance.

1. synthesize: implementations of Metamer, Eigendistortion, Geodesic, and MADCompetition.

• Metamer operates on a single model and a single reference image, synthesizing a novel

image (initialized by default with a patch of white noise) whose model representation

matches that of the reference image [70, 178].

• Eigendistortion operates on a single model and a single reference image, synthesizing

the most and least noticeable distortions for that model on that image. An extension

of the original, included in our package, allows the user to synthesize the intermediate

distortions as well [17].

• Geodesic operates on a single model and a pair of endpoint images, synthesizing the

frames that would lie between those endpoints on a straight line through the model’s

representational space [92].

• MADCompetition operates on a single reference image and two metrics, synthesizing sets

of images that are the most or least di�erent from the reference image for one metric,

while holding the other metric’s value constant [225].

2. simulate: implementations of several simple models and model components.
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• models:

– PortillaSimoncelli is a parametric texture model based on the output of the

steerable pyramid, as well as some pixel marginal statistics, which, when used with

Metamer, enables the synthesis of novel texture samples from within a given family

[178].

– FrontEnd contains a family of model architectures that provide simple models of the

early visual system, such as LinearNonlinear, OnOff, and LuminanceGainControl

[17].

– naive contains simple models for comparison against more complex visual models,

such as Linear, Gaussian, and CenterSurround.

• canonical_computations provides several components for use in model construction:

– SteerablePyramidFreq: the frequency domain implementation of the steerable

pyramid, with variable height and number of orientations, with an option to get

either real- and complex-valued coe�cients [198].

– LaplacianPyramid, one- and two-dimensional Gaussian �lters, a form of local gain

control, and functions for transforming between the polar and rectangular represen-

tations of complex numbers.

3. metric: several perceptual distance metrics developed in the lab over the years, including ssim,

ms_ssim, and nlpd (the normalized Laplacian pyramid distance) [133, 223, 224].

4. tools: variety of helper functions, including the blurring and downsampling trick used in the

steerable pyramid and functions for displaying and animating images of the type synthesized

by this package with anti-aliasing safeguards (e.g., by default, display images at their actual

resolution, and allow for user to specify "zoom" which up- and down-samples neatly, avoiding

e.g., the issue of 1.5 display pixels for each data pixel, etc).
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This project was team-built by grad students and postdocs in the Lab for Computational

Vision. The following is a rough breakdown of what everyone did, including code and the related

documentation, tutorials, and tests:

• Kathryn Bonnen: synthesis class design, Portilla-Simoncelli texture model.

• Billy Broderick: metamer and MAD competition, display and animate functions, tooling for

automated documentation builds and CPU tests.

• Lyndon Duong: eigendistortions, tooling for automated GPU tests, FrontEnd models.

• Pierre-Étienne Fiquet: geodesics, metrics.

• Nikhil Parthasarathy: steerable pyramid.

• Teddy Yerxa: geodesics, steerable pyramid tutorials.

• Xinyuan Zhao: metrics.

Additionally, everyone has reviewed each others’ pull requests, providing feedback on code,

documentation, and tutorials. The �rst �ve members have been involved from the beginning of

the project and have thus contributed the most to the planning and high-level structure and goals

of the package.

4.6 Metamer

Metamer is conceptually the simplest of the synthesis methods, and the oldest. In perception,

the concept dates back to the color-matching experiments of the 19th century [91] that �rst

provided support for the existence of three cone types (though it would be another hundred

years before anatomical evidence was found). Perceptual metamers refer to two images that

are physically di�erent but are perceived as identical. In plenoptic, “metamers” refer to model
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metamers: images that are physically di�erent but have identical representations for a given

model. In the Lab for Computational Vision, the �rst work with model metamers was Portilla

and Simoncelli [178], where the authors proposed a set of texture statistics and synthesized

texture metamers to show the extent to which the model succeeded and failed to capture the

“texturiness” of di�erent images. That paper, however, did not use the word “metamers”; Freeman

and Simoncelli [70], where the authors develop a putative model of mid-ventral processing that

averages those texture statistics in log-polar windows, is the �rst paper from the lab to do so.

Simulate responses: Synthesize stimuli:

plenoptic

Fit parameters:

Experiment
Figure 4.5: plenoptic generates metamers, which can then be used in an experiment to find the parameter value(s)
for which model metamers are perceptual metamers. A given model, fθ accepts an input image s and returns a
response ®r . Metamer provides tools for the user to synthesize a novel image, ŝ , which has the same model response
®r . These images (along with the target images s) can be used in an experiment to fit the parameter values θ̂ . See
section 4.6.1 for more details on that.

Model metamers, as described earlier, are physically distinct images that have the same model

representation. As �gure 4.5 shows, Metamer is one way to synthesize stimuli: given an image s and

a model with �xed parameters fθ , it uses iterative optimization to minimize the di�erence between

the model’s representation of s and a new image ŝ . We include an optional quadratic penalty of

values outside some range, since the user probably wants to display the resulting metamer on a

screen. The size of that penalty, along with the loss function, optimizer (and learning rate), and

initialization for the metamer, can all be set by the user, with reasonable defaults provided by the

package. See 4.6.3 for more details.
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4.6.1 How to use in experiments

As alluded to above, model metamers are not necessarily perceptual metamers. plenoptic

provides tools for generating model metamers, which a vision scientist would most likely wish to

use in experiments to determine whether and for which parameter values they are also metamers

of the visual system. These can be neural metamers, as in Freeman et al. [71], or perceptual

metamers, as in Freeman and Simoncelli [70] and the third chapter of this dissertation. I will

walk through the logic of that chapter, as it provides an extended example of one way in which

Metamer, and model metamers more broadly, may be used in vision science experiments.
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Figure 4.6: Metamers can be used to fit parameters of perceptual models. This figure presents a schematized
overview of the project discussed at length in chapter three, for a single model. We developed a pooling model of
the early visual system, which averages image statistics in log-Gaussian windows whose diameter grows linearly
with eccentricity, then chose a set of images of natural scenes. We simulated the model’s responses to these images
across an appropriate range of parameter values and synthesized new images with matched responses. We used
these images to perform a psychophysical experiment to find the maximum parameter value where model metamers
are perceptual metamers.

In my third chapter, I developed foveated models of early visual system processing, synthesized

metamers for these models for a range of parameter values, and ran a psychophysics experiment to

determine the largest parameter value for which model metamers were also perceptual metamers.

The models average image statistics in log-Gaussian windows whose diameter grows linearly with

eccentricity: the rate at which these windows grows, the scaling, is the model’s only parameter,

and the identity of the pooled statistic di�erentiates the models from each other. We built two

models, one which pooled luminance and one which pooled oriented spectral energy, as these are
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statistics thought to be computed in the early visual system, after the photoreceptors and before

secondary visual cortex. We selected a range of scaling values where we believed performance

would go from chance to ceiling, based on visual inspection of the images (the length of time

required to synthesize a single metamer, up to 14 days for the smallest scaling value, meant we

could not use extensive piloting to determine an appropriate range).

Figure 4.6 shows a schematic of how the experiment was run for a single model. With the

model fθ built and the scaling values θ1, . . . ,θn chosen, we selected a set of images of natural

scenes si . We then ran our model, with its range of scaling values, on each image to generate the

responses r̂i . These responses were matched using optimization in order to generate a new set of

images ŝi (in this description and the schematic, simulate and synthesize are shown separately,

but Metamer handles them together). This step requires a large amount of time and compute

resources, though each image is generated independently, allowing for large-scale parallelization

(and the use of GPUs, when possible, also speeds up the process considerably). The duration of

synthesis scales approximately linearly with the duration of a single forward pass of the model; as

multiple forward passes are called on each iteration of synthesis, reducing its duration is the most

e�ective way to speed up synthesis.

With a large set of suitable metamers on hand, the psychophysical experiment can be performed

in order to �t model parameters. In our experiment, θ̂ was the largest scaling value where model

metamers were perceptual metamers, that is, the largest scaling value where performance was at

chance. We showed pairs of images to observers in a two-alternative forced choiced setup, testing

participants’ ability to discriminate between them. These images were either pairs of synthesized

model metamers or a model metamer and its target image; in either case, both images were

metameric according to the model with a particular parameter value. After having participants

discriminate between many such pairs, we were able to plot proportion correct as a function of

scaling and �t psychophysical curves in order to �nd θ̂ . With it, we know the parameter value for

which our model’s invariances align with those of the human visual system (see chapter three
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for greater discussion of the nuances here). Such a result allows for us to make inferences about

the extent of spatial pooling of the corresponding image statistic, as well as providing a �rst step

towards the development of a large �eld of view foveated observer model, which takes arbitrary

pairs of images and predicts how discriminable they are.

Note that this particular goal of �nding the largest parameter value is not the only possible

goal when using metamers in an experiment, but follows from our use of these models. As scaling

controls the size of the windows in which image statistics are averaged, models with smaller

scaling values have smaller null spaces, reducing the set of possible model metamers until the

trivial case: a model whose pooling windows are no larger than a pixel anywhere in the image

will have no model metamers, as each image’s representation will be unique. Such a model tells us

nothing about the human visual system. For other models, the �tting experiment may try to �nd

other parameter values or ranges of parameter values, depending on the parameters’ interpretation

and the researchers’ intended inference. Furthermore, the �tting step can be carried out before

synthesis. For example, a researcher could �t several candidate models to a large scale image

database such as ImageNet and synthesize metamers for each model. They could then run a

psychophysics experiment similar to the one described above to compare each model against

human perception, determining for which model, rather than for which parameter values, model

metamers are perceptual metamers.

4.6.2 Examples

One of the major advantages we get from building plenoptic on top of pytorch is that

synthesis works with arbitrary models with no modi�cations necessary to the model or Metamer

(however, work is still required to �gure out what hyperparameters are necessary to successfully

synthesize something, and those choices will almost certainly vary from model to model). Figure

4.7 shows example model metamers for three di�erent target images from four di�erent models.

By examining each of them, we can gain a better understanding of each model’s sensitivities and
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Figure 4.7: Example model metamers generated with Metamer. Each row shows metamers generated for a given
target image for four di�erent models (from le� to right): the foveated luminance and energy models from the third
chapter of this dissertation (at a scaling value above the critical scaling, so these are not perceptual metamers),
Portilla-Simoncelli texture statistics [178], and the third max pooling layer of VGG16 (configuration D, [199]).
Examining these images allows us to gain a be�er understanding of each model’s sensitivities and invariances.

invariances.

The leftmost column shows the three target images, one per row, whose representation each

metamer is trying to match. The next two columns show metamers for the foveated models from

the third chapter of this dissertation: the foveated luminance model with scaling 0.1 and the

foveated spectral energy model with scaling 0.5 (these scaling values are well above the critical

scaling value, and is large enough that these model metamers are de�nitively not perceptual

metamers; �xation is at the center of the image and the edge corresponds to 3 degrees eccentricity).

These model metamers look like what we saw in chapter three: the luminance model metamers

has gradually increasing white noise (leftover from the initial image) as you move away from the

fovea, while the energy model has a more complex pattern resulting from matching energy but
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not phase in larger and larger windows.

The fourth column shows metamers for the Portilla-Simoncelli texture statistics [178]. We

reimplemented this model in pytorch and included it in our package, with validation tests to

ensure that we produce the same outputs on a given image as the original matlab implementation.

As these statistics were developed to capture the natural textures, the metamer of reptile skin in

the second row looks very convincing, like it may be a perceptual metamer, while the other two

appear bizarre. The failure on the image of Einstein is expected, as faces and bodies contain all

sorts of structure not captured by the texture statistics (see �gure 17 in [178]), and the regular

repeating structure of the checkerboard is also di�cult to capture (see �gure 16 in [178]; though

the speckled patterns are most likely because of boundary artifacts).

The �nal column shows metamers for the third max pooling layer (about halfway through the

network) of VGG16, a deep neural network trained on ImageNet (con�guration D, [199]). These

metamers look like the original image plus RGB noise, which immediately highlights that it’s the

only model that operates on RGB images, that its sensitivities to color are very di�erent than

human sensitivities, and that the model is relatively insensitive to high-frequency noise. Unlike

the foveated luminance model, its sensitivity to such noise does not change with spatial position.

I also created metamers for all �ve of VGG16’s max pooling layers (not shown): for the earlier

pooling layers, metamers appeared to be the original image plus noise, with the intensity of the

noise increasing with layer depth until the later layers appear to be simply RGB noise (Feather

et al. [66] �gure 3 shows similar results when synthesizing model metamers for VGG-19 and

several other ImageNet-trained deep networks).

I would like to emphasize that these are all very di�erent models: the �rst two were developed

by me for my third chapter, the third is a reimplementation from the literature and is included in

plenoptic, and the last is a deep neural network that comes from pytorch’s model zoo. Because

they all follow the basic model requirements for synthesis (implemented in pytorch, accepts

four-dimensional tensor inputs, and returns three- or four-dimensional tensor outputs), they
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were all compatible with Metamer. These models also have vastly di�erent number of statistics,

approximately 16,500 for the �rst two models, 1000 for the texture statistics, and 8.3 million

for VGG16 (compared to 65,536 pixels in the input image). Additionally, no manual calculation

of gradients was required: when Portilla and Simoncelli developed the model in Portilla and

Simoncelli [178], they had to recalculate the gradients by hand every time they changed the model,

which made the model’s development exceedingly di�cult. The automatic gradient calculation

baked into plenoptic means that researchers are able to focus on the scienti�c questions that

matter to them.

4.6.3 Usage details

A schematic of Metamer is shown in �gure 4.8. Metamer is used to generate model metamers,

images that are physically distinct but have the same model representation. We do this by

minimizing the objective function found at the top of the �gure: argminŝ L(fθ (s), fθ (ŝ)) + λBr (ŝ),

where:

• s is the user-supplied image. It must be a four-dimensional torch.tensor object, where the

dimensions are batch, channel, height, and width. This is the standard way of representing

images in pytorch (and deep learning libraries more generally). Most commonly, di�erent

images are indexed along the batch dimension, while channel contains either the separate

RGB channels or the outputs of di�erent convolutional �lters. Singleton batch and channel

dimensions are allowed (for a single grayscale image) and are the most common use-case so

far.

• fθ is the user-supplied model. It must accept a four-dimensional torch.tensor as input and

return either a three- or four-dimensional torch.tensor as output, corresponding to either

a vector- or image-like output (e.g., texture statistics or output of a convolution). In addition

to these requirements, the model must also be written in and di�erentiable by pytorch,
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optimizer = Adam

scheduler = None

image

metamer

__init__()
loss_function = MSE
range_penalty_lambda = .1
allowed_range = (0, 1)
initial_image = None

synthesize()
max_iter = 100
store_progress = False
stop_criterion = 1e-4
stop_iters_to_check = 50
coarse_to_fine = False
coarse_to_fine_kwargs

model

Metamer:

Figure 4.8: Schematic showing how Metamer is used. All instances of Metamer minimize the objective function found
at the top of the figure, with the goal of returning a synthesized image ŝ , known as a model metamer, that minimizes
it. All components of that objective function except for the bounds penalty function, B (which is a quadratic penalty
on pixel values outside the allowed range), are se�able by the user, with reasonable defaults provided for the loss
function, range penalty lambda, and allowed range. See text for more details.

which requires using pytorch functions rather than those of other python libraries, e.g.,

torch.fft.fft2 rather than numpy.fft.fft2. Finally, the model must accept real-valued

inputs and return real-valued outputs, and arbitrary inputs and outputs should have meaning.

This last is not a strict technical requirement, but as synthesis returns something that is

out-of-distribution, this will lead to the output being more interpretable.

• L is a loss function that takes two three- or four-dimensional tensors and returns a scalar

de�ning how di�erent they are. A default, the mean-squared error, is supplied, and this will

generally work in most cases, though for models that have components of di�ering scales,
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another loss function that weights them in some way may be more helpful.

• λ and r are the weight and allowed range for a quadratic penalty on pixel values in the

synthesized metamer image, B. As users generally want to display their synthesized images

and may in some cases wish to run experiments that require physically presenting them,

some way of constraining their pixel values is desirable. A previous version of Metamer

“clamped” the image, setting all pixel values outside the range to the minimum or maximum

on each iteration, but in practice, a quadratic penalty with varying weight is more e�ective.

Users can set λ and r , but the use of a quadratic penalty for B is �xed; the user can set λ = 0

to remove this penalty.

• ŝ is the synthesized metamer image, which is produced via iterative optimization.

All of the above are speci�ed by the user upon initialization of the Metamer object; python is

an object-oriented language, and Metamer must thus be instantiated by the user before using it

to create model metamers. The user may also supply an initial_image from which synthesis

will start. If none is supplied, a patch of white noise matching the dimension of the input image

will be generated. After initializing Metamer, the user may optionally create standard pytorch

Optimizer and lr_scheduler objects, which specify how to update the synthesized image given

the gradient and how to change the optimizer’s learning rate over time, respectively, allowing

the user to make use of the existing library of pytorch objects or create their own. The user may

then pass these to the synthesize() method and, if none are provided, Metamer defaults to using

Adam with a learning rate of .01 and amsgrad=True with no learning rate scheduler, a relatively

conservative choice. Calling synthesize(), as the name suggests, starts the synthesis process,

which displays a progress bar summarizing how long the synthesis will take and its current state,

including the current loss and gradient norm. When calling synthesize(), the user may also

specify the maximum number of iterations to run synthesis, whether (and how frequently) to store

the metamer-in-progress during synthesis for later examination, a stopping criterion, and whether
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to use coarse-to-�ne optimization (and its criterion for moving onto the next scale). Synthesis can

be resumed by calling synthesize() again with the same set of options.

Coarse-to-�ne optimization is a technique useful for multiscale models and is analogous to

optimizing a blurred version of the objective function, then progressively adding �ner details in. It

requires the model to meet an extra speci�cation: it must have an attribute, scales, which is a list

of the possible scales of the model, and it method must accept a scales argument in addition to

the image. This argument must be a list containing a subset of the values in the scales attribute,

and the model should return the subset of its representation corresponding to those values. For

example, in my foveated metamers project, model.scales=[0, 1, 2, 3, 4, 5], corresponding

to the six scales of the steerable pyramid, and model(image, scales=[0, 1]) would return only

the pooled energy computed from the coarsest two scales. If the model meets these requirements,

then Metamer can do coarse-to-�ne optimization, which tends to reduce the ultimate loss of the

synthesized metamer.

Because plenoptic is built on top of pytorch, we get GPU compatibility basically for free

in all synthesis methods. In order to run metamer synthesis on the GPU, your image and model

should be sent to the GPU before initializing the Metamer object. Then, everything will be run on

the GPU. Sending the image to the GPU is as simple as running image = image.to(’cuda’); since

models can be custom-built, the user must generally implement their own to() method to do this,

which generally requires calling the to() methods of any tensor attributes of the model (if using

any of the models included in plenotic or pytorch, to() will already be implemented). (The

user may also call metamer.to() after instantiating the Metamer object, but it’s recommended to

pass everything to the GPU beforehand.)

Metamer also provides four other public methods: to(), objective_function, save(), and

load(). The to() method works as described above, calling the to() method of all tensor at-

tributes and the model (this also allows the user to change the datatype of synthesis, for example to

torch.float16 or torch.float64, half and double precision, respectively). objective_function()
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accepts a model representation and compares it against the stored target_representation, re-

turning the value of the function described above. save() and load() do as the names suggest,

allowing the user to move the Metamer object between machines.

Finally, the plenoptic package includes several helper functions for visualizing the status of

metamer synthesis. These helper functions allow the user to easily display the synthesized metamer,

the current loss, and the error in the model’s representation (optionally, models may have custom

methods to plot their representation, making this more informative). An animate() function

is also provided to animate all of these plots over time, allowing the user to inspect synthesis

progress (this is only available if the user called synthesize() with store_progress!=False).

In the above description, I referred to metamers throughout as “images”, but model metamers

can be generated in other signal domains as well, such as video or audio. As long as the speci�ca-

tions of image and model are followed (most importantly, that the input is four-dimensional and

the output is three- or four-dimensional), the process is the same. Such extensions have not been

tested so far, however, and the corresponding optimization problem will almost certainly be more

di�cult.

4.7 MAD Competition

Whereas metamer synthesis allows researchers to evaluate how a single model’s invariances

align with those of the human visual system, MAD Competition is a method for e�ciently testing

two competing visual metrics, by generating a set of images with maximally di�erent predictions.

The use-case outlined in the original paper, Wang and Simoncelli [225], was to compare two

potential models of human perceptual distance, mean-squared error (MSE) and the structural

similarity index (SSIM). Both of these functions make predictions about how di�erent two images

are, and the authors describe MAD Competition as a means of understanding how the two di�er

and for generating images for a psychophysical experiment.

152



Synthesize 
stimulus set:

Compute distances:

plenoptic

Fit parameters:

Experiment
Figure 4.9: MADCompetition generates a set of images for e�iciently testing two visual metrics which each accept
two inputs and return a scalar output giving the distance between them. For a given reference image and noise level,
MADCompetition generates two pairs of images, holding the distance constant for one metric while minimizing or
maximizing the other. Parameter fi�ing is done in a separate experiment, and can use these images or some other
procedure.

Since MADCompetition works with visual metrics, rather than models, it has slightly di�erent

requirements than the other synthesis methods included in plenoptic. Note that we mean “metric”

loosely: as far as MADCompetition are concerned, metrics must accept two inputs, return a scalar

giving the distance between them, and satisfy the identity of indiscernibles, i.e. fθ (x ,y) = 0⇔ x =

y (note that this means we must use 1 − SSIM(x ,y) instead of SSIM(x ,y), as SSIM is a similarity

index and so returns a value of 1 on identical images, rather than 0). We do not require that they

satisfy the other two properties of mathematical metrics, symmetry or the triangle equality. While

this is a di�erent requirement than the other methods, it is straightforward to build a naive metric

that satis�es these requirements from any model: take the mean-squared error between the model

outputs of two images.

MADCompetition takes two such metrics, fθ and дϕ , and a reference image, s , and adds noise

to s to get an initial image s′. It then generates a new image whose distance to the reference image
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is the same as that of the initial image according to fθ , while its distance according to дϕ is as

large as possible, i.e., we synthesize a new image argmaxŝ1 дϕ(s, ŝ1) subject to the constraint that

fθ (s, ŝ1) = fθ (s, s
′). A full set of MAD Competition images consists of four such images: two which

hold fθ constant while maximizing and minimizing дϕ and two which hold дϕ constant while

maximizing and minimizing fθ . We use iterative optimization to do this, in a slightly di�erent

procedure than in Wang and Simoncelli [225]: whereas the original paper projected out the

gradient of one model from the other’s on each step, we add a term (with user-adjustable weight)

that penalizes any divergence from the constant loss, which seems to work better in practice (see

section 4.7.4 for more details). Similar to Metamer, MADCompetition also includes an quadratic

range penalty, whose weight, along with the optimizer and learning rate, can be adjusted.

In Wang and Simoncelli [225] and in the description above, s′ is created by adding normally-

distributed noise to the reference image in order to achieve a target mean-squared error level.

This is the default behavior in plenoptic, but the user can also specify a separate image (of the

same size as the original) to use for s′ instead. The usefulness of this will be demonstrated in an

example in the next section.

4.7.1 How to use in experiment

In the original paper, the authors compare the suitability of MSE and SSIM as perceptual

metrics by generating sets of MAD Competition images with increasing distortion levels and

showing them in pairs to participants in an experiment where subjects were asked to choose

the image from each pair that had higher peceptual quality (participants were allowed to free

view and no time limit was imposed on the decision). The authors found that at low distortion

levels, images with �xed MSE and �xed SSIM were both matched in quality, but as the distortion

level increased, images with �xed MSE were considered of poorer quality while those with �xed

SSIM remained matched in quality up until the highest distortion levels (and were always better

than images with �xed MSE). The authors thus conclude that SSIM provides a better model of
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perceptual quality than MSE.

While the original paper shows an example of their use with potential image quality metrics,

MADCompetition can be used for other purposes as well. In the appendix of the third chapter

of this dissertation, there is a �gure showing that luminance model metamers are substantially

physically di�erent from their target images. For luminance model metamers with the smallest

scaling values, the di�erences between the target image and the model metamers become less

visible (as expected), and we wanted a way to demonstrate that these metamers were still physically

distinct from the target, i.e., that the mean-squared error had not gotten so small that any image

with that MSE would be perceptually identical with the target image (this was especially important

because the model metamers need to be shrunk from their full size in order to be displayed in a

paper or presentation, which makes the high frequency noise patterns they contain less visible).

In order to generate more images with the same MSE, I �rst linearly interpolated between the

target image and another natural image (or white noise) until the MSE was matched to that of

the luminance model metamer with the lowest MSE between it and its target image. I then used

these images as the initial image s′ in MADCompetition, with the metamer target image serving

as the reference image s , holding the MSE constant while minimizing or maximizing 1 − SSIM

to generate several images with the same MSE as our model metamer. While all images had the

same MSE, only one was a luminance model metamer with the target image. The fact that this

image was also the only one that was a perceptual metamer with the same image demonstrated

that our luminance model metamers were still physically distinct from the target image.

Finally, while the procedure in Wang and Simoncelli [225] compares potential models of image

quality against human perception, MADCompetition can be used to compare models of other

systems as well (see controversial stimuli, [78] for a related concept). For example, it could be

used to generate stimuli for comparing models of neural activity. As discussed earlier, Lescroart,

Stansbury, and Gallant [138] demonstrate that three models of scene-selective visual areas all

predict BOLD responses to a set of images of natural scenes fairly well. As the set of all images
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is so vast, �nding a set of stimuli that can e�ectively discriminate between competing models is

di�cult, especially when those models are of higher-level visual areas whose response properties

are not well-understood. MADCompetition provides one way of doing so: sets of stimuli that

discriminate pairs of models can be generated and shown to participants while recording BOLD

activity. As these stimuli have been synthesized to separate model predictions to as large an

extent as possible, it is less likely that all models will perform comparably well on predicting the

corresponding brain activity.

4.7.2 Simple walkthrough

Figure 4.10: Simple example of MAD Competition between L1 and L2 norms on a two-dimensional image. See text
for details.

To better understand what MAD Competition does, we will walk through a simple example:

we will di�erentiate the L1 and L2 norms on a two-pixel image [.5, .5]. The L1 norm distance

between two 2d points (x0,y0) and (x1,y1) is de�ned as |x0 − x1 | + |y0 − y1 |, while the L2 norm

distance (or Euclidean distance) is
√
(x0 − x1)2 + (y0 − y1)2. Since our input is two dimensional,

we can plot this example as a scatter plot, as shown in �gure 4.10, with the �rst pixel value on

the x axis and the second on the y. Our reference image is shown as the red point at the center.
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To begin, we add a small amount of noise to get our initial image, plotted in black. The distance

between this and the reference point is what we will be holding constant for one metric while

we minimize or maximize the other. Since we know what the level sets of L1 and L2 norms look

like (a diamond and a circle, respectively), we can plot those as well. All the points generated

by MADCompetition must lie along one of these two level sets, and our initial point lies at their

intersection.

To generate a MAD image, we hold one metric constant while changing the other as much

as possible. Let’s �rst examine the “max L2 norm” point, shown in solid blue. For this, we have

maximized the L2 norm while holding the L1 norm constant. We can see the synthesized output

satis�es these constraints by the fact that this point is as far away as possible (in Euclidean

distance) from the reference point while still remaining on the L1 level set. This point must thus

lie along the axis, so that one pixel has the same value as our reference image, while the other is

as di�erent as possible. The other corners of the diamond would also satisfy this; we ended up

here because it’s closer to our initial image and our optimization found this global optima �rst (if

we had started in a di�erent portion of input space or used a larger learning rate, we may have

ended up in one of the other corners).

We can similarly maximize the L1 norm while holding L2 constant, as shown by the solid

orange point. Analogous to the point we just discussed, this point lies along the L2 level set and

is as far away from the reference as possible. This puts it on the diagonal, so that neither pixel

has the same value as in the reference, but they individually have the same di�erence (the other

diagonals would also have worked, but this is the one we were closest to). Minimizing the two

norms, shown by the empty points, puts the point along the other norm’s level set, as close to the

reference as possible. Minimizing the L1 norm puts you along the axes, like maximizing the L2

norm, while minimizing L2 norm puts you along the diagonal.

This simple example develops our intuition for what MADCompetition achieves: changing the

initial image to move along one metric or the other’s level set, ending up as close to or as far away
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from the reference as possible. This set of images therefore produces a set of predictions from the

two metrics that are as di�erent as possible, which allows for more e�cient model comparison. In

general, we cannot easily visualize pixel space and metrics’ the level sets, but the same principle

applies in more complicated settings, as we will see in the next section.

4.7.3 More complex examples

We can do the same procedure on a 256 by 256 image, as shown in �gure 4.11. We are comparing

the same two metrics, the L1 and L2 norms, but we can no longer plot the images nor the level

sets in pixel space, as we have moved into a much higher-dimensional space. We can, however,

follow the same procedure to use MADCompetition to synthesize images. When we do so, we start

by adding normally-distributed noise to get our initial image s′, shown in the center of the �gure.

If we look at the image generated by maximizing L1 norm, on the bottom, we see that most of

the pixels are unchanged, but that there are many pixels that have been changed to the extremal

values: black on white squares, white on black squares. This is the high-dimensional analogue

what we saw in the two-dimensional example, where maximizing L2 put us on the axis, with one

pixel unchanged and the other changed as much as possible. Similarly, minimizing L1 has the

same pattern, but there are fewer changed pixels and their di�erences with the reference image

are not as extreme. This again matches with the two-dimensional example, where minimizing L1

resulted in another image along the axis, but that was closer to the reference image.

Similarly, when we maximize L1 or minimize L2, our image lies along the diagonal: no pixels

have the same value as the reference image, all are distributed above or below the reference image

values by the same amount, so we end up with di�erent grayish values. Again, we end up with a

larger di�erence when maximizing L1 than when minimizing L2.

From our understanding of L1 and L2 norm, the behavior we have been examining in �gures

4.10 and 4.11 does not depend on image content (we would get the same level sets anywhere in

pixel space), and we can see that on the image of Einstein shown in �gure 4.12. We can see that
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Figure 4.11: MAD Competition between L1 and L2 norms on a checkerboard image reveals similar pa�erns to the
two-dimensional example in figure 4.10. Since images are higher dimensional than before, cannot plot them in pixel
space but must visualize them as images. Layout is similar to that in 4.10, with orange borders showing images with
fixed L2 norm, blue borders showing images with fixed L1 norm, solid borders showing images that maximized the
other metric, and dashed borders showing images that minimized it. The inset next to each synthesized image shows
the di�erence between it and the reference image. See text for explanation.
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Figure 4.12: For MAD Competition between L1 and L2 norm, image content does not ma�er: the pa�erns are the
same when using an image of Einstein as a target image as when using a checkerboard. Layout the same as in figure
4.11.

the same patterns of changes to pixel values are present here as in the checkerboard of �gure 4.11.

This would not be the case for other metrics that were more image content-dependent, such as

SSIM or something texture-aware.

Our simple two-dimensional L2 vs. L1 example has given us the intuition to understand these

two, slightly more complicated examples. This also provides some evidence that L2 is a better

perceptual metric than L1: L2 predicts that the blue-outlined images in �gures 4.11 and 4.12 are

as di�erent as possible, while L1 predicts that the orange-outlined ones are. L1 also predicts
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that the midgray noise seen in the right and top images should result in a worse image than the

salt-and-pepper noise present in the bottom and left ones, while L2 predicts the opposite. From

examining these images, I agree with the predictions made by L2 over those made by L1, though a

psychophysical experiment would be required to say so for sure.

Figure 4.13: MAD Competition between MSE and the third max pooling layer of VGG16 shows that this layer is
sensitive to whorl-like pa�erns and insensitive to high frequencies. Layout is the same as in figure 4.11. See text for
more details.

We can, of course, run MAD Competition between other models as well. Figure 4.13 shows the

results of comparing MSE and the third max pooling layer of VGG16 (to make this compatible with

MADCompetition, we take the MSE between the outputs of that layer for the two images). Note
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that, unlike the L1 and L2 norms, VGG16 only operates on RGB images; MSE in this example is

the average across all three channels. When we maximize VGG16, we end up adding multicolored

whorls across the image and otherwise setting all pixels to their value in the reference image. The

whorls seem especially common near the edge of the image, which implies there might be some

boundary-handling issue: all convolutional steps of VGG16 use zero-padding, so the image edges

are especially high contrast. When we maximize MSE while holding VGG16 constant, we get a

large amount of high frequency noise across all three RGB channels, but the eyes are pretty much

left alone (the noise level also looks slightly lower around the tie). The two images that minimized

VGG16 and MSE both appear to have just reduced the noise found in the initial image. When

minimizing MSE and holding VGG16 constant, the noise looks concentrated along the edges and

the brighter patches of the image, avoiding the dark patches, while it appears more uniform when

minimizing VGG16.

This example does not allow us to say that one or the other is a better visual metric without

a psychophysics experiment, as both pairs of images appear very distinct, with the maximizing

metric image appearing of worse quality than the minimizing metric one. However, it does allow us

to get a better sense of VGG16’s third max pooling layer’s sensitivities and invariances, especially

when we examine them together with the model metamers in �gure 4.7. This model appears to be

especially sensitive to whorl- or eye-like patterns, relatively insensitive to high frequency noise,

does not distinguish between the three color channels, does not distinguish between grayscale

and not grayscale, and appears convolutional, not concentrating on or avoiding any particular

part of the image. If we truly wished to understand VGG16 as a potential model of human vision,

we should extend these examples to more images and investigate the other layers to get a sense

for how these properties change with processing depth.
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Figure 4.14: Schematic showing how MADCompetition is used. All instances of MADCompetition minimize the
objective function found at the top of the figure, with the goal of returning a synthesized image ŝ , known as a MAD
image, that minimizes it. Note that a single MADCompetition instance creates a single MAD image, while a complete
set of MAD Competition contains four images: two for each possible value of minmax t , switching which metric is
fθ and which is дϕ . All components of that objective function except for the bounds penalty function, B (which is
a quadratic penalty on pixel values outside the allowed range), are se�able by the user, with reasonable defaults
provided for range penalty lambda, initial noise, and allowed range. The metric tradeo� lambda, λ1 is initialized to
the ratio fθ (s, s

′)/дϕ (s, s
′), rounded to the nearest power of 10, if le� as its default value of None, but, in practice,

users will need to spend some time finding an appropriate value. See text for more details.
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4.7.4 Usage details

A schematic of MADCompetition is shown in �gure 4.14. MADCompetition is used to generate

images which produce the maximally di�erent predictions from two metrics. We do this by

minimizing the objective function found at the top of the �gure: argminŝ t fθ (s, ŝ) + λ1[дϕ(s, s′) −

дϕ(s, ŝ)]
2 + λ2Br (ŝ), where:

• s is the user-supplied image. It must be a four-dimensional torch.tensor object, where the

dimensions are batch, channel, height, and width. This is the standard way of representing

images in pytorch (and deep learning libraries more generally). Most commonly, di�erent

images are indexed along the batch dimension, while channel contains either the separate

RGB channels or the outputs of di�erent convolutional �lters. Singleton batch and channel

dimensions are allowed (for a single grayscale image) and are the most common use-case so

far.

• fθ is the user-supplied metric whose representation we will be changing as much as possible.

It must accept two four-dimensional torch.tensor as input and return a scalar value as

output, corresponding to the distance between the two inputs, and must satisfy fθ (s, s) = 0.

In addition to these requirements, the model must also be written in and di�erentiable

by pytorch, which requires using pytorch functions rather than those of other python

libraries, e.g., torch.fft.fft2 rather than numpy.fft.fft2. Finally, the model must accept

real-valued inputs and return real-valued outputs, and arbitrary inputs and outputs should

have meaning. This last is not a strict technical requirement, but as synthesis returns

something that is out-of-distribution, this will lead to the output being more interpretable.

• дϕ is the user-supplied metric whose representation we will be holding constant during this

instance of MAD synthesis. It must meet the same requirements as fθ .

• t controls whether we are minimizing or maximizing fθ by multiplying its loss by 1 or −1.
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• λ1 is the metric tradeo� lambda, which controls how heavily to weight the divergence of

дϕ loss from 0. If the user does not specify a value, it defaults to the ratio fθ (s, s
′)/дϕ(s, s

′)

rounded to the neareset power of 10, but in practice, users will need to spend some time

�nding an appropriate value. If the value is too small, the loss will not be held constant

(i.e., дϕ(s, s′) , дϕ(s, ŝ)) and thus the image will not be a MAD image. If its value is too large,

fθ (s, ŝ) will change slowly (or not at all).

• s′ is the initial image, which �xes the error level. The user can set either a �oat or a

torch.tensor object. If a �oat, we add normally-distributed noise to s to produce an s′

such that the MSE error between s and s′ is the speci�ed value. If a tensor, it must be the

same shape as s and is the initial image.

• λ2 and r are the weight and allowed range for a quadratic penalty on pixel values in the

synthesized image, B. As users generally want to display their synthesized images and

may in some cases wish to run experiments that require physically presenting them, some

way of constraining their pixel values is desirable. Users can set λ and r , but the use of a

quadratic penalty for B is �xed; the user can set λ = 0 to remove this penalty.

• ŝ is the synthesized image, which is produced via iterative optimization.

A single instance of MADCompetition will synthesize a single maximally di�erentiating image.

A complete set contains four such images, two for each possible value of t , switching which metric

is fθ and which is дϕ . When generating a set of images, the same reference images s and initial

images s′ should be used for all four images.

Similarly to Metamer, all of the above are speci�ed by the user upon initialization of the

MADCompetition object. After initialization, the user may optionally create standard pytorch

Optimizer and lr_scheduler objects, which specify how to update the synthesized image given

the gradient and how to change the optimizer’s learning rate over time, respectively, allowing

the user to make use of the existing library of pytorch objects or create their own. The user may
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then pass these to the synthesize() method and, if none are provided, MADCompetition defaults

to using Adam with a learning rate of .01 and amsgrad=True with no learning rate scheduler, a

relatively conservative choice. Calling synthesize(), as the name suggests, starts the synthesis

process, which displays a progress bar summarizing how long the synthesis will take and its

current state, including the current loss and gradient norm. When calling synthesize(), the

user may also specify the maximum number of iterations to run synthesis, whether (and how

frequently) to store the image-in-progress during synthesis for later examination, and a stopping

criterion. Synthesis can be resumed by calling synthesize() again with the same set of options.

MADCompetition also provides four other public methods: to(), objective_function, save(),

and load(). The to() method works as described above, calling the to() method of all tensor at-

tributes and the model (this also allows the user to change the datatype of synthesis, for example to

torch.float16 or torch.float64, half and double precision, respectively). save() and load()

do as the names suggest, allowing the user to move the MADCompetition object between machines.

objective_function() accepts ŝ and computes the value of the loss function described above,

using cached versions of s and дϕ(s, s′). Setting up the objective function as a publicly available

method allows users to create a subclass of MADCompetition, inheriting all its methods with the

ability to override objective_function, enabling users to extend and build on our work to test

out alternative means of synthesizing MAD images.

Finally, the plenoptic package includes several helper functions for visualizing the status of

synthesis. These helper functions allow the user to easily display the synthesized MAD image

and each metric’s loss. An animate() function is also provided to animate all of these plots

over time, allowing the user to inspect synthesis progress (this is only available if the user called

synthesize() with store_progress!=False). If the user has created a full set of four MAD

images, two additional functions are provided to quickly display the images or the loss of the two

metrics for all four synthesis objects.
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4.8 Conclusion

This chapter describes plenoptic, an open-source python package developed over the past

several years by members of the Lab for Computational Vision. This package presents well-

documented, tested, and generalized implementations of synthesis methods which have been

developed in the lab over the years, so that they can be used by the broader research community.

plenoptic provides tools for researchers to better understand their computational models, and

facilitates experiments like those presented in the third chapter. This piece of software represents

a type of scienti�c work that is poorly supported at the moment: software which focuses on utility

over novelty and which will require maintenance, but which will facilitate the broader adoption

of these useful methods. Such software is critical for science but under-appreciated, and academic

science should move towards valuing software as a scienti�c output in its own right. Finally, I

discussed two of the methods included in plenoptic in more detail, describing what Metamer and

MADCompetition do, how they can be used in experiments, and how to interact with the code, as

well as providing some example outputs.

4.9 Example notebook

The following is a pdf export of a jupyter notebook that was put together to give a simple

introduction to plenoptic. It can also be viewed in its GitHub repository or interacted with on

mybinder. (Note that the progress bars do not render in the pdf export or static version, but are

visible in the interactive version).
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The following provides a gentle introduction to plenoptic, showing how to create a simple model
that works with our synthesis methods, as well

[1]: import plenoptic as po
import torch
import matplotlib.pyplot as plt
import pytest
import pyrtools as pt

%matplotlib inline
%load_ext autoreload
%autoreload 2

To get started, let’s create our model (a simple one-channel large Gaussian) and our target image.

[2]: im = po.tools.load_images('data/einstein.pgm')

/home/billbrod/miniconda3/envs/synth/lib/python3.8/site-
packages/plenoptic/tools/data.py:115: UserWarning: Creating a tensor from a list
of numpy.ndarrays is extremely slow. Please consider converting the list to a
single numpy.ndarray with numpy.array() before converting to a tensor.
(Triggered internally at /home/conda/feedstock_root/build_artifacts/pytorch-
recipe_1635217151385/work/torch/csrc/utils/tensor_new.cpp:201.)

images = torch.tensor(images, dtype=torch.float32)

To show how easy it is to construct a plenoptic-compliant model, we’re going to go ahead and
create the model here. We must define an __init__ method, which initializes the model, and a
forward method, which defines how the model transforms its input into its output.

[3]: from plenoptic.simulate.canonical_computations import filters
from plenoptic.tools import conv
from torch.nn import functional as F

class Gaussian(torch.nn.Module):
"""Isotropic Gaussian convolutional filter.

Kernel elements are normalized and sum to one.

Parameters
----------
kernel_size:

Size of convolutional kernel.
"""

def __init__(self, kernel_size):
super().__init__()
if isinstance(kernel_size, int):

kernel_size = (kernel_size, kernel_size)
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self.kernel_size = kernel_size
# this is a convenience function we provide for creating 2d gaussian
# filters
self.filt = filters.circular_gaussian2d(self.kernel_size, 3.)

def forward(self, x, **conv2d_kwargs):
# use circular padding so our output is the same size as our input
x = conv.same_padding(x, self.kernel_size, pad_mode='circular')
y = F.conv2d(x, self.filt, **conv2d_kwargs)

return y

[4]: model = Gaussian(8)

/home/billbrod/miniconda3/envs/synth/lib/python3.8/site-
packages/torch/functional.py:445: UserWarning: torch.meshgrid: in an upcoming
release, it will be required to pass the indexing argument. (Triggered
internally at /home/conda/feedstock_root/build_artifacts/pytorch-
recipe_1635217151385/work/aten/src/ATen/native/TensorShape.cpp:2157.)

return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]

To work with out synthesis methods, a model must accept a 4d tensor as input and return a 3d or
4d tensor as output. 4d inputs are commonly used for pytorch models, and the dimensions are
batch (often, multiple images), channel (often, RGB or outputs of different convolutional filters),
height, and width. The output should then either return a 1d vector or a 2d image per batch and
channel. If your model operates across channels or batches, that’s no problem; for example if the
model transforms RGB to grayscale, your input would have 3 channels and your output would
have 1.

We can see below that our Gaussian model satisfies this constraint:

[5]: print(im.shape)
print(model(im).shape)

torch.Size([1, 1, 256, 256])
torch.Size([1, 1, 256, 256])

There’s also several slightly more abstract constraints:

• Models must be written in PyTorch, because we make use of the its automatic differentiation
features.

• Models must accept real-valued inputs and return real-valued outputs. Anything else makes
optimization very tricky.

• Arbitrary model inputs and outputs should have meaning. This is easiest with models that,
e.g., operate on images and predict something numeric, such as firing rate. Synthesis will
return something that is out-of-set and the only constraint we place on its values is that they
fall within some range. If your output is categorical or your input is more abstract, synthesis
might not be useful for you
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Okay, with those caveats, let’s continue.

The following shows the image and the model output. We can see that output is, as we would
expect, a blurred version of the input.

[6]: h = model.forward(im)
fig = po.imshow(torch.cat([im, h]), title=['Target image', 'Model output'])

Let’s start with metamer synthesis. To initialize, we only need the model and the image (there are
some additional options, but the defaults are fine in this case)

[7]: met = po.synthesize.Metamer(im, model)

# we do have a default optimizer, with a specific lr and other parameters --
# if you want other than the default, create one and pass it to `synthesize`
optim = torch.optim.Adam([met.synthesized_signal], lr=.005)
synth_image = met.synthesize(max_iter=20, optimizer=optim)
# if we call synthesize again, we resume where we left off.
synth_image = met.synthesize(max_iter=150)

0%| | 0/20 [00:00<?, ?it/s]

0%| | 0/150 [00:00<?, ?it/s]

Let’s look at the loss over time!

[8]: fig, ax = plt.subplots(1, 1, figsize=(5, 5))
ax.semilogy(met.losses)
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ax.set(title="Loss over synthesis iterations", ylabel="Loss",
xlabel="Synthesis iteration");

We can see that the loss is decreasing steadily and has reached a very low value (though it hasn’t
converged yet).

The following figure compares the target and synthesized images, as well as showing what the
model’s outputs on these images looks like:

[9]: po.imshow(torch.cat([im, h, synth_image, met.model(synth_image)]), col_wrap=2,
vrange='auto1',
title=["Target image", "Target model output", "Synthesized image",

"Model output of synthesized image"]);
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We can see that, even though the target and synthesized images look very different, the two model
outputs look basically identical (which matches the exceedingly low loss value we see above). (The
left column shows the images and the right column the model outputs; top row shows the target
and bottom the synthesized.)

It may seem strange that the synthesized image looks like it has high-frequency noise in it – a
Gaussian is a low-pass filter, so why isn’t the model metamer just a blurred version of the orig-
inal image? Indeed, such a blurred image would be a model metamer, but it’s only one of many.
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Gaussians are insensitive to high-frequency information, which not only means that their response
doesn’t change when you remove that information, but that you can put any amount of high fre-
quency information into an image without affecting the model’s output. Put another way, you can
randomize the contents of the model’s null space without affecting its response, and the goal of
metamer synthesis is to generate different images that do just that.

We can see this more dramatically by initializing our metamer synthesis with a different image.
By default, we initialize with a patch of white noise, but we can initialize with any image of the
same size. Let’s try with a different natural image, a picture of Marie Curie.

[10]: curie = po.load_images('data/curie.pgm')
po.imshow([curie]);

[11]: met = po.synthesize.Metamer(im, model, initial_image=curie, )

# we increase the length of time we run synthesis and decrease the
# stop_criterion, which determines when we think loss has converged
# for stopping synthesis early.
optim = torch.optim.Adam([met.synthesized_signal], lr=.005)
synth_image = met.synthesize(max_iter=500, optimizer=optim, stop_criterion=1e-6)

0%| | 0/500 [00:00<?, ?it/s]

[12]: fig, ax = plt.subplots(1, 1, figsize=(5, 5))
ax.semilogy(met.losses)
ax.set(title="Loss over synthesis iterations", ylabel="Loss",

xlabel="Synthesis iteration");
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We see that the synthesized image looks quite different from the target and from before, while
the model outputs look very similar. Here, our synthesized model metamer looks like a blurry
picture of Einstein with a high-frequency “shadow” of Curie added on top. Again, this is because
the Gaussian model is insensitive to high frequencies, and thus a model metamer can include any
high frequency information.

[13]: po.imshow(torch.cat([im, h, synth_image, met.model(synth_image)]), col_wrap=2,
vrange='auto1',
title=["Target image", "Target model output", "Synthesized image",

"Model output of synthesized image"]);
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By generating model metamers, we’ve gained a better understanding of the information our
model is invariant to, but what if we want a better understanding of what our model is sensitive
to? We can use Eigendistortion for that.

Like Metamer, Eigendistortion accepts an image and a model as its inputs. By default, it synthe-
sizes the top and bottom eigendistortion, that is, the changes to the input image that the model
finds most and least noticeable.
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[14]: eig = po.synthesize.Eigendistortion(im, model)
eig.synthesize();

Initializing Eigendistortion -- Input dim: 65536 | Output dim: 65536

Top k=1 eigendists: 0%| | 0/1000 [00:00<?, ?it/s]

/home/billbrod/miniconda3/envs/synth/lib/python3.8/site-
packages/plenoptic/synthesize/eigendistortion.py:356: UserWarning: torch.qr is
deprecated in favor of torch.linalg.qr and will be removed in a future PyTorch
release.
The boolean parameter 'some' has been replaced with a string parameter 'mode'.
Q, R = torch.qr(A, some)
should be replaced with
Q, R = torch.linalg.qr(A, 'reduced' if some else 'complete') (Triggered
internally at /home/conda/feedstock_root/build_artifacts/pytorch-
recipe_1635217151385/work/aten/src/ATen/native/BatchLinearAlgebra.cpp:1937.)

v_new = torch.qr(Fv)[0] # (ortho)normalize vector(s)

Top k=1 eigendists computed | Tolerance 1.00E-07 reached.

Bottom k=1 eigendists: 0%| | 0/1000 [00:00<?, ?it/s]

Let’s examine those distortions:

[15]: po.imshow(eig.synthesized_signal, title=['Maximum eigendistortion',
'Minimum eigendistortion']);
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We can see they make sense: the most noticeable distortion is a very low-frequency modification
to the image, with a period of about half the image. The least noticeable, on the other hand, is very
high-frequency, which matches our understanding from the metamer example above.

This brief introduction hopefully demonstrates how you can use plenoptic to better understand
your model representations! There’s much more that can be done with both these methods, as
well as two additional methods, MADCompetition and Geodesic, to explore.
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