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1 | Introduction

Beyond the flow of experience constantly shifting before us, we feel our identities themselves

changing with time. We remember, we associate, we learn. The dynamics of the mind are

fundamental to human experience, but as yet, we only have the slightest idea how changes in

our minds correspond to changes in our brains. Investigating the adaptive brain promises deep

philosophical insight, as well as pragmatic affordances both for therapeutic intervention and for

building machines with learning capabilities as impressive as the brain’s.

To understand how dynamical biological processes link to perceptual or behavioral changes

throughout time, we have to start with what lasting changes occur within the brain. Of the

many features of neural architecture that modify over time, from the biophysical properties of

individual neurons to the development or pruning of synapses between neurons, changes in

the strength of synapses themselves have long been among the most prominent candidates for

the neural substrate of longitudinal perceptual and behavioral change, because many synaptic

connections are easily modified, and modifications persist for extended periods of time [Bliss and

Collingridge 1993]. Further, synaptic modification has been associated with many of the brain’s

critical adaptive functions, including: memory [Martin et al. 2000], experience-based sensory

development [Levelt and Hübener 2012], operant conditioning [Ohl and Scheich 2005; Fritz et al.

2003], and compensation for stroke [Murphy and Corbett 2009] or neurodegeneration [Zigmond

et al. 1990].

The goal of this thesis is to make progress on our collective understanding of learning and
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adaptation in the brain. Its primary focus will be on what are called normative synaptic plastic-

ity theories, which establish mathematical and simulation-based links between experimentally

observed synaptic plasticity phenomena and the adaptive functions critical for behavior and

development that they support. In Chapter 2, we will introduce and define this class of theory

from the ground up. We will also critically review previous literature dedicated to developing and

testing normative plasticity theories, and produce a set of guidelines that future modeling efforts

should attempt to adhere to, in order to facilitate the testing of these theories; in many ways, these

principles both influenced and were inspired by the work in later chapters. We will also provide

detailed tutorials on two canonical normative plasticity theories—REINFORCE (Appendix A.3;

[Williams 1992]) and the Wake-Sleep algorithm (Appendix A.4; [Hinton et al. 1995])—after which

we will show in detail how these algorithms measure up to the standards that we have set.

In models of neural systems, the REINFORCE algorithm adapts synapses through what is

called a reward-modulated Hebbian plasticity rule, where reward information is multiplicatively

combined with pre- and postsynaptic firing rate information to produce synaptic weight updates.

In Chapter 3, we show how a normative plasticity rule closely related to REINFORCE can produce

sensory representations that compensate for noise and are efficient, in that they selectively

represent task-relevant information without wasting metabolic resources. In Chapter 4, we

observe that our algorithm has many similarities to perceptual learning in the mouse auditory

cortex: we adapt it to demonstrate how reward and context information delivered by acetylcholine

signals from the nucleus basalis could underlie both context-specific adaptation in auditory

cortex and reward-based perceptual learning. We then compare our model to longitudinal two-

photon calcium recordings of mice learning to perform a two-alternative forced choice task and

demonstrate that our model is able to capture many features of the data, including learning speeds,

behavioral responses, neural representations, and context-specific responses.

Chapters 3 and 4 focus on reward-based learning, but at many stages in development animals

do not have access to explicit reward signals to shape their representations. This suggests that
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there may be other unsupervised mechanisms at play to assist in sensory development, but the

neural substrates of these mechanisms are poorly understood. In Chapter 5 we develop a theory

called ‘impression learning’, which proposes a mechanism for learning sensory representations

by adapting synapses to minimize a prediction error between predictive signals arriving at apical

dendrites of pyramidal neurons and incoming sensory information at basal dendrites. This theory

generalizes the Wake-Sleep algorithm, and improves on previous prediction-error based theories

of learning by demonstrating how learning can occur continuously with sensory perception,

rather than requiring an offline learning phase.

In Chapter 6, we close off the thesis with a theoretical examination of the difficulties associated

with studying complex, adaptive systems experimentally. In particular, we study causal interven-

tions, in which a subset of neurons in a circuit are either lesioned or transiently inactivated. We

show how inactivated neurons can easily be involved in a task even when their inactivation does

not show experimentally observable behavioral effects, especially in circuits with many nodes

capable of performing a task, or in circuits that are actively learning through synaptic plasticity.

Our results across the chapters of this thesis collectively demonstrate the importance of

normative theories of plasticity, both for conceptualizing learning in the brain and informing

experiments that investigate adaptive neural circuits.
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2 | An overview of normative synaptic

plasticity modeling

When asking what constitutes sufficient understanding of synaptic plasticity, we must ask what

we want that understanding to grant us. Most important for any pragmatic application is a precise

link between plasticity and adaptive behaviors of interest—one which is currently largely lacking.

In what follows, we will distinguish a ‘normative’ modeling approach from other alternatives,

demonstrate why it shows promise for establishing this link, and outline a set of desiderata which

normative plasticity models should attempt to adhere to in order to strengthen the link between

plasticity and the adaptive phenomena it underlies. Then, to provide concrete examples of these

principles in action, in Appendices A.3 and A.4 we provide worked tutorials on two canonical

normative plasticity models, REINFORCE [Williams 1992] and the Wake-Sleep algorithm [Dayan

et al. 1995; Hinton et al. 1995] respectively, and illustrate their successes and failures to match our

desiderata.

2.1 Phenomenological, mechanistic, and normative

plasticity models

When discussing models of synaptic plasticity, it will be useful to make the distinction between

three partially overlapping types of model: phenomenological, mechanistic, and normative (Fig.
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2.1a) [Levenstein et al. 2020]. The focus of this chapter will be on normative plasticity models, but

to understand their importance, we have to view them in relation to their counterparts.

In the simplest terms, a phenomenological model’s focus is on describing experimental data: the

primary goal is to concisely summarize relationships between observed variables. As an example,

many early studies of spike-timing-dependent plasticity (STDP) described the relationship between

plasticity and the relative timing of pre- and post-synaptic spikes with exponential curves fit to data

[Zhang et al. 1998; Dan and Poo 2004; Sjöström et al. 2010]. Such models can reduce the complexity

of data, providing interpretability and predictive power. They are incomplete descriptions of the

biophysical processes that form the causal link between spike times and plasticity, but extract

important features of the data.

A mechanistic model builds on the phenomenological project by attempting to describe

experimental data in terms of causal interactions between biophysical quantities. For instance,

since the initial characterization of STDP, a plethora of studies have emerged characterizing in

detail the interactions between backpropagating action potentials [Magee and Johnston 1997],

dendritic morphological properties [Froemke et al. 2005; Letzkus et al. 2006; Sjöström and Häusser

2006], local membrane voltage, NMDA ion channel properties, and calcium-sensitive molecules

near the synapse; mechanistic models [Graupner and Brunel 2010] characterize how these variables

all collectively contribute to the strengthening or weakening of the synapse. As a consequence

of their depth and breadth, mechanistic models can often provide predictions that are radically

outside of the scope of the original experiment, and provide useful targets for experimental

manipulation.

The distinction between phenomenological models and mechanistic models is not always so

clear, especially in areas where our scientific understanding is progressing rapidly. In nascent

mechanistic models, there often exist ‘black boxes’ that specify interactions between known

biophysical quantities, without any clear understanding of how these interactions come about

[Craver 2007]. Furthermore, the status of ‘biophysical’ does not make a quantity or its interactions
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Figure 2.1: Defining normative modeling. a. Spectrum of synaptic plasticity models. Mechanistic
models show how detailed biophysical interactions produce observed plasticity, phenomenological models
concisely describe what changes in experimental variables (e.g. post-pre relative spike timing Δ𝑡 ) affect
plasticity (Δ𝑊 ), and normative models explain why the observed plasticity implements capabilities that
are useful to the organism. b. Schematic illustrating the range of local variables that may be available for
synaptic plasticity. These include, but are not limited to: backpropagating action potentials from the soma,
apical dendritic input, pre- and postsynaptic activity, neuromodulatory signals, and potentially inhibitory
input from local microcircuitry. c. Classes of objective function used in normative plasticity theories.
Reward-based objectives involve only feedback about how well the organism or network performed,
whereas supervised objectives provide explicit targets for network output. By contrast, unsupervised
objectives do not require any form of explicit feedback to train the network.

any more real than the variables and relationships articulated by a phenomenological model:

biophysical quantities are simply more entrenched and better understood in relation to a breadth

of experimental studies of neural microbiology. In this way, we can see that there exists a spectrum

between phenomenological andmechanistic models, and that oftentimes, mechanistic models grow

from phenomenological ones. However, there is more to the spectrum: while phenomenological

and mechanistic models articulate how synaptic plasticity works, they do not explain why it exists

in the brain, i.e. what its importance is for neural circuits, behavior, or perception. An appeal to

normative modeling is required to provide this explanation precisely.

Normative models aim to answer this ‘why’ question by connecting plasticity to observed

network-level or behavioral-level phenomena, including memory formation [Hopfield 1982]

and consolidation [Benna and Fusi 2016; Clopath et al. 2008; Fusi et al. 2005], reinforcement
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learning [Frémaux and Gerstner 2016], and representation learning [Hinton et al. 1995; Rao and

Ballard 1999]. This class of plasticity model, in our view, employs a fundamentally different set of

methodologies from phenomenological or mechanistic models, in order to provide the missing

link between plasticity and function. Guided by the intuition that plasticity processes have been

optimized on an evolutionary timescale to near-optimally perform adaptive functions, normative

plasticity theories are typically ‘top-down’, in that they begin with a set of prescriptions about

how synapses ‘should’ modify in order to optimally perform a given learning-based function.

Subsequently, with varying degrees of success, these theories attempt to show that real biology

matches or approximates this optimal solution. This process is ongoing, and though experimental

support for such forms of plasticity are growing, much work remains to be done. In this chapter,

we will critically review existing normative plasticity approaches and discuss how they could be

built upon.

2.2 Desiderata for normative models

One of the biggest challenges for a normative model of synaptic plasticity is its connection to

biology: constructing an artificial neural network with simulated synapses (synaptic weight

parameters) that adapt to improve performance on any of a variety of functions from sensory

processing [LeCun et al. 1989a; Krizhevsky et al. 2012], to motor learning [Heess et al. 2017], to

abstract game learning [Silver et al. 2017; Vinyals et al. 2019] is relatively straightforward compared

to experimentally testing whether the mechanisms used by a given artificial network correspond

to the mechanisms used by the brain. Compared to the simulations and mathematical analysis

used to explore machine learning algorithms, neuroscience experiments are time-consuming and

expensive: it is not possible to test every imaginable theoretical learning mechanism with an

experiment, and many such mechanisms are so abstract that it is not even clear what to test.

Further, compared to network simulations which provide total access to neural activations, stimuli,
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and synaptic parameters over the whole course of learning, any one neuroscience experiment can

only reveal a very small amount about what is going on in a circuit.

In what follows, we will articulate a set of desiderata that can serve as both intermediate

objectives for the development of normative models of synaptic plasticity, and as intermediate

criteria which can be used to invalidate (or at least distrust) such models in the absence of

explicit experimental rejection. The following desiderata are not necessary (and are certainly not

sufficient) conditions for a normative model to be validated: many of the desiderata could under

some conditions be absent from a convincing normative model. We will only argue that each

principle is desirable, for some combination of the following reasons: first, it may help ensure that

the plasticity model actually qualifies as normative; second, it requires a model to accommodate

known facts about biology; third, it helps ensure that models can be compared properly to existing

experimental literature and generate genuinely testable experimental predictions. Most of these

desiderata are relatively intuitive and simple. However, it has proven incredibly difficult for existing

models, across any given normative goal from sensory processing, to memory, to reinforcement

learning, to satisfy all desiderata in tandem.

2.2.1 Locality

Biological synapses can only change strengths using biochemical signals available at the synapse

itself. ‘Locality’ refers to the idea that a postulated synaptic plasticity mechanism should only

refer to variables that could be conceivably available at a given synapse. Though locality may

seem like an obvious requirement for any theory of biological function, for synaptic plasticity it

presents a great mystery: how does a system as a whole, whose success or failure is determined

by the joint action of many neurons distributed across the entire brain, communicate information

to individual synapses about how to improve? Resolving this mystery is highly nontrivial, as

illustrated by the demonstrable nonlocality of most successful machine learning algorithms used

to train artificial neural networks to perform tasks, including backpropagation [Werbos 1974;
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Rumelhart et al. 1985] (See Appendix A.1), backpropagation through time [Werbos 1990], and

real-time recurrent learning [Williams and Zipser 1989].

Despite its importance as a guiding principle for normative theories of synaptic plasticity,

locality is a slippery concept, primarily because of the neuroscience community’s insufficient

understanding of the precise battery of biochemical signals available to a synapse, and how those

signals could be used to approximate quantities normally used in theory. As a simple example,

many normative theories require information about the pre- and postsynaptic firing rates of a

neuron, similar to Hebb’s Postulate [Hebb 1949]. However, neurons predominately communicate

to one another through discrete action potentials, and additional cellular machinery would be

required to form an estimate of a firing rates pre- and postsynaptically based on backpropagating

action potentials from the soma and on postsynaptic potentials. Whether a plasticity rule derived

from normative principles involves rate or spike-based information is often a function of the

neuron model used in the theory, and it is often difficult to formulate predictions about how a

realistic, non-idealized neuron should exactly modify its synapses based on over-simplified models.

Therefore, often normative theories declare success when some standard of plausibility is reached,

where derived plasticity rules roughly match the experimental literature [Payeur et al. 2021] or

only require reasonably simple functions of postsynaptic and pre-synaptic activity that a synapse

could hypothetically approximate [Oja 1982; Scellier and Bengio 2017; Williams 1992].

In normative models of synaptic plasticity, the requirement of locality is in perpetual tension

with the general requirement for some form of ‘credit assignment’ [Lillicrap et al. 2020; Richards

et al. 2019], i.e. a mechanism capable of signaling to a neuron that it is ‘responsible’ for a network-

wide error, and should modify its synapses to reduce errors. Depending on a network’s objective,

a system’s credit assignment mechanism could take a wide variety of forms, some small number of

which may only require information about the pre- and post-synaptic activity of a cell [Oja 1982;

Pehlevan et al. 2015, 2017; Obeid et al. 2019; Brendel et al. 2020], but many of which appear to

require the existence of some form of error [Scellier and Bengio 2017; Lillicrap et al. 2016; Akrout
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et al. 2019] or reward-based [Williams 1992; Fiete et al. 2007; Legenstein et al. 2010] signal.

The extent to which a credit assignment signal postulated by a normative theory meets

the standards of ‘locality’ depends heavily on the nature of the signal. For instance, there is

growing support for the idea that neuromodulatory systems, including dopamine [Otani et al.

2003; Calabresi et al. 2007; Reynolds and Wickens 2002], norepinephrine [Martins and Froemke

2015], oxytocin [Marlin et al. 2015], and acetylcholine [Froemke et al. 2013; Guo et al. 2019; Hangya

et al. 2015; Rasmusson 2000; Shinoe et al. 2005] can distribute information about reward [Guo

et al. 2019], expectation of reward [Schultz et al. 1997], and salience [Hangya et al. 2015] diffusely

throughout the brain to induce or modify synaptic plasticity in their targeted circuits. Therefore,

in many cases it is reasonable for normative theories to postulate that synapses have access to

global reward or reward-like signals, without violating the requirement that plasticity be affected

only by locally-available information [Frémaux and Gerstner 2016]. In other normative theories,

credit assignment can occur through more advanced processes which have less experimental

support. If, as for the algorithms used to train deep image classifiers [Yamins et al. 2014; Yamins

and DiCarlo 2016], the objective is formulated in terms of success or failure to match supervised

labels (e.g. the system incorrectly classifies an image as ‘cow’ when viewing a goat), then the onus

rests on a normative theory to account for where this signal comes from and how it is calculated.

Though supervised error signals do seem to modify synaptic plasticity in some neural systems (for

example the cerebellum [Gao et al. 2012; Bouvier et al. 2018]), in most cases supervised learning

presupposes the existence of ground truth information readily available in some neural region;

providing a normative theory of synaptic plasticity without providing an account of how this

‘supervisor’ comes to be amounts to passing a large amount of the work of credit assignment

onto an ethereal, unknown and unstudied system. The inclusion of details in a normative theory

that violate locality as understood by current experimental data can serve as an excellent way to

test that theory experimentally; however, if those model components are not sufficiently specific,

by for example not specifying which brain area a particular supervisory signal should come
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from and how it could be calculated, then the theory becomes effectively under-constrained and

unverifiable.

Locality as a desideratum serves as a heuristic stand-in for the requirement that a normative

model must be eventually held to the standard of experimental evidence. The quality of theoretical

research is only partly determined by its correspondence to what is already known: to allow

theoretical research to progress neuroscience as a field, it is vital for theories to be able to

generate predictions and to motivate subsequent research. In some cases, this may necessitate a

theory postulating credit assignment mechanisms that have not yet been observed in experiments.

However, for such an exercise to be constructive, the theory should clearly articulate how it

deviates from the current state of the experimental field, and how these deviations can be tested

(Section 2.2.7). Furthermore, the process of mathematical abstraction necessitates approximation

[Cartwright and McMullin 1984]: requiring a normative theory to adhere to ‘locality’ without

necessarily requiring a perfect correspondence to experimental data allows normative theories to

strive to capture the essence of synaptic learning processes without becoming mired in technical

details.

2.2.2 Improving performance

One way of viewing the normative project is that it attempts to organize the diversity of synaptic

dynamics existing within a neural system into the simplest explanatory framework possible

for what functions the system’s plasticity subserves. Usually, this framework is mathematical

for pragmatic reasons: mathematics provides the precision and power necessary to establish

clear relationships between plasticity and function. In particular, viewing neural plasticity as an

approximate optimization process has been fruitful [Lillicrap et al. 2020; Richards et al. 2019],

wherein synaptic modifications progressively reduce a scalar loss function. This process can be

divided into two steps: articulating an appropriate objective, and subsequently demonstrating

that a synaptic plasticity mechanism improves performance on that objective.
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It can be extremely difficult to reduce the full range of functions a given circuit must perform

to a scalar objective function, but as we will show subsequently, the conceptual benefits can be

immense. On one side, picking too simple an objective function runs the risk of ignoring many

functions a system is required to perform. For instance, early normative theories of learning in

sensory systems show how synaptic plasticity could minimize the objective function underlying

principal component analysis (PCA) [Oja 1982], but merely representing the principal components

of an incoming sensory stream is an inadequate characterization of sensory processing for several

reasons: PCA neglects the temporality of naturalistic inputs and cannot capture important phe-

nomena exhibited by cortical neurons, including complex gain control capabilities [Simoncelli and

Heeger 1998] and texture [Ziemba et al. 2016] and object class [Rust and DiCarlo 2010] selective

responses. A given synaptic plasticity mechanism may only be able to minimize a restricted subset

of objectives, and for a normative theory, the set of possible objectives that can be minimized must

encompass a wide range of functions that the brain is known to subserve. Beyond principal compo-

nent analysis, a more modern and reasonable class of objectives for unsupervised representation

learning in sensory systems would be for training general hierarchical generative models (e.g. the

evidence lower bound (ELBO) which underlies a wide variety of unsupervised algorithms and

architectures, including PCA, factor analysis, Kalman filtering [Roweis and Ghahramani 1999], the

Helmholtz machine [Dayan et al. 1995], predictive coding [Rao and Ballard 1999], and variational

autoencoders [Rezende et al. 2014; Kingma and Welling 2014]). On the other side, selecting too

complicated an objective function can undermine the normative process entirely. For example,

if we were to postulate that the ‘goal’ of a neural system is to do exactly what experimentalists

observe it doing at both the spiking and synaptic level, i.e. everything in a neural system happens

precisely as was ‘intended’, then the normative project becomes vacuous: the model provides no

conceptual simplification beyond what was observed experimentally, and the community does

not learn anything new.

Normative theories of synaptic plasticity developed to date usually involve some combination
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of supervised, unsupervised , or reinforcement learning objectives (Fig. 2.1c). The choice of

objective function for a neural system is laden with philosophical assumptions about the system’s

purpose, and can exert a huge influence on the resultant form of the synaptic plasticity. For

instance, supervised learning usually involves the existence of either an internal or external

teacher. If the teacher is external, such a learning mechanism could only be leveraged under the

very specific and comparatively rare conditions in which the organism is being overtly taught. If

the teacher is internal, as already mentioned, to be satisfactory the normative theory must provide

an account for how the internal teacher gains access to its knowledge. Ground truth information

is hard to come by for neural systems, and so it may be better to adapt existing normative theories

that rely on supervisory information [Ackley et al. 1985; Xie and Seung 2003; Scellier and Bengio

2017] to unsupervised or reinforcement learning objectives. Generative modeling is a form of

unsupervised learning that postulates that a sensory system is actively building a probabilistic

model of its sensory inputs, which can be used to simulate possible future outcomes and perform

Bayesian reasoning [Fiser et al. 2010a]. This vision of sensory coding is popular both for its ability

to accomodate normative plasticity theories [Rao and Ballard 1999; Dayan et al. 1995; Kappel et al.

2014; Bredenberg et al. 2021] and for its philosophical vision of sensory processing as a form of

advanced model building, beyond simple sensory transformations. However, model construction is

only indirectly useful for many tasks involving rewards and planning, and so such plasticity would

have to occur concomitantly with reward-based [Frémaux and Gerstner 2016] or motor [Gao

et al. 2012; Feulner and Clopath 2021] learning. Furthermore, alternative perspectives on sensory

processing exist, including those based on maximizing the information about a sensory stimulus

contained in a neural population [Attneave 1954; Atick and Redlich 1990] subject to metabolic

efficiency constraints [Tishby et al. 2000; Simoncelli and Olshausen 2001], and those based on

‘contrastive methods’ [Oord et al. 2018; Illing et al. 2021], where some form of self-supervising

internal teacher encourages the neural representation of some stimuli to grow closer together,

while encouraging others to grow more discriminable.
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Evaluating which objective function (or functions) best explains the properties of a neural

system is very hard: while some forms of objective function may have discriminable effects

on plasticity (e.g. supervised vs. unsupervised learning [Nayebi et al. 2020]), others are even

provably impossible to distinguish. As a simple example, suppose that we have an 𝑁 𝑟 dimensional

single-layer neural network receiving 𝑁 𝑠 dimensional stimuli through an 𝑁 𝑟 × 𝑁 𝑠 dimensional

weight matrixW. We have the response given by:

r = 𝑓 (Ws), (2.1)

where 𝑓 (·) is a pointwise tanh nonlinearity. Now suppose that some setting of synaptic weights

W∗ observed in an experiment minimizes an objective function L, i.e. L(W∗) < L(W) ∀W.

We might be tempted to argue that becauseW∗ minimizes L, L must be the objective that the

system is minimizing. However, there are an infinite variety of alternative objectives that share

this same minimum (Appendix A.2). This motivates the idea that for a given dataset, it is possible

that one objective (L̃) can masquerade as another (L). In some cases, complex objective functions

can masquerade as simple objectives, which may only be epiphenomenal. For instance, it has

been hypothesized that synaptic modifications may preserve the balance between inhibitory and

excitatory inputs to a cell [Vogels et al. 2011]; recent theories have proposed that this E/I balance

may only be a consequence of a more advanced theory of sensory predictive coding [Brendel et al.

2020]. In other cases, seemingly distinct frameworks, such as generative modeling, information

maximization, or denoising may simply produce similar synaptic plasticity modifications because

the frameworks often overlap heavily [Vincent et al. 2010], and may not be distinguishable

on simple datasets without targeted experimental attempts to disambiguate between the two

perspectives.

Furthermore, not every function performed by biological systems has been adequately incorpo-

rated into a simple optimization framework. For example, though the Hebbian plasticity proposed
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by the Hopfield network model endows model circuits with associative memory, the utility of

learning is characterized by the dynamical attractor structure it embeds in the neural circuit,

rather than by its direct minimization of an objective function [Hopfield 1982]. In addition, the

notion that some parts of the brain may have synaptic plasticity mechanisms for representation

learning while other parts have plasticity for reinforcement learning suggests that the brain may

be better viewed as a collection of interacting systems with only partially overlapping goals.

This multiagent [Zhang et al. 2021] formulation of learning has intuitive appeal, because it can

decompose broad objectives like survival into a series of intermediate objectives carried out by

individual systems. Such a formulation could help explain how locality emerges, i.e. why synapses

do not need information about distant neural circuits in order to improve performance. However,

with this additional appeal comes additional conceptual and mathematical complexity, because

improving performance on one objective could very easily harm the performance of other systems.

Therefore, insofar as a collection of neural circuits and plasticity mechanisms can be viewed as

acting in concert to improve a unified objective, simple optimization is the preferable perspective.

Having addressed many difficulties associated with choosing a good objective function, we now

move to difficulties involved in demonstrating that a particular synaptic plasticity rule decreases a

chosen objective1. How could such a property be proven? For a particular plasticity rule to reduce

an objective, we need to show that the following principle holds:

L(W + ΔW) < L(W) (2.2)

⇒L(W + ΔW) − L(W) < 0, (2.3)

for some update ΔW determined by the plasticity rule. If we accept the additional supposition that

ΔW is very small, we can employ the first order Taylor approximation (treating W as a flattened
1Some objectives (like reward functions) are best thought of as being maximized rather than minimized. Without

loss of generality, in such cases we can minimize the negative reward function.
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vector of length 𝑁 𝑟 × 𝑁 𝑠 ): L(W + ΔW) ≈ L(W) + 𝑑L
𝑑W (W)𝑇ΔW. Substituting this approximation

into our reduction criterion, we have after cancellation:

𝑑L
𝑑W

(W)𝑇ΔW < 0. (2.4)

This shows that for small weight updates (slow learning rates), the inner product between a

synaptic learning rule ΔW and the gradient of the selected loss function L(W) with respect to the

weight change must be negative. The simplest way to ensure that this is true is for ΔW to equal a

small scalar 𝜆 times the negative gradient of the loss (−𝜆 𝑑L
𝑑W (W)𝑇 𝑑L

𝑑W (W) = −𝜆∥ 𝑑L
𝑑W (W)∥2

2 < 0).

If this were true, plasticity would be guaranteed to improve performance on the objective L.

Unfortunately, for even the simplest neural networks and objective functions, naive methods

of calculating this gradient will prove to be nonlocal (see Appendix A.1 for a simple example).

Thus, the critical challenge for normative theories of synaptic plasticity is finding ways that

neural networks can find synaptic modifications ΔW that demonstrably have a negative inner

product with the gradient of a desired objective L, while still allowing the neural network to

satisfy biologically realistic locality constraints. However, it is important to note that if an update

ΔW reduces any one objective function, there are again an infinite number of similar alternative

objective functions that this update also reduces (Appendix A.2); therefore it is perhaps best to

think of normative plasticity models in terms of the family of objectives or functions that they

minimize—committing to any one particular objective within that family reflects the predilections

of the theorist, not the system.

Different normative studies demonstrate that Eq. 2.4 holds by different methods. Some studies

show empirically across many simulations that this inner product is negative [Lillicrap et al. 2016;

Marschall et al. 2020]. However, this demonstration does not answer the following questions:

how would we know that the network would still perform well if a different task were chosen,

or if the network’s architecture were different, or if various elements of the simulated plasticity
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mechanism were changed? A simulation may speak for itself, but it has relatively limited power to

extrapolate beyond its immediate results, especially when the neuron models used in large-scale

network simulations are often very reductive [Gerstner and Kistler 2002] and when small changes

in simulated network parameters can effect large qualitative differences in network behavior [Xiao

et al. 2021]. One could counter by providing a battery of in silico simulations under a variety

of different parameter settings and circumstances, but not only would such an attempt rapidly

suffer the curse of dimensionality, it would be so extensive a collection of data that it would be

only slightly more useful than a collection of in vivo or in vitro experiments, while also suffering

from a much more dubious connection to natural biological function. As such, simulation-based

justifications suffer from a lack of conciseness and an inability to easily address counterfactuals.

Other studies take the more radical approach of developing synaptic plasticity mechanisms

through repeated evolutionary optimization simulations [Jordan et al. 2021], which show how

approximately optimal plasticity could emerge from essentially survival-of-the-fittest principles.

While this amounts to an explanation of how plasticity could come to be, which is an interesting

question in itself—it is not a good explanation of why a given plasticity rule reduces an objective.

This historical approach is dissatisfactory for explaining the connection between neural adaptation

and behavior because it is subject to infinite regress: if an appeal to development or evolution

were an appropriate explanation for an organism’s current capabilities, we would rapidly find

ourselves appealing to the origins of life or even the universe to explain the current value of

synaptic plasticity for the brain. We would not, for instance, consider a detailed description of why

a bird’s wing improves incrementally over its ancestors’ to be a satisfactory explanation of how the

wing enables flight2. Furthermore, as with simulation-based approaches, historical justifications

can neither provide precise prescriptions to experimentalists for how they can perturb network

function, nor abstract away unnecessary details so that plasticity mechanisms can safely and
2In much the same way, normative theories of synaptic plasticity explain how neural systems adapt through time

to perform better, but they do not adequately explain what features or response properties of the perfected system
are desirable.
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reliably be incorporated into artificial learning systems.

The most desirable, most precise (and most difficult to construct) explanation is mathematical.

Mathematical theories seek to characterize the relationship between a local synaptic plasticity

rule and the gradient of the chosen objective function. Some plasticity rules amount to stochastic

approximations to the true gradient [Williams 1992; Scellier and Bengio 2017] and some are

systematically biased but maintain a negative inner product under reasonable assumptions [Bre-

denberg et al. 2021; Dayan et al. 1995; Amari and Nakahara 1999; Meulemans et al. 2020]. As we

will discuss below, the range of conditions under which a satisfactory proof of loss reduction can

be found is a mark of the power and importance of a normative theory, and the degree of detail

with which a clean mathematical relationship can be established between a plasticity rule and the

gradient of a loss is highly variable across theories. Mathematical analysis allows one to know

quite clearly when a particular plasticity rule will decrease a loss function, and identifies how

plasticity mechanisms should change with changes in the network architecture or environment.

However, analysis is often only possible under restrictive circumstances, and it is often necessary

to supplement mathematical results with empirical simulations in order to demonstrate that the

results extend to more general, more realistic circumstances.

2.2.3 Architectural flexibility

The learning algorithm implemented by a plasticity model often requires specific architectural

motifs to exist in a neural circuit in order to deliver reward, error, or prediction signals. These might

include diffuse neuromodulatory projections (Fig. A.1b) or neuron-specific top-down synapses

onto apical dendrites (Fig. A.2c). Such architectural features (or alternative, isomorphic motifs)

are required for the learning algorithm in question, and are known to exist in a wide range of

cortical areas. However, not all architectural motifs that exist in normative plasticity models

are so ubiquitous in the brain. There is huge diversity in cell types and dynamical properties

of neurons across animals and cortical (and subcortical) areas. If a normative model of synaptic
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Figure 2.2: Architecture and scalability considerations for normative plasticity models. a. Features
of realistic biological networks that normative plasticity theories should be able to account for: separation of
excitatory and inhibitory neuron populations; stochastic and spiking input-output functions for individual
neurons; and multilayer, recurrent connectivity. b. For actions in the past to be associated with delayed
supervisory or reinforcement signals, plasticity algorithms require a mechanism of temporal association.
One candidate is the ‘eligibility trace,’ which stores information about coactivity throughout time locally
to a synapse, and subsequently modifies synaptic connections when paired with feedback information.
Learning can occur offline, where some or all synaptic modification occurs in the absence of action
or perception by the organism. Alternatively, it can occur online, where the organism acts and learns
simultaneously. c. Stimuli (left) and task structure (right) can become complex in many ways. Different
sensory features (e.g. visual, auditory, or spatial information) can all be made more naturalistic by training
networks on stimuli organisms are exposed to and learn from in natural environments. Further, tasks
can be made more naturalistic by increasing the number of action options (𝑎) and sequential state (𝑠)
transitions required for a network to achieve its goals and by adding uncertainty into the task.

plasticity is overly dependent on specific features of a neuron model or architecture being used,

then the postulated form of learning is considerably less likely to be tolerant to variations in
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biophysical properties and microcircuitry both within and across brain areas. From this we

distill the following principle: in the absence of explicit empirical evidence supporting specific

architectural choices, normative theories of synaptic plasticity should be general, rather than

restrictive, in the architectural motifs that they support. In what follows, we will highlight several

particularly important motifs that normative models must accommodate.

Contrary to the highly reduced deterministic rate-based models typically used in machine

learning, neurons communicate through roughly discrete action potentials. Further, they exhibit

numerous forms of variability due in part to synaptic failures and constant receipt of task-irrelevant

signals (Fig. 2.2a) [Faisal et al. 2008]. Normative theories which employ rate-based activations

[Bredenberg et al. 2020; Scellier and Bengio 2017] or which assume that the input-output function of

neurons is approximately linear [Oja 1982], may not extend to the more realistic discrete, stochastic,

and highly nonlinear setting. Further, by ignoring spike timing, such theories inherently produce

plasticity rules that ignore the precise relationship between pre- and post-synaptic spike times,

and will consequently be unable to capture STDP results. This both limits the expressive power of

such models, and prevents their experimental validation. Fortunately, several methods which were

originally formulated using rate-basedmodels have subsequently been extended to spiking network

models to great effect. Reward-based Hebbian plasticity based on the REINFORCE algorithm

(Appendix A.3) [Williams 1992] has been generalized to stochastic spiking networks [Frémaux

et al. 2013], while backpropagation approximations [Murray 2019] and predictive coding methods

[Rao and Ballard 1999] have subsequently been extended to deterministic spiking networks [Bellec

et al. 2020; Brendel et al. 2020]. Therefore, a lack of a generalization to spiking networks is not

necessarily a death knell for a normative theory, but many existing theories lack either an explicit

generalization to spiking or a clear relationship to STDP, and the mathematical formalism that

defines these methods may require significant modification to accommodate the change.

Real biological networks have a diversity of cell types with different neurotransmitters and

connectivity motifs. At the bare minimum, a normative model must be able to accommodate
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Dale’s Law (Fig. 2.2a), which stipulates that the neurotransmitters released by a neuron are either

excitatory or inhibitory, but not both (for the most part [O’Donohue et al. 1985]). Though this

might seem like a simple principle, the mathematical results ofmany canonical models of synaptic

modification rely on symmetric connectivity between neurons, including Hopfield networks

[Hopfield 1982], Boltzmann machines [Ackley et al. 1985], contrastive Hebbian learning [Xie

and Seung 2003], and predictive coding [Rao and Ballard 1999], as well as several more recent

methods including weight mirror [Akrout et al. 2019] and equilibrium propagation [Scellier and

Bengio 2017]; this symmetry is partially related to the symmetric connectivity required by the

backpropagation algorithm (Appendix A.1). Symmetric connectivity means that the connection

from neuron A to neuron B must be the same as the reciprocal connection from neuron B to

neuron A. Symmetric connectivity inherently violates Dale’s Law, because it means that entirely

excitatory and entirely inhibitory neurons can never be connected to one another: the positive

sign for one synapse and the negative sign for the reciprocal connection violates symmetry. Some

models, such as Hopfield networks [Sompolinsky and Kanter 1986] and equilibrium propagation

[Ernoult et al. 2020] demonstrate that moderate deviations from symmetry can exist and still

preserve function. Other methods argue that the individual rate-based units in the normative

theory correspond to small populations of coupled excitatory and inhibitory spiking neurons

similar to the Wilson-Cowan population dynamics model [Payeur et al. 2021]. While this may well

be possible, it implies that a normatively derived weight modification rule applies to functional

connectivity between populations, not individual synapses, and additional work is required to

connect this form of mass modification to empirically observed plasticity at individual synapses,

as in [Payeur et al. 2021]. Further, such theories suffer the additional difficulty that there is no

clear way of delineating which neurons in an experimentally observed population belong to

which theoretical subpopulation, making experimental validation much more difficult. Lastly, the

assumption that all neurons in a subpopulation act as a unified group threatens to violate sensory

coding principles such as efficiency [Simoncelli and Olshausen 2001] and sparsity [Olshausen
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et al. 1996] of neural responses, and unrealistically limits the dynamical repertoire of recurrent

networks [Hennequin et al. 2012]. Thus we argue that, if possible, normative theories should

avoid assumptions of symmetry.

Many early plasticity models, including Oja’s rule [Oja 1982] and perceptron learning [Rosen-

blatt 1958], as well as more modern recurrent network models, focused on learning temporal

tasks [Murray 2019] are designed exclusively for single-layer networks, and do not generalize

to multi-layer architectures. Though greedy layer-wise optimization may be sufficient for some

forms of unsupervised learning [Illing et al. 2021], a method that cannot account for how credit

assignment signals are passed between cortical areas will not in general be able to support many

complex supervised or reinforcement learning tasks humans are known to learn [Lillicrap et al.

2020]: we will refer to this form of multi-layer signal propagation as ‘spatial’ credit assignment,

and will refer to relaying information across time as ‘temporal’ credit assignment (Fig. 2.2b;

Section 2.2.4). As we will discuss in the next section, models that do not support temporal credit

assignment will not be able to account for learning in inherently sequential tasks.

2.2.4 Handling temporal inputs

Because so many learned biologically-relevant tasks involving temporal decision-making [Gold

and Shadlen 2007] or working memory [Compte et al. 2000; Wong and Wang 2006; Ganguli et al.

2008] inherently leverage information from the past to inform future behavior, and because neural

signatures associated with these tasks exhibit rich recurrent dynamics [Brody et al. 2003; Shadlen

and Newsome 2001a; Mante et al. 2013; Sohn et al. 2019], a fully sufficient normative theory of

synaptic plasticity must work in recurrent neural architectures, and must provide an account of

temporal credit assignment in the brain.

Temporal credit assignment is an important point of failure of modern deep learning methods,

in part due to the inherent instabilities involved in performing gradient descent on recurrent

neural architectures [Bengio et al. 1994]. That models unconstrained in their correspondence to
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biology have difficulties handling temporal signals should be some indication of the difficulties

posed by temporal credit assignment for normative theories of synaptic plasticity. However, recent

improvements in neural architectures, including gated recurrent units [Chung et al. 2014] and long

short-term memory units [Hochreiter and Schmidhuber 1997], as well as sequential reinforcement

learning methods [Mnih et al. 2015], have combined to produce several high-profile advances on

inherently temporal, naturalistic tasks like game-playing [Silver et al. 2017] and natural language

processing [Devlin et al. 2018; Radford et al. 2018]. This may indicate that the time is ripe to begin

incorporating new temporal processing developments in deep learning into normative plasticity

models.

As it currently stands, the majority of normative synaptic plasticity models focus only on

spatial credit assignment, which presents distinct challenges when compared to temporal credit

assignment [Marschall et al. 2020]. In fact, many theories that provide a potential solution to

spatial credit assignment do so by requiring networks to relax to a ‘steady-state’ on a timescale

much faster than inputs [Hopfield 1982; Scellier and Bengio 2017; Bredenberg et al. 2020; Xie and

Seung 2003; Ackley et al. 1985], which effectively prevents networks from having the rich, slow

internal dynamics required for many temporal motor [Hennequin et al. 2012] and working memory

[Wong and Wang 2006] tasks. While these methods might require significant modifications on

a mathematical level to accommodate temporal credit assignment, other methods appear to be

agnostic to the temporal properties of their inputs, and may combine well with existing plasticity

rules that perform approximate temporal credit assignment within microcircuits [Dayan and

Hinton 1996; Miconi 2017; Murray 2019; Bellec et al. 2020].

While most normative theories focus on spatial credit assignment, some new algorithms do

provide potential solutions to temporal credit assignment, through either explicit approximation of

real time recurrent learning [Marschall et al. 2020; Bellec et al. 2020; Murray 2019], by leveraging

principles from control theory [Gilra and Gerstner 2017; Alemi et al. 2018], or by leveraging

principals of stochastic circuits that are fundamentally different from traditional explicit gradient-
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based calculation methods [Bredenberg et al. 2021; Miconi 2017]. We suggest that these models

capture something fundamentally lacking from theories focused exclusively on spatial credit

assignment, and future iterations of synaptic plasticity theory will likely want to draw inspiration

from them.

2.2.5 Online learning

Similar to being able to handle temporal inputs, in absence of convincing experimental evidence,

we argue that learning algorithms should perform online, meaning that learning can occur

continuously with action and perception in an environment (Fig. 2.2b). In light of humans’

ability to improve on tasks while performing them, the actively changing properties of neurons

during acclimatization to new environments [Bittner et al. 2015], and the absence of evident

non-perceptual phases during these periods (but see hippocampal replay [Pavlides and Winson

1989]), normative theories must acknowledge that requiring the existence of a distinct learning

phase constitutes a very probably lethal testable prediction.

In spite of this, many algorithms [Ackley et al. 1985; Xie and Seung 2003; Dayan et al. 1995;

Scellier and Bengio 2017] require distinct training phases, during at least one phase of which

activity of neurons is driven for learning, rather than perceptual purposes. Some existing two-

phase normative algorithms, such as the Wake-Sleep algorithm (Appendix A.4) [Hinton et al. 1995;

Dayan et al. 1995], can be adapted such that the second phase becomes indistinguishable from

perception [Bredenberg et al. 2021; Ernoult et al. 2020], or allow for simultaneous multiplexing

of top-down learning signals and bottom-up inputs [Payeur et al. 2021]; others do not require

neural activation functions to be modified by the learning process [Bellec et al. 2020; Illing et al.

2021], which allows for online learning. It is well known that significant synaptic modification

and consolidation occurs during sleep [Eschenko et al. 2008; Girardeau et al. 2009], a period of

time marked by either dreaming or a lack of perception: while some theories do propose that

a form of learning occurs during this time period [Deperrois et al. 2021], exact experimental
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confirmation of these algorithms is still pending. Further, while sleep may account for alternate

phases of learning algorithms that are intended to occur on a slow timescale, such as unsupervised

sensory representation learning or memory consolidation, it is not possible that these forms of

learning can account for improvements in behavioral performance that are well-documented to

occur within a single period of wakefulness.

2.2.6 Scaling in dimension and complexity

A point often underappreciated in computational neuroscience (and possibly overappreciated

in machine learning) is that algorithms must be able to scale to human-level performance in

order to be biologically plausible. As obvious as this sounds, it is a point that can be difficult to

verify: how can we guarantee that adding more neurons and more complexity will not make a

particular collection of plasticity rules more effective? As a case study, consider REINFORCE

([Williams 1992]; Appendix A.3), an algorithm which, for the most part, satisfies our other

desiderata for normative plasticity for the limited selection of tasks in naturalistic environments

which are explicitly rewarded. However, though REINFORCE demonstrably performs better than

its progenitor weight perturbation [Jabri and Flower 1992], as the dimensionality of its stimuli,

the number of neurons in the network, and the delay time between neural activity and reward

increases, the performance of the algorithm decays rapidly, both analytically and in simulations

[Werfel et al. 2003]. This is primarily caused by high variance of gradient estimates provided by

the REINFORCE algorithm, and is only partially ameliorated by existing methods that reduce

its variance [Bredenberg et al. 2021; Ranganath et al. 2014; Mnih and Gregor 2014; Miconi 2017].

Thus, adding additional complexity to the network architecture actually impairs learning.

Complexity is multifaceted, and involves features of both stimulus and task (Fig. 2.2c). Even

stimuli with very high dimensional structure can fail to capture critical features of naturalistic

stimuli, as evidenced by the wide gap in difficulty involved in constructing convincing models

that synthesize images with low-level naturalistic features (orientation, contrast, texture [Portilla
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and Simoncelli 2000]) compared to models that capture high-level image features (object identity

[Rezende et al. 2014; Goodfellow et al. 2014], and semantic content [Ramesh et al. 2021]), which are

only just beginning to emerge. Algorithms that scale well with the dimensionality of a stimulus

can fail to capture high-level stimulus features: for example, PCA-based image models are unable

to capture natural image statistics, and do not result in realistic neural receptive field properties

[Olshausen et al. 1996]. For these reasons, it is critical that normative plasticity algorithms be able

to scale not just to high-dimensional ‘toy’ datasets, but also to complex naturalistic data across

sensory modalities [Bartunov et al. 2018].

Similarly, naturalistic task structures are often much more complex than those used for training

general machine learning algorithms, let alone models of normative plasticity (Fig. 2.2c). In natural

environments, rewards are often provided after long sequences of complex actions, supervised

feedback is sparse, if present at all, and an organism’s self preservation often requires navigating

both uncertainty and complexmulti-agent interactions. Modern reinforcement learning algorithms

are only just beginning to make progress with some of these difficulties [Kaelbling et al. 1998;

Zhang et al. 2021], but as yet there are no normative plasticity models that describe how any of

the human capabilities used to solve these problems could be learned through cellular adaptation

(for example, model-based planning [Doll et al. 2012]); similarly, none of these capabilities have

been shown to be an emergent consequence of a more basic plasticity process.

We do not mean to imply that all normative plasticity algorithms should be demonstrated to

meet human-level performance, or even that they should match state-of-the-art machine learning

methods. Machine learning methods profit in many ways from their biological implausibility: they

use stochastic backpropagation, which is demonstrably biologically implausible (Appendix A.1)

but which benefits from very low variance gradient estimates [Werfel et al. 2003; Bredenberg et al.

2021]; they share weights across topographically distant space in convolutional neural networks

[Fukushima and Miyake 1982]; they use rate-based units, which generally perform better than

spiking units [Neftci et al. 2019]; and they are usually deterministic, which obviates the need for
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Figure 2.3: Testing normative theories a. Different normative plasticity theories postulate different
levels of detail for the feedback signals received by individual neurons. b. Normative plasticity theories
can be assessed through four different experimental lenses centered on individual neurons, circuits of
collectively recorded neurons, the training signals delivered to a circuit, and the organism’s overall behavior
over the course of learning.

redundancy (increased neuron numbers) and increased computational demand. Beyond machine

learning methods, the human brain itself has orders of magnitude more neural units and synapses

than have ever been simulated on a computer, all of which are capable of processing totally in

parallel. Therefore, direct comparison to the human—or any—brain is also not fair. We propose

the far softer condition that as the complexity of input stimuli and tasks increase, within the

range supported by current computational power, plasticity rules derived from normative theory

should continue to perform well both in simulation and, preferably, analytically. Further, the

performance of normative plasticity algorithms can fruitfully be compared to existing machine

learning methods as long as the comparison is performed for realistic network architectures

with identical conditions, as in [Bredenberg et al. 2021; Payeur et al. 2021; Marschall et al. 2020;

Bartunov et al. 2018].

2.2.7 Generating testable predictions

Despite the abundance of existing normative theories, very few have been confirmed experimen-

tally, and of those that have received partial confirmation, they are restricted to very specific
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experimental preparations, for example: fear conditioning in Aplysia [Rayport and Schacher 1986],

and reward-based learning in songbird motor systems [Fiete et al. 2007] and in mouse auditory

cortex [Froemke et al. 2013; Guo et al. 2019]. This relative paucity of validation will not be over-

come without a very clear articulation of which features of a normative theory constitute testable

predictions, and in what way those predictions disambiguate one theory from its alternatives.

Many existing features of normative theories would be fatal to those theories if proven not

to hold in biology. Some examples include: weight symmetry, reward modulation of plasticity,

differential roles (and plasticity rules) for apical and basal synapses, and the existence of eligibility

traces for temporal credit assignment. However, these individual features, if proven to hold, would

eliminate alternative theories to highly variable degrees. Most, if not all models could accommodate

weight symmetry, several distinct models predict reward modulation of plasticity either through

precise credit assignment or global neurotransmitter delivery [Murray 2019; Williams 1992; Bellec

et al. 2020; Roth et al. 2018], and several distinct supervised and unsupervised models predict

different types of signaling and plasticity at apical and basal synapses on pyramidal neurons

[Urbanczik and Senn 2014; Payeur et al. 2021; Bredenberg et al. 2021; Körding and König 2001;

Schiess et al. 2016; Sacramento et al. 2017; Guerguiev et al. 2017; Richards and Lillicrap 2019], while

nearly all models capable of temporal credit assignment assume some form of synaptic eligibility

trace [Bellec et al. 2020; Marschall et al. 2020; Murray 2019; Miconi 2017; Roth et al. 2018]. It is

intuitively clear that for any given normative theory of synaptic plasticity, there exist an infinite

number of infinitesimal perturbations to that theory that would be impossible to disambiguate

experimentally. Further, there are many features of normative theories that would be fatal if

proven not to hold, but are completely unclear how to test experimentally.

The most useful predictions, we hold, are those that are fatal to the theory if proven false, are

clearly testable, and disambiguate the theory from the greatest number of alternative theories. It

may be that a collection of predictions is required to completely isolate one individual normative

theory from closely related models, which suggests that articulating where particular models lie
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within a taxonomy of predictions is the most useful way to narrow down the field of possible

models. Testable predictions can be defined in terms of several different experimental lenses,

of which we isolate four: experiments examining individual neurons or synapses, populations

of neurons, the feedback mechanisms that shape learning in neural circuits, or learning at a

behavioral level (Fig. 2.3b). Accurately distinguishing one mechanism from another will likely

require a synthesis of experiments spanning all four lenses.

Individual neurons Experiments that focus on individual neurons, including paired-pulse

stimulation [Markram et al. 1997], mechanistic characterizations of plasticity [Graupner and

Brunel 2010], pharmacological explorations of neuromodulators that induce or modify plasticity

[Bear and Singer 1986; Reynolds and Wickens 2002; Froemke et al. 2007; Gu and Singer 1995],

and characterization of local dendritic or microcircuit properties mediating plasticity [Froemke

et al. 2005; Letzkus et al. 2006; Sjöström and Häusser 2006] form the bulk of the classical literature

underlying phenomenological and mechanistic modeling. These studies characterize what infor-

mation is locally available at synapses and what can be done with that information, as well as

which properties of cells can be altered in an experience-dependent fashion.

Existing normative theories differ in the nature of their predictions for plasticity at individual

neurons. Reward-modulated Hebbian theories require feedback information be delivered by a

neuromodulator like dopamine, serotonin, or acetylcholine [Frémaux and Gerstner 2016] and

that this feedback modulates plasticity at the local synapse by changing the magnitude or sign

of plasticity depending on the strength of feedback. In contrast, some unsupervised normative

theories require no feedback modulation of plasticity [Pehlevan et al. 2015, 2017], and others argue

that detailed feedback information arrives at the apical dendritic arbors of pyramidal neurons to

modulate plasticity, which is also partially supported in the hippocampus [Bittner et al. 2015, 2017]

and cortex [Larkum et al. 1999; Letzkus et al. 2006; Froemke et al. 2005; Sjöström and Häusser

2006].

Independent of the exact feedback mechanism, models differ in how temporal associations
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are formed. Algorithms related to REINFORCE assume that local records of coactivity, called

‘eligibility traces’ integrate over time fluctuations in coactivity of the post- and pre-synaptic

neuron local to a synapse. These postulated eligibility traces are stochastic, summing Gaussian

fluctuations in activity [Miconi 2017] that consequently produce temporal profiles similar to

Brownian motion. In contrast, methods based on approximations to real-time recurrent learning

propose eligibility traces that are deterministic records of coactivity whose time constants are

directly connected to the dynamics of the neuron itself [Bellec et al. 2020], while other hybrid

approaches predict eligibility traces which are deterministic but are related more to predicted

task timescale than the dynamics of the cell [Roth et al. 2018]. Though there do exist known

cellular processes that naturally track coactivity, like NMDA receptors [Bi and Poo 1998], and that

store traces of this coactivity longitudinally, like CaMKII [Graupner and Brunel 2010], much work

remains to be done to analyze how the properties of these known biophysical quantities relate to

the predictions of various normative theories, and whether there are other biological alternatives.

Other algorithms have different predictions at a microcircuit, rather than at an individual neu-

ron level. Impression learning, for instance, suggests that a population of inhibitory interneurons

could gate the influence of apical and basal dendritic inputs to the activity of pyramidal neurons

[Bredenberg et al. 2021], and some forms of predictive coding propose that top-down error signals

are partially computed by local inhibitory interneurons. Therefore, to completely distinguish

different theories, it may be necessary to analyze the connectivity and plasticity between small

groups of different cell types.

In sum, experiments at the level of individual neurons or local microcircuits potentially have

a great deal of power to identify whether a particular neural circuit is implementing any of a

collection of hypothesized normative models of plasticity. It is an advantage that these methods

can identify the adaptive capabilities of individual neurons and synapses, but these methods are

also limited in their ability to simultaneously observe the adaptation of many neurons in a circuit.

Normativity is inherently concerned with the value of plasticity for perception and behavior, and
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as we will see in subsequent sections, experiments that target larger populations of neurons will

be necessary to distinguish certain features of these theories.

Neural circuits How circuits encode environmental information and affect motor actions by

an animal cannot be determined by looking at single neurons, and by extension, analyzing how

these properties change over time requires methods that record large groups of neurons, such as

2-photon calcium imaging, multielectrode recordings, fMRI, EEG, and MEG, as well as methods

that manipulate large populations, like optogenetic [Rajasethupathy et al. 2016a] stimulation.

The benefits of these recording techniques for testing normative plasticity models, though less

practiced compared to individual neuron studies, are manyfold. One of the challenges for charac-

terizing a circuit with a normative plasticity model is selecting an appropriate objective function.

Determining which objective fits best can partly be determined by philosophical considerations

(Section 2.2.2), but empirical validation is a far more rigorous test. For instance, one can establish

that explicit reward modifies a neural representation to improve coding of task-relevant variables

[Froemke et al. 2013]. Another line of approaches trains neural networks on a battery of objectives,

and determines which objective produces the closest correspondence between model neurons and

neurons recorded brain in a variety of areas in the ventral [Yamins et al. 2014; Yamins and DiCarlo

2016] and dorsal [Mineault et al. 2021] visual streams, as well as recently in auditory cortex [Kell

et al. 2018] and medial entorhinal cortex [Nayebi et al. 2021]. Oftentimes, changes in artificial

neural network activity throughout time are sufficient to determine the objective optimized by

the network as well as its learning algorithm [Nayebi et al. 2020], an approach which could also

potentially be applied to recorded neural activity over learning.

Beyond narrowing down the objective function, recording from populations can establish

critical limitations to learning that may not exist in artificial circuits. For instance, in a brain

computer interface training paradigm, motor neurons adapt more slowly to decoder perturbations

that lie outside of the principal axes of network activity [Golub et al. 2018]; recent results have

shown that artificial networks show similar behavior only if the learning algorithm used by the
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circuit is noisy or imprecise compared to perfect gradient descent [Feulner and Clopath 2021].

Further, circuit recordings could in principle test predictions about how neural circuits should

function in situations that do not specifically involve learning. For instance, the Wake-Sleep

algorithm [Dayan et al. 1995] (Appendix A.4) proposes that neural circuits should spend extended

periods of time (e.g. during dreaming) occupying similar activity patterns to those evoked by

natural stimulus sequences, whereas impression learning proposes that similar hallucinatory states

could be induced by experimentally increasing the influence of apical dendrites on pyramidal

neuron activity [Bredenberg et al. 2021]. An alternative learning algorithm based on generative

adversarial networks proposes that during sleep networks rehearse corrupted versions of recent

waking experiences [Deperrois et al. 2021]. There is plenty of room for experiments to more

clearly map predictions and components of these models onto well documented neural phenomena,

such as sleep or potentially replay [Girardeau et al. 2009; Eschenko et al. 2008]. Because circuit

recording and manipulation methods often sacrifice temporal resolution [Hong and Lieber 2019],

and have difficulty inferring biophysical properties of individual synapses and cells, these methods

are best used in concert with single neuron studies to jointly tease apart the multi-level predictions

of various normative models.

Feedback mechanisms One of the best ways to distinguish normative plasticity algorithms

is on the basis of the nature of their feedback mechanisms (Fig. 2.3a). Though some unsupervised

algorithms, like Oja’s rule propose that no feedback is necessary to perform meaningful learning,

no current normative theories propose any form of supervised or reinforcement learning that

does not require some form of top-down feedback. However, across these models, the level of

precision of feedback varies considerably. The simplest feedback is scalar, conveying reward

[Williams 1992], state fluctuation [Payeur et al. 2021], or context (e.g. saccade [Illing et al. 2021]

or attention [Roelfsema and Ooyen 2005; Pozzi et al. 2020]) information. Beyond this, the space

of proposed mechanisms expands considerably: backpropagation approximations like feedback

alignment [Lillicrap et al. 2016] and random-feedback online learning (RFLO) [Murray 2019]
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propose random feedback between layers of neurons can provide a sufficient learning signal,

whereas algorithms based on control theory propose that low-rank or partially random projections

carrying supervised error signals are sufficient [Gilra and Gerstner 2017; Alemi et al. 2018].

Other algorithms propose even more detailed feedback, with individual neurons receiving precise,

carefully adapted projections carrying learning-related information. These algorithms propose that

top-down projections to apical dendrites [Urbanczik and Senn 2014] or local interneurons neurons

[Bastos et al. 2012] perform spatial credit assignment, but the nature of this signal can differ

considerably across different algorithms. It could be a supervised target, carrying information

about what the neuron state ‘should’ be to achieve a goal [Guerguiev et al. 2017; Payeur et al.

2021], or it could be a prediction of the future state of the neuron [Bredenberg et al. 2021].

Each of these different possibilities is theoretically testable, if the focus is shifted to the

postulated feedback mechanism instead of the circuit undergoing learning. However, so far the

different mechanisms have received only partial support. For example, acetylcholine projections

to auditory cortex that modulate perceptual learning [Froemke et al. 2013] display a diversity of

responses related to both reward and attention [Hangya et al. 2015], which adapt over the course

of learning in concert with auditory cortex [Guo et al. 2019]. This suggests that while traditional

models of reward-modulated Hebbian plasticity may be correct to a first approximation, a more

detailed study of the adaptive capabilities of neuromodulatory centers may be necessary to update

the theories.

While a growing number of studies indicate that projections to apical synapses of pyramidal

neurons do play a role in inducing plasticity, and that these projections themselves are also plastic

(i.e. nonrandom) [Bittner et al. 2015, 2017], very little is known about the nature of the signal—a

critical component for distinguishing several different theories. In the visual system, presentation

of unfamiliar images without any form or reward or supervision can modify both apical and

basal dendrites throughout time [Gillon et al. 2021], and in the hippocampus, apical input to

CA1 pyramidal neurons while animals acclimatize to new spatial environments is sufficient to
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induce synaptic plasticity [Bittner et al. 2015, 2017]. These two examples support a form of

unsupervised learning, but evidence for supervised or reinforcement learning signals propagated

through apical dendritic synapses is currently lacking. Beyond the cerebellar system, where

climbing fiber pathways may carry explicit motor error signals used for plasticity [Gao et al. 2012;

Bouvier et al. 2018], evidence for detailed supervised feedback is limited. In sum, beyond single

neurons, or even populations recorded by traditional techniques, targeted focus on the learning

feedback signals received by a population show promise to rule out algorithms on the basis of

their feedback and objective function.

Behavior In much the same way that psychophysical studies of human or animal responses

define constraints on what the brain’s perceptual systems are capable of, behavioral studies of

learning can do quite a lot to describe the range of phenomena that a model of learning must be

able to capture, from operant conditioning [Niv 2009], to model-based learning [Doll et al. 2012],

rapid language learning [Heibeck and Markman 1987], unsupervised sensory development [Wiesel

and Hubel 1963], or consolidation effects [Stickgold 2005]. Behavioral studies can also outline key

limitations in learning, which are perhaps reflective of the brain’s learning algorithms, including

the brain’s failure to perform certain types of adaptation after critical periods of plasticity [Wiesel

and Hubel 1963], and the brain’s unexpected inability to learn multi-context motor movements

without explicit motor differences across contexts [Sheahan et al. 2016].

These existing experimental results stand as (often unmet) targets for normative theories of

plasticity, but in addition, normative theories themselves suggest further studies that may test

their predictions. In particular, manipulation of learning mechanisms may have predictable effects

on animals’ behavior, as seen when acetylcholine receptor blockage in mouse auditory cortex

prevented reward-based learning in animals [Guo et al. 2019], and nucleus basalis stimulation

during tone perception longitudinally improved animals’ discrimination of that tone [Froemke

et al. 2013]. Other algorithms have as-yet untested predictions for behavior: for instance, ex-

perimentally increasing the influence of top-down projections should bias behavior towards
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Algorithm Local Dec. Loss Time Flex. Arch. Online Scalable
Backpropagation ✗ U/S/R ✓ ✓ ✓ ✓

REINFORCE ✓ U/S/R ✓ ✓ ✓ ✗

Oja ✓ U ✗ ✗ ✓ ✓

Predictive Coding ✓ U ✓ ✗ ✓ ✓

Wake-Sleep ✓ U ✓ ✓ ✗ ✓

Approx. Backprop. ✓ U/S* ✓ ✓ ✓ ✓

Equilibrium Prop. ✓ U/S ✗ ✗ ✓ ✓

Target Prop. ✓ U/S ✓ ✓ ✗ ✓

Table 2.1: Satisfying the desiderata. A ✓ indicates that an algorithm has been demonstrated to satisfy
a particular desideratum in at least one study, whereas an ✗ indicates that it has not been demonstrated.
Asterisks (*) indicate that results have only been shown by simulation, and lack mathematical support. U,
S, and R indicate whether a given algorithm supports unsupervised, supervised, or reinforcement learning,
respectively.

commonly-occurring sensory stimuli according to both predictive coding [Rao and Ballard 1999;

Friston 2010] and impression learning [Bredenberg et al. 2021]. For other detailed feedback algo-

rithms (Fig. 2.3a), manipulating top-down projections may disrupt learning, but would have a

much more unstructured deleterious effect on perceptual behavior.

As shown, each experimental lens has its own advantages and disadvantages. Single-neuron

studies are excellent for identifying the locally available variables that affect plasticity, circuit-level

studies can help narrow down the objectives that shape neural responses and identify traces of

offline learning, studies of feedback mechanisms can distinguish between different algorithms

that postulate different degrees of precision in their feedback and in complexity of the teaching

signal, and studies of behavior can place boundaries on what can be learned, as well as serve as a

readout for manipulations of the mechanisms underlying learning. Each focus alone is insufficient

to distinguish between all existing normative models, but in concert show promise for identifying

the neural substrates of adaptation.
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2.3 Conclusions

Normative plasticity models are compelling because of their potential to connect our brains’

capacity for adaptation to their constituent synaptic modifications. Generating good theories is a

critical part of the scientific process, but finding ways to close the loop by testing key predictions

of new normative models has proved extraordinarily difficult: in this chapter we have shown

within the anatomy of a normative model the sources of this difficulty.

The core of a normative plasticity model is its plasticity rule, which dictates how a model

synapse uses locally available information to modify its strength. To be a normative model—to

explain why the plasticity mechanism is important for the organism—there must be a concrete

demonstration that this plasticity rule supports adaptation critical for system-wide goals like

processing sensory signals or obtaining rewards. These two needs of a normative plasticity

model are the fundamental source of tension: it is very difficult to demonstrate that a proposed

plasticity rule is both local and optimizes a system-wide objective (Appendix A.1). Insufficient

or partial resolution of this fundamental tension produces normative models that are not well

enough developed at a mathematical level to warrant testing in the first place: lacking convincing

arguments that a theory is local (Section 2.2.1), reduces an objective function critical for an

organism’s survival (Section 2.2.2), could generalize to the full complexity of neural architecture

found throughout the brain (Section 2.2.3), and can handle complex temporal stimuli and tasks

online (Sections 2.2.4 and 2.2.5), there is very little reason to suppose the brain could ever make

constructive use of the proposed plasticity.

Even satisfying the aforementioned desiderata, much work remains to delineate which tests

would most clearly distinguish a normative model from its alternatives in a biological system. In

this chapter, we have organized existing theories according to how well they satisfy our desiderata

(Table 2.1) and by how they can be tested (Section 2.2.7), with the view that this organization will

provide avenues for both experimental and theoretical neuroscientists to bring normative plasticity
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models closer to biology. Even if existing algorithms prove not to be implemented exactly in the

brain, they undoubtedly provide key insights into how local synaptic modifications can produce

valuable improvements in both behavior and perception for an organism. It seems sensible to use

these algorithms as a springboard to produce more biologically realistic and powerful theories.

For instance, REINFORCE suffers from scalability issues (Table 2.1), but provides one of the

only known mechanisms for improving performance using only scalar signals based on raw

reward. Given that the scalability of REINFORCE is primarily limited by its inability to provide

structured feedback to individual neurons or small groups [Werfel et al. 2003], we propose that

hybridized versions in which reward centers actively model and decompose an environment’s

reward contingencies into subgoals or targets for small populations of neurons will produce

closer matches to biology and huge improvements in performance. Such a normative model

could potentially be constructed from a model-based reinforcement learning [Doll et al. 2012],

reward-based backpropagation approximation [Roelfsema and Ooyen 2005; Roelfsema et al. 2010],

or active inference perspective [Sajid et al. 2021; Isomura et al. 2022]. Algorithms like Wake-Sleep

[Hinton et al. 1995; Dayan et al. 1995] and variants of target propagation [Bengio 2014] are very

closely related, and complementary to REINFORCE in that they scale well, but are unable to learn

from reinforcement signals alone. Both algorithms are offline, and so an alternative avenue of

improvement is to show how they can be adapted to online learning in the brain (see Chapter 5;

[Bredenberg et al. 2021]). These algorithms involve a top-down model of neural activity, in which

task or statistical information is used to project credit assignment signals to individual neurons

that assert what the activity of a neuron should be. These algorithms, or related control-theoretic

approaches [Meulemans et al. 2020; Friedrich et al. 2021] may combine well with reinforcement

learning to provide more efficient, model-based forms of learning. The Wake-Sleep algorithm

and REINFORCE have complementary benefits and flaws, but are mathematically very closely

related. To provide a case study of how our desiderata come to be satisfied (or not) in practice, we

have included tutorials for these two algorithms in Appendices A.3 and A.4. These tutorials are
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by no means a complete introduction to the field, but will hopefully serve as a solid foothold for

analyzing more modern normative plasticity models.

Beyond improving normative theories with respect to our desiderata, there are several in-

credible opportunities for actually testing their implementation in biology (Section 2.2.7). Most

current theoretical studies of reward-modulated Hebbian plasticity focus on dopamine-modulated

motor learning in monkeys and songbirds [Fiete et al. 2007; Legenstein et al. 2010], but there

are many neuromodulatory systems that have been linked to learning in experiments, includ-

ing serotonin-modulated fear conditioning in the amygdala [Lesch and Waider 2012], as well

as acetylcholine-modulated reward learning and oxytocin-modulated social learning in mouse

auditory cortex [Guo et al. 2019; Froemke et al. 2013]. Further, several experimental preparations

examine the relationship between pyramidal neurons’ apical and basal dendritic activity and

plasticity, in both the hippocampus [Bittner et al. 2015, 2017] and visual cortex [Gillon et al. 2021;

Froemke et al. 2005; Letzkus et al. 2006; Sjöström and Häusser 2006]. These could test at the level

of individual neurons, circuits, behavior, and the feedback mechanisms that support plasticity,

which of the many alternative normative theories underlie animals’ learning.

As the diversity of aforementioned experimental preparations suggests, there are increasingly

strong arguments for several fundamentally different normative plasticity theories existing in

different areas of the brain, and subserving different functions. It is quite likely that many plasticity

mechanisms work in concert to produce learning as it manifests in our perception and behavior. It

is our belief that well-articulated normative theories can serve as the building blocks of a conceptual

framework that tames this diversity and allows us to understand the brain’s tremendous capacity

for adaptation. In Chapters 3 and 4, we will explore how reward-based synaptic plasticity interacts

with task constraints and sensory statistics to shape neural representations. Then, in Chapter 5,

we will develop a theory of synaptic plasticity for unsupervised representation learning, which

could explain how sensory systems build models of their environment in the absence of any form

of task feedback. Finally, in Chapter 6, we will show how continual synaptic modification in neural
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circuits can confound the interpretation of causal manipulations in perceptual discrimination

tasks. These results collectively demonstrate the importance of normative synaptic plasticity

theories for neuroscience.
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3 | Learning efficient task-dependent

representations with synaptic

plasticity

A variety of forces shape neural representations in the brain. On one side, sensory circuits need

to faithfully represent their inputs, in support of the broad range of tasks an animal may need

to perform. On the other side, the neural ‘wetware’ is intrinsically noisy [Faisal et al. 2008], and

computing resources are highly limited in terms of the number of neurons and metabolic energy.

It remains a mystery how local synaptic learning rules can overcome these limitations to yield

robust representations at the circuit level.

Past work has focused on individual aspects of this problem. Studies of efficient coding

have successfully explained features of early sensory representations [Olshausen et al. 1996;

Ganguli and Simoncelli 2016] in terms of the interaction between stimulus statistics and resource

limitations, and several models have proposed how such representations could emerge through

local unsupervised learning [Oja 1982; Rozell et al. 2008; Brendel et al. 2017]. However, the

bulk of this theoretical work has ignored task constraints. This oversight might seem justified,

considering that we generally think of sensory cortices as performing unsupervised learning,

however a growing body of experimental evidence suggests that behavioral goals shape neural

receptive fields in adult sensory cortices (A1 [Weinberger 1993; David et al. 2012; Polley et al.
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2006], S1 [Recanzone et al. 1992b,a], V1 [Li et al. 2004; Schoups et al. 2001]), usually in the presence

of neuromodulation [Bakin and Weinberger 1996; Kilgard and Merzenich 1998; Froemke et al.

2007]. This kind of plasticity has been modelled using tri-factor learning rules, which provide a

mechanism for learning task-specific representations using only local information [Seung 2003;

Frémaux and Gerstner 2016; Kuśmierz et al. 2017; Gerstner et al. 2018]. However, the interaction

between the task, input statistics, and biological constraints remains largely unexplored (but see

[Savin and Triesch 2014]).

Here we use a stochastic recurrent neural network model to derive a class of tri-factor Heb-

bian plasticity rules capable of solving a variety of tasks, subject to metabolic constraints. The

framework leverages internal noise for estimating gradients of a task-specific objective; thus,

noise provides an essential ingredient for learning, and is not simply an impediment for encod-

ing. We systematically examine the interactions between input statistics, task constraints, and

resource limitations, and show that the emerging representations select task-relevant features,

while preferentially encoding commonly occurring stimuli. The network also learns to reshape its

intrinsic noise in a way that reflects prior statistics and task constraints.

3.1 Task-dependent synaptic plasticity

Stochastic circuit model. We consider a simple sensory coding paradigm, in which a stimulus

orientation 𝜃 is drawn from a von Mises distribution and encoded in the responses of an input

population with fixed tuning, 𝑠 𝑗 (𝜃 ) (Fig. 3.1a) given by:

𝑠 𝑗 (𝜃 ) = ⌊cos(𝜃 𝑗 ) cos(𝜃 ) + sin(𝜃 𝑗 ) sin(𝜃 )⌋, (3.1)

where ⌊·⌋ indicates halfwave rectification, and 𝜃 𝑗 is the maximally-activating stimulus for input

unit 𝑗 . This creates a unimodal stimulus response profile, with a peak value of 1 at orientation
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Figure 3.1: Recurrent neural network architecture and task learning. a. Model schematic. Stimuli
drawn from a prior distribution (gray) are encoded in the responses of a static input layer, which feeds into
the recurrent network; a linear decoder in turn produces the network output for either an estimation or a
classification task. b. Network performance as a function of training time for the estimation (top) and
classification (bottom) tasks. Shaded intervals indicate ± 1 s.e.m. across 45k test time units. Inset shows an
example trained network output, with the correct output in black. c. Histogram of preferred stimuli and
corresponding kernel density estimates (line). d. Same as c, for the classification task; decision boundary
at 𝜃 = 0 (dashed line). e. Population-averaged firing rates for two input priors. Shaded intervals are ± 1
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𝜃 = 𝜃 𝑗 . Further, 𝜃 𝑗 are selected to evenly tile the range [−𝜋, 𝜋].

This activity provides the input to the recurrent network via synapses with weights specified

by matrix C. The recurrent network is nonlinear and stochastic, with neuron activities r and

recurrent synaptic strengths W. A linear decoder with synaptic weights parameterized by matrix

D transforms the network activity into a task-specific output.

The stochastic dynamics governing the activity of recurrent neurons take the form:

𝑑𝑟𝑖 =

[
−𝑓 −1(𝑟𝑖) +

𝑁𝑟∑︁
𝑗=1
𝑤𝑖 𝑗𝑟 𝑗 +

𝑁𝑠∑︁
𝑘=1

𝑐𝑖𝑘𝑠𝑘 + 𝑏𝑖

]
𝑑𝑡 + 𝜎𝑑𝐵𝑖, (3.2)

where 𝑓 (·) is the nonlinear response function (for simplicity, a sigmoid for all neurons), 𝑁𝑠 and

𝑁𝑟 are the number of neurons in the input and recurrent populations, respectively, and 𝑏𝑖 is a bias

reflecting neural excitability. The parameter 𝜎 controls the standard deviation of the Brownian

noise, 𝐵𝑖 , added independently to each neuron. This intrinsic noise is one of the main constraints on

the network, and could be interpreted as caused by either stochastic synaptic transmission failures

or subthreshold voltage fluctuations [Faisal et al. 2008]. The 𝑓 −1(𝑟𝑖) term may seem unusual, but

it allows for analytic tractability of the nonlinear dynamics. Furthermore, this formulation allows

us to add Brownian noise to the current, such that fluctuations outside of those allowed by the

F-I nonlinearity are sharply attenuated. In the small-noise limit, 𝜎 → 0, the network has the

same steady-state dynamics as a traditional nonlinear recurrent neural network. At equilibrium,

𝑟𝑖 = 𝑓
(∑

𝑗 𝑤𝑖 𝑗𝑟 𝑗 +
∑
𝑘 𝑐𝑘𝑠𝑘 + 𝑏𝑖

)
, with nonlinearity 𝑓 determining the steady-state F-I curve for

each neuron; intrinsic noise induces fluctuations about this fixed point.

When the recurrent connectivitymatrixW is symmetric, the network dynamics are a stochastic,

continuous analog of the Hopfield network [Hopfield 1982, 1987], and of the Boltzmann machine

[Ackley et al. 1985]. Its corresponding energy function is:

𝐸 (r, s;W) = −1
2

∑︁
𝑖, 𝑗

𝑤𝑖 𝑗𝑟𝑖𝑟 𝑗 +
∑︁
𝑖

∫ 𝑟𝑖

0
𝑓 −1(𝑥𝑖)𝑑𝑥𝑖 −

∑︁
𝑖 𝑗

𝑐𝑖 𝑗𝑟𝑖𝑠 𝑗 −
∑︁
𝑖

𝑏𝑖𝑟𝑖 . (3.3)
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The network dynamics implement stochastic gradient descent on this energy, which corresponds

to Langevin sampling [Roberts et al. 1996] from the stimulus-dependent steady-state probability

distribution:

𝑝 (r|s;W) =
exp

[
−𝐸 (r,s;W)

𝜎2

]
∫
r exp

[
−𝐸 (r,s;W)

𝜎2

] . (3.4)

The steady-state distribution is in the exponential family, and offers a variety of useful mathe-

matical properties. Most importantly, the probabilistic description of the network, 𝑝 (r|s;W), can

be used to calculate the gradient of an objective function with respect to the network weights via

a procedure similar to REINFORCE (Appendix A.3; [Williams 1992; Fiete et al. 2007]). In practice,

we use approximate solutions to Eq. (3.2) (or equivalently, Langevin sampling from Eq.3.4) using

Euler-Maruyama integration.

Task-dependent objectives. We consider a task-specific objective function of the general

form:

O(W,D) =
∬

𝛼 (Dr, s)𝑝 (r|s;W)𝑝 (s) drds − 𝜆 ∥W∥2
2 , (3.5)

where 𝛼 (·, ·) is a task-specific loss function, computed as a function of the linear readout Dr, in

a downstream circuit. The second term ensures that synaptic weights do not grow indefinitely

[Oja 1982]; it is a mathematically convenient way of introducing metabolic constraints, although

regularizing the neural activity itself is also possible. For brevity, we have only included the

constraint on W in Eq. (3.5). In practice, we also include similar constraints on C, D, and b, with

corresponding Lagrange multipliers 𝜆𝐶 , 𝜆𝐷 and 𝜆𝑏 .

The specific choice of the loss, 𝛼 , determines the nature of the task. Here, we chose two

example objective functions – input encoding and binary classification. For reproducing the input,

we use a mean squared error (MSE) objective:

𝛼MSE(Dr, s) = −∥s − Dr∥2
2, (3.6)
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with a negative sign reflecting the fact that we are maximizing, rather than minimizing, the

objective.

For classification, we use a cross-entropy objective:

𝛼LL(Dr, s) = 𝜙 (s) log(𝜓 (Dr)) + (1 − 𝜙 (s)) log(1 −𝜓 (Dr)), (3.7)

where 𝜓 (·) is a sigmoid nonlinearity and 𝜙 (s) gives the mapping from stimulus s to the corre-

sponding binary class.

Local task-dependent learning. Wederive synaptic plasticity rules bymaximizingO(r, s;W)

using gradient ascent, averaging across the stimulus distribution 𝑝 (s), and taking advantage of the

closed-form expression for the steady-state stimulus-dependent response distribution, 𝑝 (r|s;W).

Taking the derivative of the objective function (Eq. 3.5) with respect to𝑤𝑖 𝑗 yields:

𝜕O
𝜕𝑤𝑖 𝑗

=

∬
𝑝 (s) 𝛼 (Dr, s) 𝜕𝑝 (r|s)

𝜕𝑤𝑖 𝑗
drds − 2𝜆𝑤𝑖 𝑗 . (3.8)

As in [Williams 1992], differentiating Eq. 3.4, we note that:

𝜕

𝜕𝑤𝑖 𝑗
𝑝 (r|s;W) = −1

𝜎2

[
𝜕

𝜕𝑤𝑖 𝑗
𝐸 (r, s;W) −

〈
𝜕

𝜕𝑤𝑖 𝑗
𝐸 (r, s;W)

〉
𝑝 (r|s)

]
𝑝 (r|s;W) , (3.9)

where the brackets denote the conditional expectation with respect to 𝑝 (r|s;W). Rearranging,

and substituting Eq. (3.9) into Eq. (3.8) yields:

𝜕O
𝜕𝑤𝑖 𝑗

=
−1
𝜎2

∬
𝛼 (Dr, s)

(
𝜕𝐸 (r, s;W)

𝜕𝑤𝑖 𝑗
−

〈
𝜕𝐸 (r, s;W)

𝜕𝑤𝑖 𝑗

〉
𝑝 (r|s)

)
𝑝 (r, s;W) drds − 2𝜆𝑤𝑖 𝑗

=
1
𝜎2

∬
𝛼 (Dr, s)

(
𝑟𝑖𝑟 𝑗 −

〈
𝑟𝑖𝑟 𝑗

〉
𝑝 (r|s)

)
𝑝 (r, s;W)drds − 2𝜆𝑤𝑖 𝑗 .
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To update weights via gradient ascent, the learning rule takes the form:

Δ𝑤𝑖 𝑗 ∝
𝜕O
𝜕𝑤𝑖 𝑗

= E
[
𝛼 (Dr, s)

(
𝑟𝑖𝑟 𝑗 −

〈
𝑟𝑖𝑟 𝑗

〉
𝑝 (r|s)

)]
− 2𝜆𝑊𝑤𝑖 𝑗 ,

where we have assigned 𝜆𝑊 = 𝜎2𝜆. We further approximate the expectation by sampling r as part

of the network dynamics and update weights according to a single sample (if Δ𝑤𝑖 𝑗 is sufficiently

small, this is equivalent to updating𝑤𝑖 𝑗 with an average over several samples):

Δ𝑤𝑖 𝑗 ∝ 𝛼 (Dr, s)
(
𝑟𝑖𝑟 𝑗 −

〈
𝑟𝑖𝑟 𝑗

〉
𝑝 (r|s)

)
− 2𝜆𝑊𝑤𝑖 𝑗 . (3.10)

This expression for the weight update is similar to a standard reward-modulated Hebbian plasticity

rule. It is driven by correlations between pre- and post-synaptic activity, with reward, 𝛼 , having a

multiplicative effect on weight changes. The subtractive term ensures that updates only occur in

the presence of deviations from the average correlation level. It is symmetric in the indices {𝑖, 𝑗},

and thus preserves the symmetry of the weight matrix W. Finally, the weight regularization adds

a contribution similar in form to Oja’s rule [Oja 1982]. In practice, we approximate the conditional

expectation by a running average computed using a low-pass filter. We can derive similar updates

for the input weights, and biases:

Δ𝑐𝑖𝑘 ∝ 𝛼 (Dr, s)
(
𝑟𝑖𝑠𝑘 − ⟨𝑟𝑖𝑠𝑘⟩𝑝 (r|s)

)
− 2𝜆𝐶𝑐𝑖𝑘

Δ𝑏𝑖 ∝ 𝛼 (Dr, s)
(
𝑟𝑖 − ⟨𝑟𝑖⟩𝑝 (r|s)

)
− 2𝜆𝑏𝑏𝑖,

Hence, our framework allows us to optimize parameters of the network using local operations.

It is worth comparing our plasticity rule to REINFORCE [Williams 1992], which would have,

for a discrete-time RNN: Δ𝑤𝑖 𝑗 ∝ 𝛼 (Dr, s)
∑𝑇
𝑡=0 𝑓

′(ℎ𝑖 (𝑡)) (𝑟𝑖 (𝑡) − 𝑟𝑖 (𝑡))𝑟 𝑗 (𝑡) − 2𝜆𝑊𝑤𝑖 𝑗 , where ℎ𝑖 is

the pre-activation of neuron 𝑖 , and 𝑟𝑖 (𝑡) is the expected average activation for that neuron at time

𝑡 . One notable difference is that learning is gated by deviations from the mean co-activation of
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the pre- and post-synaptic neurons, and not by post-synaptic activity alone. Another difference

is the presence of a sum over time (an eligibility trace), which is not required for our plasticity

rule. Lastly, this rule includes an 𝑓 ′(ℎ𝑖 (𝑡)) term, whereas ours only involves the firing rates of the

neurons. At least some of these differences could be examined experimentally.

Learning the decoder. Because the readout weights enter 𝛼 (Dr, s), the optimization of 𝐷

requires a slightly different treatment. Since 𝑝 (r|s;W) does not depend on D, taking the derivative

of Eq. (3.5) yields:
𝜕O
𝜕𝐷𝑖 𝑗

=

∫
𝑝 (s, r;W) 𝜕

𝜕𝐷𝑖 𝑗
𝛼 (Dr, s) drds − 2𝜆𝐷𝐷𝑖 𝑗 .

Using the same stochastic update scheme as in Eq. (3.10) yields:

Δ𝐷𝑖 𝑗 ∝
𝜕

𝜕𝐷𝑖 𝑗
𝛼 (Dr, s) − 2𝜆𝐷𝐷𝑖 𝑗 .

This partial derivative will be different for each choice of 𝛼 . For 𝛼MSE, we get:

Δ𝐷 (MSE)
𝑖 𝑗

∝ 2

(∑︁
𝑘

𝐷𝑖𝑘𝑟𝑘 − 𝑠𝑖

)
𝑟 𝑗 − 2𝜆𝐷𝐷𝑖 𝑗 , (3.11)

and for 𝛼LL (noting that D here has only one row):

Δ𝐷 (LL)
𝑗

∝ (𝜙 (s) −𝜓 (Dr)) 𝑟 𝑗 − 2𝜆𝐷𝐷 𝑗 . (3.12)

3.2 Numerical results

To simulate the realistic scenario of slowly changing input stimuli constantly driving the circuit,

we sample inputs from a von Mises prior distribution using Langevin dynamics with a significantly

slower time constant than that of the recurrent network dynamics, given by 𝜏𝑠 = 375. We set the

noise level to an intermediate regime, so that its effects on circuit computation are non-negligible,

47



b

0.0 0.08-0.08
decoder axis decoder axis

-0.08 0.080.0

d’ = 1.4 d’ = 2.56high
prob

 low
prob

a

test stim.
estimate

0

variance

0.3

0.0

c

bias

de
ns

ity
d d’ = 0.93, t=0 d’ = 1.90, t=10k d’ = 1.94, t=250k

0.0 0.08-0.08
decoder axis

0.0 0.08-0.08
decoder axis

0.0 0.08-0.08
decoder axis

de
ns

ity

de
ns

ity

de
ns

ity

Figure 3.2: Task-specific stimulus encoding. a. Outputs for the estimation task: crosses mark the
locations of test stimuli; black lines indicate the bias, or the distance between the target and the mean
output; ellipses show the 95% probability region for the associated network response distributions. Lighter
colors are further from the most probable stimulus (⟨𝜃⟩ = 0). b. Squared bias and variance for the estimator
task as a function of stimulus angle. Shaded intervals are ± 1 s.e.m. across 20 simulations. c. Decoder
response distribution for stimuli near the boundary in the low-probability region of the space (𝜃 = 𝜋 , left),
and in the high-probability region (𝜃 = 0, right), as indicated on the center schematic. d. Left: network
output schematic for test stimuli (black crosses). The green patches indicate the two target classes, and
the green dashed line indicates the classification boundary. ⟨𝜃⟩ indicates the highest probability stimulus.
Right: discriminability of stimulus classes in the network output, measured by the sensitivity index (𝑑 ′),
shown before learning, after 10k time units, and after 250k time units.
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but not pathological (𝜎 = 0.2), and calibrate the hyperparameters that control the metabolic

constraints (strength of regularization) to a level where they start to interfere with network

performance. As learning progresses, our derived local plasticity rules quickly converge to a good

solution, for both estimation and categorization (Fig. 3.1 b).

The emerging representations are noticeably different for the two tasks (compare Fig. 3.1c

and d): for estimation, the distribution of preferred orientations is concentrated in the highly

probable stimulus region, whereas the preferred distribution is bimodal in the case of classification.

The average population activity for any stimulus provides additional quantification of the way

in which learning allocates network resources (here, neural activity) to different stimuli (light

colors in Fig. 3.1e and f). For the representation task, this metric confirms that neural resources

are preferentially allocated to commonly occurring stimuli (Fig. 3.4a, Fig. 3.1c; the most likely

stimulus is 0). Hence learning has converged to an efficient representation of stimulus statistics.

Moreover, the average population activity encodes the prior probability of input stimuli (Fig. 3.1e).

The picture looks very different in the case of categorization: improbable stimuli (𝜃 = ±𝜋)

still have a small contribution to the emerging neural representation, but so do the most probable

stimuli (which in our example are centered on the categorization boundary). This is reflected

in the distribution of preferred stimuli: the neurons distribute their tuning functions on either

side of the most probable stimulus so that the most sensitive part of their tuning function lies on

the decision boundary (Fig. 3.4b), and their peak responses are tuned for class identity (Fig. 3.1d).

Overall, the emerging representations reflect both input statistics and task constraints.

So far all results used a particular choice of prior, but the same intuitions hold under prior

variations. In the estimation task, training a new network with a tightened prior leads to a

corresponding tightening of the population tuning (Fig. 3.1e, Fig. 3.4c). Firing rates decrease for

peripheral stimuli; under synaptic weight regularization, the network will reduce firing rates for

less probable stimuli, as they have little impact on the average error. This firing rate reduction

is coupled with a concomitant increase in error for less probable stimuli (Fig. 3.4d). For the
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classification task, we trained a new network with a shifted input distribution (Fig. 3.4e) as

a way to segregate the effects of the decision boundaries from those of the prior distribution

Fig. 3.1f). This break in symmetry leads to asymmetric errors, with larger errors for the less

probable class (Fig. 3.4f), though the effect is more subtle than that observed when tightening the

input distribution. The corresponding network representation also becomes asymmetric, with

higher firing rates concentrating on the side of the more probable stimulus. Thus, even under

transformations of our original prior, trained neurons show higher firing rates for both more

probable, and more task-relevant features of the input, such that performance is consistently

better for frequent stimuli.

How do these task-specific changes in representation manifest themselves in the decoded

outputs? First, in the case of estimation, we can probe the distribution of outputs of the linear

readout (Fig. 3.2a, gold ellipses) for a set of test stimuli (Fig. 3.2a, black crosses).1 We found

that responses are systematically biased for less probable stimuli, whereas the bias is negligible

for frequently occurring stimuli. The effect on variance is much weaker (Fig. 3.2b). Second, for

classification, we need to measure decoder output variability as a function of the prior stimulus

probability. We use the fact that the classification boundary intersects the circle on which the input

stimuli lie for the most probable and the least probable stimuli under the prior (Fig. 3.2c, inset).

We compare the degree of output overlap for two test stimuli equally spaced on the two sides of

the decision boundary at these two extremes. We find substantially higher discriminability for the

high probability stimuli, relative to the low probability ones. As for estimation, this difference

is due primarily to a better separability of the two means rather than a difference in variance.

In summary, the network exhibits better performance for probable stimuli across tasks. Given

limited resources, input statistics dictate not only the precision of the representation, but also task

performance.
1Plasticity was disabled for test stimuli here, to isolate effects of internal noise without the confound of changes

in network parameters.
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Figure 3.3: The effects of internal noise. a. Estimation performance during learning for different
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a function of input angle and different magnitudes of noise 𝜎 .

Next, we investigate the dynamics of learning and associated network representations, focusing

on the classification task. We measure output discriminability at different stages of learning, with

sensitivity index 𝑑′ values estimated averaging over the stimulus distribution. At the outset,

the output distributions for the two stimulus categories are indistinguishable (Fig. 3.2d). As

learning progresses, the means of the two distributions segregate, while their variance remains

approximately the same; this result prompts a more detailed examination of the degree to which

the network is able to compensate for its own intrinsic noise.

Intrinsic noise in the recurrent dynamics is a key component of our solution, because the

learning rule changes synaptic strengths based on whether fluctuations in the synapses’ pre- and

post-synaptic activities are associated with an increase or decrease in performance (Eq. 3.10).

However, adding noise to the network can also make estimation more difficult: we found that in-

creasing intrinsic noise leads to both slower learning and worse asymptotic performance (Fig. 3.3a).

Given that output variance changes little across stimuli and over learning, is noise strictly delete-

rious for the network, and how can the network learn to counteract its effects? Interestingly, the

more intrinsic noise we add in the network, the more the network relies on recurrent connectivity

for its representation. Increases in noise cause an increased engagement of recurrent connectivity
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after learning (Fig. 3.3b). The fact that recurrent connectivity is not strictly needed in absence of

noise is intuitive, given that our chosen tasks involve a simple, instantaneous map of inputs to

outputs (although note that in our framework some noise is needed to enable synaptic plasticity to

occur). Though it is clear that recurrent connections alleviate some of the negative consequences

of noise, their exact mechanism of action requires more investigation.

It seems like the overall level of noise in the network does not change dramatically during

learning, at least not as reflected in output fluctuations. Yet, performance is systematically better

for probable stimuli, indicating the possibility of noise compensation. To investigate whether

(and if so, how) recurrent connections shape internal noise on the estimation task, we asked what

fraction of the internal noise lies in the decoding manifold given by D and if it depends on the

stimulus. Since the entropy of the network response distribution conditioned on the stimulus and

its marginals are not analytically tractable, we resorted to numerical approximations: we used the

network dynamics (with frozen weights) to sample from this conditional distribution, projected

these responses a) in the readout manifold and b) in the 2D manifold of maximum variance, as

defined by the first two PCA axes of the neural responses. Our final metric, which we refer to as

the noise volume fraction, is computed as the ratio between the estimated noise in each of the

two manifolds (using the determinant of the empirical covariance of the projected responses as a

proxy for noise magnitude). The noise volume fraction is defined as follows:

𝑉𝐹 (s) = detC𝐷
detCPCA

, (3.13)

where C𝐷 is the covariance matrix of r projected onto the two output dimensions, and CPCA

is the covariance matrix of r projected onto the first two principal components of the neural

activity for a fixed stimulus s. This metric is 1 when the primary axes of internal noise lie in

the decoding manifold; it is 0 when the two spaces are orthogonal, such that internal noise does

not affect network outputs. After learning, the volume fraction is much smaller for probable
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Figure 3.4: Manipulations of the input distribution. a. Sample tuning curves for the representation
network. The gray dashed line indicates the prior mode. b. Sample tuning curves for the classification
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across 20 simulations. g. The gain (L2 norm) of the mean energy as a function of 𝜎2.

stimuli (Fig. 3.3c), indicating that the network has learned to effectively ‘hide’ more of its noise

for frequent inputs. This is not to say that output variance is lower for more probable stimuli: as

we have already seen, if anything, output variance increases slightly for more probable stimuli.

In general, the variability of the network output increases with the firing rates of its neurons,

such that high network activity necessarily produces increased variability (one cannot amplify the

signal without amplifying the noise to some degree). However, when normalizing for this increase,

the network projects a smaller fraction of its total noise onto the decoder for more probable stimuli

than it does for less probable stimuli.
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An alternative way to think about the effects of intrinsic noise on the network activity is

in terms of the energy function (Eq. 3.3), and corresponding steady-state stimulus response

distribution (Eq. 3.4). Here, the noise variance acts as a temperature: the energy landscape flattens

with increasing noise. Formally, one way to compensate for a increases in 𝜎 is to rescale the the

network’s stimulus-conditioned energy in proportion to the increase in 𝜎2, thus preserving the

stimulus response distribution 𝑝 (r|s). The network does employ this kind of compensation (Fig.

3.3d). As the intrinsic noise increases, the network boosts the gain of its energy function, with the

mean energy increasing monotonically as a function of 𝜎2 (Fig. 3.4g). Hence, the network learns

to compensate for its intrinsic noise so as maintain a good signal to noise ratio.

3.3 Discussion

Despite recent successes in the supervised training of recurrent networks [Pearlmutter 1989;

Sussillo and Abbott 2009; Martens and Sutskever 2011; Marschall et al. 2019], it remains a mystery

how biological circuits are capable of robust, flexible local learning in the face of constraints

such as internal noise and limited metabolic resources. Here we have derived a class of synaptic

learning rules that optimize a task-specific objective by combining local information about the

firing rates of each pair of connected neurons with a single performance signal, implementable by

global neuromodulation. Online learning naturally follows, since the network dynamics sample

from a well-defined stimulus response distribution.2 We further show that the derived learning

rules lead to emerging neural representations that allocate neural resources and reshape internal

noise to reflect both input statistics and task constraints.

The use of stochasticity as a means of estimating gradients has an extensive history [Williams

1992] and has been used to account for biological phenomena, in particular the role of variability of

neurons in the songbird HVC nucleus in song learning [Fiete et al. 2007]. Our model is conceptually
2Note that although we are using sampling dynamics as well, our approach is different from sampling theory

[Fiser et al. 2010b] in that here the sampling dynamics do not represent a Bayesian posterior.

54



similar, and can be thought of as a mathematically tractable instantiation of the REINFORCE

framework [Williams 1992], where stochastic network responses are given by a continuous variant

of the Boltzmann machine [Ackley et al. 1985]. Our model notably lacks an eligibility trace, which

in previous models was required to integrate coactivity through time at synapses; it also stores an

averaged measure of coactivity,
〈
𝑟𝑖𝑟 𝑗

〉
𝑝 (r|s) , rather than only averaging over post-synaptic activity–

both of these differences are potentially experimentally testable. Further, existing literature has

focused exclusively on the role of intrinsic noise on learning dynamics, ignoring its interactions

with the circuit function and the emerging neural representations that support it. Here we show

that there is a conflict between the positive role of stochasticity on learning and its deleterious

effects on encoding. Over the course of learning, the network converges to a solution that trades

off between the two, by appropriately reshaping the noise so as to increase the signal-to-noise

ratio of the output.

Prior statistics play a key role in the emerging representations, with more neurons tuned to

commonly occurring stimuli, and overall population activity weaker for infrequent stimuli. The

inhomogeneous distribution of tuning functions aligns with optimal encoding of priors, as derived

for abstract encoding models [Ganguli and Simoncelli 2014]. But unlike previous models, our

network also encodes the prior as a population tuning function, a discrepancy that most likely

reflects differences in the exact form of the regularizer enforcing metabolic constraints. Different

choices of regularizer, in particular a sparseness-encouraging constraint on neural activity, would

likely lead to representations more similar to traditional efficient coding models [Olshausen et al.

1996]. Nonetheless, our approach provides explicit local learning dynamics for these abstract

models and, importantly, is successful in regimes where analytic methods are intractable, e.g. for

multivariate stimuli, and for tasks that go beyond simple stimulus reproduction.

One limitation of our formulation is that reward does not depend on the history of network

responses. This differentiates our approach from traditional models of reward-modulated learning,

which focus on solving temporal credit assignment, especially in spiking circuits [Frémaux and
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Gerstner 2016; Fiete et al. 2007; Miconi 2017; Hoerzer et al. 2014]. Despite this limitation, our

mathematical derivation extends previous work by making explicit the four-way interactions

between intrinsic noise, metabolic constraints, input statistics, and task structure in the circuit.

Preliminary results suggest that it is possible to extend the current framework to incorporate

temporal dependencies in both stimuli and reward structure, better aligning it with traditional

goals of reinforcement learning.

It has been argued that learning algorithms based on stochastic gradient estimates cannot

match the learning capabilities of the brain [Payeur et al. 2020], as they perform poorly in high

dimensions [Werfel et al. 2004]. This has led to renewed focus on alternatives that rely on the

neural system having access to a closed-form expression for the gradient (at least approximately),

in particular biologically-plausible approximations to backpropagation [Lillicrap et al. 2016; Payeur

et al. 2020; Marschall et al. 2019]. Still, these models can’t be the whole story. While gradient

information might be available for unsupervised [Pehlevan et al. 2015] or intrinsic learning

objectives [Goroshin et al. 2015], this is certainly not true for external rewards, when the loss

function is specified by the environment itself. Animals rarely, if ever, have access to explicit

reward functions. Moreover, neither unsupervised learning nor backpropagation can account

for the critical role of neuromodulation in synaptic plasticity and its contribution to perceptual

learning [Bakin and Weinberger 1996; Kilgard and Merzenich 1998; Froemke et al. 2007]. The

complementary nature of the two classes of learning rules suggests that they might both play an

important role in biological learning. Bringing the two closer together is a promising direction for

future research, both theoretical and experimental.
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4 | Explaining neural and behavioral

variability in mice with a model of

context-specific auditory perceptual

learning

As demonstrated in the previous chapter, given limited metabolic resources, optimal sensory

systems should develop representations that emphasize task-relevant and frequently occurring

stimuli. However, in the auditory system, frequency information that matters for one task—e.g.

localizing mouse pup calls [Sewell 1970; Marlin et al. 2015]—may not be very important for another

task, such as distinguishing self-generated from environmentally-generated sounds [Rummell

et al. 2016; Singla et al. 2017; Schneider et al. 2018]. In mouse auditory cortex, numerous studies

have demonstrated that training animals on perceptual tasks can reorganize the tuning properties

of neurons to emphasize task-relevant frequencies [Polley et al. 2006; David et al. 2012; Fritz et al.

2003; Recanzone et al. 1993]. Furthermore, stimulation of neuromodulatory centers of the brain to

deliver neurmodulators to auditory cortex can rescue the plastic capabilities of the system beyond

its critical period of plasticity. These studies have been performed for a variety of neuromodulators,

including oxytocin [Marlin et al. 2015], acetylcholine [Kilgard and Merzenich 1998; Bakin and

Weinberger 1996], and norepinephrine [Glennon et al. 2019], and collectively suggest that mouse

57



auditory cortex is adaptable in later life, but possibly only under task-specific conditions. But

how can mouse auditory cortex act like a flexible, task-specific representational system without

sacrificing its ability to represent the full breadth of acoustic experience? When auditory cortex

adapts to task requirements, does it overwrite its previous representation? Furthermore, does the

animal’s initial representation affect its speed of perceptual learning, or explain variability across

learned representations?

We address these questions in this study through a combination of modeling, behavioral

experiments, and longitudinal neural recordings of mice performing auditory perceptual learning.

We observe strong reorganization of neural responses over the course of learning, and also observe

a striking change in neural responses in behavioral contexts compared to passive contexts. This

suggests a mechanism whereby a mouse can transiently reorganize its sensory cortex during

a particular task without sacrificing the system’s general-purpose representational capabilities.

Inspired by previous studies which demonstrate that acetylcholine delivery from the nucleus

basalis can induce both synaptic plasticity [Reed et al. 2011; Bakin and Weinberger 1996; Froemke

et al. 2007, 2013; Kilgard and Merzenich 1998] and transient context-specific reorganization of

the circuit [Kuchibhotla et al. 2017], we construct a neural network model in which acetylcholine

mediates both reward-based synaptic plasticity and attentional reorganization of the circuit. Our

model is able to capture the variability we observe in both mouse behavior and neural responses

over the course of learning and across contexts. Furthermore, it is able to provide predictions as to

how properties of an animal’s representation early in learning (in particular input discriminability

and animal’s choice bias) can shape an animal’s final, learned representation.

4.1 Results

In order to study perceptual learning in auditory cortex, we presented head-fixed mice with a

sequence of trials in which one of several possible frequencies was played (Fig. 4.1a), one of
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which (the center tone) indicated that the animal should lick left, while all others indicated a right

lick. Only licks in the correct direction produced a water reward. To acclimatize the mice to the

complexity of the task, we introduced additional tones in three stages (Fig. 4.1b), beginning with

a single, distant non-center tone and progressively adding intermediate tones which increased

the difficulty of the task. We injected either saline or muscimol into primary auditory cortex

while the animals performed the task, and verified that performance did drop significantly for the

muscimol injection (Fig. 4.1c), indicating that neuron responses in primary auditory cortex play

an important role in the animals’ decision making. To understand how the response properties

change over time to facilitate decision making, we longitudinally performed two-photon calcium

imaging over the entire course of learning, both during behavior and while animals passively

listened to tones (Fig. 4.1d-e). Using this data, we then characterized the behavioral and neural
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diversity of responses across animals, and constructed a model that captured and explained these

features.

Our model (Fig. 4.2a) is designed to capture qualitative features of learning dynamics, behavior,

and context-specific responses in learning animals. The model receives feedforward frequency

information through two sources: one that is a consistently present thalamic input, and one that

is selectively activated during cued behavioral contexts (Section 4.2.3.2). In keeping with previous

experimental results [Guo et al. 2019; Kuchibhotla et al. 2017; Takesian et al. 2018], we postulate
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that this contextual gating is mediated by a tonic acetylcholine signal from the nucleus basalis that

turns on when the animal is cued for the task and activates interneurons, which in turn have both

inhibitory and disinhibitory effects on excitatory neurons in auditory cortex. In addition, inspired

by the role nucleus basalis acetylcholine plays in inducing plasticity in the auditory cortex [Reed

et al. 2011; Bakin and Weinberger 1996; Froemke et al. 2007, 2013; Kilgard and Merzenich 1998]

and the fact that nucleus basalis acetylcholine neurons show phasic responses to reward [Guo

et al. 2019; Hangya et al. 2015; Laszlovszky et al. 2020], we introduced an additive, phasic reward

response to our model acetylcholine feedback, which induced synaptic modifications through a

form of reward-modulated Hebbian plasticity (Section 4.2.3.3).

An ensemble of trainedmodel networks show roughly the same learning profiles asmice, taking

similar numbers of trials to reach proficiency in Stage 1 (Fig. 4.2b), and exhibiting similar variability.

This is an important proof of principle, because the reward-modulated Hebbian plasticity based

on the REINFORCE algorithm is well known to scale poorly and require slow learning rates

[Werfel et al. 2003]: it is conceivable that our chosen simple form of learning could have been

fundamentally unable to learn as fast as animals. After training, model networks show similar

psychometric response profiles to mice on average, but with somewhat reduced variability across

different simulations (Fig. 4.2c). Furthermore, mice exhibited better performance for intermediate

foil tones, which was likely limited in our model by the separability of input tones (determined by

𝜎2
𝑓 𝑟𝑒𝑞

; see Section 4.2 for details). Both mice and models also exhibited remarkable diversity at

the level of neural ensembles: the distribution of neurons tuned to the center frequency versus

flanking frequencies varied considerably, and the mean tuning curves across neurons showed

highly variable profiles, with some tuning curves showing peaked firing rate responses at center

frequencies, while others showed greater firing rates for non-center frequencies (Fig. 4.2d-e).

These results collectively demonstrate that our model is able to qualitatively capture diversity in

both behavioral and neural responses in mice.

Having demonstrated the efficacy of our model for capturing behavioral response properties
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Figure 4.3: Effects of context and initial conditions. a. Center (green) and non-center (blue) mouse
and model responses during behavior (left) and passive (right) sessions, projected onto the optimal linear
discriminant axis calculated during behavior. b. Discriminability (d’) of the distribution of center and
non-center neural responses in behavior (blue) sessions and passive (grey) sessions, projected onto the
linear discriminant axis calculated during behavior for mice (left) and for different model simulations
(right). c. Model mean tuning curves for models initialized at different threshold Θ values. d. Relationship
between the difference between % correct for center and non-center tones and network responses to the
center frequency for models initialized at different threshold Θ values. e. Same as d, but for mouse data. f.
Same as c, but as a function of the tuning width of cells in the input layer 𝜎2

𝑓 𝑟𝑒𝑞
. g. Difference in mean

response for center tones compared to non-center tones for models as a function of their initial tuning
width. h. Same as g, but for mouse data. i. Time to reach 80% correct during Stage 1 for models as a
function of their initial tuning width. j. Same as i, but for mouse data.

and learning in animals, we next interrogated it to see if it can help eliminate hypotheses about how

learning affects context-dependent responses. One hallmark of our data is that neuron responses
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reorganize considerably across contexts: center and non-center responses projected onto a linear

discriminant axis calculated during the behavioral context exhibit much lower discriminability

during the passive context (Fig. 4.3a-b), a phenomenon also shown across different trained

mice. To capture this phenomenon, we considered three possible alternative models: 1) only

the separate context-dependent pathway is learned over training; 2) both the context-dependent

input stream and passive feedforward inputs are modified by rewarded feedback; or 3) neurons

receive no context-dependent feedback, only learned feedforward input. Only the first proposed

model captured the qualitative decrease in discriminability in the passive context relative to the

behavioral context observed along the linear discriminant axis (Fig. 4.3a-b), and so we used

this model for all other simulations. In contrast, when learning occurs at all synapses (context

invariant learning), or when there is no separate context-activated input stream (context invariant

responses), discriminability is not reduced across contexts (Fig. 4.4a-f). Each of these proposed

models has different implications for how a primary sensory region should adapt to reward. In

particular, the first proposed model, which restricts learning to the context-dependent pathway,

allows for a system that flexibly adapts to preferentially represent task-relevant stimuli, but

does not sacrifice its representation of task-irrelevant stimuli in passive listening contexts. It is

important to note that center versus non-center discriminability is not lost in the passive context,

only reorganized: if the linear discriminant axis is calculated during the passive context, rather

than the active context, center and non-center tones are still discriminable in mice and across all

models (Fig. 4.4e).

We next asked whether we could use our model to identify key features of the initial network

state that explain variability in the animals’ learned representation. In particular, we investigated

which features of the networks’ initial state could contribute to their eventually learning a

representation with peakedmean responses at center versus non-center frequencies. We found that

the model’s initial decision threshold Θ strongly modulated mean tuning in trained networks, with

negative thresholds producing peak responses at non-center frequencies and positive thresholds
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producing peak responses at center frequencies (Fig. 4.3c-d). However, in mice we found only a

weak, non-significant correlation (𝑝 = 0.33) between animals’ initial bias and the neural response

at the center frequency (Fig. 4.3e). This discrepancy is possibly due to active shaping of stimulus

statistics mice receive during learning, tailored specifically to reduce biases in their responses—if

this were true, we would expect animals trained without shaping to exhibit a much stronger trend.

Interestingly, we found that the tuning width of input layer neurons (parameterized by 𝜎2
𝑓 𝑟𝑒𝑞

in

Section 4.2.3.1) had a similar effect on the mean response profiles of neurons, with small tuning

widths increasing the normalized neuron responses to center tones (Fig. 4.3f-g), a trend that also

held in mice (Fig. 4.3h, 𝑝 = 0.048). Wider input tuning widths also affected the tuning widths

of neurons in the recorded population. We found that in both model and mice, wider tuning

curves early in training tended to produce faster learning, though the correlation in mice was

non-significant (Fig. 4.3i-j, 𝑝 = 0.085). Our model therefore suggests that both animals’ choice

threshold and the discriminability of input tuning curves both play a role in determining whether

neurons tend to show strong responses at target frequencies or at flanking frequencies: a model’s

resultant representation is a combination of both its initial state and the learning process.

4.2 Methods

4.2.1 Animals

All procedures were approved under an NYU Langone Institutional Animal Care and Use Commit-

tee protocol. Male and female mice aged 6-20 weeks old were used in all experiments. Genotypes

used were wild-type C57BL/6J (The Jackson Laboratory, Stock No: 000664), Gad-Cre (The Jackson

Laboratory, Stock No: 028867), and Ai9 (The Jackson Laboratory, Stock No: 007909). All mice

had a C57BL/6J background. Mice were housed in a temperature and humidity controlled room

maintained on a 12 hour light/dark cycle. Animals used in behavior were given 1 mL water/day.
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If their weight dropped below 80% of original, they were given ad libitum water until weight

returned to ≥80% original value.

4.2.2 2AFC behavioral training

Behavioral events (lick detection, auditory stimulus delivery, water reward delivery) were mon-

itored and controlled by custom MATLAB programs interfacing with an RZ6 auditory digital

signal processor (Tucker-Davis Technologies) via RPvdsEx software (Tucker-Davis Technologies).

Licks were detected using capacitance sensors (SparkFun, Part number: AT42QT1011) and water

was delivered using solenoids (The Lee Company, Part number: LHDA0581215H). Animals were

restrained using custom headposts (Ponoko).

Behavioral training on the auditory 2AFC task began after 7+ days of water restriction. Training

started with habituation to head-fixation with water delivered to the mouse while it sat in a

plexiglass tube. This was followed by lick port sampling sessions, in which the animal could

receive water by alternating licking between the two ports with a minimum of 3 seconds between

possible rewards. Mice typically learned to alternate ports while licking for 2-4 µL water droplets

in 2-4 sessions. Once animals reliably licked to receive water from lick ports, stage 1 training

was begun (i.e., animals were trained to lick left for the center frequency and lick right for one

non-center frequency). The center frequency was chosen to be either 11.3, 13.4, or 16 kHz (each

animal had a single consistent center frequency pseudo-randomly selected from those three values).

Non-center frequencies were set per animal to be ±0.25, ±0.5, ±1.0, and ±1.5 octaves from the

selected center frequency. In stage 1, the only non-center frequency was either +1.5 octaves or -1.5

octaves from center (and whether higher or lower frequency was also pseudo-randomly assigned

per animal).

In stage 1, while an animal’s performance remained <80% correct, they were rewarded with

water regardless of behavior choice on 15% of trials to help promote consistent licking during

training. Once performance reached ≥80% correct for three consecutive days in stage 1, animals

65



moved to stage 2 in which the other non-center frequency (either ± 1.5 octaves away) was added.

After three days in stage 2, animals moved to stage 3 regardless of performance (in which all other

non-center stimuli ±0.25, ±0.5, and ±1.0, octaves from the center frequency were also presented

and rewarded for right-side licking).

On each trial, a 250 ms tone was presented and animals had to classify the tone as the center

frequency (green) or any other frequency (shades of blue). Stimuli were presented at 70 dB SPL

in a pseudorandom order, such that the likelihood of center:non-center was 1:1 (with frequency

uniformly chosen from the non-center distribution on non-center trials). After a 250 ms delay,

animals had to lick left to report the stimulus as ‘center’ and had to lick right to report the stimulus

as ‘non-center’. If the animal did not respond during the 2.5 seconds of the response epoch, the

trial was classified as a ‘no response’ trial (which were excluded from analysis except where

otherwise noted). If the lick response was correct, a small water reward (2-4 µL) was delivered to

the corresponding lick port. Inter-trial intervals were 3±0.5 seconds (mean±s.d.) on trials with a

correct response and 6±0.5 seconds (mean±s.d.) on trials with an incorrect response or without a

response. Animals were not punished for licking outside of the response epoch. Animals generally

performed between 350-500 trials/day.

4.2.2.1 Two-photon calcium imaging

Cranial window implantation over left auditory cortex was performed, as previously described. For

cell body imaging, 1.0-1.5 µL of diluted CaMKII.GCaMP6f (AAV9, diluted 1:3 with dPBS, Addgene

number: 100834) or Syn.GCaMP7f (AAV1, diluted 1:4 with dPBS, Addgene number: 104488) was

injected into auditory cortex (1.5 mm from lambda, along lateral suture).

Two-photon fluorescence of GCaMP6f/s and tdTomato was excited at 900 nm using a mode

locked Ti:Sapphire laser (MaiTai, Spectra-Physics, Mountain View, CA) and detected in the green

channel and red channel, respectively. Imaging was performed on a multiphoton imaging system

(Moveable Objective Microscope, Sutter Instruments) equipped with a water immersion objective
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(20X, NA=0.95, Olympus) and the emission path was shielded from external light contamination.

Images were collected using ScanImage (Janelia). To image auditory cortex, the objective was

tilted to an angle of 50–60°. We imaged 300 𝜇m2 areas in auditory cortex (scan rate either 4

Hz or 30 Hz, laser power ≤40 mW). For animals with TdTomato labeling in interneurons, we

imaged both the green and red channel to visualize both the functional and structural markers,

respectively.

The speaker was 10 cm away from the ear contralateral to the window. A consistent region of

excitatory neurons in layer 2/3 of A1 (based on vasculature and relative orientation of neurons)

was imaged over all days of pairing. For baseline imaging, pure tones (70 dB SPL, 4–64 kHz, 250

ms, 10 ms cosine on/off ramps, quarter-octave spacing, 10 trials for each frequency) were delivered

in pseudo-random sequence every 5 s.

Excitatory neuron imaging data were motion-corrected and regions of interest (ROIs) were

automatically detected using suite2p [Pachitariu et al. 2017]. ROIs were manually verified and

additional ROIs were manually drawn on an average image of all motion-corrected images.

Calcium fluorescence was extracted from all ROIs. Semi-automated data analysis was performed

using custom Matlab (MathWorks) software. For each ROI, we corrected for potential neuropil

contamination as previously described. The ΔF/F (%) was calculated as the average change in

fluorescence during the stimulus epoch relative to the 750 ms immediately prior to stimulus onset:

ΔF/F(%) = ((F𝑡 − F0)/F0) × 100. ROIs were included in additional analysis if they had a significant

response (both 𝑝 < 0.05 Student’s two-tailed, paired t-test comparing activity during any stimulus

and pre-stimulus epochs and had a mean ΔF/F equal to 5% or above for all trials with a particular

frequency).
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4.2.3 Model

4.2.3.1 Task structure

Neural networks received 𝑁𝑠 = 33 frequency-tuned inputs s, given by:

s(𝑘)
𝑖

= 𝐵 exp
−

(
𝑓 (𝑘) − 𝜇𝑖

)2

2𝜎2
𝑓 𝑟𝑒𝑞

, (4.1)

where 𝜇𝑖 determines the peak response of tuning curve 𝑖 , 𝜎2
𝑓 𝑟𝑒𝑞

determines the tuning width, 𝑓 (𝑘)

is the input frequency for trial 𝑘 , and 𝐵 determines the maximum response magnitude. The 𝜇𝑖

were selected to evenly tile frequency space. Trials were organized into multiple phases: to model

unsupervised learning during development, we initially trained the network on an ensemble of

unit-spaced integer frequencies ranging from 8 to 24 (in arbitrary units) selected with uniform

probability, and trained the network to accurately decode the input frequency. Networks received

a reward proportionate to how accurately they were able to reconstruct the received stimulus:

𝑅
(𝑘)
1−𝑐 = −(s(𝑘) − 𝑧 (𝑘)1−𝑐)

𝑇 (s(𝑘) − 𝑧 (𝑘)1−𝑐). (4.2)

Here, the binary variable 𝑐 indicates whether the network is in a passive, unsupervised context

(𝑐 = 0) or in an active trained context (𝑐 = 1). 𝑧 (𝑘)1−𝑐 gives the network’s output in the passive

context, while 𝑧 (𝑘)𝑐 gives the output in the behavioral context (see Section 4.2.3.2).

Next, we trained the network on a target frequency detection task in a curriculum learning

paradigm [Kepple et al. 2021]. In the first phase of learning, the networks were trained to

discriminate a target tone (𝑓𝑡𝑎𝑟𝑔 = 16), from a single foil tone (24). After training networks on this

task for 20 thousand trials, we introduced a second phase, where the network was required to

discriminate the target from an additional foil tone (8). This phase lasted an additional 25 thousand

trials. The final phase (20 thousand trials) increased the complexity of the task by introducing
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several foil tones closer to the target frequency (12, 14, 15, 17, 18, 20). Targets and foil frequencies

were presented with equal probability across all phases of discrimination learning.

For learning, the networks received an extrinsic reward only if the sign of the network output

matched whether or not the target frequency was present:

𝑅
(𝑘)
𝑐 =


1 if 𝑧 (𝑘)𝑐 < 0 and s(𝑘) ≠ s𝑡𝑎𝑟𝑔 or 𝑧 (𝑘)𝑐 > 0 and s(𝑘) = s𝑡𝑎𝑟𝑔

0 otherwise.
(4.3)

In biological networks, neurons cannot increase their firing rates freely: extra spiking comes

with additional metabolic costs [Simoncelli and Olshausen 2001]. To model these resource con-

straints, we also penalized for their firing rates. The total reward for the system then became:

𝑅
(𝑘)
𝑡𝑜𝑡𝑎𝑙

= (𝑐)𝑅 (𝑘)
𝑐 + (1 − 𝑐)𝑅 (𝑘)

1−𝑐 − 𝜆𝑙1
𝑁∑︁
𝑖=0

|r(𝑘)
𝑖

|, (4.4)

where 𝜆𝑙1 = 0.4 is a small positive constant. To increase the efficiency of our algorithm [Williams

1992], we separately kept track of a reward baseline, which was subtracted out from the reward

signal 𝑅 (𝑘) as it was delivered to the network each trial. This baseline is an approximation to the

average expected reward, calculated by a moving average of past rewards with time constant 𝛼 :

𝑅
(𝑘)
𝑎𝑣𝑔 = (1 − 𝛼)𝑅 (𝑘−1)

𝑎𝑣𝑔 + 𝛼𝑅 (𝑘)
𝑡𝑜𝑡𝑎𝑙

. (4.5)

4.2.3.2 Network Architecture

The model neural network receives stimulus-dependent input from both context-independent and

context-dependent sources. Previous studies [Kuchibhotla et al. 2017] have shown that inhibitory

microcircuits activated by acetylcholine signaling from the nucleus basalis mediate contextual

changes in auditory signal processing. Because these microcircuits were shown to both inhibit and

disinhibit excitatory neurons, we model their input as a separate, sign-unconstrained stimulus-
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dependent current to the neurons in our network. We propose that tonic acetylcholine signals

correspond to an indicator of context (𝐴𝑡𝑜𝑛𝑖𝑐 = 𝑐), and gate this input. Our neuron activities are

given by:

h(𝑘) = W𝑖𝑛s(𝑘) +𝐴𝑡𝑜𝑛𝑖𝑐W𝑐𝑜𝑛s(𝑘) (4.6)

r(𝑘) = 𝑓 (h(𝑘)) + 𝜎𝜼 (𝑘)
𝑟 , (4.7)

where h(𝑘) gives the neurons’ input current on trial 𝑘 , W𝑖𝑛 is the 𝑁𝑟 × 𝑁𝑠 context-independent

feedforward weight matrix, W𝑐𝑜𝑛 is the 𝑁𝑟 × 𝑁𝑠 context-dependent weight matrix, 𝑓 (h) =

𝛽 ln (1 + exp(𝛾h)) is a pointwise differentiable rectified linear unit, 𝜼𝑟 is independent additive

Gaussian noise, 𝜎 controls the standard deviation of the neurons’ variability, and r(𝑘) gives the

resulting neural firing rates for trial 𝑘 . We model neural decision variables 𝑧𝑐 and 𝑧1−𝑐 with

separate decoders across contexts. During pretraining, when networks are trained to reproduce

their inputs, 𝑧1−𝑐 is given by:

𝑧
(𝑘)
1−𝑐 = D1−𝑐r(𝑘) + 𝜎𝑟𝑒𝑝𝜼 (𝑘)

𝑧 , (4.8)

where 𝑧 (𝑘)1−𝑐 is an 𝑁𝑠-dimensional vector, and D1−𝑐 is an 𝑁𝑠 × 𝑁𝑟 decoder matrix. For tone discrimi-

nation, 𝑧 (𝑘)𝑐 is a scalar decision variable, given by:

𝑧
(𝑘)
𝑐 = D𝑐r(𝑘) + 𝜎𝑑𝑖𝑠𝑐𝜼 (𝑘)

𝑧 , (4.9)

where D𝑐 is a 1 × 𝑁𝑟 decoder matrix.

4.2.3.3 Learning

We trained all free parameters in our neural networks using a reward-modulated Hebbian synaptic

plasticity rule based on the REINFORCE algorithm (Appendix A.3; [Williams 1992]). Under this
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plasticity rule, three factors (reward, pre- and post-synaptic activity) are combined multiplicatively

to perform a stochastic approximation to gradient descent on the expected reward for a given trial.

We propose that in addition to relaying context information through tonic activity, acetylcholine

also relays reward information through phasic firing. For a given trial, at reward time, this gives:

𝐴
(𝑘)
𝑡𝑜𝑡𝑎𝑙

= 𝜆𝐴𝐴𝑡𝑜𝑛𝑖𝑐 + 𝑅 (𝑘)
𝑡𝑜𝑡𝑎𝑙

, (4.10)

where 𝜆𝐴 is a positive constant. For the REINFORCE learning algorithm, the reward signal 𝐴(𝑘)
𝑡𝑜𝑡𝑎𝑙

used for parameter updates can vary up to an additive constant without affecting parameter

updates on average, though large constants can increase the variance of parameter updates

[Williams 1992]: this is why the tonic acetylcholine signal 𝜆𝐴 (𝑐) does not prevent learning. With

a trial-by-trial measure of deviations from expected reward 𝐴(𝑘)
𝑡𝑜𝑡𝑎𝑙

, plasticity for our input weights

and decoder parameters were given as follows:

ΔW𝑖𝑛
𝑖 𝑗 = 𝜆(1 − 𝑐)𝐴

(𝑘)
𝑡𝑜𝑡𝑎𝑙

r(𝑘)
𝑖

− 𝑓𝑖
(
h(𝑘)

)
𝜎2 s(𝑘)

𝑗
(4.11)

ΔW𝑐𝑜𝑛
𝑖 𝑗 = 𝜆(𝑐)𝐴(𝑘)

𝑡𝑜𝑡𝑎𝑙

r(𝑘)
𝑖

− 𝑓𝑖
(
h(𝑘)

)
𝜎2 s(𝑘)

𝑗
(4.12)

ΔD𝑐1 𝑗 = 𝜆(𝑐)𝐴
(𝑘)
𝑡𝑜𝑡𝑎𝑙

𝑧
(𝑘)
𝑐 − D𝑐r(𝑘)

𝜎2
𝑑𝑖𝑠𝑐

s(𝑘)
𝑗

(4.13)

ΔD1−𝑐
𝑖 𝑗 = 𝜆(1 − 𝑐)𝐴(𝑘)

𝑡𝑜𝑡𝑎𝑙

𝑧
(𝑘)
1−𝑐 − D1−𝑐r(𝑘)

𝜎2
𝑟𝑒𝑝

s(𝑘)
𝑗
. (4.14)

Notice here that the primary feedforward weightsW𝑖𝑛 are only updated in the passive context

(when 1−𝑐 = 1). This captures the intuition that the primary inputs to auditory cortex are difficult

to modify after an early developmental critical period of plasticity [Zhang et al. 2001; Zhou et al.

2011; Insanally et al. 2009; de Villers-Sidani et al. 2008], and suggests that perceptual learning and

its effects in our model system are purely task-dependent: in the absence of the context signal 𝑐 ,

learning is non-existent. Furthermore, the decoders were only learned during the tasks for which
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they were responsible. We explored two additional learning conditions (Fig. 4.4): in the context

invariant learning condition we updated W𝑖𝑛 in both contexts, while in the context invariant

response condition, we setW𝑐𝑜𝑛 = 0 and made no parameter modifications to those weights.

4.3 Discussion

In both our model and the experimental data, neural response properties after training are

partially shaped by the training procedure itself, and partially by initial behavioral and neural

response properties. We found that reward signals considerably reshape neurons’ tuning properties,

especially in the behavioral context across both our model and neural recordings. Furthermore, we

found evidence for remarkable reorganization of neural responses across contexts: the principal

axis along which center and non-center tones are discriminable in behavioral contexts loses the

majority of its discriminability in passive contexts. We propose that acetylcholine signals from

the nucleus basalis could support both context-dependent reorganization in auditory cortex and

reward-based learning, given previous evidence for its involvement in both functions [Kuchibhotla

et al. 2017; Froemke et al. 2007, 2013; Guo et al. 2019; Laszlovszky et al. 2020]. Interestingly, in

our model, context information is relayed through tonic acetylcholine levels, which rise at the

beginning of a trial, and reward information is relayed through phasic responses. This separation

is possible because neural activity cannot be correlated with experimenter-induced changes

in context, and so on average will not affect the correlation-based reward-modulated Hebbian

plasticity rule we use in our model [Williams 1992].

While this joint model of attentional and reward modulation agrees with both our experimental

data and previous studies, it is only partially constrained bywhat we currently know about learning

in the auditory cortex. The simplicity of ourmodel is a considerable advantage, but there exist many

more complicated alternative learning schemes which would require further experimentation to

distinguish from our approach. Of these, two axes are particularly important, each addressing the
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exact nature of the nucleus basalis’ role in learning. First, we have treated the reward signal as a

scalar, delivered universally to all synapses. However, this method is well known to be inefficient

for more complex tasks [Werfel et al. 2003]. Given that acetylcholine projections are known to

exhibit regionally specific connectivity and support a variety functions from attention to learning

[Záborszky et al. 2018], it may be that their responses become more heterogeneous and targeted

for more complex tasks, acting as a form of spatial credit assignment [Roelfsema and Ooyen 2005;

Roelfsema et al. 2010]. Second, the nucleus basalis shows some signs of being adaptive over the

course of training on perceptual learning tasks [Guo et al. 2019; Laszlovszky et al. 2020]. What we

have modeled here as a static system may be more advanced, for instance by actively tagging and

modifying neurons whose responses are informative for the task [Haimerl et al. 2019, 2021], or

by developing representations of expected future reward through temporal difference learning,

as with dopamine neurons in the ventral tegmental area [Schultz et al. 1997]. Such properties

could allow the auditory cortex to respond differently to multiple different contexts, and to modify

synapses based on rewards that are significantly delayed in time. However, little is known about

the properties of nucleus basalis neurons, and most auditory perceptual learning paradigms are

not complex enough to differentiate these more advanced learning schemes from the one we have

employed here.

Despite these complexities, our data and model place constraints on how learning is occurring

in the system. We found that only models in which rewards modify exclusively context-specific

parameters are able to capture the strong loss of center versus non-center discriminability in the

passive context along the linear discriminant axis calculated during behavior. Models in which all

synapses were modified by reward signals and models in which there were no context-specific

inputs failed to capture this result. These results suggest that the auditory cortex is able to

rapidly rearrange itself through a context-dependent mechanism during behavior, and that it is

primarily this mechanism that adapts to reward. Previous experimental results [Kuchibhotla et al.

2017; Takesian et al. 2018] would suggest that inhibitory and disinhibitory microcircuits gated
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by acetylcholine signaling underly these context-specific changes in response properties, but it

remains for future work to verify our model’s prediction that it will be synapses within these

circuits that are modified by reward, and not feedforward excitatory inputs. The idea that only

context-gated synapses in auditory cortex are modified through plasticity in adult mice could

explain why environmental statistics have a much-reduced influence on tuning properties of

neurons beyond a brief postnatal critical period of plasticity [Zhang et al. 2001; Zhou et al. 2011;

Insanally et al. 2009; de Villers-Sidani et al. 2008], while task training can still modify neural

responses into adulthood [Polley et al. 2006; David et al. 2012; Fritz et al. 2003; Recanzone et al.

1993]. The functional benefit of this arrangement is that auditory cortex can preserve both its

general-purpose and task-specific representational capabilities. Further, we have focused on

acetylcholine because of its role in both context-specific response changes and reward-based

learning. However, several different neuromodulators are known to have similar plasticity effects

[Glennon et al. 2019; Marlin et al. 2015], suggesting that perceptual learning may be better

described by a model where neural tuning is modified by an ensemble of different reward signals

in different contexts.

One of the most evocative features of our model is that an animal’s initial neural and behavioral

response properties can influence its learned representation. In particular, we found that a model’s

choice bias affects whether more neurons in the system exhibit strong responses to center, versus

non-center frequencies. Intuitively this makes sense: if an animal has a bias to indicate non-

center frequencies, center frequencies can counteract this bias by increasing their firing rates

to exceed the choice threshold and vice versa. Unfortunately, we did not have enough data to

conclusively confirm this prediction in the animals we tested, and the active debiasing in our

training procedure for the animals may be an additional confound: it would be very interesting to

examine systematically in further animal recordings how manipulations of stimulus statistics and

animals’ initial choice bias interact to affect learned neural responses. We also found that the width

of input tuning curves can affect both the final representation and learning speed, with wider
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tuning curves producing faster learning speeds and weaker center responses relative to other

frequencies. Both of these factors (choice bias and initial tuning width) could provide promising

targets for experimental manipulations seeking to predispose auditory cortex responses towards

one representation over another.

Our results explain how the auditory cortex resolves a fundamental trade-off between general

stimulus representation and task-specific specialization through a combination of reward-based

learning and context-specific response modulation. We hope that future work will shed more

light on the complexity of both the learning signals projected to cortex and the context-specific

response capabilities of the system.

4.4 Attribution

Kathleen Martin and Robert Froemke designed the experiments, and Kathleen Martin performed

the experiments and analyzed the resulting 2-photon recordings of mouse auditory cortex. Colin

Bredenberg, Eero Simoncelli, and Cristina Savin designed the initial reward-based learning model,

and Jordan Lei and Colin Bredenberg performed model experiments exploring the effects of

context, choice bias, and input tuning width on models’ learned representations. All authors

co-wrote the manuscript.
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Figure 4.4: Exploring alternative learning schemes. a. Center (green) and non-center (blue) context
invariant learning model responses during behavior (left) and passive (right) sessions, projected onto the
optimal linear discriminant axis calculated during behavior. b. Discriminability (d’) of the distribution of
center and non-center context invariant learning model responses in behavior (blue) sessions and passive
(grey sessions, projected onto the linear discriminant axis. c. Same as a, but for the context invariant
responses condition. d. Same as b, but for the context invariant responses condition. e. Discriminability
(d’) of the distribution of center and non-center neural responses projected onto the linear discriminant
axis calculated during the passive phase for an example mouse (top left), context invariant learning (top
right), our model (bottom left), and context invariant responses (bottom right).

76



5 | Impression learning: Online

representation learning with

synaptic plasticity

Sensory systems are faced with a task analogous to the scientific process itself: given a steady

stream of raw data, they must extract meaningful information about its underlying structure. So

far, in Chapters 3 and 4, we have focused on forms of synaptic plasticity with explicit access to

reward signals, but in contrast, because the true underlying structure of sensory data is rarely

accessible, “representation learning” must be largely unsupervised. Framing perception in the

language of Bayesian inference has proven fruitful in perceptual and cognitive science [Knill

and Richards 1996; Weiss et al. 2002; Mamassian et al. 2002; Kersten et al. 2004], but has been

difficult to connect to biology, because we still lack a satisfactory account of how the machinery

of Bayesian inference and learning is implemented in neural circuits [Fiser et al. 2010a; Lange

et al. 2020].

Past work includes several examples of circuits that simultaneously learn a top-down generative

model of incoming stimuli and perform approximate inference with respect to these models. These

differ in the nature of the approximation, from maximum a posteriori estimation [Rao and Ballard

1999], to efficient population codes that embed prior structure [Ganguli and Simoncelli 2014]

to either parametric [Kingma and Welling 2013; Rezende et al. 2014] or sampling-based [Dayan
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et al. 1995] variational inference. Learning generally takes the form of optimizing a probabilistic

objective, either by backpropagation [Kingma and Welling 2013; Rezende et al. 2014] or through

local parameter updates, which match biological learning more closely [Dayan et al. 1995; Rao and

Ballard 1999; Habenschuss et al. 2012; Bill et al. 2015]. While these models are mostly restricted

to static stimuli, several instances also operate over time [Dayan and Hinton 1996; Kutschireiter

et al. 2017; Kappel et al. 2014].

Developing biologically plausible learning rules that are applicable to temporally structured

data is hampered by the fact that optimizing a probabilistic objective function in such contexts

requires access to non-local information across space and time. Previous research on local approx-

imations to credit assignment in backpropagation address spatial credit assignment by ascribing

differential functions to the apical and basal dendrites of pyramidal neurons in cortex, where

apical dendrites are hypothesized to receive top-down learning signals, and basal dendrites receive

bottom-up sensory signals [Körding and König 2001; Urbanczik and Senn 2014; Schiess et al. 2016;

Sacramento et al. 2017; Guerguiev et al. 2017; Richards and Lillicrap 2019; Golkar et al. 2020b,a;

Payeur et al. 2021]. Locally implementing temporal credit assignment is a bigger challenge [Murray

2019; Marschall et al. 2020].

Our work, which we have dubbed ‘impression learning’ (IL), combines the tradition of proba-

bilistic learning [Dayan et al. 1995; Dayan and Hinton 1996] with these recent developments in

local optimization, in order to learn dynamic stimuli concurrently with perception. We propose

a network architecture in which top-down stimulus predictions arriving at the apical dendrites

of neurons influence both network dynamics and synaptic plasticity, allowing the network to

concurrently learn a probabilistic model of the stimuli and an approximate inference computation.

We provide a mathematical derivation of synaptic plasticity rules that approximate gradient

descent on a novel unsupervised loss function, along with detailed analyses of the biases induced

by this approximation (Section 2.2.2). We explore the empirical and mathematical relationships

between IL and three other methods: backpropagation (BP) [LeCun et al. 1989b], the Wake-Sleep

78



(WS) algorithm [Hinton et al. 1995], and a specific form of neural variational inference (NVI∗)

[Ranganath et al. 2014; Mnih and Gregor 2014] (which is closely related to REINFORCE). We show

that learning can be implemented online (Section 2.2.5), is capable of capturing temporal depen-

dencies in continuous input streams (Section 2.2.4), and demonstrate that IL scales to naturalistic

stimuli (Section 2.2.6) and multilayer network architectures (Section 2.2.3), enabling it to learn

statistics of high-dimensional, naturalistic inputs better than the reward-based alternative, NVI∗.

5.1 Probabilistic inference and local learning in a

recurrent circuit

We construct a network of neurons that aims to learn a generative model of the temporal sequence

of stimuli that it receives, 𝑝𝑚 (r, s) =
∏𝑇
𝑡=0 𝑝𝑚 (r𝑡 , s𝑡 |r𝑡−1), in which s represents stimuli in an input

layer.1 The latent variables r are not defined by a physical model of the stimulus environment,

but are learned in an unsupervised manner to provide the best generative explanation of stimuli

received. We assume that stimuli are generated by a true probability distribution 𝑝 (s|z), where s

corresponds to the first layer of neural activations in an early sensory layer, and vector z ∼ 𝑝 (z)

corresponds to the environmental factors which jointly caused that activity. Because learning is

unsupervised, we do not enforce explicit correspondence between the internal and true latent

features, r and z, only a correspondence between model predictions and ground truth stimuli. We

also assume that the network performs online inference with respect to its model, inferring the

corresponding latent cause r using Bayes’ rule: 𝑝𝑚 (r|s) = 𝑝𝑚 (r, s)/𝑝𝑚 (s). Because the network

won’t, in general, be able to explicitly calculate Bayes’ rule, we will assume that the network

learns an approximate inference distribution 𝑞(r|s), which it attempts to bring ‘close’ to 𝑝𝑚 (r|s).

This joint process of learning and inference, known as Bayesian latent feature extraction, provides

a general framework for conceptualizing early sensory processing in the brain [Fiser et al. 2010a].
1We use the shorthand notation ‘s’ to refer to the 𝑁 ×𝑇 matrix of stimuli across time.

79



In subsequent sections, we will write a loss function for this general latent feature extraction

objective, and show how local modifications at apical and basal synapses can perform approximate

gradient descent on this loss.

Loss function The loss function that we propose will produce a learning algorithm where

neurons alternate between sampling from the model, 𝑝𝑚 , and performing approximate inference

according to 𝑞 in response to real stimuli received from 𝑝 (s|z). This alternation will allow the

network to learn online in a way that minimally perturbs the continuity of perception. First,

consider two families of hybrid probability distributions, which we denote in shorthand 𝑞𝜃 and 𝑝𝜃 :

𝑞𝜃 =

𝑇∏
𝑡=0

𝑞𝑡 (r𝑡 , s𝑡 |z𝑡 , 𝜆𝑡 ;𝜃 ) =
𝑇∏
𝑡=0

(
𝑞(r𝑡 |s𝑡 ;𝜃𝑞)𝑝 (s𝑡 |z𝑡 )

)𝜆𝑡 𝑝𝑚 (r𝑡 , s𝑡 |r𝑡−1, 𝜆𝑡 ;𝜃𝑝)1−𝜆𝑡

𝑝𝜃 =

𝑇∏
𝑡=0

𝑝𝑡 (r𝑡 , s𝑡 |z𝑡 , 𝜆𝑡 ;𝜃 ) =
𝑇∏
𝑡=0

(
𝑞(r𝑡 |s𝑡 ;𝜃𝑞)𝑝 (s𝑡 |z𝑡 )

)1−𝜆𝑡 𝑝𝑚 (r𝑡 , s𝑡 |r𝑡−1, 𝜆𝑡 ;𝜃𝑝)𝜆𝑡 , (5.1)

where a collection of binary random variables 𝜆𝑡 determines whether, at a given time step, sampling

occurs due to 𝑞(r𝑡 |s𝑡 ;𝜃𝑞)𝑝 (s𝑡 |z𝑡 ) or 𝑝𝑚 (r𝑡 , s𝑡 |r𝑡−1, 𝜆𝑡 ;𝜃𝑝), and the full parameter space is denoted

𝜃 = [𝜃𝑝, 𝜃𝑞]. We define an objective of the form:

L = E𝜆,z [𝐾𝐿[𝑞𝜃 | |𝑝𝜃 ]]

= E𝜆,z

[∫
[log𝑞𝜃 − log𝑝𝜃 ] 𝑞𝜃 𝑑r𝑑s

]
. (5.2)

This loss provides a generalization of the widely-used evidence lower bound (ELBO), which

corresponds to the case 𝜆𝑡 = 1 ∀𝑡 . Importantly, we can show that L = 0 if and only if

𝑞(r𝑡 |s𝑡 ;𝜃𝑞)𝑝 (s𝑡 |z𝑡 ) = 𝑝𝑚 (r𝑡 , s𝑡 |r𝑡−1, 𝜆𝑡 ;𝜃𝑝) ∀𝑡 . If this equality were achieved, it would also im-

ply 𝑝𝑚 (r, s) = 𝑞(r|s)𝑝 (s|z). However, this absolute minimum will not be achievable unless z𝑡

is deterministic, because 𝑝𝑚 (r𝑡 , s𝑡 |r𝑡−1, 𝜆𝑡 ;𝜃𝑝) has no dependency on the latent variables in the

environment. Thus, our goal is inherently unachievable, and different choices of 𝑝 (𝜆𝑡 ) and network

architectures may lead to different local minima. However, each choice will incentivize learning a
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close correspondence between these distributions, and an approximation to gradient descent with

respect to any choice will lead to local synaptic plasticity rules, making this objective particularly

interesting for the computational neuroscience community.

Update derivation We begin by taking the gradient of our new loss w.r.t. 𝜃 = [𝜃𝑞, 𝜃𝑝]:

−∇𝜃L = − ∇𝜃E𝜆,z
[∫

[log𝑞𝜃 − log𝑝𝜃 ] 𝑞𝜃 𝑑r𝑑s
]

= − E𝜆,z
[∫

[∇𝜃 (log𝑞𝜃 − log𝑝𝜃 )] 𝑞𝜃 𝑑r𝑑s +
∫

[log𝑞𝜃 − log𝑝𝜃 ] ∇𝜃𝑞𝜃 𝑑r𝑑s
]
,

where the second equality follows from the product rule. Both integrals are analytically intractable,

but if we can write both as expectations, they can be approximated by averaging over samples

of r and s. To accomplish this, we note that ∇𝜃𝑞𝜃 = ∇𝜃𝑒 log𝑞𝜃 = [∇𝜃 log𝑞𝜃 ] 𝑞𝜃 , which allows us to

rewrite our expression as an expectation over r and s:

−∇𝜃L = − E𝜆,z
[∫

[∇𝜃 log𝑞𝜃 − ∇𝜃 log𝑝𝜃 ] 𝑞𝜃 𝑑r𝑑s +
∫

[log𝑞𝜃 − log𝑝𝜃 ] (∇𝜃 log𝑞𝜃 )𝑞𝜃 𝑑r𝑑s
]
.

We also observe that
∫
[∇𝜃 log𝑞𝜃 ] 𝑞𝜃 𝑑r𝑑s = ∇𝜃

∫
𝑞𝜃 𝑑r𝑑s = ∇𝜃1 = 0, allowing the elimination of

two terms:

−∇𝜃L = E𝜆,z

[∫
[∇𝜃 log𝑝𝜃 ] 𝑞𝜃 𝑑r𝑑s +

∫ [
log

𝑝𝜃

𝑞𝜃

]
(∇𝜃 log𝑞𝜃 )𝑞𝜃 𝑑r𝑑s

]
≈ E𝜆,z

[∫
[∇𝜃 log𝑝𝜃 ] 𝑞𝜃 𝑑r𝑑s +

∫ [
𝑝𝜃

𝑞𝜃
− 1

]
(∇𝜃 log𝑞𝜃 )𝑞𝜃 𝑑r𝑑s

]
= E𝜆,z

[∫
[∇𝜃 log𝑝𝜃 ] 𝑞𝜃 𝑑r𝑑s +

∫ [
𝑝𝜃

𝑞𝜃

]
(∇𝜃 log𝑞𝜃 )𝑞𝜃 𝑑r𝑑s

]
= E𝜆,z

[∫
[∇𝜃 log𝑝𝜃 ] 𝑞𝜃 𝑑r𝑑s +

∫
[∇𝜃 log𝑞𝜃 ] 𝑝𝜃 𝑑r𝑑s

]
. (5.3)

The approximation in the second line comes from a Taylor expansion of log 𝑝𝜃
𝑞𝜃

about 0, i.e.

when 𝑝𝜃
𝑞𝜃

= 1 (which introduces a bias to the parameter updates that we examine analytically
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in Appendix B.1). This expansion is the core of our derivation, and not all algorithms take this

approach: for this reason, in Appendix B.2 and B.3 we show how the properties of our algorithm

compare to alternatives (NVI∗, BP, or WS).

At this point, we have not yet defined 𝑝 (𝜆). We’ll assume that 𝜆0 ∈ {0, 1}, that 𝑝 (𝜆0 = 0) =

𝑝 (𝜆0 = 1) = 0.5, and that the 𝜆 values alternate deterministically with a ‘phase duration’ 𝐾 , i.e.

𝜆𝑘+1 = 1 − 𝜆𝑘 if mod (𝑘, 𝐾) = 0, and 𝜆𝑘+1 = 𝜆𝑘 otherwise. Under these conditions, the two

integrals in Eq. (5.3) are equivalent, and computing our parameter updates only requires sampling

from 𝑞. If we define 𝜆′ = 1−𝜆, then we have 𝑝 (𝜆′) = 𝑝 (𝜆) and 𝑞(r, s|z, 𝜆;𝜃 ) = 𝑝 (r, s|z, 𝜆′;𝜃 ), which

we make use of as follows:

−∇𝜃L ≈Ez

[∑︁
𝜆

[∫
[∇𝜃 log𝑝𝜃 ] 𝑞𝜃 𝑑r𝑑s +

∫
[∇𝜃 log𝑞𝜃 ] 𝑝𝜃 𝑑r𝑑s

]
𝑝 (𝜆)

]
=Ez

[∑︁
𝜆

∫
[∇𝜃 log𝑝𝜃 ] 𝑞𝜃 𝑑r𝑑s𝑝 (𝜆) +

∑︁
𝜆′

∫
[∇𝜃 log𝑝𝜃 ] 𝑞𝜃 𝑑r𝑑s 𝑝 (𝜆′)

]
=2Ez

[∑︁
𝜆

∫
[∇𝜃 log𝑝𝜃 ] 𝑞𝜃 𝑑r𝑑s 𝑝 (𝜆)

]
. (5.4)

Using the definitions for 𝑞𝜃 and 𝑝𝜃 and the properties of the logarithm gives us the following

parameter update rule:

Δ𝜃 ∝ 2E𝜆0,z

[∫ [∑︁
𝑡

(1 − 𝜆𝑡 )∇𝜃 log𝑞𝑡 + (𝜆𝑡 )∇𝜃 log𝑝𝑚𝑡

]
𝑞𝜃 𝑑r𝑑s

]
. (5.5)

As we will show below, this parameter update equation produces updates that require only

information locally available to synapses, a necessary condition for any biologically-plausible

algorithm.

Basic model To make the above general learning procedure concrete, we need to specify

how to sample from 𝑞𝜃 , which in turn requires an architecture for performing approximate

inference at each time step, 𝑞(r𝑡 |s𝑡 ;𝜃𝑞), and a joint model of stimuli and neural activations,
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𝑝𝑚 (r𝑡 , s𝑡 |r𝑡−1, 𝜆𝑡 ;𝜃𝑝). We map these two model components onto neural circuitry, with their

own local variables corresponding to s and r, and segregated synaptic parameters: the ‘basal’

compartment is dedicated to feedforward inference (𝑞, index ‘inf’) and the ‘apical’ compartment

is dedicated to generative sampling from the model (𝑝𝑚 , index ‘gen’); this segregation allows their

influence on neural dynamics to be selectively gated by 𝜆𝑡 (Fig. 5.1a).

First, the internal generative model of the circuit is implicitly defined by a set of currents to

the apical dendritic compartment corresponding to generated samples for the next latent variable,

rgen
𝑡 :

rgen
𝑡 = ((1 − 𝑘𝑡 )D𝑟 + 𝑘𝑡 I) r𝑡−1 + 𝜎gen

𝑟 𝜼𝑡 (5.6)

sgen
𝑡 = 𝑓 (D𝑠r𝑡 ) + 𝜎gen

𝑠 𝝃𝑡 , (5.7)

whereD𝑟 is a diagonal transition matrix (constraining generated latent-variables to be independent

AR(1) processes), D𝑠 is a linear decoder, I is the identity function, 𝜼𝑡 , 𝝃𝑡 ∼ N(0, I) are independent

white noise samples, and 𝜎gen
𝑟 and 𝜎gen

𝑠 denote respectively the generative standard deviation for

neurons at the stimulus and latent levels. We define 𝑘𝑡 = (1 − 𝛿 (𝜆𝑡 − 𝜆𝑡−1))𝜆𝑡 , with 𝛿 (·) the Dirac

delta function; 𝑘𝑡 is 1 only if 𝜆𝑡 = 1 and 𝜆𝑡−1 = 0. We chose a piecewise model (gated by 𝑘𝑡 ) for r
gen
𝑡

because we observed that the statistics of stimuli s𝑡 given previous activities r𝑡−1 are different if a

transition has just occurred (𝜆𝑡 = 1 and 𝜆𝑡−1 = 0), which will bias the training of the generative

transition parameters D𝑟 . We chose I for this case, but one could alternatively have a different

parametric model for after transitions have occurred.

As we will show, adding this condition to our model will never affect the dynamics of our

network, but will cause learning for D𝑟 to occur only on time steps when a transition has not

just occurred. Nothing in our derivation requires the transition matrix D𝑟 to be diagonal, but

we constrained it in this way to allow for learning independent latent features. As is, D𝑟 defines

the leakiness of the apical dendritic compartment of the neuron; off-diagonal components of the
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Figure 5.1: Network architecture and learning. a. Model schematic. A neural network receives stimulus
inputs at its basal dendrites, and returns lateral and top-down prediction signals via apical synapses. A
gate, 𝜆𝑡 , determines whether apical or basal influences dominate network activity. b. Learning schedule:
the Wake-Sleep (WS) algorithm (left) trains its synapses by alternating between prolonged periods where
𝜆𝑡 = 1 (Wake) or 𝜆𝑡 = 0 (Sleep). In contrast, our IL algorithm alternates rapidly between 𝜆𝑡 = 1 and 𝜆𝑡 = 0
with phase duration 𝐾 = 2. c. Network loss on the artificial stimulus task. Error bars indicate ±1 s.e.m.
averaged across 20 network realizations. d. Comparison between a ground truth stimulus (green) and
the network’s prediction (blue) for a particular stimulus dimension. e. Same comparison across stimulus
dimensions. f. The autocorrelation function of r when the network is performing approximate inference
(green; 𝜆𝑡 = 1), or in generative mode (orange; 𝜆𝑡 = 0) compared to the autocorrelation of the data (grey).

transition matrix would correspond to recurrent synapses. These dynamics define a probability

distribution: 𝑝𝑚 (r, s) =
∏𝑇
𝑡=0 𝑝𝑚 (r𝑡 , s𝑡 |r𝑡−1, 𝜆𝑡 ;𝜃𝑝).

Second, we define our inferencemodel, a factorized conditional probability distribution𝑞(r|s) =∏𝑇
𝑡=0 𝑞(r𝑡 |s𝑡 ;𝜃𝑞), which applies a feedforward nonlinear transformation to incoming stimuli:

rinf
𝑡 = 𝑓 (Ws𝑡 ) + 𝜎 inf

𝑟 𝜼𝑡 , (5.8)

whereW denotes the feedforward weights, 𝜎 inf
𝑟 is the inference standard deviation for neurons

at the latent level, and the nonlinearity 𝑓 (·) is the tanh function. During inference mode, the

stimulus layer receives latent-associated inputs from the environment, further corrupted by the
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same noise as the internal representation:

sinf
𝑡 = s̄(z𝑡 ) + 𝜎 inf

𝑠 𝝃𝑡 , (5.9)

where 𝜎 inf
𝑠 denotes the standard deviation for neurons at the stimulus level, and s̄(z𝑡 ) is input

from external stimuli. During simulations, samples are determined by a combination of 𝑝𝑚 and 𝑞,

given by 𝑞𝜃 :

r𝑡 = 𝜆𝑡rinf
𝑡 + (1 − 𝜆𝑡 )rgen

𝑡 (5.10)

s𝑡 = 𝜆𝑡sinf
𝑡 + (1 − 𝜆𝑡 )sgen

𝑡 . (5.11)

We interpret these dynamics biologically as network of recurrently connected pyramidal neurons

with two sources of input, one to the apical dendrites (r𝑔𝑒𝑛𝑡 or sgen
𝑡 ) and one to the basal dendrites

(rinf
𝑡 or sinf

𝑡 ). The gating variable 𝜆𝑡 determines which input source controls the circuit dynamics.

Plasticity rule interpretation Inserting our particular choice of 𝑞𝑡 and 𝑝𝑚𝑡 into our approx-

imate gradient descent derivation, the parameter updates can be interpreted as local synaptic

plasticity rules at the basal (for 𝑞𝑡 ) or apical (for 𝑝𝑚𝑡 ) compartments of our neuron model:

log𝑞(r𝑡 |s𝑡 ;𝜃𝑞) = − 1

2
(
𝜎 inf
𝑟

)2 ∥r𝑡 − 𝑓 (Ws𝑡 )∥2
2 + 𝑐𝑞 (5.12)

log𝑝𝑚 (r𝑡 , s𝑡 |r𝑡−1, 𝜆𝑡 ;𝜃𝑝) = − 1
2(𝜎gen

𝑟 )2
∥r𝑡 − ((1 − 𝑘𝑡 )D𝑟 + 𝑘𝑡 I) r𝑡−1∥2

2

− 1
2(𝜎gen

𝑠 )2
∥s𝑡 − 𝑓 (D𝑠r𝑡 )∥2

2 + 𝑐𝑝, (5.13)

where 𝑐𝑞 = −𝑁𝑟 log(
√︁

2𝜋 (𝜎 inf
𝑟 )2) and 𝑐𝑝 = −𝑁𝑟 log(

√︁
2𝜋 (𝜎gen

𝑟 )2−𝑁𝑠 log(
√︁

2𝜋 (𝜎gen
𝑠 )2 are constants

that do not depend on network parameters. We can use these equations to evaluate our weight

updates, by using the general formula in Eq. 5.5 and calculating derivatives. For online parameter

updates, we assume that weights change stochastically at each time step, based on samples from
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𝜆0, z, r, and s (instead of explicitly calculating the expectation in Eq. 5.5):

ΔW(𝑖 𝑗) ∝ 1 − 𝜆𝑡(
𝜎 inf
𝑟

)2 (r
(𝑖)
𝑡 − 𝑓 (Ws𝑡 ) (𝑖)) 𝑓 ′(Ws𝑡 ) (𝑖)s( 𝑗)𝑡 (5.14)

ΔD(𝑖𝑖)
𝑟 ∝ 𝜆𝑡 (1 − 𝑘𝑡 )(

𝜎
gen
𝑟

)2 (r(𝑖)𝑡 − (D𝑟 r𝑡−1) (𝑖))r(𝑖)𝑡−1 (5.15)

ΔD(𝑖 𝑗)
𝑠 ∝ 𝜆𝑡(

𝜎
gen
𝑠

)2 (s
(𝑖)
𝑡 − 𝑓 (D𝑠r𝑡 ) (𝑖)) 𝑓 ′(D𝑠r𝑡 ) (𝑖)r( 𝑗)𝑡 . (5.16)

Each of these updates has the form of a local synaptic plasticity rule, under the following as-

sumptions: W(𝑖 𝑗) is a basal synapse from neuron 𝑗 to neuron 𝑖 , r(𝑖)𝑡 and r( 𝑗)𝑡 correspond to the

pre- and post-synaptic firing rates, respectively, and 𝑓 (Ws𝑡 ) (𝑖) corresponds to the local basal

current injected into neuron 𝑖 . Thus, assuming that a basal synapse has access to both the neuron’s

firing rate and its local basal synaptic current at a particular moment in time, ΔW(𝑖 𝑗) is local;

the same principle holds for the apical updates. If 𝜆𝑡 = 0, then network activity is driven by the

generative inputs, and so the parameter updates for basal synapses depend on apically-driven

activity, as has been observed experimentally [Bittner et al. 2015]; similarly, apical synaptic plas-

ticity should depend on basally-driven activity. The updates for the generative transition matrix,

D𝑟—determining the leakiness of the apical dendritic compartments—are gated by 1−𝑘𝑡 , indicating

that parameter updates are delayed upon entering ‘inference’ mode: this could reasonably be

implemented biologically by a slow cascade of biochemical processes that delay changes in neural

parameters, as has been proposed by previous plasticity models [Fusi et al. 2005; Clopath et al.

2008].

5.2 Numerical Results

Validation on artificial stimuli To analyze IL performance in an environment where we have

access to and control over the statistics of the latent dynamics z𝑡 , we constructed artificial stimuli
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as follows:

z𝑡 = 𝚲z𝑡−1 + 𝜎 true𝜼𝑡 (5.17)

s̄(z𝑡 ) = Az𝑡 , (5.18)

where 𝚲 is a 𝑁𝑧 × 𝑁𝑧 diagonal matrix with Λ𝑖𝑖 < 1 ∀𝑖 , A is a 𝑁𝑠 × 𝑁𝑧 random matrix with

𝐴𝑖 𝑗 ∼ N(0, 1
𝑁𝑧
), and 𝜼𝑡 ∼ N(0, 1).2 For simplicity, we fix the dimension of the latent space and the

generative noise in the network to the ground truth values, 𝑁𝑟 = 𝑁𝑧 neurons, and 𝜎 true = 𝜎
gen
𝑟 , so

that in principle our model
∫
𝑝𝑚 (r, s)𝑑r can match the ground truth data distribution

∫
𝑝 (s, z)𝑑z

exactly. This also means that we can verify that the network has learned an optimal model by

comparing its second-order statistics to those of the ground truth distribution.

We trained the network using IL, verifying that the online synaptic updates minimize the loss

L (Fig. 5.1c). We further validate that the network has learned to accurately perform inference,

so that 𝑞(r|s) ≈ 𝑝𝑚 (r|s), and that the network has learned a good model of the data, so that∫
𝑝𝑚 (r, s)𝑑r ≈ 𝑝 (s), as per our original goals. We show that when the network is performing

approximate inference, i.e. 𝜆𝑡 = 1, ∀𝑡 , stimulus reconstructions based on the network’s latent state

are closely matched to the actual stimuli, i.e. s𝑡 ≈ 𝑓 (D𝑠r𝑡 ), meaning that the network is functioning

as a good autoencoder across time (Fig. 5.1d), and across all stimulus dimensions (Fig. 5.1e). To

verify the network’s generative performance, we also show that the temporal autocorrelations

for the network rates r𝑡 in generative mode (𝜆𝑡 = 0 ∀𝑡 ) closely overlap with the ground truth

autocorrelation structure of z, suggesting that the learned latent features correspond (modulo a

rotation) to the true latent features. Note that this latent variable match occurs because we have

enforced a correspondence between the true data-generating distribution and our model, and

would not necessarily happen if a different model architecture were used.

Algorithm comparisons Having verified that IL is capable of training the network on
2The parameter values and initialization details for all simulations are included in the supplementary code, which

was run on an internal cluster; 𝑁𝑠 = 100 and 𝑁𝑧 = 20.
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loss for IL (blue), NVI∗ (purple), and BP (gray) as a function of the stimulus dimensionality. Error bars
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simulated data, we next compared it to alternative algorithms in the literature, including neural

variational inference (NVI∗), BP, andWS (see Appendix B.2 for detailed mathematical comparisons

and derivations). In particular, NVI∗ provides an alternative candidate model of how the brain

could plausibly learn neural representations through variational inference [Mnih and Gregor

2014]. Because NVI∗ performs poorly for high-dimensional stimuli and large numbers of time

steps (Appendix B.3; [Werfel et al. 2003]), we simplified the task by reducing the dimensionality

of the latent space, 𝑁𝑧 = 2, and stimulus space, 𝑁𝑠 = 4. For twenty evenly-spaced time points

over the course of the learning trajectory, we compared the inference parameter updates given

by IL, Δ𝜃 IL
𝑞 , to the inference parameter updates given by NVI∗, Δ𝜃NVI

𝑞 , for a 4 time-step stimulus

sequence (Fig. 5.2a). To get good estimates of the mean and variance of these sample parameter

updates, we averaged over 106 different realizations of the network noise, and compared the

samples using two measures. First, we considered the cosine similarity (normalized inner product)

between the two empirical mean updates, Δ𝜃
IL
𝑞 = 1

𝑁

∑𝑁
𝑘=0 Δ𝜃

IL
𝑞 and Δ𝜃

NVI
𝑞 = 1

𝑁

∑𝑁
𝑘=0 Δ𝜃

NVI
𝑞 (Fig.

5.2b), where cos(𝜃 ) ∈ [−1, 1], and cos(𝜃 ) < 0 in this case would indicate that the parameter

updates are anticorrelated. Because the NVI∗ update is unbiased, ie. E[Δ𝜃NVI
𝑞 ] = − 𝑑

𝑑𝜃𝑞
L, as long

as we have averaged over a sufficient number of samples 𝑁 , a positive cosine similarity across

learning between the IL update and the NVI∗ update (Fig. 5.2b) indicates that our update is aligned
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in expectation to the true gradient of the loss, and hence will improve performance. This is a way

of empirically verifying that the bias we introduce in our derivation does not impair the learning

process.

Having verified that the IL update and the true gradient are aligned on average, we next

examine whether the updates given by NVI∗ differ in terms of their signal-to-noise ratio (SNR)

from the IL updates, where we define the SNR as:

SNR(Δ𝜃𝑞) =
1
𝑁𝜃

𝑁𝜃∑︁
𝑖=0

(
Δ𝜃

(𝑖)
𝑞

)2

𝑆2(Δ𝜃 (𝑖)𝑞 )
, (5.19)

where 𝑆2(·) denotes the sample variance. This measure is an average across individual parameter

updates Δ𝜃 (𝑖) , and it increases with
Δ𝜃𝑞2

2
and decreases as the estimator variance grows. As

Fig. 5.2c shows, the SNR is many orders of magnitude lower for NVI∗ than for IL over learning,

likely due to the high estimator variance of the NVI∗, which we demonstrate analytically for a

simple example in the Appendix B.3. The estimator variance has direct implications for the speed

of learning and asymptotic performance, so that even though NVI∗ and IL can have parameter

updates that are aligned in expectation, due to its low variance IL will greatly outperform NVI∗

during training.

We verified the generality of these benefits in the same task, as we varied 𝑁𝑠 , 𝑁𝑧 and 𝑁𝑟

concurrently, so that 𝑁𝑠 = 2𝑁𝑧 = 2𝑁𝑟 . We optimized learning rates for NVI∗, BP, and IL separately

on the lowest dimensional condition by grid search across orders of magnitude (10−2, 10−3, etc.),

and found that NVI∗ performed worse over the entire range, while IL and BP showed similar

performance (using the negative ELBO loss as a standard). Moreover, while NVI∗ showed worse

performance as the stimulus dimension increased, this was not the case for IL or BP (Fig. 5.2d).

Phase duration effects The previous numerical results verify that IL is able to effectively

learn a generative model of artificial data, and to perform inference with respect to that model.

However, for IL to be a valid candidate for online learning in the brain, the learning process should
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Figure 5.3: The effects of phase duration on dynamics and learning. a. Schematic of IL with a phase
duration of 2. b. Same as a, but for a phase duration of 32. c. Comparison of an example neuron’s activity
through time when the network is in inference mode (green, 𝜆𝑡 = 1) and when the network is alternating
phase with duration 2 (blue); the random seed and stimuli are identical in both cases. d. Same as c, but
for a phase duration of 32 (pink). e. The correlation across time between neurons in inference mode vs.
while alternating phase, for identical random seeds. f. The negative ELBO loss for a network trained with
a phase duration of 2 (blue, solid line) or 32 (pink, dashed line).

not significantly interfere with perception. To test this, we explored how the ‘phase duration’ 𝐾

affects the correlation between network activity in a simulation where 𝜆𝑡 = 1, ∀𝑡 , and a simulation

where 𝜆𝑡 alternates phases every 𝐾 time steps (for a fixed random seed and stimulus sequence). If

the learning process did not interfere with perception at all, this correlation would be 1, and if it

completely disrupted perception it would be 0, or even negative. In Fig. 5.3c and d, we show two

example traces with 𝐾 = 2 and 𝐾 = 32, respectively, comparing the network in inference mode

to the network during learning. While neural trajectories for the shorter phase durations are

closely correlated, they deviate considerably for longer phase durations (Fig. 5.3c-e). Despite this,

the loss profile (negative ELBO) is identical. Since WS can be viewed as a special case of IL for

very long phase durations (Appendix B.2.3; see Fig. 5.5a for an even longer phase duration), this

implies that the two methods have similar performance. However, IL operating in a mode of fast
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fluctuations between inference and generation may be more biologically relevant, as this reduces

the interference with perception without impairing learning. Moreover, we found that lengthening

the duration of the inference phase alone while keeping very short bursts of generative activity

further reduced perceptual disturbance, while only slightly increasing the time required to learn

(Fig. 5.5b-d).

Spoken digits task Having verified the performance of IL on artificial stimuli, we next tested

its performance on higher-dimensional and more complex naturalistic stimuli. We used the

training and test sets of the Free Spoken Digits Dataset [Jackson et al. 2018], which provides

audio time series of humans speaking digits 0-9.3 We transformed these time series into log-mel

spectrograms as a coarse approximation of the initial stages of the human auditory system, shifted

the inputs by a constant so as to make them all positive, and divided the result by the across-
3The FSDD is available at https://github.com/Jakobovski/free-spoken-digit-dataset.
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channel standard deviation. The results of Fig. 5.4 are shown in the original log-mel spectrogram

input space.

To assess the hierarchical processing capabilities of IL, we added an additional feedforward

layer to the network architecture (Fig. 5.4a); we provide the details of how this modification affects

simulation and parameter updates in Appendix B.4. To compare IL to NVI∗, we again optimized

learning rates via grid search across orders of magnitude, and found that IL greatly outperformed

NVI∗ when each was evaluated at its respective optimal learning rate (Fig. 5.4b). Furthermore,

we observed that our trained network meets the same criteria for success as for our artificial

stimuli, namely its stimulus reconstructions closely match the true stimulus while in inference

mode (𝜆𝑡 = 1 ∀𝑡 ; Fig. 5.4c), and sample stimuli produced while the network is in generative mode

(𝜆𝑡 = 0 ∀𝑡 ) qualitatively correspond to ground-truth stimuli (Fig. 5.4d), and quantitatively match

the structure of both spatial (Fig. 5.4e) and temporal (Fig. 5.4f) autocorrelation of the input. These

results collectively demonstrate that IL is capable of training neural representations of complex

real-world stimuli. They also show that IL can function when there is a mismatch between its

architecture and the structure of environmental latent variables, which are in this case unknown.

In general, learning may fail if the chosen network architecture is too restrictive.

5.3 Discussion

Impression learning (IL) provides a potential mechanism for the brain to learn generative models

of its sensory inputs through local synaptic plasticity, while concurrently performing approximate

inference with respect to these models. IL is a direct generalization of the Wake-Sleep algorithm

[Hinton et al. 1995], which replaces lengthy offline ‘Sleep’ phases with brief substitutions of

network-generated samples in place of incoming data, in a way that minimally perturbs natural

neural trajectories. Transitions between ‘inference mode’ and ‘generative mode’ are controlled by

a global signal 𝜆𝑡 , which decides whether generative signals to the apical synapses or inference
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signals to the basal synapses dominate network activity.

Computationally, IL outperforms NVI∗ [Ranganath et al. 2014; Mnih and Gregor 2014], a

particular instance of three-factor plasticity [Frémaux and Gerstner 2016], because its internal

model provides explicit ‘credit assignment’ for each individual neuron, rather than implicitly

calculating it via correlations between neural activity and a global reward signal. This leads to

lower-variance gradient estimates and faster learning. Alternative learning algorithms such as

backpropagation (through time) [Werbos 1990] are not intrinsically probabilistic, but can be used

for optimizing probabilistic objectives. Like IL, BP provides explicit credit assignment, but the

parameter updates it provides are nonlocal across both network layers and time. It is worth noting

that IL was developed in a purely unsupervised learning setting, whereas both BP and NVI∗ extend

to supervised and reinforcement learning [Mnih et al. 2015; Williams 1992]. In the context of

supervised learning, several biologically-plausible approximations to BP leverage the apical-basal

dendritic structure of pyramidal neurons to learn [Payeur et al. 2021; Guerguiev et al. 2017], based

primarily on target-propagation [Bengio 2014] or its variants [Lee et al. 2015]. It would be valuable

to explore the combination of such extensions with the continuous online learning capabilities of
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IL.

Local computations are considered a necessary condition for learning algorithms to be biologically-

plausible (Section 2.2.1). In our framework, locality is enforced through the structure of the internal

graphical model (𝑝𝑚) and the approximate inference distribution (𝑞): any choice of neural network

architecture with independent noise will guarantee local plasticity. Our framework is relatively

agnostic to the details: neurons could be either rate-based with Gaussian intrinsic noise (as in

the examples presented here), or generate spikes with Poisson variability, which would result in

synaptic updates analogous to empirically observed spike-timing-dependent plasticity, as found

in generalizations of WS [Dayan and Hinton 1996]. It would also be possible to make distinctions

between excitatory and inhibitory neurons, by requiring all outgoing synapses from individual

neurons to be either positive or negative, or to include more complex dendritic arborizations, as

have been explored in recent experimental [Rashid et al. 2020] and modeling [Sezener et al. 2021]

efforts. Our current model enforces hard, global phase distinctions (𝜆𝑡 ∈ {0, 1} for all neurons),

which could potentially correspond to alternations between activity driven by apical dendritic

calcium events and basal spiking tied to theta oscillations in the hippocampus [Bittner et al. 2015].

However, cortical data indicate that input to apical and basal dendrites contribute concurrently

and constructively to spiking activity [Larkum et al. 1999]. We are currently working to extend

our derivation to these circumstances, by allowing 𝜆𝑡 to be non-binary and heterogenous across

neurons.

Traditional predictive coding [Rao and Ballard 1999] requires steady-state assumptions for

learning, meaning that neural dynamics must occur on a timescale much faster than that of

stimuli. In contrast, IL requires a mechanism by which the relative influence of the apical and basal

dendrites of pyramidal neurons can be rapidly switched, along with learning mechanisms that

operate at that timescale. If such a mechanism could be experimentally identified and controlled,

our model makes the specific prediction that increasing the dominance of apical dendritic input

on neural activity (𝜆𝑡 ≈ 1) would cause the network to sample from its generative model, i.e. the
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manipulation will induce structured hallucinations that mimic realistic stimuli (and associated

neural activity), without being tied to the sensory world. One candidate gating mechanism is rapid

inhibition targeting apical dendrites specifically [Larkum 2013; Saudargiene et al. 2015; Guerreiro

et al. 2020; Leão et al. 2012]; but much work remains to explicitly relate this mechanism to learning

and plasticity.

IL predicts that synapses will use an error signal based on the difference between local dendritic

compartmental currents (either apical or basal) and the neuron’s total firing rate to perform learning

(Section 2.2.7). There is some evidence that spiking activity driven by apical inputs to pyramidal

neurons can induce plasticity at basal synapses [Bittner et al. 2015, 2017], and several studies have

found systematic changes in synaptic plasticity between apical and basal synapses, in particular

the sign changes induced by local dendritic inputs that IL predicts [Froemke et al. 2005; Sjöström

and Häusser 2006; Letzkus et al. 2006; Froemke et al. 2010]. Hence, IL has the potential to explain

the diversity of plasticity phenomena observed experimentally and inform future experiments.

5.4 Attribution

Colin Bredenberg, Eero Simoncelli, and Cristina Savin designed the impression learning model.

Colin Bredenberg performed experiments assessing impression learning’s performance on con-

trolled and naturalistic stimuli. Benjamin Lyo performed experiments comparing impression

learning to backpropagation. All authors co-wrote the manuscript.
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6 | Recurrent neural circuits overcome

partial inactivation by

compensation and re-learning

In previous chapters we have developed normative theories of synaptic plasticity and compared

them to neural data, highlighting the brain’s incredible dynamical complexity and capacity for

adaptation. In this chapter, we explore how these complexities present challenges for interpreting

experiments that artificially manipulate neural circuits.

Artificial manipulations are vital tools in modern neuroscience for investigating the neural

computations that underlie behavior. These manipulation techniques include lesions [Vaidya et al.

2019; Newsome and Pare 1988], pharmacological inactivation [Katz et al. 2016; Hanks et al. 2015],

microstimulation [Salzman et al. 1990], optogenetic [Fetsch et al. 2018; Brown et al. 2018; Tremblay

et al. 2020; Rajasethupathy et al. 2016b], and chemogenetic [Tervo et al. 2014; Eldridge et al. 2016]

inactivation or excitation. It is commonly assumed that the results of these experiments are easily

interpretable, i.e., that changes of behavior following artificial inactivation or excitation of a circuit

demonstrate the importance of that circuit in producing that behavior. However, the converse of

this statement—that the absence of changes in behavior following circuit manipulation indicate

that this circuit does not play a role in producing the behavior—is much more difficult to assert.

Beyond sensory bottlenecks, the distributed nature of computations for higher brain functions
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makes attribution of a single function to a single circuit much more challenging, because multiple

areas may jointly contribute to a function, and may be able to mutually compensate for inactivity

in other regions [Wolff and Ölveczky 2018]. Furthermore, the capacity of neural circuits to

compensate for inactivation is well documented [Vaidya et al. 2019]. This implies that other

neurons in the circuit or areas of the brain which are not normally causal in producing a particular

behavior can adapt to play an important role. Transient manipulation may produce effects that are

more difficult to adapt to, but there is evidence for compensation for even transient optogenetic

inactivation [Fetsch et al. 2018].

Since the effect of perturbations may not always follow simple intuition, modelling can provide

a useful way to reason about possible experimental outcomes and their interpretation. For this

we turn to artificial recurrent neural networks (RNNs), which have been successfully used as

a bridge between neural activity and behavior in several tasks [Rigotti et al. 2010; Mante et al.

2013; Yang et al. 2019]. RNNs are powerful model systems that share many complexities of brain

circuits, while permitting direct access to the inner-workings of the system. Critically, the choice

of architecture and training objectives allows the exploration of different circuit scenarios, where

the contribution of network elements to the output is known. Moreover, simulations provide

the ability of perturbing activity with any spatial and temporal resolution. The combination of

these features results in immense control and knowledge about complex networks, at a level

unattainable in real brain circuits. We build on this foundation to investigate the ability of causal

interventions to reveal the role neurons and populations play in the distributed computations

performed in a complex network.

As a specific example of the complexities involved in causal manipulation of neural circuits, we

focus on the integration of sensory evidence for the random dots motion (RDM) task, a decision

making paradigm that engages multiple frontoparietal cortices [Kiani et al. 2014b; Roitman and

Shadlen 2002; Kim and Shadlen 1999; Mochol et al. 2021] and subcortical areas [Ding and Gold

2013; Horwitz and Newsome 1999; Ratcliff et al. 2011], and which has been a target for many
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causal studies, with contradictory outcomes [Katz et al. 2016; Zhou and Freedman 2019a; Hanks

et al. 2006; Licata et al. 2017; Erlich et al. 2015]. These studies suggest a distributed process for

neural implementation of decision-making, whose complexity challenges standard experimental

techniques for identifying causal relationships between individual brain regions and behavior.

On the modeling side, several successful RNN-based models have been used to replicate neural

response dynamics and behavior in perceptual decision making [Mante et al. 2013; Wong and

Wang 2006; Rigotti et al. 2010] and their dynamical systems properties are well understood. In

particular, recurrent networks can perform near-optimal evidence integration by constructing a

low-dimensional attractor [Goldman et al. 2003; Wong and Wang 2006; Cain et al. 2013], whose

structure provides a direct route to investigating the computational integrity of the circuit.

Here, we use similar trained RNN circuits to systematically study causal manipulations of the

RDM task. We show that inactivation of subsets of neurons in the network affects behavior by

damaging the low-dimensional attractor, with larger activity perturbations having a greater impact

on both accuracy and reaction time, more so for the latter. In a more complex network, where

integration is done collaboratively by multiple circuits, inactivation may or may not affect the

computational structure of the solution and the behavior. In particular, in networks with parallel,

redundant computation, inactivation of a subset of the circuit can have little to no effect on the

network output. Lastly, we demonstrate that recurrent neural networks that retain plasticity — and

continue learning — after the inactivation reconfigure themselves to regain the accuracy they had

prior to inactivation, under some conditions much more quickly than the original training time.

The speed of recovery depends on the extent and temporal profile of the inactivation, and network

performance is closely related to the integrity of the network’s attractors. These observations

caution against simplistic interpretations of causal experiments and suggest concrete ways to

avoid interpretational pitfalls and improve experimental design.
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6.1 Results

6.1.1 Hierarchical recurrent networks approximate linear integration

for simple sensory decisions

We begin with the simplest hierarchical recurrent network architecture (Fig. 6.1a) consisting of a

sensory-like population (P1) and an integrating population (P2). Neurons in each population have

dense recurrent connections between them, while the sensory population projects sparsely to the

integrating population. The P2 population roughly corresponds to the collection of the recurrently

connected cortical and sub-cortical neurons involved in the decision-making process; however,

it does not reflect the precise anatomy of brain networks. The stimulus in each trial randomly

fluctuates around a mean stimulus strength level, akin to the dynamic random dots stimuli in

direction discrimination tasks [Newsome et al. 1989; Roitman and Shadlen 2002] where motion

energy fluctuates around a mean dictated by the coherence of random dots. This fluctuating

stimulus input is received by the sensory population P1, and relayed to the integrating population

P2. The network is trained such that a linear read-out of the activity of population P2 at each

moment matches the integral of the stimulus input up to that time. All connections in the network

are plastic during training and modified by backpropagation through time (BPTT) (see Methods).

After learning, the sensory population shows coherence tuning (see example response profiles

in Fig. 6.7a-c), while the integration population develops response profiles — ramping activity —

similar to those reported in posterior parietal and prefrontal cortex (Fig. 6.7d-f). The connections

are fixed after the initial training, reflecting the common assumption that synapses and network

dynamics do not significantly change after inactivation. We separately also explore the effects of

continuous plasticity on causal experiments (Section 6.1.5).

The network is trained within a couple of thousands of trials (Fig. 6.1b), similar to training

schedules for nonhuman primates [Gold et al. 2010]. After training, the P2 output closely approxi-
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mates the integral of the stimulus input over time. Two hallmarks of temporal integration are

linear scaling with time (Fig. 6.1c) and stimulus strength (Fig. 6.1c-d) [Gold and Shadlen 2007]:

if a network is receiving a constant-mean stimulus input, the integrated output will be a linear

function over time, with slope equal to the mean of the stimulus. The model output represents

linear integration for a wide range of inputs and times but saturates for very large values of the

integral. Because of the limited dynamic range of the neural responses, the curtailed range of the

integral improves the precision of the representation of the integrated evidence for weaker stimuli,

where the network precision matters the most for the accuracy of choices. Another hallmark of

temporal integration of noisy inputs is linear growth of the variance of the integral over time. The

motion energy of the random dots stimulus at each time is an independent sample from a normal

distribution, so their sum over time—integration—should have a variance that scales linearly with

time [Roitman and Shadlen 2002; Churchland et al. 2011]. Our network output captures this

hallmark of optimal integration (Fig. 6.1e).

Since the network’s integration process stops when the network output reaches a fixed decision

bound, the model provides trial-by-trial estimates of the network’s decision time and choice. The

time to bound is the decision time, and the sign of the network output at the time of bound crossing

determines the choice (right or leftward motion). Our model decision times are in units of the

network time steps. The resulting psychometric and chronometric functions of the model show

profiles qualitatively similar to experimental results, in particular, faster, more accurate responses

for stronger motion stimuli (Fig. 6.1f-g) [Roitman and Shadlen 2002; Kiani et al. 2014a; Palmer

et al. 2005].
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Figure 6.1: A two-stage hierarchical RNN performing linear integration of noisy inputs for a
sensory decision-making task. a. Network schematic. b. Network learning throughout time in units
of mean-squared error. c)Mean activity of the output unit after training for different stimulus strengths
(motion coherence). Model outputs (solid points) increase linearly over time up to a saturating level
implemented in the training procedure (see Methods). Lines are fits to the data points over the time range
[0 50], measured in arbitrary network time units. d. The slope of changes in model output as a function of
stimulus strength. e. Variance of model output as a function of time for different stimulus strengths. The
linear increase is expected for integration of noisy inputs over time. The late saturation and decline of the
variance, especially for stronger stimuli, is caused by the bound on the integration process. f. Psychometric
function of a trained model. Data points show the probability of choosing right for different stimulus
strengths ranging from strong leftward motion (negative coh) to strong rightward (positive coh). The gray
curve is a logistic fit. Error bars show ±1 s.e.m. g. Chronometric function of a trained model. Data points
show the mean time the model output takes to reach the decision bounds (decision time). The gray curve
is a Gaussian function fit to the data points.

6.1.2 Behavioral effects of inactivation grow with the size of the

inactivated population

We explored the effects of inactivation on this circuit by selectively silencing a proportion of

neurons in the integrating population (Fig. 6.2a), and analyzing the inactivation effects on the

101



output of the model. For a particular trained network, we measured the change in the psychometric

and chronometric functions after perturbation as a means to characterize the effects of inacti-

vation. We found that decision times are strongly sensitive to inactivation. Weak inactivations

(5-10% of the population) moderately increase the decision time of the network, and medium and

strong perturbations (20% and 30% of the population, respectively) cause a much larger increase

(Fig. 6.2d,g).

The effect of perturbation on choice wasmore variable and complex. We quantified these effects

by extracting measures of the sensitivity and bias for the psychometric functions, and calculating

the change in these measures with weak, medium, and strong inactivation. The sensitivity of

the psychometric function decreased as more of the neurons were affected, with a corresponding

decrease in the average sensitivity with inactivation size (Fig. 6.2b-c,e). The magnitude of the bias,

however, minimally changed across inactivation levels (Fig. 6.2f), suggesting that the primary loss

of function caused by increasing the perturbation magnitude is a loss of sensitivity. Overall, in

our basic network architecture, even weak perturbations decreased sensitivity and substantially

increased reaction time, with the magnitude of these effects increasing with the magnitude of

inactivation.

6.1.3 Inactivation effects arise from perturbing the structure of the

underlying population dynamics

The optimal solution for random dots motion discrimination involves integration along a 1-

dimensional axis [Wald and Wolfowitz 1950; Shadlen et al. 2006; Drugowitsch et al. 2012; Khalvati

et al. 2021], so the dynamics of the trained network are likely to lie on a low dimensional mani-

fold [Ganguli and Sompolinsky 2012]. Indeed, simple dimensionality reduction using PCA shows

that the circuit dynamics are approximately one dimensional, with the first principal axis explain-

ing about 70% of the neural response variance (Fig. 6.3a). The low dimensional structure of the
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after training (grey) and after a weak (5-10%, b) or medium-size (20%, c) inactivation. d. Chronometric
function of the same network in panel b following weak inactivation. e. Changes of sensitivity (slope of
psychometric function) across 10 trained networks for various inactivation sizes. f. Effects of inactivation
on bias (shift of the mid-point of the psychometric function from 0% coherence) across trained networks.
g. Changes of mean decision times across trained networks. Error bars show s.e.m. Maximal trial duration
set to 500 steps.

neural activity allows us to project the full network dynamics on the first principal component

axis. In this space we can mathematically analyze the dynamical features of the trained network

that enable it to perform evidence integration.

In the absence of a stimulus, the network activity can be approximated as one-dimensional
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population dynamics of the general functional form:

Δ𝑟𝑡 ≈ (𝛼 − 𝑟 2
𝑡−1)𝑟𝑡−1, (6.1)

where Δ𝑟𝑡 is the change in population activity across time and the value of parameter 𝛼 and the

constant of proportionality depend on the trained network weights (See Methods). Different

settings of 𝛼 change the dynamical properties of the system and its ability to solve the evidence

integration task. This property is illustrated in the phase plane in Figure 6.3b, which describes the

relationship between Δ𝑟𝑡 and 𝑟𝑡−1. When 𝛼 is positive, the dynamics exhibit three fixed points

(corresponding to values of 𝑟𝑡 for which Δ𝑟𝑡 is zero; Fig. 6.3b). Two of these are attracting, separated

by an unstable fixed point at 𝑟𝑡 = 0: when starting from a positive value of activity 𝑟 , the network

will eventually converge to the positive fixed point, and similarly a negative starting condition

will converge to the negative fixed point. Sensory drive to the network will push the dynamics

towards one or the other, eventually converging to a final binary decision. This is similar to

the phase plane of previous circuit models of evidence integration based on bistable attractor

dynamics [Wong and Wang 2006].

Ideal evidence integration sums all incoming inputs, 𝑟𝑡 =
∑𝑇
𝑡=0 𝑠𝑡 , and follows slightly different

dynamics. In the phase plane, ideal integration means that 𝑟𝑡 changes at every time step as

Δ𝑟𝑡 = 𝑠𝑡 . (6.2)

Hence, the ideal solution for evidence integration involves a line attractor, where no change in

activity occurs in the absence of input (Δ𝑟𝑡 = 0 whenever 𝑠𝑡 = 0; red line in Fig. 6.3b-d). The trained

RNN approximates this solution when 𝛼 is close to zero (Fig. 6.3c). As 𝛼 becomes increasingly

negative, the network will start to behave qualitatively differently (formally, this corresponds to a

pitchfork bifurcation [Strogatz 2018], which is why we refer to 𝛼 as the bifurcation criterion). In

this negative regime, the network has only one stable fixed point at the origin (Fig. 6.3d). Changes
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in network activity caused by new stimuli rapidly relax to this fixed point, causing the network to

lose its ability to integrate.

The value of the bifurcation criterion 𝛼 , which we derive directly from the RNN activity,

captures the key dynamic properties of the model networks and predicts a given network’s ability

to perform evidence integration. Indeed, trained networks generally have a small positive 𝛼 ,

corresponding to a shallow bi-stable attractor and close-to-ideal evidence integration (Fig. 6.3e).

Different forms of causal interventions, such as inactivation, will result in altered population

dynamics, with a corresponding change in the bifurcation criterion𝛼 . In particular, our inactivation

experiments push the network past the bifurcation point: as the magnitude of the inactivation

increases, 𝛼 values become increasingly negative (Fig. 6.3e,f). The remaining fixed point leads to

forgetting past inputs and correspondingly poor performance (Fig. 6.3f).

Overall, these results establish that our network approximates integration within a bounded

region of state space via a shallow bi-stable attractor, and that the loss of function caused by

perturbations is due to the loss of this attractor structure. This dynamical systems analysis paints

a more refined picture of causal interventions in the random dots motion discrimination task:

inactivations that disrupt the computational structure embedded in the network (i.e., the bi-stable

attractor) will produce behavioral impairments, while those that leave the attractor unaffected

will not. While in our simple network architecture (Fig. 6.2a) all interventions disrupt the attractor

structure, this may not necessarily be the case for more complex distributed networks, as we will

see below.

6.1.4 In distributed architectures, inactivation effects can be variable

Exploring the effects of inactivation in a unitary circuit performing integration reveals a qualita-

tively similar picture across network and effect sizes. In a mammalian brain, however, sensory

decisions are enabled by a distributed network consisting of multiple interacting circuits [Shadlen

and Kiani 2013; Waskom et al. 2019]. Past electrophysiological studies have found neurons that
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represent integration of sensory evidence in the parietal cortex [Shadlen and Newsome 2001b;

Churchland et al. 2008], lateral frontal cortex [Kim and Shadlen 1999; Mante et al. 2013; Mochol

et al. 2021], motor and premotor cortices [Peixoto et al. 2021; Chandrasekaran et al. 2017; Hanks

et al. 2015; Thura and Cisek 2014], the basal ganglia [Ding and Gold 2013; Yartsev et al. 2018],

superior colliculus [Horwitz and Newsome 1999; Basso et al. 2021], and cerebellum [Deverett et al.

2018]. The distributed nature of the computation, paired with potential circuit redundancies, make

inactivation studies difficult to interpret. This is especially true when inactivation of a subcircuit

in the network fails to produce measurable changes of behavior. Other nodes of the network

could change their activity in responses to the inactivation, compensating for its effects [Li et al.

2016]. Furthermore, there are a variety of more complex scenarios compatible with negative
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results [Yoshihara and Yoshihara 2018; Jonas and Kording 2017; Murray and Baxter 2006; Dunn

2003].

Although a detailed exploration of the distributed network that underlies decisions in the brain

is beyond the scope of this paper, we take a first step in assessing the effects of architecture on

inactivation experiments. In particular, we replace the unitary network structure analyzed above

with a parallel architecture, where sensory inputs drive the responses of two non-interacting

populations that collectively shape the network output (Fig. 6.4a). We train this parallel network

to perform the same sensory integration task, followed by inactivating all of the neurons in one of

the two parallel nodes and assessing the behavioral outcomes of the manipulation across a range

of network instances. We find that even in this minimal version of a distributed computation the

effects of inactivation can be quite variable in terms of performance.

Some networks exhibit minimal changes in the psychometric function due to inactivation

(Fig. 6.4b, e), paired with a marked increase in reaction times (Fig. 6.4h). This phenomenology

tracks back to the dynamical system properties of the underlying network. When examining

the one-dimensional approximate phase portrait for each node in the network, we found that

both exhibit the shallow bistable attractor dynamics indicative of approximately optimal sensory

integration (Fig. 6.4c-d). The overall network output, which determines the final choice and

decision time, is constructed by linearly combining the activities of both integrating populations.

This architecture subsumes more specific architectures in which populations with distinct choice

preference integrate evidence for their respective choices. The inactivation completely disrupts

the attractor structure in the targeted sub-circuit P2 (Fig. 6.4d), but leaves the attractor in P1 intact

(since they do not directly interact; Fig. 6.4c). Therefore, integration can still be performed using

the intact sub-circuit. Nonetheless, the activity component from P2 is missing; as a result, the

output could be weaker and it may take longer for the integrated signal to reach the same decision

threshold, leading to slower responses. However, if the only measure of behavior is the choice,

one may not notice any change of behavior, as evident in Fig 6.4.
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A systematic investigation across networks with the same distributed architecture, but different

trained connections, reveals that this inactivation-resistant solution is not universal: in some

networks the sensitivity is largely unaffected, while others display a marked loss in sensitivity

after inactivation (Fig. 6.4f). This variability traces back to the attractor structure of the individual

solution found via learning: networks exhibit robustness to inactivation only if the unlesioned

node has an attractor (Fig. 6.4e). A parallel network architecture solves the task in two ways:

either both networks develop attractor dynamics, or only one does. Inactivating a network that

has only one attractor disrupts performance (sensitivity, bias), indicating that the sub-circuit is in

fact involved in the network computation, while inactivating the sub-circuit that does not have

attractor structure leaves the output essentially unaffected. However, if both nodes have attractors,

‘negative results’ at the level of behavior need to be interpreted with caution, because intact

nodes can enable consistent behavior even without the participation of inactivated nodes. Though

we have only shown these effects for a simple network with two parallel nodes, robustness to

inactivation is likely to become even more prominent in systems with many more parallel nodes.

These results demonstrate that absence of change in choice behavior following inactivation is

insufficient to conclude that a certain network node lacks a functional role in the task.

Overall, this analysis reveals a more complicated picture of inactivation: disabling an individual

node in a network will produce a loss of function only if no other node in the network is capable

of compensating for its loss. Moreover, in dynamical systems such as the RNNs we study here,

redundancy and compensation exist even in very simple networks, performing very simple tasks.

6.1.5 Short periods of relearning can compensate for inactivation

Akey hidden assumption in our simulated experiments in the previous sections is that no additional

task-specific learning can happen prior to testing the effects of the manipulation on behavior.

This assumption is unlikely to be completely true, as plasticity and reinforcement mechanisms

may continue to operate. In fact, cortical inactivation studies show many behaviors are only
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Figure 6.4: Distributing integration across multiple network nodes makes it resilient to disrup-
tions in any single node. a. Schematic for a network with two parallel nodes (circuits) for integration
computation. b. Psychometric curve for the parallel node network before and after a strong inactivation.
The lines are logistic fits to the choices. Errors bars are s.e.m. c. Approximate phase portrait for the intact
node, indicating a shallow bistable attractor. d. Phase portrait for the inactivated node. e. Proportion
correct after inactivation as a function of the bifurcation criterion for the node that was not inactivated.
f. Sensitivity for the psychometric function before and after a strong inactivation. Each line shows an
instance of the parallel node network with unique starting points and training history. Inactivation af-
fected sensitivity in only one of the ten instances. g. Bias of the psychometric function before and after
inactivation. h. Mean reaction time before and after inactivation.

temporarily affected following the inactivation [Newsome and Pare 1988; Murray and Baxter 2006;

Schiller et al. 1979; Rudolph and Pasternak 1999], a clear illustration of the brain’s remarkable

capacity for learning through re-organization of its circuits. Similar recoveries may be expected

in less severe experimental manipulations in which neurons are transiently inactivated, but the

extent of additional learning required for adaptation to occur is less clear. To investigate the
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capacity of networks to adapt to inactivation and regain their performance through further task

specific learning, we modified our model to allow network connections to continue to change

at test time and investigated two biologically relevant variants of inactivation: long lasting and

intermittent.

The first type of inactivation is implemented as a long-lasting disabling of the involved

neurons, as used for all the previous sections. It is intended as an analogue of experimental

manipulations using muscimol or other pharmacological agents, or designer receptors exclusively

activated by designer drugs (DREADDs) [Wiegert et al. 2017], which affect target circuits for many

minutes to days. In these cases, since the inactivation lasts for the majority of an experimental

session (or multiple experimental sessions), circuits could eventually learn to compensate for the

perturbation with sufficient additional task experience. What is remarkable in the context of the

model is how little additional training is required.

Depending on the extent of manipulation, a few hundreds of trials were sufficient to compensate

for the inactivation, much fewer than the number of trials required for the initial training of the

network. Fig. 6.5a shows an example run where inactivation of 30% of the integrating population

transiently caused the network to initially perform as poorly as it did before learning. To describe

the trajectory of re-learning across networks, we measured the percentage of correct responses as

a function of the number of retraining trials, for the same size of inactivation (30%). We found

that the circuit robustly reached pre-inactivation performance with fewer than 500 retraining

trials (Fig. 6.5b). This return to pre-inactivation performance was also mimicked in the underlying

bi-stable attractor, with the bifurcation criterion 𝛼 returning to positive values on the same time

scale (Fig. 6.5c), indicating that the network has reconstructed its shallow bi-stable attractor.

To directly visualize the impact of inactivation and relearning along the first axis of network

variance, we compared the projection of the network activity onto its first principal component

at the end of training (Fig. 6.5d), just after inactivation (Fig. 6.5e), and after relearning (Fig 6.5f;

PCA performed separately on the neural activity at different time points). These show that the
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Figure 6.5: Perturbed networks can learn to compensate for inactivation but the speed of recovery
depends on the timescale of inactivation. a. Post-inactivation training can be much faster than the
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different networks before inactivation (gray) and after inactivation of 30% of P2 neurons (black). d. Activity
projected onto the first principal component for the network prior to inactivation. e. Activity projected onto
the first principal component for the network after inactivation of 30% of P2 neurons. f. Activity projected
on the first principal component for the network after post-inactivation retraining. g. Fraction explained
variance as a function of the number of latent dimensions of the network responses after learning (black),
after inactivation (purple), and after retraining (blue dashes). h. Mean retraining time as a function of the
percentage of unperturbed neurons in the network. i. Retraining slows down considerably if inactivation of
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integration properties of the network largely collapse (although not completely) immediately after

inactivation, and are fully and quickly restored by relearning. The relearning speed — time to
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reach virtually the same accuracy as the pre-inactivation network (within 0.5%) — is strongly

correlated with the extent of inactivation: the larger the inactivated population, the longer it takes

for function to be recovered by retraining (Fig. 6.5h). In our simulated network, inactivations as

large as up to 30% of the neurons in the population still exhibited significantly faster relearning

compared to the initial training time. This suggests there may be cases where compensation

happens on the scale of one or a few sessions, similar to what an experimenter may use to assess

the effects of the manipulation on behavior, potentially confounding these results.

The advent of optogenetics allows controlling the activity of neurons with millisecond res-

olution, leading to new experiments which interleave perturbed trials with unperturbed ones.

These techniques are commonly considered the gold standard for causal manipulations as they

offer millisecond temporal precision and enable targeting specific cell types. This improved preci-

sion and specificity is quite beneficial but does not remove the re-learning challenge mentioned

above. The intact vs. the inactivated network can be thought of as two distinct dynamic states of

the circuit. Repeated inactivation of largely the same group of neurons in a circuit, as in most

optogenetic experiments, can provide opportunity for compensation even when inactivation is

infrequent. Biological circuits could learn to use the silence of inactivated neurons as a contextual

cue to switch behavior, or could redirect the computation in both states to the neurons that are

not being directly manipulated.

To model an intermittent inactivation scenario similar to optogenetic manipulation experi-

ments, we inactivated the network on a random subset (50%) of training trials, instead of tonically

inactivating all neurons throughout retraining. In alignment to general intuitions that adaptation

is less likely during transient inactivation, we found that it takes the network more inactivation

trials to re-learn when inactivation is transient and infrequent (Fig. 6.5i). When neurons are only

inactivated on 50% of re-training trials, it takes our network longer than its initial training time to

compensate. This implies that transient inactivation techniques are likely more effective against

inactivation-induced adaptation in biological networks, although compensation is still possible.
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Figure 6.6: Inactivation and relearning analysis for a network trained with biologically-plausible
learning. a. Mean output throughout time, stratified by coherence. b. Psychometric function after
training (grey), and after a 40% inactivation (yellow). c. Same as b, but for a 75% inactivation (purple). d.
Chronometric function after training (grey) and after a 40% inactivation (yellow). e. Same as d, but for
a 75% inactivation (purple). f. Mean decision time for a 40% inactivation throughout retraining (yellow),
compared to the asymptotic mean decision time prior to inactivation (grey). g. Same as f, but for a 75%
inactivation (purple). h. Percent correct for a 40% inactivation throughout retraining (yellow), compared to
the percent correct through the original training. i. Same as h, but for a 75% inactivation (purple). Bars
indicate ±1 s.e.m. across 1000 test trials for b, c, d, and e, and ±1 s.e.m. across 10 simulated networks for f,
g, h, and i.

A possible criticism when interpreting these re-learning results is that the optimization pro-

cedure used for learning is not biologically realistic, and that the dynamics of re-learning might

look very different when the network connections adapt via local synaptic plasticity rules. To

assess the generality of our results, we trained the network using Random Feedback Local Online

(RFLO) learning, a biologically-plausible alternative to backpropagation through time [Murray

2019]. We also replaced mean-squared error with a loss based on binary decision outcomes, as a

more realistic feedback signal to the network (see Methods). In Fig. 6.6b-g we repeat the training
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and inactivation experiments for different inactivation sizes in this new model. We find that the

qualitative features of the network solution and the post-inactivation loss of function match those

shown in Fig. 6.2. In particular, the network is learning bounded integration (Fig. 6.6a), with a

moderate loss-of-function in the psychometric and chronometric functions for a 40% inactivation,

and near-total loss-of-function for a 75% inactivation. As the network continues to learn after

inactivation, it is able to restore its mean decision time and performance much more rapidly

than the original training time for both the 40% (Fig. 6.6f,h) and 75% (Fig. 6.6g,i) inactivations,

suggesting that local synaptic plasticity can also support fast recovery of function after partial

circuit inactivation.

6.2 Methods

Cognitive functions depend on interactions of neurons in large, recurrent networks. To explore the

utility and limitations of inactivation and lesion studies for discovering the flow of information and

causal interactions in these networks, we simulated recurrent neural network (RNN) models with

different degrees of complexity and selectively inactivated sub-populations of neurons within the

simulated networks. The models were trained to perform simple perceptual decisions, commonly

used for investigating cortical and subcortical neural responses and their causal contributions to

behavior [Katz et al. 2016; Fetsch et al. 2018; Zhou and Freedman 2019b; Hanks et al. 2015]. Our

simulations and theoretical exploration focus on the direction discrimination task with random

dots [Newsome and Pare 1988; Roitman and Shadlen 2002] as a canonical example of perceptual

decision-making tasks.

6.2.1 Implementation of RNNs

We simulated an RNN performing a random dots task. To ensure convergence to an optimal set of

weight parameters, we trained the RNNs in PyTorch [Paszke et al. 2019] using backpropagation
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through time (BPTT) and Adam [Kingma and Ba 2014] with a learning rate of 2 × 10−6. Each

network was trained over 25,000 trials and tested on a separate group of 1500 trials for investigating

network computations, task performance, and susceptibility to various activity perturbations. The

time steps can be mapped to physical units of time (e.g., 10 milliseconds), but we avoid doing so

as our conclusions are invariant to the exact definition of time steps. A univariate input sampled

from a Gaussian distribution, 𝑠 ∼ N(𝑘𝐶, 1), was applied at each time step. 𝐶 is the motion strength

(coherence), and 𝑘 is a sensitivity parameter that translates motion strength to sensory evidence.

The variance of the input evidence to the network was set to 1. In our simulations, the sensitivity

was 𝑘 = 0.4, and 𝐶 was randomly drawn on each trial from a discrete set: [-0.512, -0.256, -0.128,

-0.064, -0.032, 0, 0.032, 0.064, 0.128, 0.256, 0.512]. Positive and negative motion strengths indicate

rightward and leftward directions, respectively. The network was trained to discriminate the two

motion directions based on input evidence, as explained below.

Independent normal noise (𝜂) was injected into each neuron at each time step with variance

0.01. These variables combined give the following update equation for the RNN:

r(𝑡) = 𝑓 (Wr(𝑡 − 1) +W𝑖𝑛s(𝑡) + 𝜼(𝑡)), (6.3)

where W is the recurrent weight matrix, W𝑖𝑛 is the input weight matrix, and 𝑓 (·) is the tanh

nonlinearity. The network output is given by:

𝑜 (𝑡) = Dr(𝑡), (6.4)

where D is a 1 × 𝑁 linear decoder, and 𝑁 is the number of neurons in the network.

We trained the network to integrate these inputs through time, setting our loss to the mean-

squared error (MSE) between the network output and an integrated decision variable (𝐷𝑉 ) given
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by:

𝐷𝑉 (𝑡) = min

(
max

(
𝑡∑︁
𝑘=0

𝑎𝑠𝑘 ,−𝐵
)
, 𝐵

)
, (6.5)

with proportionality constant 𝑎 = 0.025 to keep the integrated variable within the dynamic range

of the RNN, and 𝐵 = 0.5 giving the bounds on integration. This results in the loss L is given by:

L =

𝑇∑︁
𝑡=0

(𝐷𝑉 (𝑡) − 𝑜 (𝑡))2 (6.6)

The nonlinearity in Eq. 6.5 limits the dynamic range of the DV and ensures accurate representation

of low-magnitude DVs in the small pool of neurons in the RNN model. Since the majority of

motion strengths in our simulations are weak, accurate representation of low-magnitude DVs are

crucial for task performance.

During training, the length of each trial was selected randomly from an exponential distribution,

𝑇 ∼ 100 + exprand(200), with a maximum duration of 500 time steps. During testing, we used

the maximum stimulus duration to ensure all trials terminated by reaching the decision bounds,

enabling us to determine both choice and decision time on each trial.

6.2.2 Simple circuits

To begin, we trained a two-population network, where the first population (𝑃1) receives the

evidence input, 𝑠 (𝑡), and a linear decoder (Eq. 6.4) reads out the integrated input from the second

population (𝑃2). Connections between the two populations are feedforward, with each feedforward

connection having a probability of 0.3 of being nonzero, but connections within each population

are all-to-all, as shown in Fig. 6.1a For the sake of simplicity, there were no feedback connections

from 𝑃2 to 𝑃1 (connection probabilities are shown in Fig. 6.1a). The first population had 30 neurons,

and the second had 60. These two populations fulfill the roles of a low-level sensory population

that relays input information, and a higher-order population that integrates the information for
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a decision. This network is much simpler than the circuit that underlies sensory decisions in

a mammalian brain, where motion selective sensory neurons (e.g., MT neurons in the primate

brain) pass information about the sensory stimulus [Newsome and Pare 1988; Salzman et al. 1990;

Britten et al. 1992] to a large network of association cortex, motor cortex, and subcortical areas

that form the decision [Horwitz and Newsome 1999; Ding and Gold 2013; Roitman and Shadlen

2002; Mante et al. 2013; Kiani et al. 2014a; Kim and Shadlen 1999]. However, our simple circuit

lends itself to mathematical analysis, can be trained without adding structural complications, and

can be used for systematic exploration of inactivation effects.

To emulate lesion or inactivation experiments, we selectively inactivated a fixed group of

neurons in the network. In lesion or long-term inactivation experiments (e.g., muscimol injec-

tions or DREADS) the connections remained affected throughout all trials in a testing block. In

inactivation experiments with fast timescales (e.g., optogenetic perturbations), the connections

were affected for a random subset of trials intermixed with other trials in which all connections

and neurons functioned normally.

We systematically varied the proportion of affected neurons in the population in distinct

simulations. A weak perturbation affected 5-10% of neurons, a medium-strength perturbation 20%

of neurons, and a strong perturbation 30% of neurons (Fig.6.1a).

6.2.3 Complex circuits

In the distributed network that subserves perceptual decision-making, multiple circuits could

operate in parallel, performing similar operations. To investigate the impact of this possibility

on our inactivation results, we organized the network into two unconnected populations, each

with 30 neurons. The connection probabilities are given in Fig. 6.4a. We totally inactivated one of

the two sub-populations and analyzed the effect on network responses. Note that our simulation

is not meant to capture the full complexity of the equivalent brain circuits but rather to offer a

minimalist design that captures a key complexity commonly observed in brain networks: parallel

117



processing of sensory information in a variety of frontal and parietal cortical regions (e.g., lateral

intraparietal, frontal eye fields, and lateral and medial prefrontal areas of the monkey brain).

6.2.4 Analysis of neural responses

After training, we applied several analyses to characterize the nature of the network computations

and effects of perturbations. Because there is not an explicit reaction time in our training frame-

work, we set symmetric decision boundaries on the network output 𝑜 (𝑡) as a proxy for reaction

time. We quantified the time until 𝑜 (𝑡) reached one of the boundaries on each trial. The crossed

boundary dictated the choice on the trial and the time to bound determined the decision time.

Formally, the reaction time is given by:

𝑅𝑇 = argmin
𝑡

𝑜 (𝑡) s.t. |𝑜 (𝑡) | > 0.4 (6.7)

and the choice is given by:

𝑐ℎ𝑜𝑖𝑐𝑒 = sign(𝑜 (𝑅𝑇 )) . (6.8)

For each trained RNN, we constructed a psychometric function by measuring the proportion of

‘left’ and ‘right’ motion choices, and we fit the psychometric function using the following logistic

regression:

𝑝 (𝑟𝑖𝑔ℎ𝑡) = 1
1 + exp(𝑏0 + 𝑏1𝐶)

, (6.9)

where 𝑝 (𝑟𝑖𝑔ℎ𝑡) is the proportion of ‘right’ choices, and 𝑏𝑖 are regression coefficients. 𝑏0 reflects

the choice bias, and 𝑏1 the sensitivity of choices to changes in motion strength.

We constructed chronometric functions (Fig. 6.2c) by stratifying the mean decision times as

a function of motion strength. For simplicity, we fit the chronometric functions with nonlinear

regression using the following bell-shaped function:
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𝑅𝑇 = 𝑏0 + 𝑏1 exp(−(𝐶/𝑏2)2), (6.10)

where 𝑅𝑇 is the network’s decision time.

To explore the dynamics of neural responses, we performed PCA on the network activity

over time and trials. We found that the majority of population response fluctuations lie within a

single dimension (See Fig. 6.1h). We analyzed neural trajectories associated with each choice by

averaging neural firing rates within the output population for choices to the left, for each motion

strength. A perfect integrator would have a mean response linearly increasing through time, and

the slope of that linear increase would vary linearly with changes in motion strength [Shadlen

et al. 2006]. To verify this, we fit the mean output (𝑜𝑡 ) through time by linear regression (Fig. 6.1c),

and plotted the slope of this fit as a function of coherence (Fig. 6.1d). Further, a perfect integrator

would show a linear increase of variance over time. We measured the variability of the network

responses at each time point and for each motion strength by quantifying the empirical variance

of the network output across test trials with the same motion strength.

6.2.5 One-dimensional approximate dynamics and pitchfork bifurcation

Given the low dimensional structure of the trained RNN dynamics, we can provide a one-

dimensional approximation of our RNN by projecting the network dynamics along its first principal

component. Let V be eigenvectors corresponding to distinct eigenvalues of the covariance matrix

of the network activity, obtained by combining trials across time and stimuli. These normalized

vectors define an orthonormal basis, with the first and 𝑛-th axis corresponding to the direction

of maximum and minimum variance, respectively. The activity of the network in this rotated

coordinate system becomes r𝑟𝑜𝑡 (𝑡) = V⊤r(t). Using Eq. 6.3, this leads to dynamics:

V⊤r(𝑡) = V⊤𝑓
(
WVV⊤r(𝑡 − 1) +W𝑖𝑛s(𝑡) + 𝜼(𝑡)

)
, (6.11)
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where we have used the fact that the basis is orthonormal, i.e. VV⊤ = I. Substituting our definition

for r𝑟𝑜𝑡 , we have:

r𝑟𝑜𝑡 (𝑡) = V⊤𝑓
(
WVr𝑟𝑜𝑡 (𝑡 − 1) +W𝑖𝑛s(𝑡) + 𝜼

)
. (6.12)

Focusing on the first dimension, along the axis of maximum variance, yields:

𝑟 1
𝑟𝑜𝑡 (𝑡) = v⊤1 𝑓

(
𝑛∑︁
𝑘=1

𝑟𝑘𝑟𝑜𝑡 (𝑡 − 1)Wv𝑘 + ((W𝑖𝑛)𝑇 s(𝑡))1 + 𝜂1

)
. (6.13)

where v𝑘 denotes the 𝑘-th eigenvector, and 𝑟𝑘𝑟𝑜𝑡 (𝑡) is the 𝑘-th entry of r𝑟𝑜𝑡 (𝑡). Assuming that the

system is largely one-dimensional, the expression for the dynamics can be further simplified as:

𝑟 1
𝑟𝑜𝑡 (𝑡) ≈ v⊤1 𝑓

(
𝑟 1
𝑟𝑜𝑡 (𝑡 − 1)Wv1 + ((W𝑖𝑛)𝑇 s(𝑡))1 + 𝜂1

)
. (6.14)

This approximation effectively discards the contribution of the remaining dimensions, under the

assumption that their effect on the network dynamics is minimal, i.e. E
[∑𝑁

𝑘=2 𝑟
𝑘
𝑟𝑜𝑡 (𝑡 − 1)Wv𝑘

]
≈ 0,

which holds empirically for our trained networks. In Fig. 6.8, we demonstrate for a trained network

that the approximate dynamics closely match the true neural dynamics along its highest variance

dimension 𝑟 1
𝑟𝑜𝑡 .

Having derived a one-dimensional dynamical system approximation to the RNN activity, we

can use phase-plane methods to determine the nature of the learned dynamics. We are interested

in the geometry of the solution our network finds, which leads us to assess its fixed point dynamics

in the absence of input and noise (s(𝑡) = 0, 𝜂1(𝑡) = 0). Finding these fixed points involves finding

the solutions of equation:

Δ𝑟𝑟𝑜𝑡 = v⊤1 𝑓 (𝑟𝑟𝑜𝑡 (𝑡 − 1)Wv1) − v⊤1 𝑟𝑟𝑜𝑡 (𝑡 − 1)v1 = 0, (6.15)

where Δ𝑟𝑟𝑜𝑡 = 𝑟𝑟𝑜𝑡 (𝑡) − 𝑟𝑟𝑜𝑡 (𝑡 − 1), and we have used the fact that the eigenvectors are normalized,
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i.e. v⊤1 v1 = 1. Further, using a Taylor approximation of tanh about 0, 𝑓 (𝑥) ≈ 𝑥−𝑥3, and rearranging

the terms simplifies the equation to:

Δ𝑟𝑟𝑜𝑡 ≈ 𝛾𝑟𝑟𝑜𝑡 (𝑡 − 1) − 𝛽𝑟𝑟𝑜𝑡 (𝑡 − 1)3

∝ 𝛾/𝛽𝑟𝑟𝑜𝑡 (𝑡 − 1) − 𝑟𝑟𝑜𝑡 (𝑡 − 1)3, (6.16)

where𝛾 = v⊤1 (W−I)v1), 𝛽 = v⊤1 (Wv1)◦3 is empirically positive, and (·)◦3 denotes an element-wise

cube. The resulting equation is cubic, meaning its fixed point equation (Δ𝑟 (𝑡) = 0) has up to

3 solutions. This generally results in a topology with two stable fixed points separated by one

unstable fixed point. These points coalesce into a single stable fixed point, 𝑟𝑟𝑜𝑡 (𝑡) = 0, when

the coefficient of 𝑟𝑟𝑜𝑡 (𝑡 − 1) changes from positive to negative, with the system undergoing a

supercritical pitchfork bifurcation [Strogatz 2018].

For the network to work properly, it needs to be in the regime with two stable attractors,

with an abrupt degradation once reaching the critical point for the phase transition. For our

approximate dynamics, this transition occurs once:

𝛾/𝛽 < 0. (6.17)

For this reason, for all of our experiments, we refer to the value 𝛼 = 𝛾/(𝜖 + 𝛽) as the bifurcation

criterion, where we have included 𝜖 = 5 × 10−3 in the denominator to prevent ill conditioning

caused by dividing by 𝛽 values close to zero. Though the exact point of transition from one fixed

point to two may vary due to our approximations, our results rest on identifying regimes in which

𝛼 ≈ 0 or where 𝛼 ≪ 0, which are well identified by our approximation.
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6.2.6 Re-learning with feedback after perturbation

To investigate whether perturbations have a lasting impact on the performance of a network

with plastic neurons, we permitted the simplified hierarchical network in Fig. 6.1a to be trained

following inactivation. Two training regimes were used to emulate different experimental tech-

niques with slow and fast timescales for inactivation. In both regimes, we silenced a fraction

of neurons in the P2 population and allowed the connection weights of the remaining neurons

to change through relearning. The first retraining regime was designed to emulate lesion and

pharmacological inactivation studies, which affect the circuit for an extended time, ranging from a

whole experimental session to permanent. In this regime, the affected neurons remained inactive

throughout the retraining period. The second regime was designed to emulate optogenetic or

other techniques with faster timescales, which allow interleaving perturbations with unperturbed

trials. In this regime, we silenced the affected neurons in a random half of retraining trials and

allowed them to function in the other half; synapses were modified in all trials.

To assess the efficacy of retraining in restoring the network performance, we used the state of

synapses at various times during retraining to simulate 1500 test trials and calculate the percentage

of correct responses. Connection weights were kept constant in the test trials. Additionally, we

calculated the projection of the network activation onto its first principal component following

the initial training, after the inactivation and prior to retraining, and at various times during

retraining. Finally, we calculated the stability criterion (Eq. 6.17).

6.2.7 Biologically plausible learning

It is highly unlikely that a neural system could receive detailed feedback about the difference

between a decision variable and an integrated target trajectory. There is no supervised signal

for this target trajectory, and if a neural system was able to construct the target, why not use it

to solve the task instead? Instead, an animal is much more likely to use reward feedback that it
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receives about its classification. To verify that our results hold in this situation, we adapted our

training to use a cross-entropy loss function:

L(𝑡) = −𝑐 log(𝑐𝑡 ) − (1 − 𝑐) log(1 − 𝑐 (𝑡)), (6.18)

where 𝑐 = sign(𝐶), and 𝑐 = 𝜎 (𝑜 (𝑡)), where 𝜎 (·) is a sigmoid nonlinearity.

For the simulations here, we evaluated the loss at every time step, though we achieved

qualitatively similar results with only end-of-trial evaluation.

BPTT is well-established as a biologically implausible learning algorithm [Werbos 1990]. Many

studies have constructed approximations or alternative formulations of BPTT that are biologically

plausible, but these algorithms often have different stability properties or biases [Marschall et al.

2020], or are not guaranteed convergence to the same solution (or convergence at all). To verify

that our results still hold for a biologically plausible learning algorithm, we selected RFLO [Murray

2019], where recurrent weight updates are given by:

Δ𝑤𝑖 𝑗 (𝑡) = − 𝜆𝑑L(𝑡)
𝑑𝑟𝑖 (𝑡)

𝑒𝑤𝑖 𝑗 (𝑡)

𝑒𝑤𝑖 𝑗 (𝑡) =𝑓 ′(Wr(𝑡 − 1) +W𝑖𝑛s(𝑡) + 𝜂)
(
𝑤𝑖𝑖𝑒

𝑤
𝑖 𝑗 (𝑡 − 1) + 𝑟 𝑗 (𝑡 − 1)

)
,

where 𝜆 = 0.001 is the learning rate, and where the second equation is an ‘eligibility trace’, which

is updated continuously at each synapse, and requires only information available at the pre- and

post-synapse.

This has the form of a three-factor plasticity rule [Frémaux and Gerstner 2016], where a reward

signal (𝑑L(𝑡)
𝑑𝑟𝑖 (𝑡) ) is fed back and combined with pre-synaptic and post-synaptic Hebbian coactivation

to produce the weight update. In our case, we allowed the feedback weights to be given by direct

differentiation of the objective function, but for added biological realism, these weights could be
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learned [Akrout et al. 2019] or random [Murray 2019; Lillicrap et al. 2016] and still achieve good

performance.

The updates for the input weights are analogous:

Δ𝑤 𝑖𝑛
𝑖 𝑗 (𝑡) = − 𝜆𝑑L(𝑡)

𝑑𝑟𝑖 (𝑡)
𝑒𝑖𝑛𝑖 𝑗 (𝑡)

𝑒𝑖𝑛𝑖 𝑗 (𝑡) =𝑓 ′(Wr(𝑡 − 1) +W𝑖𝑛s(𝑡) + 𝜂)
(
𝑤𝑖𝑖𝑒

𝑖𝑛
𝑖 𝑗 (𝑡 − 1) + 𝑠 𝑗 (𝑡)

)
,

and the updates for the decoder are simply given by:

Δ𝐷1 𝑗 (𝑡) = − 𝜆𝑑L(𝑡)
𝑑𝐷1 𝑗

.

For the sake of computational efficiency, for these simulations we decreased the number of time

steps to 30 steps per trial with a fixed duration (10,000 trials), and increased the signal-to-noise

ratio of individual stimuli by taking 𝑠 ∼ N(𝑘𝐶, 0.1) for 𝑘 = 0.4. Further, we gave our network only

one population of neurons (𝑁 = 60) with all-to-all connectivity. We also trained our networks

with a larger amount of intrinsic noise (𝜎 = 0.6) to verify that our results hold for noisier neurons.

Because these simulations had modified parameters and a different objective function, we had

to reset our decision threshold to achieve qualitatively similar psychometric functions. We set the

threshold for decisions in these simulations to 1: we arrived at this value by requiring near-perfect

choice accuracy for strong coherence stimuli, and a chronometric function whose mean response

times peaks at 0 coherence. These features clearly need not be achievable for any coherence if

the task has not been well-learned, but we found in practice that a threshold value of 1 gives

psychometric and chronometric functions similar to experimental data.

Because our networks had a different number of neurons and a different objective function, we

also recalibrated the magnitudes of our inactivations. Our ‘weak’ inactivation in these simulations
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targeted 40% of neurons, and our ‘strong’ inactivation targeted 75% of neurons. The method of

performing our inactivation was identical to the previous section.

6.3 Discussion

A main quest of neuroscience is to identify the neural circuits and computations that underlie

cognition and behavior. A common approach to achieve this goal is to first use correlational

studies (e.g., electrophysiological recordings) to identify the circuits whose activity co-fluctuates

with task variables (e.g., stimulus or choice), and then perturb those circuits one by one as subjects

perform the task. Loss of task accuracy following lesions or transient inactivation of a circuit is

commonly interpreted as evidence that the circuit is “necessary” for the underlying computations.

The converse, however, need not be true. Of course, if the inactivated circuit is not involved, the

behavior remains unaffected. But negative results can also arise because of other reasons, which

challenge the impulse of embracing the null hypothesis.

The conclusion that negative results in perturbation experiments are not readily interpretable

is not new. In fact, it is common knowledge in statistics that inability to reject a null hypothesis

(e.g., circuit X is not involved in function Y) is not evidence that the null hypothesis is correct,

especially if the true causes of the results remain unexplored and not included in hypothesis

testing. In practice, however, there is a growing abundance of publications that interpret negative

results of perturbation experiments as lack of involvement of a circuit in a mental function. In

many cases, experimenters perceive their negative results as important because they seem to

contradict established theories (e.g., role of posterior parietal cortex in perceptual decisions [Katz

et al. 2016]). Our results reveal key challenges often ignored in the interpretation of negative

results: they can emerge from robustness to perturbation due to the architecture of the affected

circuit or the bigger network that the circuit belongs too; circuits may continue to learn, at a much

faster scale than we tend to expect.
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Our results emphasize the need for further exploration following negative results and point at

exciting directions for followup experiments. There is already evidence that circuits adapt to both

the transient inactivations [Jeurissen et al. 2021; Fetsch et al. 2018] and permanent lesions—for

example the brain’s impressive robustness to extensive and gradual dopamine neuron loss in

Parkinson’s disease [Zigmond et al. 1990]. However, we do not know which brain circuits adapt

to perturbations, or under what experimental conditions. Answering this key question would be

aided if experiments document behavior from the very first administration of the perturbation

protocols and devise methods to quantify different learning opportunities inside and outside of

the experimental context. It is also essential to know about the larger network engaged in a task

and the parallel pathways that could mediate behavior. Association cortex, for example, often

includes recurrent and diverse connections, which give rise to many possible parallel pathways.

Such complex networks often prevent straightforward conclusions from a simple experimental

approach that perturbs a single region in the network. More elaborate experimental designs

and carefully developed computational models aid overcoming this complexity. We recommend

quantification of behavior not be limited to choice (a discrete measure) and include more sensitive,

analog measures, such as reaction time (Results 6.1.4), which was affected in our distributed

network inactivation simulations, even when accuracy was seemingly unaffected. We also see

strong advantage in augmenting single region perturbations with simultaneous perturbation of

a collection of network nodes, chosen based on network models. Another valuable approach is

to simultaneously record unperturbed network nodes to quantify the effects of perturbation on

brain-wide response dynamics and identify adaptive mechanisms that could rescue behavior [Li

et al. 2016]. From our perspective, negative behavioral results in a perturbation experiment are

not the end point of the experiment. Rather, they are just a step toward a deeper understanding of

the neural mechanisms that shape the behavior.

Our models in this paper focus on a well-studied perceptual decision-making task: direction

discrimination with random dots. Understanding the dynamical mechanisms of computation in
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our circuits proved necessary for understanding their response to inactivation. Trained networks

implement an approximation of the drift-diffusion model, and exhibit low-dimensional integration

dynamics in response to sensory stimuli. We characterized the learned solutions by their phase

portrait properties, and found that networks approximated sensory integration using a shallow

bistable attractor [Wong and Wang 2006; Strogatz 2018], whose disruption was closely correlated

with loss-of-function in inactivated networks; further, relearning reconstructed a bistable attractor

within the network. Our analysis shows that what matters in a circuit, irrespective of the status of

individual neurons, is the integrity of its computational structure. This makes statistical approaches

that aim to extract this structure directly frommeasured population responses particularly valuable

[Zhao and Park 2016; Nassar et al. 2018; Duncker et al. 2019].

Though different tasks and network structures will likely lead to variations in the nature

of learned solutions and responses to inactivation, in many respects the random dots motion

discrimination task and our neural network architectures serve as a microcosm of a more general

phenomenon, which encompasses both artificial and biological systems. Results in the recurrent

neural network literature have shown that significant variations in the response properties of

individual network units (vanilla RNNs, GRUs, or LSTMs) tend to produce similar canonical

solutions to simple decision-making tasks, embedded in a low-dimensional subspace of the

network’s dynamics [Maheswaranathan et al. 2019]. The exact mechanism of loss-of-function

in response to inactivation may differ, but our expectation is that independent of architecture,

any trained system–including those used by biological systems–will learn to approximate the

optimal canonical computations (here, integration) required for the task. We examined only the

simplest possible implementation of parallelism in our network architecture, and showed that

even this was sufficient to greatly increase the system’s robustness to neural inactivation. Real

neural circuits likely show this phenomenon on a much larger scale by virtue of involving far

more neurons, with more natural redundancy.

The particular learning algorithm that drives the organization of the circuit is not important
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for the observed effects: a biologically-plausible learning algorithm [Murray 2019], with more

realistic feedback, learned a similar computational structure, and showed similar inactivation and

relearning effects to brute-force optimization via backpropagation through time. It is likely that

any algorithm that closely aligns with gradient descent on a task-specific loss will produce similar

effects.

Though we found that the simplest network architectures were in general not robust to

inactivations, many basic architectural modifications could produce resistance to perturbations.

In particular, redundancy of function (two parallel, independent attractors) embedded within the

network produced inactivation resistance; this suggests that multi-area recordings are important

for assessing whether the effects of inactivation have been compensated for by another neural

population. Further, in our distributed circuit, inactivation still affected reaction time, suggesting

that reaction time or other analog aspects of behavior may be more sensitive than choice to

inactivation effects.

Furthermore, we found that even if neural circuits play a direct causal role in a computation,

loss-of-function in response to inactivation of a subset of neurons can be transient. Longer-term

inactivation of neurons in our circuit, in the presence of active learning, allowed networks to

rapidly compensate. This compensation occurred on a time scale much faster than the original

training time, likely because inactivation does not completely destroy the network’s previously

learned computations. Recovery of behavior has been observed before in experiments [Murray and

Baxter 2006; Newsome and Pare 1988; Fetsch et al. 2018; Rudolph and Pasternak 1999; Jeurissen et al.

2021]. Overall, drawing conclusions about the causal role a circuit plays in a given computation

can be difficult without first analyzing the transient responses of animals immediately after

inactivation — a commonly omitted or poorly documented aspect in many studies.

Fast time-scale inactivation techniques (e.g., optogenetics) [De et al. 2020; Luo et al. 2018;

Wiegert et al. 2017; Afraz et al. 2015] have greatly increased in popularity as they allow precise

control of the affected neurons with sub-second resolution. As we show here, brief periods of
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inactivity interspersed with normal activity also make it harder for a learning system to identify

and adapt to the perturbation. However, compensation can occur even for fast optogenetic

perturbations (Fig. 6.5), as has been observed experimentally [Fetsch et al. 2018]. But such

compensations tend to take longer compared to techniques in which the inactivation is more

sustained (Fig. 6.5). This longer adaptation may be a result of destructive interference during

re-learning, where the synaptic changes needed to improve performance during perturbation are

misaligned and cancel those in the absence of perturbation, thus slowing down learning overall.

For our example direction-discrimination task, once compensation does occur, it could take the

form of two separate attractors, one dedicated to performing during the perturbed condition, and

the other for the unperturbed condition. Alternatively, the network may converge to a single

attractor, modified from its original solution such that does not include the inactivated subset of

neurons.

The phenomena observed in this paper that can produce negative results in an inactivation

study—redundancy, rapid relearning—are problems more general than just evidence integration

[Vaidya et al. 2019; Wolff and Ölveczky 2018]. Here we have provided several suggestions for

identifying the effects of causal manipulations in neural circuits, and have provided several

cautionary tales based on the choice of a particular architecture and task. Circuits before and after

manipulation are only tenuously related, and drawing conclusions about the function of natural

circuits from the effects of inactivation can be quite difficult. Implementing proper controls for

these effects and applying careful interpretations of observed experimental results in terms of the

system’s computational structure will benefit inactivation studies across a breadth of subfields.
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Figure 6.8: Additional analysis on the effects of inactivation and relearning. a) Variance of the
network output through time as a function of the perturbation magnitude b) Proportion of incorrect
choices as a function of the number of inactivated neurons in the output population. c) Psychometric
function as a function of the number of retraining trials given to the network for a strong inactivation
d) Same as c, but for the chronometric function. Bars indicate ±1 s.e.m. across 10 simulated networks e)
Difference between the true (Eq. 6.14) and approximate (Eq. 6.16) dynamics for a trained network over 1
trial projected onto the 1st principal component.
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7 | Conclusions and future directions

Our work in this thesis has made headway along three distinct axes towards the ultimate goal of

characterizing the relationship between synaptic plasticity in the brain and learning at a perceptual

or behavioral level. The first axis deals with developing good, testable hypotheses for how the

brain learns under different conditions. As outlined in Chapter 1, there are many markers of

a good normative synaptic plasticity model, in particular the locality of its parameter updates,

its demonstrable ability to reduce an objective function, its scalability, testability, architectural

flexibility, and ability to learn from continuous temporal inputs in an online fashion. Our work on

impression learning (Chapter 5) was directly informed by these criteria: it generalizes previous

canonical models of unsupervised sensory plasticity models like theWake-Sleep algorithm [Hinton

et al. 1995] to handle continuous temporal inputs online, and maps the algorithm onto a particular

form of synaptic plasticity at apical and basal dendrites of pyramidal neurons so that the model

makes concrete, testable predictions about how real neurons should adapt to their inputs.

The second axis of improvement deals with concretely testing predictions of normative models

in neural circuits. We first constructed a model of efficient reward-based learning in sensory

circuits (Chapter 3), and subsequently modified it to match context-dependent adaption observed

in 2-photon calcium recordings of animals performing perceptual learning (Chapter 4). Not only

were we able to find a striking correspondence to the neural data, but within our model we

were able to compare several different possibilities for how the circuit adapts during behavior,

and found the only model able to explain context-dependent responses had distinct, context-
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sensitive synapses that activate during behavior and are modified by reward signals into adulthood.

Furthermore, our model is now able to function as an in silico tool for experimental design,

generating predictions about how different stimuli during development and behavior will affect

learned neural representations.

The final axis deals with implications of normative plasticity for the neuroscience community

at large. In Chapter 6, we explored how experimental inactivations of neurons that are undergoing

continual task-driven plasticity can fail to identify neurons important for the task: the inactivated

neurons were important before inactivation, but if the inactivation is persistent, the system can

rapidly compensate for their loss through synaptic plasticity. This simple example illustrates the

incredible complexity involved in studying adaptive neural systems: when a neural circuit adapts

in real time to experimental manipulations, it is very difficult to draw conclusions about that

circuit’s natural function without first characterizing in detail the adaptive process itself and how

it interacts with the manipulation in question.

Each of these axes has plenty of room for further development. Impression learning has

improved considerably on previous models of unsupervised sensory learning, but two critical

questions remain: how far can the model be pushed at a theoretical level, and how can its

specific predictions be tested? There are many possible ways that apical and basal dendrites could

conceivably interact in impression learning. As it currently stands, we have only explored periods

of neural activity dominated by either apical dendritic activity or basal dendritic activity, but not

both: understanding whether it is possible under impression learning for apical and basal dendritic

activity to collectively contribute to neural spiking is an important theoretical precondition

for validating the algorithm experimentally. Furthermore, impression learning was designed

for unsupervised sensory learning, but can a similar learning scheme be used for supervised

or reinforcement learning? Impression learning provides huge performance improvements for

unsupervised learning relative to algorithms that project scalar reward signals to synapses like

REINFORCE (or Neural Variational Inference; Appendix B.2.1), but extending the mathematics
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underlying impression learning to reinforcement learning will require a nontrivial generalization.

Beyond theoretical developments, there is much to be done analyzing plasticity in apical and

basal dendrites at an experimental level. Preliminary experiments in the hippocampus [Bittner et al.

2015, 2017] and cortex [Letzkus et al. 2006; Froemke et al. 2005; Sjöström and Häusser 2006] roughly

align to the types of plasticity predicted by impression learning, but work remains to validate

the theory in detail. In particular, the following questions are outstanding: do dendritic calcium

events in apical dendrites align to spiking activity at the soma over the course of adaptation?

Are the signals arriving at apical dendrites predictions of future activity, supervisory targets, or

do they just similarly to incoming signals at basal dendrites? And lastly, are neurons able to

sample from their generative model using apical dendritic activity, i.e. if a manipulation were to

cause apical dendritic signals to dominate neural activity in the absence of any stimulus, would

neural activity be similar to responses to realistic stimuli? It is a merit of impression learning that

answers to these questions can validate the theory and distinguish it from other alternatives, but

work remains to complete this validation.

In the auditory system, we have made quite a lot of progress by characterizing plasticity

induced by acetylcholine signals from the nucleus basalis as a form of context-dependent reward-

modulated Hebbian plasticity. However, this form of rewarded plasticity seems to interact with

unsupervised developmental plasticity based on the statistics of the animals’ sensory environment.

It would be fascinating to explore how these different types of adaptation at different points in an

animal’s life can collectively shape its representation.

Ourmodel provides a very good fit to experimental data, but for more complex tasks with longer

temporal delays, more complicated class categories, or multiple different behavioral contexts,

we might expect the learning process itself to be more complex. Studying the properties of

neurons in the nucleus basalis and the neurons that they project to in auditory cortex under these

circumstances could uncover more powerful forms of spatial and temporal credit assignment

than the scalar reward signal that we have envisioned in our model, and may lead to a vision of
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learning in which the projected acetylcholine signals are themselves learning to provide more

precise and informative teaching signals to neurons. Such a system with detailed credit assignment

may end up looking closer to a reward-based variant of impression learning, suggesting that these

two forms of plasticity could be more similar than they appear. We have already demonstrated in

Chapter 5 that detailed credit assignment can give remarkable performance increases for simple

tasks, but beyond this, animals are required to learn multiple tasks in many different contexts

and environments throughout their lives. More complicated credit assignment algorithms for

multi-task learning can help ensure that learning for one task does not interfere with learning for

another task and can help ameliorate the catastrophic forgetting caused by overwriting previously

learned tasks [French 1999]. However, how auditory learning adapts to multi-task conditions is

not currently known. A complex system can behave simply under simple conditions: we quite

likely have much to learn about auditory learning under conditions that approach ecological

realism.

Our modeling of causal manipulations has so far focused on proper interpretation of experi-

ments on adaptive systems in which adaptation itself is not the focus. However, these interventions

also have a lot of promise for eliminating or validating different forms of plasticity present in a

circuit. The way in which a circuit responds to inactivation could determine whether compen-

sation is purely homeostatic, some form of unsupervised learning, task-based learning, or some

combination of the three, based on the way that other neurons in the circuit adapt in response.

For instance, do they not modify unless the subject is explicitly rewarded? Do the networks have

to be engaged by a task at all? Do neurons reorganize in a way that respects basic principals of

sensory coding, or do they seem to simply be balancing their firing rates homeostatically? There

is incredible potential for using not only inactivation tools, but also manipulations of sensory

statistics, or even artificial neural readouts like brain-computer interfaces to probe the learning

capacities and limitations of neural circuits.

These questions are for future work to resolve. As it stands, this thesis is a celebration of the
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brain as a dynamic construct: the moment that we believe that we have grasped it, it adapts and

slips away from us. By studying how and why the brain adapts, we can begin to understand the

principles underlying what appears at face value to be protean chaos. We have presented a brief

moment in this investigation, but this study is itself a dynamic process. It is fitting that even in

analyzing the mechanisms of neural adaptation we have raised as many questions as we have

addressed: it demonstrates that this work comprises just one step in our collective dance towards

understanding our own minds.
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A | Appendix: An overview of normative

synaptic plasticity modeling

A.1 Why can’t the brain do gradient descent?

We have provided one surefire way to decrease an objective function by modifying the parameters

of a neural network—‘simply’ take small steps in the direction of the gradient of the loss (Section

2.2.2). To appreciate the challenges faced by theories of normative plasticity, it’s important to

understand why a biological system could not do this: in this section we will provide a simplified

argument as to why gradient descent within multilayer neural networks produces nonlocal param-

eter updates, thus failing our most critical desideratum for a normative plasticity theory (Section

2.2.1). More detailed arguments for multilayer neural networks can be found here [Lillicrap et al.

2020], and descriptions of why gradient descent becomes even more implausible for recurrent

neural networks trained with either backpropagation through time [Werbos 1990] or real-time

recurrent learning [Williams and Zipser 1989] can be found here [Marschall et al. 2020].

The ‘weight transport problem’ is the most basic reason that gradient descent is implausible

for neural networks. Suppose that we have a stimulus-dependent network response, r(W𝑖𝑛, s) =

𝑓 (W𝑖𝑛s), where r is an 𝑁 × 1 vector, and W𝑖𝑛 is an 𝑁 × 𝑁 𝑠 weight matrix mapping stimuli s into

responses after a pointwise nonlinearity 𝑓 (·). This network response is decoded into a network

output, 𝑜 (W𝑖𝑛, s) = W𝑜𝑢𝑡r(W𝑖𝑛, s), where W𝑜𝑢𝑡 is a 1 × 𝑁 vector mapping network responses into
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a scalar output. Now suppose for simplicity that our loss for a single stimulus example is given by:

L =
1
2

(
𝑜 − 𝑜 (W𝑖𝑛, s)

)2
. (A.1)

This objective is trying to bring the stimulus-dependent network response 𝑜 (W𝑖𝑛, s) close

to the target output 𝑜 , and is zero if and only if 𝑜 = 𝑜 . A reasonable hypothesis would be that

the gradient of this objective function with respect to a synaptic weight, W𝑖𝑛
𝑖 𝑗 , will produce a

parameter update that is local: we will see that this is not true. Taking the gradient, we have:

𝑑

𝑑W𝑖𝑛
𝑖 𝑗

L =
1
2

𝑑

𝑑W𝑖𝑛
𝑖 𝑗

(
𝑜 − 𝑜 (W𝑖𝑛, s)

)2 (A.2)

= (𝑜 − 𝑜) 𝑑

𝑑W𝑖𝑛
𝑖 𝑗

𝑜 (W𝑖𝑛, s) (A.3)

= (𝑜 − 𝑜)W𝑜𝑢𝑡
𝑖

𝑑

𝑑W𝑖𝑛
𝑖 𝑗

𝑓𝑖 (W𝑖𝑛s) (A.4)

= (𝑜 − 𝑜)W𝑜𝑢𝑡
𝑖 𝑓 ′𝑖 (W𝑖𝑛s)s 𝑗 . (A.5)

Breaking down this final update, we can see three terms: an error, (𝑜 − 𝑜), the neuron’s output

weight W𝑜𝑢𝑡
𝑖 , and an approximately Hebbian term 𝑓 ′𝑖 (W𝑖𝑛s)s 𝑗 , which requires only a combination

of pre- and post-synaptic activity. One might be tempted to organize the plasticity rule into a

error feedback signal received by the neuron, scaled by a neuron-specific synaptic weightW𝑜𝑢𝑡
𝑖 ,

and then combined with Hebbian coactivity to produce a synaptic update (Fig. A.1a). This would

have the form of a three-factor plasticity rule [Frémaux and Gerstner 2016], combining weighted

feedback with pre- and post-synaptic activity. However, the weight transport problem is as follows:

W𝑜𝑢𝑡
𝑖 provides the strength of a synapse in the feedforward pathway—how could it possibly come

to be that a feedback learning pathway would have access to the same synaptic weight? The

answer is that there is no evidence for such a system of weight sharing across feedforward and
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a b c

Figure A.1: Weight transport and REINFORCE. a. Traditional gradient descent propagates a credit
assignment signal (𝑜 − 𝑜)W𝑜𝑢𝑡

𝑖 to each neuron r𝑖 . How this pathway could have access to W𝑜𝑢𝑡
𝑖 is unclear:

this is the ‘weight transport’ problem. b. REINFORCE resolves the weight transport problem by projecting
a scalar reward signal 𝑅(r, s) to all synapses. c. By correlating this reward with fluctuations in neural
activity, neurons can approximate the true gradient.

feedback pathways in the brain, though there are many hypotheses about how such a system

could, in theory, be approximated by a normative plasticity algorithm. This problem becomes

more pronounced in multilayer networks, where the error signal must be propagated through

many interconnected connectivity layers.

It is also worth noting two key differentiability assumptions inherent to this approach. For

one, we assume not only that the loss function L is differentiable, but that some ‘error calculating’

part of the brain does differentiate it. This requires knowledge of what the desired network

output should be 𝑜 , which for many real-world tasks is not possible. Second, we assume that

the network activation function 𝑓 (·) is differentiable. Since neurons typically emit binary spikes,

this differentiability assumption is not necessarily valid, though several modern methods have

circumvented this problem by using either stochastic neuron models [Williams 1992; Dayan and

Hinton 1996] or by using clever optimization tricks [Bellec et al. 2020]. In subsequent sections, we

will outline two canonical algorithms that employ clever tricks to circumvent the weight transport

problem.
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A.2 The unidentifiability of an objective

In this section we illustrate why the choice of objective function for a normative plasticity model

is never uniquely determined by data. We will consider two situations: the system has already

settled to its optimal setting of its weights, W∗, and in the second we are able to observe the

system’s plasticity update ΔW.

A.2.1 Unidentifiability based on an optimum

Suppose that some setting of synaptic weightsW∗ minimizes an objective functionL, i.e. L(W∗) <

L(W) ∀W. We might be tempted to argue that becauseW∗ minimizes L, L must be the objective

that the system is minimizing. However, there are an infinite variety of alternative objectives that

share the same minimum. To see this, take a new objective L̃ = 𝜎 (L(W)) for any differentiable,

monotonically increasing function 𝜎 (·). Then we have:

L(W∗) < L(W) ∀W (A.6)

⇒𝜎 (L(W∗)) < 𝜎 (L(W)) ∀W (A.7)

⇒L̃(W∗) < L̃(W) ∀W, (A.8)

where the second equality follows from the order preservation property of the monotonically

increasing 𝜎 (·). This means that W∗ also minimizes L̃, i.e. we will be unable to arbitrate between

whether the system is ‘attempting’ to minimize L̃ or L on the basis of the optimized network

state given byW∗.
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A.2.2 Unidentifiability based on an update rule

Suppose instead that we were able to observe the adaptive plasticity mechanism of a system, and

were able to verify that it really does decrease an objective function L, i.e. by Eq. 2.4,

𝑑L
𝑑W

(W)𝑇ΔW < 0 ∀W. (A.9)

We might now be tempted to argue that, by observing the plasticity rule itself, ΔW, we will

be more able to assert that the system, by virtue of consistently decreasing L, is ‘attempting’

to minimize L. However, the exact same family of alternative objectives will also be minimized

(L̃ = 𝜎 (L(W)) for any differentiable, monotonically increasing function 𝜎 (·). To see this, we

observe:

𝑑L
𝑑W

(W)𝑇ΔW < 0 ∀W (A.10)

⇒𝑑𝜎 (L(W))
𝑑L(W)

𝑑L
𝑑W

(W)𝑇ΔW < 0 ∀W (A.11)

⇒𝑑L̃
𝑑W

(W)𝑇ΔW < 0 ∀W, (A.12)

where the first implication follows from the fact that 𝜎 (·) is differentiable and increasing (it has

strictly positive derivative), and the second implication follows from the chain rule. This implies

that plasticity rules (ΔW) and trained neural circuits (W∗) can at most partially constrain the

space of viable objective functions the system could be minimizing.

A.3 REINFORCE

In this section, we will provide a mathematical tutorial on the REINFORCE learning algorithm

[Williams 1992], which is a mechanism for updating the parameters in a stochastic neural network
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for reinforcement learning objective functions. It’s chief advantages are twofold: first, it only

requires you to be able to evaluate an objective function (i.e. the reward received on any given

trial), not the gradient of the objective function with respect to the parameters (Fig. A.1b). This

is very useful in situations in which the relationship between rewards and network outputs is

not clear to an agent, as would be the case in many reinforcement learning scenarios. Second,

under a broad range of biologically reasonable assumptions about a neural network architecture,

the parameter updates produced by this algorithm are ‘local,’ meaning the only information

required for a parameter update would reasonably be available to a synapse in the brain. This

algorithm produces updates that are within the class of ‘reward-modulated Hebbian plasticity

rules.’ The chief disadvantage of this algorithm is its comparative data-inefficiency relative to

backpropagation. In practice, far more data samples (or equivalently, much lower learning rates)

will be required to produce the same improvements in performance compared to backpropagation

[Werfel et al. 2003].

The REINFORCE algorithm and minor variations appears in different fields with different

names. It is useful to keep track of these alternative names, because they all use roughly the

same derivation, with some improvements or field-specific modifications. In machine learning,

the algorithm is often referred to as node perturbation [Richards et al. 2019; Lillicrap et al. 2020;

Werfel et al. 2003], because it involves correlating fluctuations in neuron (node) activity with

reward signals. In computational neuroscience, it is sometimes called 3-factor or reward-modulated

Hebbian plasticity [Frémaux and Gerstner 2016], though REINFORCE is only one of several

algorithms referred to by these blanket terms. In reinforcement learning, REINFORCE is often

treated as a member of the more general class of policy gradient [Sutton and Barto 2018] methods,

which can be used to train any parameterized stochastic agent through reinforcement. Policy

gradient methods need not commit to a neural network architecture, and are consequently not

always local. Lastly, very similar methods are used for fitting variational Bayesian models, and

are in these contexts referred to as either black box variational inference [Ranganath et al. 2014] or
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neural variational inference [Mnih and Gregor 2014].

In what follows, we will provide a brief derivation of the REINFORCE learning algorithm for a

1-layer feedforward neural network. We will then discuss the many extensions of the algorithm

as well as its strengths and limitations as a normative plasticity model.

A.3.1 Network model

Most neural networks used in machine learning are deterministic. However, neurons in biological

systems fluctuate across trials and stimulus presentations, so modeling them as stochastic is often

more appropriate. It will turn out that these fluctuations can be used to produce parameter updates

in a way that a deterministic system could not.

First, we will assume that there are stimuli drawn from some stimulus distribution, 𝑝 (s), and

we will define the neural network response to a given stimulus drawn from this distribution as:

r = 𝑓 (W𝑖𝑛s) + 𝜎𝜼, (A.13)

where the 𝜼 is the source of random fluctuations which, for simplicity, is drawn from a standard

normal distribution (N (0, 1)). In this equation, s is an 𝑁𝑠 × 1 vector, W𝑖𝑛 is an 𝑁𝑟 × 𝑁𝑠 matrix,

𝑓 (·) is the tanh nonlinearity, and 𝜼 is an 𝑁𝑟 × 1 vector.

This equation defines a conditional probability distribution, 𝑝 (r|s;W𝑖𝑛) ∼ N (𝑓 (W𝑖𝑛s), 𝜎2).

There is an interesting point here: neuron activities are now samples from this conditional proba-

bility distribution, and so we can study how neurons behave on average by taking expectations

over the probability distribution.

For simplicity and clarity we will restrict ourselves to this neural architecture for our derivation,

but the basic principles apply more generally to a variety of noise sources and neural architectures

(see Section A.3.5).
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A.3.2 Defining the objective

We will assume that our goal is to maximize some instantaneous reward 𝑅(r, s) on average across

many different samples of 𝑅(r, s) and s. This allows us to write our objective function O(W𝑖𝑛) as:

O(W𝑖𝑛) =
∫

𝑅(r, s)𝑝 (r|s;W𝑖𝑛)𝑝 (s)𝑑r𝑑s. (A.14)

In practice, this integral might be analytically impossible to integrate, but we can always

approximate it (because it is an expectation) using samples from 𝑝 (r|s;W𝑖𝑛) and 𝑝 (s) as an

empirical average over 𝐾 samples r𝑘 and s𝑘 :

O(W𝑖𝑛) ≈ 1
𝐾

𝐾∑︁
𝑘=0

𝑅(r(𝑘), s(𝑘)). (A.15)

Procedurally, this would amount to sampling s and r each 𝐾 times, calculating the reward for

each trial, and taking an average.

A.3.3 Taking the gradient

Now that we have our objective function, we can evaluate its derivative with respect to a particular

synapse W𝑖𝑛
𝑖 𝑗 in the network:

𝑑O(W𝑖𝑛)
𝑑W𝑖𝑛

𝑖 𝑗

=
𝑑

𝑑W

∫
𝑅(r, s)𝑝 (r|s;W𝑖𝑛)𝑝 (s)𝑑r𝑑s (A.16)

=

∫
𝑅(r, s)

[
𝑑

𝑑W𝑖𝑛
𝑖 𝑗

𝑝 (r|s;W𝑖𝑛)
]
𝑝 (s)𝑑r𝑑s. (A.17)

We could theoretically stop here and evaluate 𝑑

𝑑W𝑖𝑛
𝑖 𝑗

𝑝 (r|s;W𝑖𝑛) explicitly. However, in the same

way that we can approximate O(W𝑖𝑛) as an empirical average over samples, we would like to be

able to approximate our derivative as an average. To do this requires us to keep our loss in the
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form of an expectation over 𝑝 (r|s;W𝑖𝑛)𝑝 (s). We notice a convenient identity: 𝑑

𝑑W𝑖𝑛
𝑖 𝑗

𝑝 (r|s;W𝑖𝑛) =

𝑑

𝑑W𝑖𝑛
𝑖 𝑗

exp(log𝑝 (r|s;W𝑖𝑛)) =
[

𝑑

𝑑W𝑖𝑛
𝑖 𝑗

log𝑝 (r|s;W𝑖𝑛)
]
𝑝 (r|s;W𝑖𝑛), which is a simple application of the

chain rule. Inserting this identity into the above equation, we get:

𝑑O(W𝑖𝑛)
𝑑W𝑖𝑛

𝑖 𝑗

=

∫
𝑅(r, s)

[
𝑑

𝑑W𝑖𝑛
𝑖 𝑗

log𝑝 (r|s;W𝑖𝑛)
]
𝑝 (s)𝑑r𝑑s (A.18)

≈ 1
𝐾

𝐾∑︁
𝑘=0

𝑅(r(𝑘), s(𝑘))
[
𝑑

𝑑W𝑖𝑛
𝑖 𝑗

log𝑝 (r(𝑘) |s(𝑘) ;W𝑖𝑛)
]
. (A.19)

Though this is an approximation, we note that by the Law of Large Numbers, we can improve

its accuracy arbitrarily by increasing our number of samples 𝐾 . In practice, however, taking 𝐾 = 1

will prove to be the most straightforward way to get an update that is local in time—although

such an update will still on average match the true gradient exactly, its high variance can lead to

very inefficient learning.

We have left the derivation completely general up until this point. Different choices of 𝑝 (r|s;W)

will produce different updates. Our particular choice gives:

𝑑

𝑑W𝑖𝑛
𝑖 𝑗

log𝑝 (r|s;W𝑖𝑛) = 𝑑

𝑑W𝑖𝑛
𝑖 𝑗

𝑁𝑟∑︁
𝑖=0

1
2𝜎2 (r𝑖 − 𝑓𝑖 (W

𝑖𝑛s))2 +𝐶 (A.20)

=
1
𝜎2

𝑁𝑟∑︁
𝑛=0

(r𝑖 − 𝑓𝑖 (W𝑖𝑛s))𝑑 𝑓𝑖 (Ws)
𝑑W𝑖𝑛

𝑖 𝑗

. (A.21)

For a particular weightW𝑖𝑛
𝑖 𝑗 ,

𝑑 𝑓𝑙 (W𝑖𝑛s)
𝑑W𝑖 𝑗

= 0 if 𝑖 ≠ 𝑙 , so we have:

𝑑

𝑑W𝑖𝑛𝑖 𝑗
log𝑝 (r|s;W) = 1

𝜎2 (r𝑖 − 𝑓𝑖 (Ws)) 𝑓 ′𝑖 (Ws)s 𝑗 . (A.22)
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Plugging this equation into Eq. A.16 gives the following parameter update:

ΔW𝑖𝑛
𝑖 𝑗 ∝

1
𝐾

𝐾∑︁
𝑘=0

𝑅(r(𝑘), s(𝑘))
[

1
𝜎2 (r

(𝑘)
𝑖

− 𝑓𝑖 (W𝑖𝑛s(𝑘))) 𝑓 ′𝑖 (W𝑖𝑛s(𝑘))s(𝑘)
𝑗

]
≈ 𝑑O(W𝑖𝑛)

𝑑W𝑖𝑛
𝑖 𝑗

. (A.23)

If we want to update all of our parameters simultaneously using parallelized matrix operations,

we can write this as an outer product:

ΔW𝑖𝑛 ∝ 1
𝐾

𝐾∑︁
𝑘=0

𝑅(r(𝑘), s(𝑘))
[

1
𝜎2 (r

(𝑘) − 𝑓 (W𝑖𝑛s(𝑘))) ⊙ 𝑓 ′(W𝑖𝑛s(𝑘))
]
s(𝑘)𝑇 , (A.24)

where ⊙ denotes a Hadamard (elementwise) vector product. Interestingly, the 1
𝜎2 (r− 𝑓 (W𝑖𝑛s))

term here is exactly equal to 𝜼.

A.3.4 Why don’t we need the derivative of the loss?

One way of interpreting this parameter update is that neural units are correlating fluctuations in

their neural activity with the rewards received to approximate 𝑑𝑅(r,s)
𝑑r (Fig. A.1c). To see this, first

notice that:

E

[
𝑏

[
1
𝜎2 (r − 𝑓 (W

𝑖𝑛s)) ⊙ 𝑓 ′(W𝑖𝑛s)
]
s𝑇

]
𝑝 (r|s)

= 0, (A.25)

for any constant 𝑏, because E
[
r − 𝑓 (W𝑖𝑛s)

]
𝑝 (r|s) = 0. If we take 𝑏 = E [𝑅(r, s)]𝑝 (r|s) , then we can

rewrite the gradient without changing its expected value:
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𝑑O(W𝑖𝑛)
𝑑W𝑖𝑛

𝑖 𝑗

=

∫
(𝑅(r, s) − E [𝑅(r, s)]𝑝 (r|s))

[
1
𝜎2 (r𝑖 − 𝑓𝑖 (W

𝑖𝑛s)) 𝑓 ′𝑖 (W𝑖𝑛s)s 𝑗
]
𝑝 (r|s;W𝑖𝑛)𝑝 (s)𝑑r𝑑s

(A.26)

=

∫
1
𝜎2𝐶𝑜𝑣 (𝑅(r, s), r𝑖)

[
𝑓 ′𝑖 (W𝑖𝑛s)s 𝑗

]
𝑝 (s)𝑑s, (A.27)

where 𝐶𝑜𝑣 (𝑅(r, s), r𝑖) =
∫
(𝑅 − E [𝑅]𝑝 (r|s)) (r𝑖 − E [r𝑖]𝑝 (r|s))𝑝 (r|s)𝑑r is the stimulus-conditioned

covariance between network firing rates and reward. The sample-based parameter update is

therefore using the fluctuations in neural activity to compute this covariance.

A.3.5 Assessing REINFORCE

Now that we have derived REINFORCE, we can examine its qualities as a normative plasticity

theory. First, we ask: is this algorithm ‘local’ (Section 2.2.1)? The gradient for a particular

synapse, 𝑑O(W𝑖𝑛)
𝑑W𝑖𝑛

𝑖 𝑗

can be approximated with samples in an environment with stimuli s, firing rates

r, and rewards 𝑅(r, s) by 𝑅(r, s)
[ 1
𝜎2 (r𝑖 − 𝑓𝑖 (W𝑖𝑛s)) 𝑓 ′𝑖 (W𝑖𝑛s)s 𝑗

]
. To decide whether this could be a

plasticity rule implemented (or more realistically, approximated) by a biological system, we need

to think about what pieces of information a synapse would have to have available.

First, the synapse needs s 𝑗 , which amounts to just the presynaptic input, a common feature

of any Hebbian synaptic plasticity rule. Second, the synapse needs 1
𝜎2 (r𝑖 − 𝑓𝑖 (W𝑖𝑛s)) 𝑓 ′𝑖 (W𝑖𝑛s).

1
𝜎2 is a constant, and so can be absorbed into the learning rate. r𝑖 is the postsynaptic firing rate,

which is also a common feature of any Hebbian plasticity rule. (W𝑖𝑛s)𝑖 is the current injected into

the postsynaptic neuron, and 𝑓𝑖 (·) and 𝑓 ′𝑖 (·) are both monotonic functions of this current, so it

is quite conceivable that these values could be approximated by a biochemical process. Third,

every synapse needs access to the scalar reward value received on a given trial, 𝑅(r, s). This is the

most ‘nonlocal’ information involved in the parameter update, however, there exist many theories
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about how neuromodulatory systems in the brain can deliver information about reward diffusely

to many synapses and induce plasticity (Section 2.2.1).

Now, we have already demonstrated that REINFORCE is able to perform approximate gradient

descent for reinforcement learning objective functions—this in itself makes the algorithm very

promising as a normative plasticity model (Section 2.2.2). Its chief advantage is that it does not

require detailed knowledge of the reward function 𝑅(r, s) (i.e. how to differentiate it), which

means that an animal could simply receive a reward from its environment, and relay that reward

signal diffusely to its synapses. However, this also restricts the types of objectives that could

plausibly be learned by a neural system. Unsupervised learning objectives like the ELBO require

detailed knowledge of every neural activity of every neuron in the circuit in order to be calculable

(Appendix A.4), and there is no evidence for downstream neural circuits that perform such

calculations. Therefore, even though in principle REINFORCE can be used to train a neural

network on any objective, explicit reinforcement is much more plausible than other alternatives.

We have only provided a derivation for a single-layer rate-based neural network with additive

Gaussian noise, but REINFORCE extends quite readily to multilayer [Williams 1992], spiking

[Frémaux et al. 2013], and recurrent networks [Miconi 2017] without any loss of locality. This

indicates that the algorithm is both architecture-general (Section 2.2.3) and can handle temporal

environmental structure (Section 2.2.4). Further, because a weight update can be calculated in a

single trial, animals could use it to learn online (Section 2.2.5). The biggest point of failure for

REINFORCE is that it scales poorly with high complexity in stimuli or task, large numbers of

neurons, or prolonged delays in receipt of reward [Werfel et al. 2003; Fiete 2004; Bredenberg et al.

2021] (Section 2.2.6). The greater the number of neurons that contribute to reward and the higher

the complexity of the reward function, the harder it becomes to estimate the correlation between

a single neuron and reward, which is a prerequisite for the algorithm’s function. Thus, though

the algorithm is an unbiased estimator of the gradient, it can still be so variable an estimate as

to be effectively useless in complex contexts. This suggests that if animals exploit the principles
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of REINFORCE to update synapses, it is likely an approach paired with other algorithms, or

hybridized in a way that allows for better scalability.

The last way to assess REINFORCE is on the basis of how it can be tested (Section 2.2.7).

The simplest way to test this algorithm is by examining whether scalar reward-like signals

(i.e. 𝑅(r, s)) have a multiplicative effect on local plasticity in a circuit. At a single-neuron level

this corresponds to identifying neuromodulators that affect plasticity. At a feedback level this

corresponds to identifying neuromodulatory systems that project to the circuit in question, and

observing whether their stimulation or silencing improves or blocks circuit-level plasticity or

behavioral learning performance, respectively. These steps do not identify REINFORCE as the

only possibility, but it narrows down the field of possibilities considerably, removing all candidate

algorithms that either do not require any feedback, or that require more detailed feedback signals

(Fig. 2.3a).

A.4 Wake-Sleep

Here we will provide a mathematical tutorial on the Wake-Sleep algorithm [Hinton et al. 1995;

Dayan et al. 1995], which is one candidate biologically plausible learning algorithm for constructing

a representation in sensory cortices. We will first provide one possible formulation of represen-

tation learning as an optimization problem [Roweis and Ghahramani 1999], and then introduce

the Wake-Sleep algorithm1, showing how the components necessary to the algorithm could be

mapped onto a multicompartmental dendritic neuron model with local synaptic learning. We will

then discuss how the algorithm can be extended beyond our simplified introduction, and provide

a supplementary implementation of the algorithm performing a simple form of unsupervised

learning.
1For another excellent tutorial with more of a machine learning focus, see [Kirby 2006].
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Figure A.2: The Wake-Sleep algorithm. a. The four components of a good representation: 𝑝𝑚 (s|r)
and 𝑝 (r|s) map r to s and back again from s to r, respectively. 𝑝𝑚 (r) defines ‘useful’ features of a neural
representation by constraining its topology. 𝑝 (s) provides the environmental input distribution, which
the neural representation must match. b. The architecture of the Wake-Sleep algorithm: the decoder,
𝑔(W𝑜𝑢𝑡 r) maps r to s, and the forward map, 𝑓 (W𝑖𝑛s) maps s to r. c. Physically, these maps correspond to a
multicompartmental pyramidal neuron model for each layer, where the ‘model’ synapses are on the apical
dendrites, and the ‘forward map’ synapses are on the basal dendrites. 𝛾 gates which synapses determine
neural activity, putting the network in the Wake phase 𝛾 = 1 or the Sleep phase 𝛾 = 0.

A.4.1 Defining a good objective

Suppose that at any given moment in time, a neural network is receiving sensory stimuli s from

its environment. Our first challenge is to articulate what it would mean to form a good neural

representation r of these stimuli (Fig. A.2a). First of all, ‘represented’ stimuli should be decodable

from neural firing rates, i.e. there should exist a mapping 𝑔(·) : R𝑁 𝑟 → R𝑁 𝑠 such that s ≈ 𝑔(r).

Second, we will also argue that neural firing rates should be decodable from stimuli, i.e. there

should exist a mapping 𝑓 (·) : R𝑁 𝑠 → R𝑁
𝑟 such that r ≈ 𝑓 (s)—this means that there cannot

be ‘extra’ features of neural activity that are not contained within the stimuli themselves. This

amounts to postulating an approximately bijective relationship between stimuli and firing rates.

It means that neural activities should directly correspond to stimuli that have been received.

If these two requirements were sufficient, we might want to simply have one neuron per

stimulus dimension, and have it faithfully replicate its immediate input as accurately as possible,

i.e. we would take 𝑓 (s) = Is and 𝑔(r) = Ir, where I is an identity matrix, so that r = Is = s.

This identity transformation is obviously not useful, which makes one wonder—what does it
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mean for a transformation to be useful? Most, if not all unsupervised machine learning and

neuroscientific conceptions of a ‘useful’ representation reduce to some formulation of either

metabolic or coding efficiency. Approaches within this ‘efficiency’ umbrella include dimensionality

reduction [Roweis and Ghahramani 1999], clustering [Illing et al. 2021; Dayan et al. 1995], gain

control [Simoncelli and Heeger 1998], whitening/factorization [Rezende et al. 2014], and sparsity

[Simoncelli and Olshausen 2001]. Each of these definitions of ‘usefulness’ can be formulated as

statements about the distribution of neural activities, independent of particular received stimuli, e.g.

there are fewer neurons than stimulus dimensions (dimensionality reduction), neural activations

occupy roughly discrete clusters in state space (clustering), neurons tend to be uncorrelated with

one another (whitening/factorization), or neurons typicaly have low, sparse firing rates (gain

control/sparsity/metabolic efficiency). In our formulation, ultimately learning will be unsupervised

because we have made a priori determinations of what constitutes an efficient representation, and

seek to transform incoming data to match those determinations.

Under our definition outlined so far, there are four components of a representation: the

stimuli s themselves, distributed according to some probability distribution 𝑝 (s) determined by

the environment; a decoder, which we will formulate probabilistically as 𝑝𝑚 (s|𝑔(r;𝜃𝑚)), which

models the probability of s given our mapping from neural firing rates r; a forward mapping

from s to r, which we will also formulate probabilistically as 𝑝 (r|𝑓 (s;𝜃 )); and our definition

of efficiency, which dictates how neural firing rates ‘should’ be distributed, independently of

stimuli themselves 𝑝𝑚 (r). Notice that here we have parameterized the forward map 𝑝 (r|𝑓 (s;𝜃 ))

and the decoder (inverse map) 𝑝𝑚 (s|𝑔(r;𝜃𝑚)): once we formulate our objective, these will be the

parameters that are adjusted to minimize it. 𝑝 (s)—the environmental data distribution—obviously

cannot change, but we could (and in practice would often want to) parameterize 𝑝𝑚 (r) and also fit

those parameters. We have formulated our four components using probability distributions: after

describing our objective function in these terms, we will show one possible way of mapping the

components onto neural architecture.
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Now, we have evocatively organized our components into two groups: 𝑝𝑚 (s|𝑔(r;𝜃𝑚)) and

𝑝𝑚 (r), versus 𝑝 (s) and 𝑝 (r|𝑓 (s;𝜃 )). The first group forms a joint distribution 𝑝𝑚 (r, s;𝜃𝑚) which has

the subscript𝑚 to indicate that it is a generative model of the data. Ideally, if its parameters were

accurately fit, we could sample r ∼ 𝑝𝑚 (r), and then sample s ∼ 𝑝𝑚 (s|𝑔(r;𝜃𝑚)) and get a stimulus

that looks like realistic environmental data. The second group also forms a joint distribution

𝑝 (r, s;𝜃 ), which amounts to a forward mapping: we could receive a stimulus from the environment,

and then have the probability distribution for firing rates r that correspond to it. Organizing our

models in this way will allow us to achieve biophysical realism: 𝑔(·;𝜃 ) and 𝑓 (·;𝜃 ) will correspond

to actual synaptic connections in a model neural network. In practice, ordinary perception as

we traditionally conceive of it would correspond to the forward mapping 𝑓 (·;𝜃 ). Interestingly,

at the end of our derivation, it will become clear how an additional representational feature,

‘detachability’ [Clark and Toribio 1994]—a mechanism to activate neurons in the absence of the

sensory stimuli that correspond to them—will be an emergent property of our formulation. We will

show how a neural systemmight be able to leverage the𝑔(·;𝜃𝑚) to accomplish ‘detachment’, which

one might imagine mapping perceptually to imagination, planning, prediction, hallucination, or

possibly dreaming in different contexts.

For our representation to be good, the forward map should match its inverse, i.e. 𝑝 (r, s;𝜃 ) ≈

𝑝𝑚 (r, s;𝜃𝑚). We could imagine formulating many objective functions that could accomplish this

goal, but most of them will not accommodate an approximate optimization algorithm that will end

up corresponding to a viable normative plasticity model. We will select the Kullback-Liebler (KL)

divergence between these two distributions, precisely because it will produce such a normative

plasticity model. Notice, though our presentation of the derivation is top-down, it is disingenuous

to characterize normative plasticity model development strictly as top-down: locality would not

magically emerge from an arbitrary choice of objective function, but rather this choice of objective

function is superior to its many alternatives only because it produces locality (we won’t be able

to see why locality emerges until after we have defined 𝑝 and 𝑝𝑚 explicitly and have derived
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parameter updates). We take our objective function to be:

L𝑊𝑎𝑘𝑒 = 𝐷𝐾𝐿 (𝑝 (r, s;𝜃 ) | |𝑝𝑚 (r, s;𝜃𝑚))

=

∫
ln

(
𝑝 (r, s;𝜃 )
𝑝𝑚 (r, s;𝜃𝑚)

)
𝑝 (r, s;𝜃 )𝑑r𝑑s. (A.28)

We have evocatively named this loss L𝑊𝑎𝑘𝑒 because we will be optimizing this objective

function during the Wake phase of the algorithm. We will also later appeal to the opposite KL

divergence, which we will be optimizing during the Sleep phase:

L𝑆𝑙𝑒𝑒𝑝 = 𝐷𝐾𝐿 (𝑝𝑚 (r, s;𝜃𝑚) | |𝑝 (r, s;𝜃 ))

=

∫
ln

(
𝑝𝑚 (r, s;𝜃𝑚)
𝑝 (r, s;𝜃 )

)
𝑝𝑚 (r, s;𝜃𝑚)𝑑r𝑑s. (A.29)

These objectives share a global minimum (𝑝𝑚 = 𝑝), if it exists, but are not the same objective func-

tion, because unlike a traditional distance metric, the KL divergence is not symmetric. However,

near the global minimum, they become approximately equivalent [Dayan et al. 1995; Bredenberg

et al. 2021], which will be an important consideration in assessing the convergence properties of

the Wake-Sleep algorithm. Unlike REINFORCE, which will work for any reward function 𝑅(r, s),

the Wake-Sleep algorithm will only work for objectives formulated in this way: in this case the

choice of objective function is intimately related to the resultant plasticity rule.

A.4.1.1 Eqivalence to the Evidence Lower Bound*

It should be noted that L𝑊𝑎𝑘𝑒 has a long history in unsupervised machine learning, and does not

always appear in the context of training a sensory representational system through normative

plasticity. In fact, minimizing L𝑊𝑎𝑘𝑒 is equivalent to minimizing the variational free energy or
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maximizing the evidence lower bound (ELBO), the objective underlying the variational autoencoder

[Rezende et al. 2014; Kingma and Welling 2014] and the Expectation-Maximization algorithm for

latent state models [Roweis and Ghahramani 1999]. Here, to help relate to the broader literature,

we will elaborate on this equivalence for the interested reader. This section is a technical aside,

which the uninterested reader may safely skip. In traditional machine learning terms, as we will

see, the L𝑊𝑎𝑘𝑒 objective is equivalent to maximizing the ELBO, and will fit a generative model

𝑝𝑚 (r, s;𝜃𝑚) to data, as well as train a forward map 𝑝 (r|s;𝜃 ) to perform approximate Bayesian

inference with respect to that model (i.e. we want 𝑝 (r|s;𝜃 ) ≈ 𝑝𝑚 (r|s;𝜃𝑚)).

To fit a generative model to data, we would typically use maximum likelihood estimation: we

would find the parameters of our generative model 𝑝𝑚 (r, s;𝜃𝑚) that match the distribution of data

points as accurately as possible by minimizing with respect to 𝜃 :

𝐷𝐾𝐿 (𝑝 (s) | |𝑝𝑚 (s;𝜃𝑚)) =
∫

ln
(

𝑝 (s)
𝑝𝑚 (s;𝜃𝑚)

)
𝑝 (s)𝑑s. (A.30)

When this objective is 0, samples drawn from 𝑝𝑚 (s;𝜃𝑚) will be indistinguishable from samples

drawn from 𝑝 (s), indicating that we have an accurate model of the data distribution. But we

are not only interested in fitting a generative model: when our network receives a stimulus

s, we would like it to infer the probability distribution over latent representational states that

could correspond to that stimulus, 𝑝𝑚 (r|s;𝜃𝑚). However, we haven’t defined this quantity, only

𝑝𝑚 (r) and 𝑝𝑚 (s|r;𝜃𝑚). From a purely machine learning perspective, we might just try to compute

𝑝𝑚 (r|s;𝜃𝑚) explicitly using Bayes’ Theorem:

𝑝𝑚 (r|s;𝜃𝑚) =
𝑝𝑚 (r)𝑝𝑚 (s|r;𝜃 )∫
𝑝𝑚 (r)𝑝𝑚 (s|r;𝜃 )𝑑r𝑑s

, (A.31)

and for simple generative models this might work. However, for complex, nonlinear models,

calculating the high-dimensional integral in the denominator analytically is impossible, and
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approximating it through Monte Carlo methods is time consuming to the point of intractability.

This is motivation enough for machine learning applications, but further, it is not clear how

biological system could compute such an integral rapidly upon receiving a single stimulus. So

instead, we might try a different approach. We can take our explicitly defined and parameterized

forward map 𝑝 (r|s;𝜃 ) and train it to approximate 𝑝𝑚 (r|s;𝜃𝑚) as closely as possible by minimizing

the expected KL divergence:

E [𝐷𝐾𝐿 (𝑝 (r|s;𝜃 ) | |𝑝𝑚 (r|s;𝜃𝑚))]𝑝 (s) =
∫

ln
(
𝑝 (r|s;𝜃 )
𝑝𝑚 (r|s;𝜃𝑚)

)
𝑝 (r|s;𝜃 )𝑝 (s)𝑑r𝑑s. (A.32)

If objective is approximately 0, then we do not need to perform Bayes’ theorem to calculate the

posterior 𝑝𝑚 (r|s;𝜃𝑚), because we have access to a perfect (or near-perfect) approximation 𝑝 (r|s;𝜃 )

that we can calculate explicitly or sample from. If 𝑝 (r|s;𝜃 ) is parameterized appropriately, this is

usually much easier, and potentially could be implemented by a neural network. Now we have

two objectives that we want to minimize: one to fit our generative model, and the other to perform

approximate inference. It seems natural to add them and minimize them jointly. First, we notice

that adding our second objective defines the following inequality:

𝐷𝐾𝐿 (𝑝 (s) | |𝑝𝑚 (s;𝜃𝑚)) ≤ 𝐷𝐾𝐿 (𝑝 (s) | |𝑝𝑚 (s;𝜃𝑚)) + E [𝐷𝐾𝐿 (𝑝 (r|s;𝜃 ) | |𝑝𝑚 (r|s;𝜃𝑚))]𝑝 (s) , (A.33)

due to the positivity of the KL divergence. Second, we note that adding these two objectives

together really just gives us L𝑊𝑎𝑘𝑒 :
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𝐷𝐾𝐿 (𝑝 (s) | |𝑝𝑚 (s;𝜃𝑚)) + E [𝐷𝐾𝐿 (𝑝 (r|s;𝜃 ) | |𝑝𝑚 (r|s;𝜃𝑚))]𝑝 (s) = 𝐷𝐾𝐿 (𝑝 (r, s;𝜃 ) | |𝑝𝑚 (r, s;𝜃 )) (A.34)

= L𝑊𝑎𝑘𝑒, (A.35)

where the first equality follows from adding Eqs. A.30 and A.32 and using the properties of the

logarithm and expectations.

This alternative construction demonstrates that minimizing that our objective function L𝑊𝑎𝑘𝑒

trains our system to perform two separate model-fitting functions: training a generative model

and training an approximate inference distribution. From here we can also see its equivalence to

the variational free energy and the ELBO:

𝐷𝐾𝐿 (𝑝 (s) | |𝑝𝑚 (s;𝜃𝑚)) ≤ L𝑊𝑎𝑘𝑒 (A.36)

=

∫
ln

(
𝑝 (r, s;𝜃 )
𝑝𝑚 (r, s;𝜃𝑚)

)
𝑝 (r, s;𝜃 )𝑑r𝑑s (A.37)

=

∫
ln

(
𝑝 (r|s;𝜃 )
𝑝𝑚 (r, s;𝜃𝑚)

)
𝑝 (r, s;𝜃 )𝑑r𝑑s +

∫
(ln𝑝 (s)) 𝑝 (r|s;𝜃 )𝑝 (s)𝑑r𝑑s

(A.38)

=

∫
ln

(
𝑝 (r|s;𝜃 )
𝑝𝑚 (r, s;𝜃𝑚)

)
𝑝 (r, s;𝜃 )𝑑r𝑑s +

∫
(ln𝑝 (s)) 𝑝 (s)𝑑s. (A.39)

Now, by definition 𝐷𝐾𝐿 (𝑝 (s) | |𝑝𝑚 (s;𝜃𝑚)) =
∫
(ln𝑝 (s)) 𝑝 (s)𝑑s −

∫
(ln𝑝𝑚 (s;𝜃𝑚)) 𝑝 (s)𝑑s, the first

term of which also appears on the right hand side of our inequality. Furthermore,
∫
(ln𝑝 (s)) 𝑝 (s)𝑑s

is not a function 𝜃𝑚 or 𝜃 , so from the perspective of optimization, it is an irrelevant additive constant.

We subtract it from both sides to get:

−
∫

(ln𝑝𝑚 (s;𝜃𝑚)) 𝑝 (s)𝑑s ≤
∫

ln
(
𝑝 (r|s;𝜃 )
𝑝𝑚 (r, s;𝜃𝑚)

)
𝑝 (r, s;𝜃 )𝑑r𝑑s. (A.40)
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This expression on the left is the negative log-likelihood, and the expression on the right is

the variational free energy, which is the negative of the ELBO. This shows that L𝑊𝑎𝑘𝑒 and the

variational free energy differ only by an additive constant from the perspective of optimization:

minimizing one is the same as minimizing the other. Similarly, L𝑆𝑙𝑒𝑒𝑝 corresponds to an upper

bound on the reverse KL divergence, 𝐷𝐾𝐿 (𝑝𝑚 (s;𝜃𝑚) | |𝑝 (s)).

A.4.2 Defining 𝑝 and 𝑝𝑚

Now that we have defined our objective function, we can begin to make things more concrete

by defining our probability models 𝑝 and 𝑝𝑚. Let us start by selecting three features of our

representation that we think will be useful, i.e. efficient. First, we want our neurons to be

metabolically efficient: a biological system cannot have neurons wasting energetic resources by

firing too much [Simoncelli 2003]. One way of requiring this would be to stipulate that the squared

norm of our neural firing rate vector, ∥r∥2
2 lies within some reasonable range of activation values.

Second, we want to reduce the dimensionality of our representation: many naturalistic datasets are

low-dimensional, and it may be wasteful to represent some high-dimensional features of stimuli

that are just due to sensor noise. To accomplish this, we will stipulate that 𝑁𝑟 ≪ 𝑁𝑠 , where 𝑁𝑟 is

the representation’s dimensionality, and 𝑁𝑠 is the stimulus dimension. Third, we will require that

individual neural activations should be independent from one another, which will allow individual

neurons to extract important features of the data without requiring full knowledge of the activity

of other neurons in the representation. To achieve a representation that embodies these three

desired features, we define 𝑝𝑚 (r) as follows:

𝑝𝑚 (r) ∼ N (0, 1), (A.41)

i.e. we will require that the representation, averaged over stimuli, will match an 𝑁𝑟 -dimensional

multivariate normal distribution, where individual axes r𝑖 are independent from one another
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(uncorrelated), and where the normal distribution naturally restricts the probable range of neural

activities to lie within bounds determined by the variance (arbitrarily set to 1). Though this

distribution captures several intuitions for how neural representations should function, it is clearly

a toy model for several reasons: it does not restrict firing rates to be positive, it does not allow for

activities to be discrete spikes, it does not account for temporal dynamics, etc. We will discuss

later how each of these extensions have been done before, but for now, many features of our

model 𝑝𝑚 (r, s) and our forward map 𝑝 (r|s) will be unrealistic for didactic purposes.

Now we define the probabilistic decoder 𝑝𝑚 (s|r) (Fig. A.2b), which takes neural firing rates

and produces estimates of stimuli, as follows:

𝑝𝑚 (s|r;W𝑜𝑢𝑡 ) ∼ N (𝑔(W𝑜𝑢𝑡r), 𝜎𝑠), (A.42)

where 𝑔(·) is an arbitrary nonlinearity, and 𝜎2
𝑠 is the variance of the decoder. In this probability

distribution, we will treat the 𝑁𝑠 × 𝑁𝑟 matrix W𝑜𝑢𝑡 as a free parameter which we will train to

optimize our objective.

Similarly, we can define the forward map 𝑝 (r|s), which takes environmental stimuli and

produces firing rates, as follows:

𝑝 (r|s;W𝑖𝑛) = N(𝑓 (W𝑖𝑛s), 𝜎𝑟 ), (A.43)

where 𝑓 (·) is an arbitrary (potentially different) nonlinearity, and 𝜎𝑟 will ultimately correspond to

intrinsic neural variability. Here, the 𝑁𝑟 × 𝑁𝑠 matrix W𝑖𝑛 is the free parameter. Thus, W𝑖𝑛 and

W𝑜𝑢𝑡 , are the free parameters in our simple construction.

We have not yet made clear how these parameters and functions could map onto an actual

neural architecture: we will do this after defining the learning algorithm, so that it is clear what

the necessary components of the algorithm are. Interestingly, we do not have to define 𝑝 (s) at

all. This distribution is determined by the environment. In fact, a learning system should ideally
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be as agnostic as possible to the specific form of 𝑝 (s), in order to be able to adapt strange and

unforeseen changes in the statistics of the world. The Wake-Sleep algorithm is ideal in that

it makes little-to-no assumption about 𝑝 (s), but as we will see, it may perform poorly if it is

not possible to obtain a close match between 𝑝 and 𝑝𝑚 . This might occur if the environmental

distribution of s is much higher dimensional than the number of neurons, or is in some other way

more complex than the generative model.

A.4.3 Approximating the loss gradient

Having defined our objective function and probability distributions 𝑝 and 𝑝𝑚 , we can now derive

the Wake-Sleep algorithm. First, we will show that we can obtain a promising update for W𝑜𝑢𝑡 by

performing gradient descent on L𝑊𝑎𝑘𝑒 (the Wake phase of learning). We will next show that we

can obtain a similarly promising update forW𝑖𝑛 by performing gradient descent on L𝑆𝑙𝑒𝑒𝑝 (the

Sleep phase of learning). One might easily wonder why we did not perform gradient descent on

L𝑊𝑎𝑘𝑒 with respect to W𝑖𝑛 , instead of L𝑆𝑙𝑒𝑒𝑝 : we will next show why it would be a bad idea to do

this. Lastly, we will describe two perspectives on how these resultant updates can be viewed as a

unified form of approximate optimization.

A.4.3.1 Wake

We start by calculating the negative gradient of L𝑊𝑎𝑘𝑒 with respect to a particular parameterW𝑜𝑢𝑡
𝑖 𝑗

from 𝑝𝑚 (s|r;W𝑜𝑢𝑡 ):
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−𝑑L𝑊𝑎𝑘𝑒

𝑑W𝑜𝑢𝑡
𝑖 𝑗

= − 𝑑

𝑑W𝑜𝑢𝑡
𝑖 𝑗

∫
ln

(
𝑝 (r, s;W𝑖𝑛)
𝑝𝑚 (r, s;W𝑜𝑢𝑡 )

)
𝑝 (r, s;W𝑖𝑛)𝑑r𝑑s (A.44)

= − 𝑑

𝑑W𝑜𝑢𝑡
𝑖 𝑗

∫ [
ln𝑝 (r|s;W𝑖𝑛) − ln𝑝𝑚 (s|r;W𝑜𝑢𝑡 ) − ln 𝑝𝑚 (r)

]
𝑝 (r, s;W𝑖𝑛)𝑑r𝑑s (A.45)

= −
∫

𝑑

𝑑W𝑜𝑢𝑡
𝑖 𝑗

[
ln𝑝 (r|s;W𝑖𝑛) − ln 𝑝𝑚 (s|r;W𝑜𝑢𝑡 ) − ln𝑝𝑚 (r)

]
𝑝 (r, s;W𝑖𝑛)𝑑r𝑑s (A.46)

=

∫ [
𝑑

𝑑W𝑜𝑢𝑡
𝑖 𝑗

ln 𝑝𝑚 (s|r;W𝑜𝑢𝑡 )
]
𝑝 (r, s;W𝑖𝑛)𝑑r𝑑s (A.47)

Plugging in the probability density function for 𝑝𝑚 (s|r;W𝑜𝑢𝑡 ) ∼ N (𝑔(W𝑜𝑢𝑡r), 𝜎2
𝑠 ), we end up

with:

−𝑑L𝑊𝑎𝑘𝑒

𝑑W𝑜𝑢𝑡
𝑖 𝑗

=

∫ [
𝑑

𝑑W𝑜𝑢𝑡
𝑖 𝑗

1
2𝜎2

𝑠

𝑁𝑠∑︁
𝑖=0

(s − 𝑔(W𝑜𝑢𝑡r))2

]
𝑝 (r, s;W𝑖𝑛)𝑑r𝑑s. (A.48)

Similar to our derivation for REINFORCE, we see that for a particular weightW𝑜𝑢𝑡
𝑖 𝑗 , 𝑑𝑔𝑙 (W

𝑜𝑢𝑡 r)
𝑑W𝑜𝑢𝑡

𝑖 𝑗

= 0

if 𝑖 ≠ 𝑙 . Thus, we have:

−𝑑L𝑊𝑎𝑘𝑒

𝑑W𝑜𝑢𝑡
𝑖 𝑗

=

∫
1
𝜎2
𝑠

[
(s𝑖 − 𝑔𝑖 (W𝑜𝑢𝑡r))𝑔′𝑖 (W𝑜𝑢𝑡r)r 𝑗

]
𝑝 (r, s;W𝑖𝑛)𝑑r𝑑s. (A.49)

Again, similar to REINFORCE, we can approximate this update as the network actively ‘per-

ceives’: we receive a sampled environmental stimulus s(𝑘) , and then sample from the probability

distribution 𝑝 (r|s(𝑘) ;W𝑖𝑛) to obtain a firing rate sample r(𝑘) . Then across 𝐾 samples, we calculate

the approximate parameter update:

ΔW𝑜𝑢𝑡
𝑖 𝑗 ∝ 1

𝜎2
𝑠 𝐾

𝐾∑︁
𝑘=0

[
(s(𝑘)
𝑖

− 𝑔𝑖 (W𝑜𝑢𝑡r(𝑘)))𝑔′𝑖 (W𝑜𝑢𝑡r(𝑘))r(𝑘)
𝑗

]
≈ −𝑑L𝑊𝑎𝑘𝑒

𝑑W𝑜𝑢𝑡
𝑖 𝑗

. (A.50)
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If we want learning to be able to occur online (Section 2.2.5), then we can take 𝐾 = 1, and

sacrifice some precision of our estimate. This update has the form of a prediction error, where the

the error between the true stimulus s(𝑘)
𝑖

and the network’s decoded estimate 𝑔𝑖 (W𝑜𝑢𝑡r(𝑘)) combine

with presynaptic inputs 𝑟 (𝑘)
𝑗

to produce parameter updates. In Section A.4.4 we will analyze in

detail how this parameter update could correspond to a local synaptic update for a particular

neuron model.

A.4.3.2 Sleep

So far, other than performing stochastic gradient descent over 𝐾 samples, we have introduced no

approximation into our algorithm. We might be tempted to perform gradient descent on L𝑊𝑎𝑘𝑒

with respect toW𝑖𝑛 too: though we will defer the discussion of this point for later, it turns out to be

a bad idea (see Section A.4.4.1). Instead, we will perform an almost identical procedure, but perform

gradient descent on L𝑆𝑙𝑒𝑒𝑝 instead. As discussed in Section 3.5, one way of interpreting this change

in loss is that we now have two different sets of parameters (i.e. synapses) in our system, W𝑖𝑛

and W𝑜𝑢𝑡 which are optimizing two different, albeit closely related objectives, L𝑆𝑙𝑒𝑒𝑝 and L𝑊𝑎𝑘𝑒 ,

respectively. An alternative perspective that we will discuss is that W𝑖𝑛 is also optimizing L𝑊𝑎𝑘𝑒 ,

but is only performing an approximate gradient descent. We will discuss in Section A.4.4.2 how

this added complexity affects the convergence and quality of the algorithm. Starting with L𝑆𝑙𝑒𝑒𝑝 ,

we have:

−
𝑑L𝑆𝑙𝑒𝑒𝑝

𝑑W𝑖𝑛
𝑖 𝑗

= − 𝑑

𝑑W𝑖𝑛
𝑖 𝑗

∫
ln

(
𝑝𝑚 (r, s;W𝑜𝑢𝑡 )
𝑝 (r, s;W𝑖𝑛)

)
𝑝𝑚 (r, s;W𝑜𝑢𝑡 )𝑑r𝑑s (A.51)

=

∫ [
𝑑

𝑑W𝑖𝑛
𝑖 𝑗

1
2𝜎2

𝑟

𝑁𝑟∑︁
𝑖=0

(r − 𝑓 (W𝑖𝑛s))2

]
𝑝𝑚 (r, s;W𝑜𝑢𝑡 )𝑑r𝑑s, (A.52)

where we have followed exactly the same steps as in Eqs. A.44-A.48.
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As before, we notice that for a particular weightW𝑖𝑛
𝑖 𝑗 ,

𝑑 𝑓𝑙 (W𝑖𝑛s)
𝑑W𝑖𝑛

𝑖 𝑗

= 0 if 𝑖 ≠ 𝑙 . Thus, we have:

−
𝑑L𝑆𝑙𝑒𝑒𝑝

𝑑W𝑖𝑛
𝑖 𝑗

=

∫
1
𝜎2
𝑟

[
(r𝑖 − 𝑓𝑖 (W𝑖𝑛s)) 𝑓 ′𝑖 (W𝑖𝑛s)s 𝑗

]
𝑝𝑚 (r, s;W𝑜𝑢𝑡 )𝑑r𝑑s. (A.53)

Now we can approximate this update with samples from 𝑝𝑚 (r, s;W𝑜𝑢𝑡 ). Notice that we are no

longer actively perceiving via the forward mapping 𝑝 (r|s) in response to sampled environmental

stimuli. Instead, activity is first internally generated via r(𝑘) ∼ 𝑝𝑚 (r), before propagating to the

stimulus layer to produce artificial stimuli via s(𝑘) ∼ 𝑝𝑚 (s|r(𝑘) ;W𝑜𝑢𝑡 ). This is termed the Sleep

phase of the algorithm evocatively: an animal could not perform this type of learning while

actively moving through an environment, and if it did perceive, such percepts would appear

hallucinatory or dream-like, being reflective of the animal’s model rather than reality. Given our

𝐾 samples, we calculate the approximate parameter update:

ΔW𝑖𝑛
𝑖 𝑗 ∝

1
𝜎2
𝑟𝐾

𝐾∑︁
𝑘=0

[
(r(𝑘)
𝑖

− 𝑓𝑖 (W𝑖𝑛s(𝑘))) 𝑓 ′𝑖 (W𝑖𝑛s(𝑘))s(𝑘)
𝑗

]
≈ −

𝑑L𝑆𝑙𝑒𝑒𝑝

𝑑W𝑖𝑛
𝑖 𝑗

. (A.54)

Now, this update should look almost equivalent to the Wake update forW𝑜𝑢𝑡 (Eq. A.50). As

with the Wake update, if we want learning to occur online we can take 𝐾 = 1. It turns out that the

variability induced by this sampled approximation is much less than the variability induced by

the REINFORCE algorithm, and is the chief reason for its superior performance and scalability

(Appendix B.3). However, it is very important to note that we are sampling from 𝑝𝑚 instead

of 𝑝 . Because our two parameter updates, Eq. A.50 and Eq. A.54 require sampling from two

different probability distributions and individual neurons r could only be sampling from one

probability distribution at a time, the updates are necessarily computed during different phases.

The Wake-Sleep algorithm consists of alternating between sampling from 𝑝 to compute updates
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for W𝑜𝑢𝑡 (the Wake phase; Eq. A.50) and sampling from 𝑝𝑚 to compute updates for W𝑖𝑛 (the Sleep

phase; Eq. A.54). As we discuss in Section A.4.4, we should be appropriately cautious about what

these alternative phases could possibly mean for a biological organism.

A.4.4 Assessing Wake Sleep

Having derived our Wake-Sleep parameter updates, we are finally in a position to assess the

degree to which it satisfies our desiderata. We have provided a very simplified derivation of the

Wake-Sleep algorithm, for a single-layer rate-based network. However, the algorithm generalizes

well to recurrent, spiking, and multilayer architectures [Dayan and Hinton 1996] (Section 2.2.3),

and these modifications do make the algorithm more realistic as a normative plasticity model.

However, it will still be very useful to show how the various components of the algorithm as we

have derived it could potentially map onto realistic biological structures (Fig. A.2c). First of all, we

observe that both s and r need to be able to sample from either 𝑝𝑚 or 𝑝—for this to be possible, s

must be internal to the brain, since sampling from 𝑝𝑚 affects both r and s simultaneously and would

have to occur while an animal is not consciously acting in its environment. Therefore, it is best to

think of s as a stimulus layer of neurons, and of r as a downstream layer of neurons receiving

feedforward inputs. Next, we suppose that there is a global gating signal 𝛾 that determines the

phase of the network— if 𝛾 = 1, the network is in the Wake phase, and if 𝛾 = 0, the network is in

the Sleep phase. Now we observe that the following equations will produce valid samples:

r = 𝛾 𝑓 (W𝑖𝑛s) + (𝛾𝜎𝑟 + (1 − 𝛾))𝜼𝑟 (A.55)

s = 𝛾s𝑝 + (1 − 𝛾) (𝑔(W𝑜𝑢𝑡r) + 𝜎𝑠𝜼𝑠), (A.56)

where s𝑝 ∼ 𝑝 (s) is an incoming sensory input, and 𝜼𝑠,𝜼𝑟 ∼ N(0, 1) are sources of intrinsic

noise for neurons in the stimulus, and downstream layers, respectively. Because 𝑝𝑚 and 𝑝 both
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assume exactly the same dimensionality of s and r, the only reasonable mapping of these two

different sampling phases is onto one neuron with two different modes of activity. In Figure A.2c,

we show that one possible biological mapping is to propose that feedforward inputs (active when

𝛾 = 1) to the basal dendrites of pyramidal neurons allow neurons to sample from 𝑝 , and top-down

inputs (active when 𝛾 = 0) to the apical dendrites of pyramidal neurons allows neurons to sample

from 𝑝𝑚: interestingly, a corollary of this mapping is that a network could achieve ‘detachability’

by manipulating 𝛾 to generate sample network states in the absence of stimuli.

It is important to note that several normative plasticity models have proposed that top-down

signals to the apical dendrites could serve as some form of training signal. We will adopt a similar

attitude, and now assess the locality of the Wake-Sleep parameter updates with respect to this

model formulation. If we take the sample size for our updates to be 𝐾 = 1, based on Eqs. A.50 and

A.54, for a single pair of samples r, s, we have:

ΔW𝑖𝑛
𝑖 𝑗 ∝

1 − 𝛾
𝜎2
𝑟

[
(r𝑖 − 𝑓𝑖 (W𝑖𝑛s)) 𝑓 ′𝑖 (W𝑖𝑛s)s 𝑗

]
(A.57)

ΔW𝑜𝑢𝑡
𝑖 𝑗 ∝ 𝛾

𝜎2
𝑠

[
(s𝑖 − 𝑔𝑖 (W𝑜𝑢𝑡r))𝑔′𝑖 (W𝑜𝑢𝑡r)r 𝑗

]
. (A.58)

As with REINFORCE, both 𝜎𝑟 and 𝜎𝑠 are proportionality constants and can be disregarded. For

ΔW𝑖𝑛
𝑖 𝑗 , a basal synapse on r𝑖 , several variables are required. First, the same signal that gates the

influence of apical versus basal inputs, 𝛾 , must also deactivate plasticity at basal synapses. 𝛾 could

be implemented in a neural circuit by either global inhibitory gating or by a neuromodulatory

signal [Bredenberg et al. 2021]—whichever candidate signal would also have to gate plasticity.

The synapse needs the postsynaptic firing rate r𝑖 , which is readily available, and a subtracted

measure of current local to the basal compartment, 𝑓𝑖 (W𝑖𝑛s)—there is some indication that local

dendritic voltage levels can affect synaptic plasticity, but the sign and exact form of this effect is

variable across studies [Letzkus et al. 2006; Froemke et al. 2005; Sjöström and Häusser 2006]. As
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with REINFORCE, the synapse would require 𝑓 ′𝑖 (W𝑖𝑛s), which is simply a monotonic function of

(W𝑖𝑛s)𝑖 , and could be easily approximated; lastly, it would need the presynaptic firing rate s 𝑗 . The

information requirements forW𝑜𝑢𝑡
𝑖 𝑗 are almost exactly the same.

In terms of requiring only functions of pre- and postsynaptic activity, with the addition of

some limited global context signal 𝛾 , these plasticity rules are plausibly local (Section 2.2.1).

However, several features of this setup are unconfirmed, the most obviously testable being the

Wake-Sleep sampling dynamics postulated by Eqs. A.57 and A.58: it seems unlikely that a neural

network would entirely and synchronously switch into a ‘generative’ or hallucinatory regime for

an extended period of time when 𝛾 = 0, and such a regime could not possibly occur in an awake,

behaving animal, meaning that W𝑖𝑛 could not be learned online (Section 2.2.5). However, we have

proposed softer form of Wake-Sleep (Chapter 5), which does allow for online learning, and does

not interfere with active perception, suggesting that the principles established by Wake-Sleep

may extend to more realistic formulations of 𝛾 . The strongest test (Section 2.2.7) of this family

of algorithms is that artificially magnifying the influence of apical dendrites in a neural circuit

should induce generative sampling, i.e. hallucination; other models of apical dendritic learning

[Sacramento et al. 2017; Guerguiev et al. 2017; Payeur et al. 2021; Urbanczik and Senn 2014] do

not propose this as a mechanism. Notice that this prediction requires our specific mapping of the

Wake-Sleep algorithm onto neural circuitry: other interpretations are conceivable, and would

have different predictions.

As we have discussed in Section A.4.1, the Wake-Sleep algorithm is capable of optimizing a

broad range of unsupervised learning objectives, considerably more general than for instance Oja’s

rule [Oja 1982] (though the specific toy example we provide is just a nonlinear form of probabilistic

PCA). Unlike REINFORCE, the Wake-Sleep algorithm is unable to optimize reinforcement learning

objectives, however, within the range of objectives that Wake-Sleep can optimize, it is typically

much more scalable than REINFORCE (Section 2.2.6)2: in this way, it is an ideal complement,
2Though it still performs worse than backpropagation [Kingma and Welling 2014; Rezende et al. 2014].

165



and having both algorithms or some hybridized form present in a neural circuit could be very

powerful. The Wake-Sleep algorithm involves more approximation than REINFORCE. One could

very easily wonder: since we have presented two sets of parameters in the Wake-Sleep algorithm

minimizing two different objective functions, why should we expect the algorithm to converge or

reliably improve performance on either objective?

To this point, we have identified two strange features of the Wake-Sleep algorithm that go

hand-in-hand. First, it is strange that we should require a period of hallucinatory activity to train

our parameters. Second, it is hard to interpret the convergence of an algorithm that is alternatively

minimizing two slightly different objective functions: why all the work and extra conceptual

baggage? Why not just do approximate gradient descent as we did with the REINFORCE algorithm

and be done with it? In Section A.4.4.1 we will motivate why more standard gradient descent

methods are not appropriate for this type of unsupervised learning, and in Section A.4.4.2 we will

address the convergence properties of the Wake-Sleep algorithm from two different perspectives,

explaining why the algorithm has such good empirical performance despite its approximations.

A.4.4.1 Why gradient descent withW𝑖𝑛 won’t work

Sometimes, to genuinely understand an algorithm, it’s important to understand the weaknesses of

alternative approaches. For didactic reasons, we will explore what happens if we simply take the

gradient of L𝑊𝑎𝑘𝑒 with respect to W𝑖𝑛 . We have:
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−𝑑L𝑊𝑎𝑘𝑒

𝑑W𝑖𝑛
𝑖 𝑗

= − 𝑑

𝑑W𝑖𝑛
𝑖 𝑗

∫
ln

(
𝑝 (r, s;W𝑖𝑛)
𝑝𝑚 (r, s;W𝑜𝑢𝑡 )

)
𝑝 (r, s;W𝑖𝑛)𝑑r𝑑s (A.59)

= −
∫ [

𝑑

𝑑W𝑖𝑛
𝑖 𝑗

ln
(
𝑝 (r, s;W𝑖𝑛)
𝑝𝑚 (r, s;W𝑜𝑢𝑡 )

)]
𝑝 (r, s;W𝑖𝑛)𝑑r𝑑s

−
∫

ln
(
𝑝 (r, s;W𝑖𝑛)
𝑝𝑚 (r, s;W𝑜𝑢𝑡 )

)
𝑑

𝑑W𝑖𝑛
𝑖 𝑗

𝑝 (r, s;W𝑖𝑛)𝑑r𝑑s (A.60)

= −
∫ [

𝑑

𝑑W𝑖𝑛
𝑖 𝑗

ln
(
𝑝 (r, s;W𝑖𝑛)

) ]
𝑝 (r, s;W𝑖𝑛)𝑑r𝑑s

−
∫

ln
(
𝑝 (r, s;W𝑖𝑛)
𝑝𝑚 (r, s;W𝑜𝑢𝑡 )

)
𝑑

𝑑W𝑖𝑛
𝑖 𝑗

𝑝 (r, s;W𝑖𝑛)𝑑r𝑑s, (A.61)

where the second equality follows from the product rule, and the third equality follows from

the fact that ln 𝑝𝑚 (r, s;W𝑜𝑢𝑡 ) does not depend onW𝑖𝑛 . Interestingly, the first term in this equation

is zero. To see this, we note the following sequence of identities:

∫ [
𝑑

𝑑W𝑖𝑛
𝑖 𝑗

ln
(
𝑝 (r, s;W𝑖𝑛)

) ]
𝑝 (r, s;W𝑖𝑛)𝑑r𝑑s =

∫ [
𝑑

𝑑W𝑖𝑛
𝑖 𝑗

𝑒 ln(𝑝 (r,s;W𝑖𝑛))
]
𝑑r𝑑s

=

∫
𝑑

𝑑W𝑖𝑛
𝑖 𝑗

𝑝 (r, s;W𝑖𝑛)𝑑r𝑑s

=
𝑑

𝑑W𝑖𝑛
𝑖 𝑗

∫
𝑝 (r, s;W𝑖𝑛)𝑑r𝑑s = 𝑑

𝑑W𝑖𝑛
𝑖 𝑗

1 = 0. (A.62)

The first term is zero, which leaves only the second term of Eq. A.61. It gives us:

−𝑑L𝑊𝑎𝑘𝑒

𝑑W𝑖𝑛
𝑖 𝑗

= −
∫

ln
(
𝑝 (r, s;W𝑖𝑛)
𝑝𝑚 (r, s;W𝑜𝑢𝑡 )

)
𝑑

𝑑W𝑖𝑛
𝑖 𝑗

𝑝 (r, s;W𝑖𝑛)𝑑r𝑑s (A.63)

=

∫
ln

(
𝑝𝑚 (r, s;W𝑜𝑢𝑡 )
𝑝 (r, s;W𝑖𝑛)

) (
𝑑

𝑑W𝑖𝑛
𝑖 𝑗

ln 𝑝 (r, s;W𝑖𝑛)
)
𝑝 (r, s;W𝑖𝑛)𝑑r𝑑s, (A.64)
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where for the second equality we have once again used the identity in Eq. A.62. Fascinatingly

enough, this is exactly equivalent to the REINFORCE update (Eq. A.18), if we take 𝑅(r, s) =

ln (𝑝/𝑝𝑚). Though the REINFORCE update might be practical for environmental rewards that an

animal might receive, this particular choice of 𝑅(r, s) requires detailed knowledge of the inner

workings of a neural representation. Not only is it not possible for an environmental signal to

carry this information, there is no evidence that any neuromodulatory center in the brain is able

to compute such a complicated signal based on neural network activity. Thus, even though this

update appears to have the form of a reward-modulated Hebbian plasticity rule, there is very little

reason to believe that it is local (Section 2.2.1). Furthermore, this form of update is well-known to

have severe scalability (Section 2.2.6) issues, and demonstrably performs worse than Wake-Sleep

on high-dimensional datasets (Chapter 5; [Werfel et al. 2003]). The Wake-Sleep algorithm is

very much a response to these failings, using a local error signal specific to each neuron, rather

than correlating each neuron’s activity with a global reward signal. However, the Wake-Sleep

algorithm employs more approximations than REINFORCE. In Section A.4.4.2, we will analyze

the convergence properties of Wake-Sleep.

A.4.4.2 The convergence of Wake-Sleep

Currently, we have two updates that are approximating gradient descent on two different objectives:

ΔW𝑜𝑢𝑡
𝑖 𝑗 ≈ −𝜆𝑑L𝑊𝑎𝑘𝑒

𝑑W𝑜𝑢𝑡
𝑖 𝑗

, and ΔW𝑖𝑛
𝑖 𝑗 ≈ −𝜆𝑑L𝑆𝑙𝑒𝑒𝑝

𝑑W𝑖𝑛
𝑖 𝑗

, where 𝜆 is a small positive learning rate. In Section

3.5, we stressed the importance of viewing plasticity updates as decreasing a unified objective,

but here we have two. How do we know that ΔW𝑖𝑛
𝑖 𝑗 won’t increase L𝑊𝑎𝑘𝑒 and vice versa? Clearly,

L𝑆𝑙𝑒𝑒𝑝 and L𝑊𝑎𝑘𝑒 are closely related: one way of resolving this difficulty is by demonstrating that

ΔW𝑖𝑛
𝑖 𝑗 ≈ −𝜆𝑑L𝑊𝑎𝑘𝑒

𝑑W𝑖𝑛
𝑖 𝑗

. In this case, during the Wake phase, the system would optimize L𝑊𝑎𝑘𝑒 with

respect to W𝑜𝑢𝑡 , and during the Sleep phase, it would approximately optimize the same objective

with respect to W𝑖𝑛—this would amount to an approximation of coordinate descent. In fact, under

certain conditions, it turns out that this is exactly what the Wake-Sleep algorithm is doing.
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To see this, we begin with the REINFORCE-like update (Eq. A.64) for gradient descent on

L𝑊𝑎𝑘𝑒 :

−𝑑L𝑊𝑎𝑘𝑒

𝑑W𝑖𝑛
𝑖 𝑗

=

∫
ln

(
𝑝𝑚 (r, s;W𝑜𝑢𝑡 )
𝑝 (r, s;W𝑖𝑛)

) (
𝑑

𝑑W𝑖𝑛
𝑖 𝑗

ln𝑝 (r, s;W𝑖𝑛)
)
𝑝 (r, s;W𝑖𝑛)𝑑r𝑑s. (A.65)

Interestingly, we notice that if 𝑝𝑚 ≈ 𝑝 , then by first-order Taylor expansion, ln (𝑝𝑚/𝑝) ≈

𝑝𝑚/𝑝 − 1. Plugging this approximation in (see Appendix B.1 for a more detailed justification of

this approximation), we get:

−𝑑L𝑊𝑎𝑘𝑒

𝑑W𝑖𝑛
𝑖 𝑗

≈
∫ (

𝑝𝑚 (r, s;W𝑜𝑢𝑡 )
𝑝 (r, s;W𝑖𝑛) − 1

) (
𝑑

𝑑W𝑖𝑛
𝑖 𝑗

ln𝑝 (r, s;W𝑖𝑛)
)
𝑝 (r, s;W𝑖𝑛)𝑑r𝑑s (A.66)

=

∫ (
𝑑

𝑑W𝑖𝑛
𝑖 𝑗

ln𝑝 (r, s;W𝑖𝑛)
)
𝑝𝑚 (r, s;W𝑜𝑢𝑡 )𝑑r𝑑s (A.67)

= −
𝑑L𝑆𝑙𝑒𝑒𝑝

𝑑W𝑖𝑛
𝑖 𝑗

, (A.68)

where for the first equality we have once again used the identity Eq. A.62. Essentially, if a

global optimum such that 𝑝𝑚 = 𝑝 exists, it is shared by both L𝑊𝑎𝑘𝑒 and L𝑆𝑙𝑒𝑒𝑝 . Thus, we can

expect the gradients of these two objective functions to behave very similarly if 𝑝𝑚 is close to 𝑝 .

Because the Wake phase (updatingW𝑜𝑢𝑡 ) occurs without approximation, the algorithm has the

opportunity to enter this regime before the approximating Sleep phase ever occurs.

An alternative analysis of the Wake-Sleep algorithm [Dayan et al. 1995] observes that for

fixed W𝑜𝑢𝑡 , L𝑆𝑙𝑒𝑒𝑝 and L𝑊𝑎𝑘𝑒 share a global minimum with respect to W𝑖𝑛 when 𝑝𝑚 (r|s;W𝑜𝑢𝑡 ) =

𝑝 (r|s;W𝑖𝑛), as long as there exists aW𝑖𝑛
𝑜𝑝𝑡 such that this equality holds. If L𝑆𝑙𝑒𝑒𝑝 is convex and this

global minimum is attainable, fully optimizing L𝑆𝑙𝑒𝑒𝑝 with respect toW𝑖𝑛 during the Sleep phase is

therefore guaranteed to also optimize L𝑊𝑎𝑘𝑒 . Therefore, as long as these to conditions of convexity
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and attainability of the global minimum are satisfied (they are not in general, but do hold for

simple examples like Factor Analysis [Amari and Nakahara 1999]), both phases decrease L𝑊𝑎𝑘𝑒 .

Rather than an approximation of coordinate descent, this can be viewed as an approximation of

the Expectation-Maximization (EM) algorithm [Dempster et al. 1977].

We see that there are two different ways of interpretingWake-Sleep: first, it is an approximation

of coordinate descent that becomes a better approximation the closer to the optimum it becomes.

Second, under restricted conditions, Wake-Sleep can be viewed as an approximation of the EM

algorithm. Both of these perspectives are conditional on assumptions about the probability models

being trained, requiring a generative model 𝑝𝑚 (r, s) and a forward map 𝑝 (r|s) capable of mutually

reaching good performance for an environmental stimulus distribution 𝑝 (s). Though Wake-Sleep

empirically performs quite well under a variety of stimulus conditions and network models [Dayan

and Hinton 1996], these are important caveats: the comparative weakness of the demonstrations

of Wake-Sleep’s convergence relative to gradient descent or EM is a common point of criticism of

the algorithm [Rezende et al. 2014; Kingma and Welling 2014; Mnih and Gregor 2014].
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B | Appendix: Impression learning

B.1 Bias calculation

Our derivation of the update for IL (Eq. 3) is based on an expansion of log 𝑝𝜃
𝑞𝜃

about 𝑝𝜃
𝑞𝜃

= 1:

∫ [
log

𝑝𝜃

𝑞𝜃

]
(∇𝜃 log𝑞𝜃 )𝑞𝜃 𝑑r𝑑s =

∫ [
𝑝𝜃

𝑞𝜃
− 1

]
(∇𝜃 log𝑞𝜃 )𝑞𝜃 𝑑r𝑑s (B.1)

− 1
2

∫ 
( 𝑝𝜃
𝑞𝜃

− 1)
1 + 𝜖 (r, s)


2

(∇𝜃 log𝑞𝜃 )𝑞𝜃 𝑑r𝑑s,

for some 𝜖 (r, s) st. |𝜖 (r, s) | < | 𝑝
𝑞
− 1|. Note that this is not a truncated Taylor series approximation:

we are instead using Taylor’s theorem, and the second term provides an exact expression for the

bias. We can use the Caucy-Schwartz inequality for expectations to bound this as follows:

|bias| = 1
2

������
∫ 

( 𝑝𝜃
𝑞𝜃

− 1)
1 + 𝜖 (r, s)


2

(∇𝜃 log𝑞𝜃 )𝑞𝜃 𝑑r𝑑s

������
≤ 1

2

√√√√√∫ 
( 𝑝𝜃
𝑞𝜃

− 1)
1 + 𝜖 (r, s)


4

𝑞𝜃 𝑑r𝑑s

√︄∫
(∇𝜃 log𝑞𝜃 )2𝑞𝜃 𝑑r𝑑s, (B.2)

We examine the consequences of this bias formula for our specific model. Consider the
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component of the gradient with respect to the feedforward weightW(𝑖 𝑗) :

𝑑

𝑑𝑊 (𝑖 𝑗) log𝑞𝜃 =
∑︁
𝑡

𝜆𝑡

(𝜎 inf
𝑟 )2

(r(𝑖)𝑡 − 𝑓 (Ws𝑡 ) (𝑖)) 𝑓 ′(Ws𝑡 ) (𝑖)s( 𝑗)𝑡 .

Note that 𝑓 (·) < 1 and 𝑓 ′(·) < 1 for the tanh function, and assume that (𝑠 ( 𝑗)𝑡 )2 < 𝑆 ∀𝑡 for some

constant 𝑆 . Defining 𝐵 =

√√√∫ [
( �̃�𝜃
�̃�𝜃

−1)
1+𝜖 (r,s)

]4

𝑞𝜃 𝑑r𝑑s, and substituting the gradient component gives:

|bias| ≤ 𝐵

2

√√√∫ (∑︁
𝑡

𝜆𝑡

(𝜎 inf
𝑟 )2

(r(𝑖)𝑡 − 𝑓 (Ws𝑡 ) (𝑖)) 𝑓 ′(Ws𝑡 ) (𝑖)s( 𝑗)𝑡

)2

𝑞𝜃 𝑑r𝑑s

=
𝐵

2

√︄∫ ∑︁
𝑡

∑︁
𝑡 ′

𝜆𝑡𝜆𝑡 ′

(𝜎 inf
𝑟 )4

(r(𝑖)𝑡 − 𝑓 (Ws𝑡 ) (𝑖)) (r(𝑖)𝑡 ′ − 𝑓 (Ws𝑡 ′) (𝑖)) 𝑓 ′(Ws𝑡 ) (𝑖) 𝑓 ′(Ws𝑡 ′) (𝑖)s( 𝑗)𝑡 s( 𝑗)
𝑡 ′ 𝑞𝜃 𝑑r𝑑s

=
𝐵

2

√︄∫ ∑︁
𝑡

𝜆2
𝑡

(𝜎 inf
𝑟 )4

(r(𝑖)𝑡 − 𝑓 (Ws𝑡 ) (𝑖))2(𝑓 ′(Ws𝑡 ) (𝑖)s( 𝑗)𝑡 )2𝑞𝜃 𝑑r𝑑s,

where this second equality follows from the fact that r(𝑖)𝑡 − 𝑓 (Ws𝑡 ) (𝑖) ∼ N(0, 𝜎 inf
𝑟 ) without any

temporal correlation, so that E
[
(r(𝑖)𝑡 − 𝑓 (Ws𝑡 ) (𝑖)) (r(𝑖)𝑡 ′ − 𝑓 (Ws𝑡 ′) (𝑖))

]
r|s

= 0 for 𝑡 ≠ 𝑡 ′. Continuing

our derivation, we have:

|bias| ≤ 𝐵

2

√︄∑︁
𝑡

𝜆2
𝑡

(𝜎 inf
𝑟 )4

∫
(r(𝑖)𝑡 − 𝑓 (Ws𝑡 ) (𝑖))2(𝑓 ′(Ws𝑡 ) (𝑖)s( 𝑗)𝑡 )2𝑞𝜃 (r, s) 𝑑r𝑑s

=
𝐵

2

√︄∑︁
𝑡

𝜆2
𝑡

(𝜎 inf
𝑟 )2

∫
(𝑓 ′(Ws𝑡 ) (𝑖)s( 𝑗)𝑡 )2𝑞𝜃 (s) 𝑑s

≤ 𝐵

2

√︄
𝑆

(𝜎 inf
𝑟 )2

∑︁
𝑡

𝜆2
𝑡

=
𝐵

2

√︄
𝑆𝑇

2(𝜎 inf
𝑟 )2

, (B.3)

where 𝑇 is the total time. Thus, for our particular choice of neural model, the bias is proportional

to 𝐵, which vanishes as performance improves. Note that the update term in Eq. (B.1) is O(| 𝑝
𝑞
− 1|),
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so its magnitude is expected to be much larger than the bias in the vicinity of a global optimum.

The
√︁
𝑇 /(𝜎 inf

𝑟 )2 proportionality constant also should not be a cause for concern: the gradient itself

scales with 𝑇 /(𝜎 inf
𝑟 )2, and thus small values of (𝜎 inf

𝑟 )2 will not make the relative error explode.

B.2 Comparison to other algorithms

In this section, we explore the relationships between impression learning (IL) and other stochastic

learning algorithms. Specifically, we consider a variant of neural variational inference (NVI∗),

backpropagation (BP), and Wake-Sleep (WS).

B.2.1 Neural Variational Inference

Neural variational inference is a learning algorithm for neural networks very closely related to

REINFORCE (Appendix A.3) that optimizes the evidence lower bound (ELBO) objective function.

Here, we modify the algorithm by incorporating our novel loss (Eq. 2), producing a variant that

we call NVI∗. We first take the derivative of our loss, without approximations. These steps are

identical to the initial steps in our derivation of IL, up to the Taylor expansion:

−∇𝜃L = − ∇𝜃E𝜆,z
[∫

[log𝑞𝜃 − log𝑝𝜃 ] 𝑞𝜃 𝑑r𝑑s
]

= − E𝜆,z
[∫

[∇𝜃 (log𝑞𝜃 − log𝑝𝜃 )] 𝑞𝜃 𝑑r𝑑s +
∫

[log𝑞𝜃 − log𝑝𝜃 ] ∇𝜃𝑞𝜃 𝑑r𝑑s
]

= − E𝜆,z
[∫

[∇𝜃 log𝑞𝜃 − ∇𝜃 log𝑝𝜃 ] 𝑞𝜃 𝑑r𝑑s +
∫

[log𝑞𝜃 − log𝑝𝜃 ] (∇𝜃 log𝑞𝜃 )𝑞𝜃 𝑑r𝑑s
]

=E𝜆,z

[∫
[∇𝜃 log𝑝𝜃 ] 𝑞𝜃 𝑑r𝑑s +

∫ [
log

𝑝𝜃

𝑞𝜃

]
(∇𝜃 log𝑞𝜃 )𝑞𝜃 𝑑r𝑑s

]
(B.4)

Updates calculated by these samples will be unbiased in expectation, because there are no

approximations. However, we will show in Appendix B.3 that these updates may have high

variance.
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To provide a fair comparison to IL, we have added two additional features that have been

shown to reduce the variance of sample estimates [Ranganath et al. 2014; Mnih and Gregor 2014].

The first involves subtracting a control variate from our second term:

−∇𝜃L = E𝜆,z

[∫
[∇𝜃 log𝑝𝜃 ] 𝑞𝜃 𝑑r𝑑s +

∫ (
log

𝑝𝜃

𝑞𝜃
− E

[
log

𝑝𝜃

𝑞𝜃

] )
(∇𝜃 log𝑞𝜃 )𝑞𝜃 𝑑r𝑑s

]
. (B.5)

The subtracted term, E
[
log 𝑝𝜃

𝑞𝜃

] ∫
(∇𝜃 log𝑞𝜃 )𝑞𝜃 𝑑r𝑑s, is zero because it is a constant times the

expectation of the score function. As such, it keeps the weight updates unbiased, but can still

significantly reduce the variance.

The original NVI method employs a dynamic baseline estimated with a neural network as a

function of inputs s. It is likely that this more flexible control variate can further reduce the variance

of parameter estimates beyond the baseline that we explore here. However, this baseline was

trained with backpropagation, and as such, would not provide a biologically-plausible comparison.

We can approximate Eq. B.5 by summing over samples from 𝑞𝜃 , and updating our weights at every

time point:

Δ𝜃 ∝ [∇𝜃 log𝑝𝑡 (r𝑡 , s𝑡 ;𝜃 )] +
[
log

𝑝𝑡

𝑞𝑡
− L̄

] 𝑡∑︁
𝑠=0

(∇𝜃 log𝑞𝑡 (r𝑡 , s𝑡 ;𝜃 ))

∝ [∇𝜃 log𝑝𝑡 (r𝑡 , s𝑡 ;𝜃 )] +
[
log

𝑝𝑡

𝑞𝑡
− L̄

]
𝑔𝜃 , (B.6)

where L̄ is approximated online according to a running average of the loss at each time step, and

𝑔𝜃 , called an ‘eligibility trace’ [Gerstner et al. 2018], is computed by a running integral. These

quantities are both computed online as follows:

L̄𝑡 = 𝛾L log
𝑝𝑡

𝑞𝑡
+ (1 − 𝛾L)L̄𝑡−1 (B.7)

𝑔𝜃𝑡 = ∇𝜃 log𝑞𝑡 (r𝑡 , s𝑡 ;𝜃 ) + 𝛾𝑔𝑔𝜃𝑡−1, (B.8)
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where 𝛾L ≪ 1, so that L̄𝑡 is a weighted average of past losses. If we want an unbiased estimate

of the gradient, then we would take 𝛾𝑔 = 1, so that 𝑔𝜃𝑡 =
∑𝑡
𝑠=0(∇𝜃 log𝑞𝑡 (r𝑡 , s𝑡 ;𝜃 )). However, the

variance of this eligibility trace grows without bound as 𝑇 → ∞, which makes online learning

using this algorithm nearly impossible without approximation. For this reason, we take 𝛾𝑒 as a

constant less than, but close to 1 when we compare NVI∗ to IL performance, which introduces

a small bias, with the benefit of allowing for online learning. This is a technique commonly

employed in the three-factor plasticity literature [Frémaux and Gerstner 2016; Miconi 2017], and

can be thought of as an analog to temporal windowing in backpropagation through time [Werbos

1990]. For our numerical gradient comparisons (Fig. 2), however, we used a short number of time

steps, but took 𝛾𝑔 = 1 to remove all bias.

This method of differentiation is particularly important to compare to IL, because it can be

thought of as a three-factor synaptic plasticity rule, where for a neural network, the parameter

update becomes a global ‘loss’ signal log 𝑝𝑡
𝑞𝑡
− L̄ combined with synaptically local terms 𝑔𝜃 and

∇𝜃 log𝑝𝑡 (r𝑡 , s𝑡 ;𝜃 ), the second of which comprises the entirety of the IL update. Typically for

reinforcement learning, the global ‘reward’ signal is justified by referencing neuromodulatory

signals that project broadly to synapses throughout the cortex and carry information about reward

[Fiete et al. 2007; Frémaux and Gerstner 2016; Hoerzer et al. 2014; Bredenberg et al. 2020]. However,

the origins of the global ‘loss’ in our unsupervised case are unclear. Furthermore, as we show in

Appendix B.3, the term
[
log 𝑝𝑡

𝑞𝑡
− L̄

]
𝑔𝜃 is high variance, and requires orders of magnitude more

samples (or lower learning rates) in order to get a useful gradient estimate. A technical way of

viewing our contribution in this paper is that we have shown that the
[
log 𝑝𝑡

𝑞𝑡
− L̄

]
𝑔𝜃 term is

largely redundant and unnecessary for effective learning on our unsupervised objective, and that

discarding it produces substantial performance increases while allowing the parameter update to

remain a completely local synaptic plasticity rule for neural networks.
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B.2.2 Backpropagation

Backpropagation (BP) cannot be performed for stochastic variables r𝑡 , because under an expec-

tation, these are integration variables with no explicit dependency on any parameters. For this

reason, when computing a derivative of our loss using NVI∗, we differentiate the probability

distribution, which depends on network parameters. However, as we will show below, this straight-

forward method can result in high variance parameter estimates. The classical alternative to

NVI∗ is to perform the ‘reparameterization trick,’ in which a change of variables allows the use

of stochastic gradient descent with BP. This trick is largely responsible for the success of the

variational autoencoder [Kingma and Welling 2013; Rezende et al. 2014], though it is well known

that BP does not produce synaptically local parameter updates. Here, we use BP as an upper bound

for comparison, with the understanding that local learning algorithms are unlikely to be able to

completely match its performance. Below, we review its calculation, starting with changing our

variable of integration.

It is worth noting that this ‘reparameterization’ will work only for additive Gaussian noise. As

such, applying BP to our network will only be possible for a restricted set of noise models, and can

fail in particular for Poisson-spiking network models, where IL, NVI∗, and WS will not. For each

time point, we define 𝜼𝑡 = r𝑡 − r̄𝑞𝑡 (𝜃, 𝜆,𝜼0:𝑡−1, 𝝃0:𝑡−1), where r̄𝑞𝑡 (𝜃, 𝜆,𝜼0:𝑡−1, 𝝃0:𝑡−1) is the mean firing

rate conditioned on noise, stimulus, and 𝜆 values from previous time steps (given by 𝑞). Similarly,

we define 𝝃𝑡 = s𝑡 − s̄𝑞𝑡 (𝜃, 𝜆,𝜼0:𝑡−1, 𝝃0:𝑡−1). This defines 𝜼𝑡 and 𝝃𝑡 as the noise added on top of every

firing rate and stimulus at time 𝑡 . Instead of integrating over the rates and stimuli, we integrate

over these fluctuations, replacing each instance of r𝑡 with r̄𝑞𝑡 (𝜃, 𝜆,𝜼0:𝑡−1, 𝝃0:𝑡−1) + 𝜼𝑡 and s𝑡 with

s̄𝑞𝑡 (𝜃, 𝜆,𝜼0:𝑡−1, 𝝃0:𝑡−1)+𝝃𝑡 . We will refer to the mean parameters of 𝑝𝜃 where these substitutions have

been made as r̄𝑝𝑡 (𝜃, 𝜆,𝜼0:𝑡−1, 𝝃0:𝑡−1) and s̄𝑞𝑡 (𝜃, 𝜆,𝜼0:𝑡−1, 𝝃0:𝑡−1). Our new random variables have the

probability distributions: 𝑝 (𝜼𝑡 ) = N(0, 𝜆𝑡𝜎𝑖𝑛𝑓𝑟 +(1−𝜆𝑡 )𝜎gen
𝑟 ) and 𝑝 (𝝃𝑡 ) = N(0, 𝜆𝑡𝜎 inf

𝑠 +(1−𝜆𝑡 )𝜎gen
𝑠 ).
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Performing our change of variables gives:

−∇𝜃L = − ∇𝜃
∫

[log𝑞𝜃 − log𝑝𝜃 ] 𝑞𝜃 𝑑r𝑑s

= − ∇𝜃
∫ [

log
∏
𝑡

1
𝑍

exp(
−𝜼2

𝑡

2(𝜆𝑡𝜎 inf
𝑠 + (1 − 𝜆𝑡 )𝜎gen

𝑠 )2
)
]
𝑝 (𝜼, 𝝃 ) 𝑑𝜼𝑑𝝃

− ∇𝜃
∫ [

log
∏
𝑡

1
𝑍

exp(
−𝝃 2

𝑡

2(𝜆𝑡𝜎 inf
𝑠 + (1 − 𝜆𝑡 )𝜎gen

𝑠 )2
)
]
𝑝 (𝜂, 𝜉) 𝑑𝜼𝑑𝝃

+ ∇𝜃
∫ [

log
∏
𝑡

1
𝑍

exp(
−(r̄𝑞𝑡 + 𝜼𝑡 − r̄𝑝𝑡 )2

2((1 − 𝜆𝑡 )𝜎 inf
𝑟 + 𝜆𝑡𝜎gen

𝑟 )2
)
]
𝑝 (𝜼, 𝝃 ) 𝑑𝜼𝑑𝝃

+ ∇𝜃
∫ [

log
∏
𝑡

1
𝑍

exp(
−(s̄𝑞𝑡 + 𝝃𝑡 − s̄𝑝𝑡 )2

2((1 − 𝜆𝑡 )𝜎 inf
𝑠 + 𝜆𝑡𝜎gen

𝑠 )2
)
]
𝑝 (𝜼, 𝝃 ) 𝑑𝜼𝑑𝝃

=E𝜼,𝝃

[
∇𝜃

∑︁
𝑡

−
(
r̄𝑞𝑡 (𝜃,𝜼, 𝝃 ) + 𝜼𝑡 − r̄𝑝𝑡 (𝜃,𝜼, 𝝃 )

)2

2((1 − 𝜆𝑡 )𝜎 inf
𝑟 + 𝜆𝑡𝜎gen

𝑟 )2
−

(
s̄𝑞𝑡 (𝜃,𝜼, 𝝃 ) + 𝝃𝑡 − s̄𝑝𝑡 (𝜃,𝜼, 𝝃 )

)2

2((1 − 𝜆𝑡 )𝜎 inf
𝑠 + 𝜆𝑡𝜎gen

𝑠 )2

]
, (B.9)

where the last equality follows from the fact that 𝜂𝑡 and 𝜉𝑡 have no dependence on the network

parameters. Now, the parameter dependence is contained in r̄𝑞𝑡 , r̄
𝑝

𝑡 , s̄
𝑞

𝑡 , and s̄
𝑝

𝑡 , all of which depend

on the mean firing rates at each previous time step: using BP to compute the gradients of these mean

parameters leads to nonlocal updates, which is the key reason BP is a biologically-implausible

algorithm [Lillicrap et al. 2020]. For our simulations, we set 𝜆𝑡 = 1 ∀𝑡 , so that our parameter

updates were equivalent to minimizing the negative ELBO, and gradients were computed using

Pytorch [Paszke et al. 2019]. In subsequent sections, we will show that weight updates computed

using samples from this expectation will generally have much lower variance than NVI∗.

B.2.3 Wake-Sleep

As already mentioned, WS can be viewed as a special case of IL. To show this, we can take

𝜆𝑡 = 𝜆0 ∀𝑡 , with 𝑝 (𝜆0 = 0) = 𝑝 (𝜆0 = 1) = 0.5 (for IL, 𝜆𝑡 alternates with phase duration 𝐾 = 2). For
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this choice of 𝜆, we follow our IL derivation (Eq. 5), and get:

−∇𝜃L ≈ 2E𝜆0,z

[∫ [∑︁
𝑡

(1 − 𝜆𝑡 )∇𝜃 log𝑞𝑡 + (𝜆𝑡 )∇𝜃 log𝑝𝑚𝑡

]
𝑞𝜃 𝑑r𝑑s

]
= Ez

[∫ [∑︁
𝑡

∇𝜃 log𝑞𝑡

]
𝑝𝑚 (r, s) 𝑑r𝑑s +

∫ [∑︁
𝑡

∇𝜃 log𝑝𝑚𝑡

]
𝑞(r|s)𝑝 (s|z) 𝑑r𝑑s

]
. (B.10)

Since WS is a special case of IL, the bias properties of its individual samples are identical.

However, typically WS weight updates are computed coordinate-wise, updating parameters for 𝑝𝑚

and 𝑞 separately, whose updates are computed after averaging over many samples. This can lead

to behavior that approximates the EM algorithm under restrictive conditions, a fact that is used in

the proofs of convergence of the WS algorithm for simple models [Amari and Nakahara 1999].

Because our algorithm does not perform coordinate descent, it is best viewed as an approximation

to gradient descent with a well-behaved bias, rather than an approximation of the EM algorithm.

The WS parameter updates can also be interpreted as synaptic plasticity at apical and basal

dendrites of pyramidal neurons, as with IL. The key difference is that WS requires lengthy phases

where 𝜆𝑡 = 1 ∀𝑡 (Wake) and where 𝜆𝑡 = 0 ∀𝑡 (Sleep). The requirement that the network remain in

a generative state while training the inference parameters 𝜃𝑞 would require a biological organism

to explicitly hallucinate while training its parameters. Though such generative states may be

possible in some restricted form, and WS could perfectly coexist with IL in a biological organism,

we believe the more general perspective afforded by IL is much more likely to correspond to

biology than the phase distinctions required by WS. The benefits to perceptual continuity given

by IL over WS come from its ability to leverage temporal predictability in both network states and

stimuli by only staying in a generative state for a brief period of time. However, for static images

and neural architectures, IL and WS are much more similar, effectively amounting to different

schedules for updating generative and inference parameters in alternating sequence.
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B.3 Estimator variance

In Appendix B.1, we explored the bias introduced by the approximations used in the derivation of

IL. Here, we consider the variance of sample weight updates, and compare to the variability of

samples obtained from more standard methods, in particular BP and NVI∗, whose sampling-based

estimates have can have very different variances [Rezende et al. 2014].

To keep the analysis tractable, we will study a simple example: maximizing our modified

KL divergence between two time series composed of temporally-uncorrelated univariate normal

distributions with identical variance and different means: 𝑝 (𝑟𝑡 ) ∼ N (𝜇𝑝, 𝜎2), 𝑞(𝑟𝑡 ) ∼ N (𝜇𝑞, 𝜎2).

We define 𝜆𝑡 such that 𝑝 (𝜆𝑡 = 0) = 𝑝 (𝜆𝑡 = 1) = 0.5 ∀𝑡 . This produces the two hybrid distributions:

𝑝 (𝑟 |𝜆𝑡 ) =
𝑇∏
𝑡=0

𝑝 (𝑟𝑡 )𝜆𝑡𝑞(𝑟𝑡 ) (1−𝜆𝑡 ) (B.11)

𝑞(𝑟 |𝜆𝑡 ) =
𝑇∏
𝑡=0

𝑝 (𝑟𝑡 ) (1−𝜆𝑡 )𝑞(𝑟𝑡 )𝜆𝑡 . (B.12)

Using these hybrid distributions, we can write our objective function as:

L = E𝜆𝑡 [𝐾𝐿(𝑞 | |𝑝)] =
∫ [∫

(log𝑞(𝑟 |𝜆𝑡 ) − log𝑝 (𝑟 |𝜆𝑡 ))𝑞(𝑟 |𝜆𝑡 )𝑑𝑟
]
𝑝 (𝜆𝑡 )𝑑𝜆𝑡 . (B.13)

We will show that our three methods: NVI∗, BP, and IL (which here will coincide exactly with

WS), all produce unbiased stochastic gradient estimates, with very different variance properties.

It is worth explicitly outlining why variance is such an important quantity for stochastic

gradient estimates. Suppose we obtain 𝑁 independent samples of a weight update Δ𝜇𝑞 , and want

to compute the MSE of our estimated weight update to the true gradient, in expectation over
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samples:

𝑀𝑆𝐸 (Δ𝜇𝑞) = EΔ𝜇 (𝑛)𝑞


(
− 𝑑

𝑑𝜇𝑞
L − 1

𝑁

𝑁∑︁
𝑛=0

Δ𝜇 (𝑛)𝑞

)2
=

(
− 𝑑

𝑑𝜇𝑞
L − E

Δ𝜇 (𝑛)𝑞

[
1
𝑁

𝑁∑︁
𝑛=0

Δ𝜇 (𝑛)𝑞

])2

+𝑉𝑎𝑟
[

1
𝑁

𝑁∑︁
𝑛=0

Δ𝜇 (𝑛)𝑞

]
. (B.14)

Here, the equality follows from bias-variance decomposition of the mean-squared error. In our

toy example (but not in general) the biases for IL, BP, and NVI∗ will all be 0. This gives:

𝑀𝑆𝐸 (Δ𝜇𝑞) = 𝑉𝑎𝑟
[

1
𝑁

𝑁∑︁
𝑛=0

Δ𝜇 (𝑛)𝑞

]
=

𝑉𝑎𝑟

[
Δ𝜇 (𝑛)𝑞

]
𝑁

. (B.15)

Suppose we want the mean-squared error to be less than some value 𝜖 ≪ 1. How many samples

(𝑁 ) do we need to take to bring ourselves below this error on average? We have:

𝑉𝑎𝑟

[
Δ𝜇 (𝑛)𝑞

]
𝑁

< 𝜖 ⇒
𝑉𝑎𝑟

[
Δ𝜇 (𝑛)𝑞

]
𝜖

< 𝑁 . (B.16)

This means that increases in the variance of a weight estimate require proportionate increases in

the number of samples required to reduce the error of the estimate. In practice, this requires high

variance methods to process more data and to have lower learning rates, in some cases by several

orders of magnitude. Even if a stochastic weight update is ‘local’ in a biologically-plausible sense,

it may still require so much data for learning to occur as to be completely impractical.

B.3.1 Comparing Variances

Analytic variance calculations are only possible for the simplest of examples, but the intuitions

they provide are nevertheless valuable. In the sections that follow, we will show that samples from

all three methods have exactly the same expectation (the ‘signal’), but only IL and BP agree on
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their variance, while NVI∗ typically has much higher variance. For univariate normal distributions

with identical variance, the loss L = E𝜆 [𝐾𝐿(𝑞 | |𝑝)] = 𝐾𝐿[𝑞 | |𝑝] = 𝑇 (𝜇𝑝 − 𝜇𝑞)2/2𝜎2. Writing the

variances in terms of the loss, we have:

𝑉𝑎𝑟IL = 𝑉𝑎𝑟BP =
𝑇

𝜎2 (B.17)

𝑉𝑎𝑟NVI =
𝑇

2𝜎2 + L
8𝜎2 (3𝑇 + 5) (B.18)

This shows that for the most part, IL and BP hugely outperform NVI∗. However, it is possible for

NVI∗ to outperform these methods in the limit as L → 0 (a regime only achieved after successful

optimization). Here, as with our numerical results, we have incorporated two methods that

partially ameliorate the high variance of the NVI∗ estimate, which for reasonably low-dimensional

tasks, can still allow it to perform comparably to BP; however, NVI∗ is unlikely to scale well to

high dimensions, even with these additions. The purpose for our analysis is to show that these

high variance difficulties do not apply to IL, whose scaling properties are much closer to BP.

B.3.2 Backpropagation

ExpectationWe will focus only on 𝑑
𝑑𝜇𝑞

for simplicity. Because the entropy of 𝑞 is constant with

respect to the mean 𝜇𝑞 , we don’t have to worry about the second term in the objective function.

Instead, we focus on:

− 𝑑

𝑑𝜇𝑞
L =

𝑑

𝑑𝜇𝑞

∫ [∫
(log𝑝 (𝑟 |𝜆))𝑞(𝑟 |𝜆)𝑑𝑟

]
𝑝 (𝜆)𝑑𝜆

=
𝑑

𝑑𝜇𝑞

∑︁
𝑡

[∫
1
2
(log𝑝 (𝑟𝑡 ))𝑞(𝑟𝑡 )𝑑𝑟𝑡 +

∫
1
2
(log𝑞(𝑟𝑡 ))𝑝 (𝑟𝑡 )𝑑𝑟𝑡

]
= − 𝑑

𝑑𝜇𝑞

∑︁
𝑡

[∫
1

4𝜎2 ((𝑟𝑡 − 𝜇𝑝)
2)𝑞(𝑟𝑡 )𝑑𝑟𝑡 +

∫
1

4𝜎2 ((𝑟𝑡 − 𝜇𝑞)
2)𝑝 (𝑟𝑡 )𝑑𝑟𝑡

]
. (B.19)
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At this point, we employ the ‘reparameterization trick,’ which reduces the variance of the weight

update relative to NVI∗. For the first integral we use the change of variables 𝑟𝑡 = 𝜇𝑞 + 𝜂𝑡 , and for

the second integral we use the change of variables 𝑟𝑡 = 𝜇𝑝 + 𝜂𝑡 , where 𝜂𝑡 ∼ N(0, 𝜎2). This gives:

− 𝑑

𝑑𝜇𝑞
L = − 𝑑

𝑑𝜇𝑞

𝑇∑︁
𝑡=0

[∫
1

4𝜎2 ((𝜇𝑞 + 𝜂𝑡 − 𝜇𝑝)
2)𝑝 (𝜂𝑡 )𝑑𝜂𝑡 +

∫
1

4𝜎2 ((𝜇𝑝 + 𝜂𝑡 − 𝜇𝑞)
2)𝑝 (𝜂𝑡 )𝑑𝜂𝑡

]
= − 𝑑

𝑑𝜇𝑞

𝑇∑︁
𝑡=0

∫
1

2𝜎2 ((𝜇𝑞 + 𝜂𝑡 − 𝜇𝑝)
2)𝑝 (𝜂𝑡 )𝑑𝜂𝑡

=

𝑇∑︁
𝑡=0

∫
1
𝜎2 (𝜇𝑝 + 𝜂𝑡 − 𝜇𝑞)𝑝 (𝜂𝑡 )𝑑𝜂𝑡 . (B.20)

Computing this expectation analytically, we have: − 𝑑
𝑑𝜇𝑞

L = 𝑇
𝜎2 (𝜇𝑝−𝜇𝑞), which is unbiased, because

we have not employed any approximations. If we were to compute this expectation using samples

from 𝑝 (𝜂𝑡 ), each individual parameter update would be given by Δ𝜇𝑞 ∝
∑𝑇
𝑡=0

1
𝜎2 (𝜇𝑝 + 𝜂𝑡 − 𝜇𝑞) for a

given sample from 𝜂. Given our expected weight update, we now ask for the variance.

Variance The variance of a sample,
∑𝑇
𝑡=0

1
𝜎2 (𝜇𝑝 + 𝜂𝑡 − 𝜇𝑞), is given by:

𝑉𝑎𝑟 (Δ𝜇𝑞) =
∫ (

1
𝜎2 (

𝑇∑︁
𝑡=0

(𝜇𝑝 + 𝜂𝑡 − 𝜇𝑞 − (𝜇𝑝 − 𝜇𝑞)))
)2

𝑝 (𝜂𝑡 )𝑑𝜂𝑡

=

∫ 𝑇∑︁
𝑡=0

𝜂2
𝑡

𝜎4𝑝 (𝜂𝑡 )𝑑𝜂𝑡

=
𝑇

𝜎2 . (B.21)
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B.3.3 Impression learning

Expectation We can use our previous derivation of the IL weight update to write:

− 𝑑

𝑑𝜇𝑞
L ≈ 2

𝑇∑︁
𝑡=0

[∫ [
(1 − 𝜆𝑡 )

𝑑

𝑑𝜇𝑞
log𝑞(𝑟𝑡 ) + (𝜆𝑡 )

𝑑

𝑑𝜇𝑞
log𝑝

]
𝑞(𝑟𝑡 |𝜆𝑡 )𝑑𝑟𝑡

]
𝑝 (𝜆𝑡 )𝑑𝜆𝑡

= 2
𝑇∑︁
𝑡=0

[∫
(1 − 𝜆𝑡 )

𝑑

𝑑𝜇𝑞
log𝑞(𝑟𝑡 )]𝑞(𝑟𝑡 |𝜆)𝑑𝑟𝑡

]
𝑝 (𝜆𝑡 )𝑑𝜆𝑡

=

𝑇∑︁
𝑡=0

∫
𝑑

𝑑𝜇𝑞
log𝑞(𝑟𝑡 )𝑝 (𝑟𝑡 )𝑑𝑟𝑡 (B.22)

where this last equality follows from the fact that 𝑞(𝑟𝑡 |𝜆) = 𝑝 (𝑟𝑡 ) whenever 1− 𝜆𝑡 = 1. Continuing

our derivation by substituting in log𝑞(𝑟𝑡 ) and discarding constants, we have:

− 𝑑

𝑑𝜇𝑞
L ≈

𝑇∑︁
𝑡=0

∫
− 𝑑

𝑑𝜇𝑞

1
2𝜎2 (𝑟𝑡 − 𝜇𝑞)

2𝑝 (𝑟𝑡 )𝑑𝑟𝑡

=

𝑇∑︁
𝑡=0

∫
1
𝜎2 (𝑟𝑡 − 𝜇𝑞)𝑝 (𝑟𝑡 )𝑑𝑟𝑡 . (B.23)

Computing this expectation analytically gives: − 𝑑
𝑑𝜇𝑞

L ≈ 𝑇
𝜎2 (𝜇𝑝 − 𝜇𝑞). Interestingly, in this case,

the expected weight update coincides directly with the update given by BP, meaning that for this

contrived example, IL is unbiased. This is clearly not the case in general, but works because our

simplified network has no temporal interdependencies between variables and lacks hierarchical

structure. In fact, the IL update also directly corresponds to the WS update in this case for the

same reason. As with BP, we can ask about the variance of an individual sample of an update

given by IL, assuming Δ𝜇𝑞 ∝
∑𝑇
𝑡=0

1
𝜎2 (𝑟𝑡 − 𝜇𝑞).
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Variance The variance of a sample,
∑𝑇
𝑡=0

1
𝜎2 (𝑟𝑡 − 𝜇𝑞), is given by:

𝑉𝑎𝑟 (Δ𝜇𝑞) =
∫ (

1
𝜎2 (

𝑇∑︁
𝑡=0

𝑟𝑡 − 𝜇𝑞 − (𝜇𝑝 − 𝜇𝑞))
)2

𝑝 (𝑟𝑡 )𝑑𝑟𝑡

=

∫
1
𝜎4 (

𝑇∑︁
𝑡=0

(𝑟𝑡 − 𝜇𝑝))2𝑝 (𝑟𝑡 )𝑑𝑟𝑡

=

∫
1
𝜎4

𝑇∑︁
𝑡=0

𝑇∑︁
𝑡 ′=0

(𝑟𝑡 − 𝜇𝑝) (𝑟𝑡 ′ − 𝜇𝑝)𝑝 (𝑟𝑡 )𝑑𝑟𝑡

=

∫
1
𝜎4

𝑇∑︁
𝑡=0

(𝑟𝑡 − 𝜇𝑝)2𝑝 (𝑟𝑡 )𝑑𝑟𝑡

=
𝑇

𝜎2 , (B.24)

where here we have exploited the fact that E[(𝑟𝑡 − 𝜇𝑝) (𝑟𝑡 ′ − 𝜇𝑝)] = 0 ∀𝑡 ≠ 𝑡 ′. This shows that

for this simple example, there is a perfect correspondence between both the expectation and the

variance of IL compared to BP.

B.3.4 Neural Variational Inference

Expectation The difference between NVI∗ and BP is that we do not use a change of variables.

Given our previous derivation of the NVI∗ update (Eq. B.4), we have:

− 𝑑

𝑑𝜇𝑞
L =

∫ [∫
𝑑

𝑑𝜇𝑞
log𝑝 (𝑟 |𝜆𝑡 )𝑞(𝑟 |𝜆) + (log𝑝 − log𝑞) ( 𝑑

𝑑𝜇𝑞
log𝑞(𝑟 |𝜆))𝑞(𝑟 |𝜆)𝑑𝑟

]
𝑝 (𝜆𝑡 )𝑑𝜆𝑡

=

∫ [∫ (
𝑇∑︁
𝑡=0

(1 − 𝜆𝑡 )
𝜎2 (𝑟𝑡 − 𝜇𝑞) + (log𝑝 − log𝑞)

𝑇∑︁
𝑡=0

𝜆𝑡

𝜎2 (𝑟𝑡 − 𝜇𝑞)
)
𝑞(𝑟 |𝜆)𝑑𝑟

]
𝑝 (𝜆𝑡 )𝑑𝜆𝑡 ,

where the second equality follows from substituting in 𝑑
𝑑𝜇𝑞

log𝑝 (𝑟 |𝜆𝑡 ) and 𝑑
𝑑𝜇𝑞

log𝑞(𝑟 |𝜆). Not-

ing that log𝑝 − log𝑞 = log𝑝 − log𝑞 when 𝜆𝑡 = 1, we continue:
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− 𝑑

𝑑𝜇𝑞
L =

∫ [∫ (
𝑇∑︁
𝑡=0

(1 − 𝜆𝑡 )
𝜎2 (𝑟𝑡 − 𝜇𝑞) + (log𝑝 − log𝑞)

𝑇∑︁
𝑡=0

𝜆𝑡

𝜎2 (𝑟𝑡 − 𝜇𝑞)
)
𝑞(𝑟 |𝜆)𝑑𝑟

]
𝑝 (𝜆𝑡 )𝑑𝜆𝑡

= E𝑟,𝜆

[
𝑇∑︁
𝑡=0

(1 − 𝜆𝑡 )
𝜎2 (𝑟𝑡 − 𝜇𝑞) −

(
𝑇∑︁
𝑡=0

(𝑟𝑡 − 𝜇𝑝)2 − (𝑟𝑡 − 𝜇𝑞)2

)
𝑇∑︁
𝑡=0

𝜆𝑡

2𝜎4 (𝑟𝑡 − 𝜇𝑞)
]

= E𝑟,𝜆

[
𝑇∑︁
𝑡=0

(1 − 𝜆𝑡 )
𝜎2 (𝑟𝑡 − 𝜇𝑞) −

(
𝑇∑︁
𝑡=0

2𝑟𝑡 (𝜇𝑞 − 𝜇𝑝) + 𝜇2
𝑝 − 𝜇2

𝑞

)
𝑇∑︁
𝑡=0

𝜆𝑡

2𝜎4 (𝑟𝑡 − 𝜇𝑞)
]
. (B.25)

At this point, we’ll allow ourselves to exploit the structure of our problem in two ways

commonly employed in NVI∗. First, we observe that the loss at a particular time step, 2𝑟𝑡 (𝜇𝑞 −

𝜇𝑝) + 𝜇2
𝑝 − 𝜇2

𝑞 is independent of 𝑟𝑡 ′ − 𝜇𝑞 for 𝑡 ′ > 𝑡 , i.e. fluctuations in variables at future time steps

do not influence the current loss. Incorporating this fact modifies our update to give:

− 𝑑

𝑑𝜇𝑞
L = E𝑟,𝜆

[
𝑇∑︁
𝑡=0

(1 − 𝜆𝑡 )
𝜎2 (𝑟𝑡 − 𝜇𝑞) −

𝑇∑︁
𝑡=0

∑︁
𝑡 ′≤𝑡

𝜆𝑡

2𝜎4

(
2𝑟𝑡 (𝜇𝑞 − 𝜇𝑝) + 𝜇2

𝑝 − 𝜇2
𝑞

)
(𝑟 ′𝑡 − 𝜇𝑞)

]
. (B.26)

Next, we notice thatE
[∑

𝑡 ′≤𝑡
𝜆𝑡

2𝜎4 (𝑟 ′𝑡 − 𝜇𝑞)
]
= 0, so we can subtract from our update𝑎×∑

𝑡 ′≤𝑡
𝜆𝑡

2𝜎4 (𝑟 ′𝑡−

𝜇𝑞) for some constant 𝑎, without modifying the expectation of our loss. Choosing a constant

𝑎 that will reduce the variance of the parameter update is a common technique used in NVI∗,

called using a ‘control variate’ [Ranganath et al. 2014; Mnih and Gregor 2014]. We notice that the

average loss contributes nothing to the expectation, so we take 𝑎 = 2𝜇𝑞 (𝜇𝑞 − 𝜇𝑝) + 𝜇2
𝑝 − 𝜇2

𝑞 , giving

the improved-variance update:

− 𝑑

𝑑𝜇𝑞
L = E𝑟,𝜆

[
𝑇∑︁
𝑡=0

(1 − 𝜆𝑡 )
𝜎2 (𝑟𝑡 − 𝜇𝑞) −

𝑇∑︁
𝑡=0

∑︁
𝑡 ′≤𝑡

𝜆𝑡

𝜎4 (𝑟𝑡 − 𝜇𝑞) (𝜇𝑞 − 𝜇𝑝) (𝑟
′
𝑡 − 𝜇𝑞)

]
. (B.27)

Individual samples from this method of differentiation are more complicated (and higher variance)

than IL or BP. An individual sample would give:
∑𝑇
𝑡=0

(1−𝜆𝑡 )
𝜎2 (𝑟𝑡 − 𝜇𝑞) −

∑𝑇
𝑡=0

∑
𝑡 ′≤𝑡

𝜆𝑡
𝜎4 (𝑟𝑡 − 𝜇𝑞) (𝜇𝑞 −

𝜇𝑝) (𝑟 ′𝑡 − 𝜇𝑞). We’ll first compute the expectation of this expression (to verify that it is equivalent
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to BP and IL), and then we’ll compute its variance. Continuing our calculation, we get:

− 𝑑

𝑑𝜇𝑞
L = E𝑟,𝜆

[
𝑇∑︁
𝑡=0

1 − 𝜆𝑡
𝜎2 (𝑟𝑡 − 𝜇𝑞) −

𝑇∑︁
𝑡=0

∑︁
𝑡 ′≤𝑡

𝜆𝑡

𝜎4 (𝑟𝑡 − 𝜇𝑞) (𝜇𝑞 − 𝜇𝑝) (𝑟
′
𝑡 − 𝜇𝑞)

]
=

∫ 𝑇∑︁
𝑡=0

(1 − 𝜆𝑡 )
𝜎2 (𝑟𝑡 − 𝜇𝑞)𝑝 (𝑟 )𝑑𝑟 +

∫
1

2𝜎4

𝑇∑︁
𝑡=0

∑︁
𝑡 ′≤𝑡

(𝑟𝑡 − 𝜇𝑞) (𝜇𝑝 − 𝜇𝑞) (𝑟 ′𝑡 − 𝜇𝑞)𝑞(𝑟 )𝑑𝑟

=
𝑇

2𝜎2 (𝜇𝑝 − 𝜇𝑞) +
∫ (𝜇𝑝 − 𝜇𝑞)

2𝜎4

𝑇∑︁
𝑡=0

∑︁
𝑡 ′≤𝑡

(
𝑟𝑡 − 𝜇𝑞

)
(𝑟 ′𝑡 − 𝜇𝑞)𝑞(𝑟 )𝑑𝑟

=
𝑇

2𝜎2 (𝜇𝑝 − 𝜇𝑞) +
∫ (𝜇𝑝 − 𝜇𝑞)

2𝜎4

𝑇∑︁
𝑡=0

∑︁
𝑡 ′≤𝑡

(𝜂𝑡 ) (𝜂𝑡 ′)𝑝 (𝜂)𝑑𝜂

=
𝑇

2𝜎2 (𝜇𝑝 − 𝜇𝑞) +
∫ (𝜇𝑝 − 𝜇𝑞)

2𝜎4

𝑇∑︁
𝑡=0

𝜂2
𝑡 𝑝 (𝜂)𝑑𝜂

=
𝑇

𝜎2 (𝜇𝑝 − 𝜇𝑞), (B.28)

where the fourth equality comes from reparameterizing with the transformation 𝜂𝑡 = 𝑟𝑡 − 𝜇𝑞 and

the fifth equality stems from the fact that E [𝜂𝑡 ] = 0 and E [𝜂𝑡𝜂𝑡 ′] = 0. This verifies that whether we

sample over 𝑟 using the black-box differentiation method, or over 𝜂 using the reparameterization

trick, or use IL, we will arrive at the same weight update in expectation. The variance of sample

estimates thus distinguishes IL from NVI∗ (on this example at least).

Variance Because of the NVI∗ sample estimate’s increased complexity, the variance calculation

is also much more involved:
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𝑉𝑎𝑟 (Δ𝜇𝑞) =E𝑟,𝜆

[(
Δ𝜇𝑞 −

𝑇

𝜎2 (𝜇𝑝 − 𝜇𝑞)
)2

]
=E𝑟,𝜆


(
𝑇∑︁
𝑡=0

(1 − 𝜆𝑡 )
𝜎2 (𝑟𝑡 − 𝜇𝑞) −

𝑇∑︁
𝑡=0

∑︁
𝑡 ′≤𝑡

𝜆𝑡

2𝜎4 (𝑟𝑡 − 𝜇𝑞) (𝜇𝑞 − 𝜇𝑝) (𝑟
′
𝑡 − 𝜇𝑞) −

𝑇

𝜎2 (𝜇𝑝 − 𝜇𝑞)
)2

=
1
2

∫
1
𝜎4

𝑇∑︁
𝑡=0

(𝑟𝑡 − 𝜇𝑝)2𝑝 (𝑟 )𝑑𝑟

+ 1
2

∫ (
1

2𝜎4

𝑇∑︁
𝑡=0

∑︁
𝑡 ′≤𝑡

(𝑟𝑡 − 𝜇𝑞) (𝜇𝑝 − 𝜇𝑞) (𝑟 ′𝑡 − 𝜇𝑞) −
𝑇

𝜎2 (𝜇𝑝 − 𝜇𝑞)
)2

𝑞(𝑟 )𝑑𝑟, (B.29)

where in this last step we have taken an expectation over 𝜆, observing that the first term is

only nonzero if 𝜆𝑡 = 0, and the second term is only nonzero if 𝜆𝑡 = 1. Now we apply the

reparameterization, taking 𝑟𝑡 = 𝜂𝑡 + 𝜇𝑝 in the first integral, and 𝑟𝑡 = 𝜂𝑡 + 𝜇𝑞 in the second integral,

giving:
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𝑉𝑎𝑟 (Δ𝜇𝑞) =
𝑇

2𝜎2 + 1
2

∫ (
1

2𝜎4

𝑇∑︁
𝑡=0

∑︁
𝑡 ′≤𝑡

(
𝜂𝑡 (𝜇𝑝 − 𝜇𝑞)

)
(𝜂𝑡 ′) −

𝑇

𝜎2 (𝜇𝑝 − 𝜇𝑞)
)2

𝑝 (𝜂)𝑑𝜂

=
𝑇

2𝜎2 +
(𝜇𝑝 − 𝜇𝑞)2

2𝜎4

∫ (
1

2𝜎2

𝑇∑︁
𝑡=0

∑︁
𝑡 ′≤𝑡

𝜂𝑡𝜂𝑡 ′ −𝑇
)2

𝑝 (𝜂)𝑑𝜂

=
𝑇

2𝜎2 +
(𝜇𝑝 − 𝜇𝑞)2

2𝜎4 E𝜂𝑡


(

1
2𝜎2

𝑇∑︁
𝑡=0

∑︁
𝑡 ′≤𝑡

𝜂𝑡𝜂𝑡 ′

)2

− 𝑇

𝜎2

(
𝑇∑︁
𝑡=0

∑︁
𝑡 ′≤𝑡

𝜂𝑡𝜂𝑡 ′

)
+𝑇 2


=
𝑇

2𝜎2 +
(𝜇𝑝 − 𝜇𝑞)2

2𝜎4 E𝜂𝑡


(

1
2𝜎2

𝑇∑︁
𝑡=0

∑︁
𝑡 ′≤𝑡

𝜂𝑡𝜂𝑡 ′

)2

− 𝑇

𝜎2

(
𝑇∑︁
𝑡=0

𝜂2
𝑡

)
+𝑇 2


=
𝑇

2𝜎2 +
(𝜇𝑝 − 𝜇𝑞)2

2𝜎4 E𝜂𝑡


(

1
2𝜎2

𝑇∑︁
𝑡=0

∑︁
𝑡 ′≤𝑡

𝜂𝑡𝜂𝑡 ′

)2
=
𝑇

2𝜎2 +
(𝜇𝑝 − 𝜇𝑞)2

8𝜎8 E𝜂𝑡

[
𝑇∑︁
𝑡=0

𝑇∑︁
𝑡 ′=0

∑︁
𝑡 ′′≤𝑡

∑︁
𝑡 ′′′≤𝑡 ′

𝜂𝑡𝜂𝑡 ′𝜂𝑡 ′′𝜂𝑡 ′′′

]
=
𝑇

2𝜎2 +
(𝜇𝑝 − 𝜇𝑞)2

8𝜎8

𝑇∑︁
𝑡=0

𝑇∑︁
𝑡 ′=0

∑︁
𝑡 ′′≤𝑡

∑︁
𝑡 ′′′≤𝑡 ′

E𝜂𝑡 [𝜂𝑡𝜂𝑡 ′𝜂𝑡 ′′𝜂𝑡 ′′′] . (B.30)

Now, we notice that there are three mutually exclusive and exhaustive conditions under which this

expectation is nonzero, using the the fact that only the even moments of the normal distribution

are nonzero:

E𝜂𝑡 [𝜂𝑡𝜂𝑡 ′𝜂𝑡 ′′𝜂𝑡 ′′′] =



𝜎4 if 𝑡 = 𝑡 ′ and 𝑡 ′′ = 𝑡 ′′′ and 𝑡 ≠ 𝑡 ′′

𝜎4 if 𝑡 = 𝑡 ′′ and 𝑡 ′ = 𝑡 ′′′ and 𝑡 ≠ 𝑡 ′

3𝜎4 if 𝑡 = 𝑡 ′ = 𝑡 ′′ = 𝑡 ′′′

0 otherwise.

(B.31)

188



These three different conditions result in three different sums:

𝑉𝑎𝑟 (Δ𝜇𝑞) =
𝑇

2𝜎2 +
(𝜇𝑝 − 𝜇𝑞)2

8𝜎8

(
𝑇∑︁
𝑡=1

∑︁
𝑡 ′<𝑡

𝜎4 +
𝑇∑︁
𝑡=0

∑︁
𝑡 ′≠𝑡

𝜎4 +
𝑇∑︁
𝑡=0

3𝜎4

)
=

𝑇

2𝜎2 +
(𝜇𝑝 − 𝜇𝑞)2

8𝜎8

(
𝜎4

𝑇∑︁
𝑡=1

(𝑡) +𝑇 (𝑇 − 1)𝜎4 + 3𝑇𝜎4

)
=

𝑇

2𝜎2 +
(𝜇𝑝 − 𝜇𝑞)2

8𝜎8

(
1
2
𝑇 (𝑇 + 1)𝜎4 +𝑇 (𝑇 − 1)𝜎4 + 3𝑇𝜎4

)
=

𝑇

2𝜎2 +
(𝜇𝑝 − 𝜇𝑞)2

16𝜎4
(
3𝑇 2 + 5𝑇

)
=

𝑇

2𝜎2 + L
8𝜎2 (3𝑇 + 5) , (B.32)

where the third equality follows from the arithmetic series identity:
∑𝑇
𝑡=1(𝑡) = 1

2𝑇 (𝑇 + 1).

B.4 Multilayer Network Architecture

Here we outline the architecture for the 2-layer network used for processing the Free Spoken

Digits dataset [Jackson et al. 2018] in Figure 4.

B.4.1 Model structure

Our inference architecture simply adds an additional feedforward layer of neurons to the network:

sinf
𝑡 = z𝑡 + 𝜎 inf

𝑠 𝝃𝑡 (B.33)

rinf1
𝑡 = 𝑓 (W1s𝑡 + a) + 𝜎 inf

1 𝜼1
𝑡 (B.34)

rinf2
𝑡 = 𝑓 (W2rinf1

𝑡 ) + 𝜎 inf
2 𝜼2

𝑡 , (B.35)

whereW𝑙 denotes the feedforward weights from layer 𝑙−1 to layer 𝑙 , a is an additive bias parameter,

𝜼1
𝑡 ,𝜼

2
𝑡 , 𝝃𝑡 ∼ N(0, 1) are independent white noise samples, 𝜎 inf

1 , 𝜎 inf
2 , and 𝜎 inf

𝑠 denote the inference
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standard deviations for their respective layers, and the nonlinearity 𝑓 (·) is the tanh function. The

multilayer generative model includes an additional feedforward decoder step:

rgen2
𝑡 = ((1 − 𝑘𝑡 )D2 + 𝑘𝑡 I)) 𝑟𝑡−1 + 𝜎gen

2 𝜼2
𝑡 (B.36)

rgen1
𝑡 = 𝑓 (D1r

gen2
𝑡 + b) + 𝜎gen

1 𝜼1
𝑡 (B.37)

sgen
𝑡 = 𝑓 (D𝑠rgen1

𝑡 ) + 𝜎gen
𝑠 𝝃𝑡 , (B.38)

where D2 is a diagonal transition matrix, D1 and D𝑠 are prediction weights to their layers from

higher layers, b is an additive bias parameter, I is the identity matrix, and 𝜎gen
1 , 𝜎gen

2 , and 𝜎gen
𝑠

denote the generative standard deviations for their layers. We define 𝑘𝑡 as in the 1-layer network.

Also in keeping with the basic model, during simulation, samples are determined by a combination

of 𝑝𝑚 and 𝑞, given by 𝑞𝜃 :

r2
𝑡 = 𝜆𝑡r

inf2
𝑡 + (1 − 𝜆𝑡 )rgen2

𝑡 (B.39)

r1
𝑡 = 𝜆𝑡r

inf1
𝑡 + (1 − 𝜆𝑡 )rgen1

𝑡 (B.40)

s𝑡 = 𝜆𝑡sinf
𝑡 + (1 − 𝜆𝑡 )sgen

𝑡 . (B.41)

B.4.2 Parameter updates

Adding additional layers to our model does not change the fact that the parameter updates can be

interpreted as local synaptic plasticity rules at the basal (for 𝑞) or apical (for 𝑝) compartments of

our neuron model. Plugging our probability models into the equation for the IL parameter update

(Eq. 5), calculating derivatives, and updating our parameters stochastically at every time step as

with our basic model gives:
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ΔW(𝑖 𝑗)
1 ∝ 1 − 𝜆𝑡

(𝜎 inf
1 )2

((r1
𝑡 ) (𝑖) − 𝑓 (W1s𝑡 + a) (𝑖)) 𝑓 ′(W1s𝑡 + a) (𝑖)s( 𝑗)𝑡 (B.42)

Δa(𝑖) ∝ 1 − 𝜆𝑡
(𝜎 inf

1 )2
((r1

𝑡 ) (𝑖) − 𝑓 (W1s𝑡 + a) (𝑖)) 𝑓 ′(W1s𝑡 + a) (𝑖) (B.43)

ΔW(𝑖 𝑗)
2 ∝ 1 − 𝜆𝑡

(𝜎 inf
2 )2

((r2
𝑡 ) (𝑖) − 𝑓 (W2r1

𝑡 ) (𝑖)) 𝑓 ′(W2r1
𝑡 ) (𝑖) (r1

𝑡 ) ( 𝑗) (B.44)

ΔD(𝑖𝑖)
2 ∝ 𝜆𝑡 (1 − 𝑘𝑡 )

(𝜎gen
2 )2

((r2
𝑡 ) (𝑖) − (D2r2

𝑡−1) (𝑖)) (r2
𝑡−1) (𝑖) (B.45)

ΔD(𝑖 𝑗)
1 ∝ 𝜆𝑡

(𝜎gen
𝑠 )2

((r1
𝑡 ) (𝑖) − 𝑓 (D1r2

𝑡 + b) (𝑖)) 𝑓 ′(D1r2
𝑡 + b) (𝑖) (r2

𝑡 ) ( 𝑗) (B.46)

Δb(𝑖) ∝ 𝜆𝑡

(𝜎gen
𝑠 )2

((r1
𝑡 ) (𝑖) − 𝑓 (D1r2

𝑡 + b) (𝑖)) 𝑓 ′(D1r2
𝑡 + b) (𝑖) (B.47)

ΔD(𝑖 𝑗)
𝑠 ∝ 𝜆𝑡

(𝜎gen
𝑠 )2

(s𝑖𝑡 − 𝑓 (D𝑠r1
𝑡 ) (𝑖)) 𝑓 ′(D𝑠r1

𝑡 ) (𝑖) (r1
𝑡 ) ( 𝑗) . (B.48)
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