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ABSTRACT

We describe an image compression system, consisting of a nonlinear encoding
transformation, a uniform quantizer, and a nonlinear decoding transformation.
The transforms are constructed in three successive layers of convolutional lin-
ear filters and nonlinear activation functions, but unlike most convolutional neural
networks, we use a joint nonlinearity that implements a form of local gain control,
inspired by those used to model biological neurons. Using a variant of stochastic
gradient descent, we jointly optimize the entire system for rate–distortion perfor-
mance over a database of training images, introducing a continuous proxy for the
discontinuous loss function arising from the quantizer. The relaxed optimization
problem resembles that of variational autoencoders, except that it must operate
at any point along the rate–distortion curve, whereas the optimization of genera-
tive models aims only to minimize entropy of the data under the model. Across
an independent set of test images, we find that the optimized coder generally ex-
hibits better rate–distortion performance than the standard JPEG and JPEG 2000
compression systems. More importantly, we observe a dramatic improvement in
visual quality for all images at all bit rates.

1 INTRODUCTION

Data compression is a fundamental and well-studied problem in engineering, and is commonly
formulated with the goal of designing codes for a given discrete data ensemble with minimal en-
tropy (Shannon, 1948). The solution relies heavily on knowledge of the probabilistic structure of
the data, and thus the problem is closely related to probabilistic source modeling. However, since all
practical codes must have finite entropy, continuous-valued data (such as vectors of image pixel in-
tensities) must be quantized to a finite set of discrete values, which introduces error. In this context,
known as the lossy compression problem, one must trade off two competing costs: the entropy of
the discretized representation (rate) and the error arising from the quantization (distortion). Differ-
ent compression applications, such as data storage or transmission over limited-capacity channels,
impose different rate–distortion trade-offs.

Joint optimization of rate and distortion is difficult. Without further constraints, the general problem
of optimal vector quantization is intractable in high dimensions (Gersho and Gray, 1992). For this
reason, most existing image compression systems operate by linearly transforming the data vector
into a suitable continuous-valued representation, quantizing its elements independently, and then
encoding the resulting discrete representation using a lossless entropy code (Wintz, 1972; Netravali
and Limb, 1980). For example, JPEG uses a discrete cosine transform on blocks of pixels, and
JPEG 2000 uses a multi-scale orthogonal wavelet decomposition. Typically, the three components
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Figure 1: General framework for rate–distortion optimization of nonlinear transform coding (Ballé,
Laparra, and Simoncelli, 2016). A vector of image intensities x ∈ RN is mapped to a latent code
space via a parametric multivariate analysis transform, y = ga(x;φ). This representation is quan-
tized, yielding a discrete-valued vector q ∈ ZM which is then compressed. The rate of this discrete
code, R, is lower bounded by the entropy of the discrete probability distribution of the quantized
vector, H[Pq]. To reconstruct the compressed image, the discrete elements of q are reinterpreted as
a continuous-valued vector ŷ, which is transformed back to the data space using a parametric syn-
thesis transform x̂ = gs(ŷ;θ). Distortion is assessed by transforming to a perceptual space using a
(fixed) transform, ẑ = gp(x̂), and evaluating a metric d(z, ẑ). The parameter vectors φ and θ are
optimized for a weighted sum of the rate and distortion measures over a set of images.

of transform coding systems – the transform, the quantizer, and the entropy coder – are separately
optimized (often through manual parameter adjustment).

We have developed a framework for end-to-end optimization of an image compression system based
on nonlinear transforms (figure 1). Previously, we demonstrated that a system consisting of linear–
nonlinear block transformations, optimized for a measure of perceptual distortion, exhibited visu-
ally superior performance compared to a system optimized for mean squared error (MSE) (Ballé,
Laparra, and Simoncelli, 2016). Here, we optimize for MSE, and focus on the use of more flexi-
ble transforms built from cascades of linear convolutions and nonlinearities. Specifically, we use a
generalized divisive normalization (GDN) joint nonlinearity that is inspired by models of neurons
in biological visual systems, and has proven effective in Gaussianizing image densities (Ballé, La-
parra, and Simoncelli, 2015). This cascaded transformation is followed by uniform scalar quantiza-
tion (i.e., each element is rounded to the nearest integer), which effectively implements a parametric
form of vector quantization on the original image space. The compressed image is reconstructed
from these quantized values using an approximate parametric nonlinear inverse transform.

For any desired point along the rate–distortion curve, the parameters of both forward and inverse
transforms are jointly optimized using stochastic gradient descent. To achieve this in the presence
of quantization (which produces zero gradients almost everywhere), we use a proxy loss function
based on a continuous relaxation of the probability model, replacing the quantization step with
additive uniform noise. The relaxed rate–distortion optimization problem bears some resemblance to
those used to learn generative image models, and in particular variational autoencoders (Kingma and
Welling, 2014; Rezende, Mohamed, and Wierstra, 2014), but differs in the constraints we impose to
ensure that it approximates the discrete problem all along the rate–distortion curve. Finally, rather
than reporting discrete entropy estimates, we implement an entropy coder and report performance
values using the actual bit rate, thus demonstrating the feasibility of our solution as a complete lossy
compression system.

2 OPTIMIZATION OF NONLINEAR TRANSFORM CODING

Our objective is to minimize a weighted sum of the rate and distortion, R + λD, over analysis and
synthesis transforms and the entropy code, where parameter λ governs the trade-off between the
two terms (figure 2, left panel). The actual rates achieved by a properly designed entropy code are
only slightly larger than the discrete entropy (Rissanen and Langdon, 1981), and thus we define the
objective functional directly in terms of entropy:

L[ga, gs] = −E
[
log2 Pq

]
+ λE

[
d(z, ẑ)

]
, (1)

where both expectations can be approximated by averages over a training set of images. Since
optimal quantization is difficult in high dimensional spaces, we instead assume a fixed uniform scalar
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Figure 2: Left: The rate–distortion trade-off. The gray region represents the set of all rate–distortion
values that can be achieved with a given model (over all possible parameter settings). Right: One-
dimensional illustration of relationship between densities of yi (elements of latent representation),
ŷi (quantized elements), and ỹi (elements perturbed by uniform noise). Each discrete probability
value in pŷi corresponds to the portion of the density pyi within the corresponding quantization bin
(indicated by shading). Density pỹi provides a continuous interpolated function that is consistent
with the discrete probability pŷi at integer values.

quantizer, and aim to have the nonlinear transformations warp the code space in an appropriate way,
effectively implementing a parametric form of vector quantization. Given a powerful enough set of
transformations, we can assume without loss of generality that the quantization bin size is always
one and the representing values are at the center of the bins. That is,

ŷi = qi = round(yi). (2)

The marginal density of ŷi is then given by a train of discrete probability masses (Dirac delta func-
tions, figure 2, right panel) with weights equal to the probability mass function of qi:

Pqi(n) =

∫ n+ 1
2

n− 1
2

pyi(t) dt, for all n ∈ Z, (3)

Note that both terms in (1) depend on the quantized values, and the derivatives of the quantization
function (2) are zero almost everywhere, rendering gradient descent ineffective. To allow optimiza-
tion via stochastic gradient descent, we replace the quantizer with an additive i.i.d. uniform noise
source ∆y, which has the same width as the quantization bins (one). This relaxed formulation has
two desirable properties. First, the density function of ỹ = y+ ∆y is a continuous relaxation of the
probability mass function of q (figure 2, right panel):

pỹ(n) = Pq(n), for all n ∈ ZM , (4)

which implies that the differential entropy of ỹ can be used as an approximation of the discrete
entropy of q. Second, independent uniform noise approximates quantization error in terms of its
marginal moments, and is frequently used as a model of quantization error (Gray and Neuhoff,
1998). We can thus use the same approximation for our measure of distortion. We examine the
empirical quality of these rate and distortion approximations in section 4.

Because model error can have an effect on the approximation, we use unbiased, frequentist model
estimates of pỹ rather than Bayesian estimates (details in the appendix). Further, we assume inde-
pendent marginals in the code space for both the relaxed probability model and the entropy code,
and model the marginals pỹi non-parametrically. Specifically, we use finely sampled piecewise lin-
ear functions (see appendix). Since pỹi = pyi ∗ U(0, 1) is effectively smoothed by a box-car filter –
the uniform density on the unit interval, U(0, 1) – the model error can be made arbitrarily small by
decreasing the sampling interval.

Given this continuous approximation of the quantized coefficient distribution, the loss function for
parameters θ and φ can be written as:
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x ∼ N
(
gs(ỹ;θ), (2λ)−11

)
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Figure 3: Probabilistic graphical model representation of the relaxed rate–distortion optimization
problem, which is analogous to that used for variational autoencoders.

L(θ,φ) = Ex,∆y

[
−
∑
i

log2 pỹi(ga(x;φ) + ∆y;ψ(i))

+ λ d
(
gp
(
gs(ga(x;φ) + ∆y;θ)

)
, gp(x)

)]
. (5)

where vector ψ(i) parameterizes the piecewise linear approximation of pỹi . This is continuous and
differentiable with respect to the parameters, and thus well-suited for stochastic optimization.

2.1 RELATIONSHIP TO GENERATIVE IMAGE MODELS

We derived our formulation directly from the classical rate–distortion optimization problem. How-
ever, once the transition to a continuous loss function is made, the optimization problem resembles
those encountered in fitting generative models of images, and can more specifically be cast in the
context of variational autoencoders (Kingma and Welling, 2014; Rezende, Mohamed, and Wierstra,
2014). In Bayesian variational inference, we are given an ensemble of observations of a random
variable x along with a generative model px|y(x|y). We seek to find a posterior py|x(y|x), which
generally cannot be expressed in closed form. The approach followed by Kingma and Welling
(2014) consists of approximating this posterior with a density q(y|x), by minimizing the Kullback–
Leibler divergence between the two:

DKL

[
q‖py|x

]
= Ey∼q log q(y|x)− Ey∼q log py|x(y|x)

= Ey∼q log q(y|x)− Ey∼q log px|y(x|y)− Ey∼q log py(y) + const. (6)

This objective function is equivalent to our relaxed rate–distortion optimization problem, with dis-
tortion measured as MSE, if we define the generative model as follows (figure 3):

px|ỹ(x|ỹ;λ,θ) = N
(
x; gs(ỹ;θ), (2λ)−11

)
, (7)

pỹ(ỹ;ψ(0),ψ(1), . . . ) =
∏
i

pỹi(ỹi;ψ
(i)), (8)

and the approximate posterior as follows:

q(ỹ|x;φ) =
∏
i

U(ỹi; yi, 1) with y = ga(x;φ), (9)

where U(ỹi; yi, 1) is the uniform density on the unit interval centered on yi. With this, the first
term in the Kullback–Leibler divergence is constant; the second term corresponds to the distortion,
and the third term corresponds to the rate (both up to additive constants). Note that if a perceptual
transform gp is used, or the metric d is not Euclidean, px|ỹ is no longer Gaussian. The equivalence
to variational autoencoders cannot be guaranteed in general, as the distortion term may not corre-
spond to a normalizable density. At least for any affine and invertible perceptual transform and any
translation-invariant metric, it can be shown to correspond to the density

px|ỹ(x|ỹ;λ,θ) =
1

Z(λ)
exp

(
−λ d

(
gp
(
gs(ỹ;θ)

)
, gp(x)

))
, (10)
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where Z(λ) normalizes the density (but need not be computed to fit the model).

Despite these similarities between our compression framework and that of variational autoencoders,
it is worth noting that the role of discretization in lossy compression systems leads to fundamental
differences. First, naively discretizing a continuous representation may severely compromise its
effectiveness for compression, however well it may perform as a generative model. For example,
performing scalar quantization on multivariate data is not even guaranteed to be optimal if the data is
marginally independent and the error metric is separable (Gersho and Gray, 1992). For the purpose
of evaluation, certain precautions must be taken to be able to compare differential entropy with
(discrete) entropy, and discrete entropy can only be reasonably equated to the actual rate of a discrete
code if an accurate discrete probability model is available to design the code.

Second, generative models aim to minimize differential entropy of the data ensemble under the
model, i.e., explaining fluctuations in the data. This often means minimizing the variance of a
“slack” term like (7), which in turn maximizes λ. Lossy compression methods, on the other hand, are
optimized to achieve the best trade-off between having the model explain the data (which increases
rate and decreases distortion), and having the slack term explain the data (which decreases rate and
increases distortion). The overall performance of a compression model is determined by the shape
of the convex hull of attainable model distortions and rates, over all possible values of the model
parameters. Finding this convex hull is equivalent to optimizing the model for particular values of
λ (see figure 2). In contrast, generative models operate in a regime where λ is inferred and ideally
approaches infinity for noiseless data. This is the regime of lossless compression. Even so, lossless
compression methods still need to operate in a discretized space, typically directly on quantized lu-
minance values. For generative models, the discretization of luminance values is usually considered
a nuisance (Theis, van den Oord, and Bethge, 2015), although there are examples of generative mod-
els that operate on quantized pixel values (van den Oord, Kalchbrenner, and Kavukcuoglu, 2016).

Finally, correspondence between the typical slack term (7) of a generative model (figure 3, left
panel) and the distortion metric in rate–distortion optimization holds for simple metrics, such as the
Euclidean distance. A more general perceptual measure would be considered a peculiar choice from
a generative modeling perspective, if it corresponds to a density at all.

3 CHOICE OF FORWARD, INVERSE, AND PERCEPTUAL TRANSFORMS

We applied our optimization framework to analysis/synthesis transforms constructed from linear–
nonlinear cascades. Most compression systems are based on orthogonal linear transforms, chosen to
reduce correlations in the data, which substantially simplifies entropy coding. But the joint statistics
of linear filter responses exhibit strong higher-order dependencies. These may be significantly re-
duced through the use of a joint nonlinear gain control operations (Schwartz and Simoncelli, 2001;
Lyu, 2010; Sinz and Bethge, 2013), inspired by models of visual neurons (Heeger, 1992; Caran-
dini and Heeger, 2012). Earlier results suggested that incorporating local normalization in cascaded
convolutional neural networks can improve performance in object recognition (Jarrett et al., 2009),
although the normalization parameters in this case were not optimized. Here, we make use of a
generalized divisive normalization (GDN) transform that we have previously shown to be highly
efficient in Gaussianizing the local joint statistics of natural images, much more so than cascades
of linear transforms followed by marginal nonlinearities (Ballé, Laparra, and Simoncelli, 2015).
Specifically, our analysis transform ga, consists of three stages of convolution, subsampling, and
GDN, with the latter defined as:

vi =
ui(

βi +
∑
j γiju

2
j

) 1
2

, (11)

where the vectors u and v hold the linear and normalized activations at one spatial location across
feature maps, respectively, and the vector β and the symmetric matrix γ are parameters to be opti-
mized. The synthesis transform gs is formed as an approximate inverse (specifically, it uses one step
of the fixed point iteration that can be used to invert the GDN transform):

vi = ui ·
(
βi +

∑
j

γiju
2
j

) 1
2 , (12)

with all parameters defined in the same way as the GDN parameters, but separately optimized.
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Figure 4: Scatter plots comparing discrete vs. continuously-relaxed values of the two terms of the
objective function, evaluated for the optimized GDN model. Points correspond to different values
of λ between 32 and 2048 (inclusive), for images drawn from a random subset of 2169 images (one
third) from the training set. Left: distortion term, evaluated for gs(ŷ) vs. gs(ỹ). Right: rate term,
H[Pqi ] vs. h[pỹi ] (summed over i).

For the convolutional structure of our grayscale analysis transform, we use 128 filters in the first
stage, each sampled by a factor of 4 vertically and horizontally, with the remaining two stages using
128 filters operating over the input features from previous stages, and subsampled by factors of 2 in
each direction. The net output thus has half the dimensionality of the input. The synthesis transform
is structured analogously. For the two highest values of λ, and for RGB models, we increased the
network capacity by increasing the number of filters in each stage to 256 and 192, respectively.

In previous work, we used a perceptual transform gp separately optimized to mimic human judge-
ments of grayscale image distortions (Laparra et al., 2016), and showed that a set of one-stage trans-
forms optimized for this distortion measure led to visually improved results (Ballé, Laparra, and
Simoncelli, 2016). Here, we set the perceptual transform gp to the identity, and use mean squared
error (MSE) as the metric (i.e., d(z, z̃) = ‖z − z̃‖22). This allows a more interpretable comparison
to existing coders (which are generally optimized for MSE), and also allows optimization for color
images, for which we do not currently have a reliable perceptual metric.

4 EXPERIMENTAL RESULTS

For training, we used Adam (Kingma and Ba, 2014), a variant of stochastic gradient descent, to
jointly optimize the full set of parameters (all linear filters, and normalization parameters of the
nonlinearities used in the analysis and synthesis transforms, as well as parameters of the entropy
model) over a subset of the ImageNet database (Deng et al., 2009) consisting of 6507 images (see
appendix for details).

We first verified that the continuously-relaxed loss function given in section 2 provides a good ap-
proximation to the actual rate–distortion values obtained with quantization (figure 4). The relaxed
distortion term appears to be mostly unbiased, and exhibits a relatively small variance. The relaxed
(differential) entropy provides a somewhat positively biased estimate of the discrete entropy for the
coarser quantization regime, but the bias disappears for finer quantization, as expected. Note that
since the values of λ do not have any intrinsic meaning, but serve only to map out the convex hull of
optimal points in the rate–distortion plane (figure 2, left panel), a constant bias in either of the terms
would simply alter the effective value of λ, with no effect on the compression performance.

We compare the rate–distortion performance of our system to two standard coders: JPEG and
JPEG 2000. For our system, all images were compressed using uniform quantization (the continu-
ous relaxation using additive noise was used only for training purposes). To make the comparisons
more fair, we implemented a simple entropy code based on the context-based adaptive binary arith-
metic coding framework (CABAC; Marpe, Schwarz, and Wiegand, 2003). All sideband information
needed by the decoder (size of images, value of λ, etc.) was included in the bit stream (see ap-
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JPEG, 4283 bytes (0.121 bit/px), PSNR: 24.85 dB/29.23 dB, MS-SSIM: 0.8079

Proposed method, 3986 bytes (0.113 bit/px), PSNR: 27.01 dB/34.16 dB, MS-SSIM: 0.9039

JPEG 2000, 4004 bytes (0.113 bit/px), PSNR: 26.61 dB/33.88 dB, MS-SSIM: 0.8860

Figure 5: Heavily compressed example image, 752 × 376 pixels. Note the appearance of artifacts,
especially near edges.
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Figure 6: Rate–distortion curves for the luma component of image shown in figure 5. Left: multi-
scale structural similarity (MS-SSIM; Wang, Simoncelli, and Bovik (2003)). Right: peak signal-to-
noise ratio (10 log10(2552/MSE)).

Figure 7: Cropped portion of an image compressed at three different bit rates. Middle row: the
proposed method, at three different settings of λ. Top row: JPEG, with three different quality
settings. Bottom row: JPEG 2000, with three different rate settings. Bit rates within each column
are matched.

pendix). Note that although the computational costs for training our system are quite high, encoding
or decoding an image with the trained system is efficient, requiring only execution of the optimized
analysis transformation and quantizer, or the synthesis transformation, respectively. Evaluations
were performed on the Kodak image dataset1, an uncompressed set of images commonly used to
evaluate image compression systems. We also examined a set of relatively standard (if outdated)
images used by the compression community (known by the names “Lena”, “Barbara”, “Peppers”,
and “Mandrill”) as well as a set of our own digital photographs. All images, compressed at a variety
of bitrates using all three coders, along with their associated rate–distortion curves, are available
online at http://www.cns.nyu.edu/˜lcv/iclr2017.

1Downloaded from http://www.cipr.rpi.edu/resource/stills/kodak.html
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We find that our system, when tested on photographic images not used in training, exhibits better
rate–distortion performance than both JPEG and JPEG 2000 for most images, especially at the lower
bit rates (although note that results do vary significantly for different images). More importantly,
although we use MSE as a distortion metric for training, the appearance of the decoded images
is both qualitatively different and substantially improved, exhibiting almost none of the visually
disturbing blocking, aliasing, or ringing artifacts commonly seen in images compressed with JPEG,
JPEG 2000 and essentially all other compression systems. We find that this visual improvement
holds for all images tested, and at all bit rates. Consistent with this, distortion measured with a
perceptual metric (MS-SSIM; Wang, Simoncelli, and Bovik, 2003), indicates improvements across
all tested images and bit rates (see appendix and online examples).

To demonstrate the qualitative nature of compression artifacts, we show a representative example
of a heavily compressed image in figure 5. We show an image compressed using our system for
one selected λ value, and compare to JPEG/JPEG 2000 images compressed at equal or greater bit
rates. The JPEG and JPEG 2000 images exhibit artifacts that are common to all linear transform
coders: since local features (edges, contours, texture elements, etc.) are represented using particular
combinations of localized linear basis functions, independent scalar quantization of the transform
coefficients causes imbalances in these combinations, and leads to visually disturbing blocking,
aliasing, and ringing artifacts that reflect the underlying basis. For the proposed system, we see
that compressed images are less detailed than the original, with fine texture and other patterns often
eliminated altogether, but this is accomplished in a way that preserves the smoothness and sharpness
of many contours and edges, giving them a more natural appearance.

The progression from high to low bit rates is visualized in figure 7. The linear coders degrade their
approximation of the original image by coarsening the precision of the coefficients of linear basis
functions, thus exposing the visual appearance of those basis functions at low bit rates. On the other
hand, our method appears to progressively simplify contours and other image features, effectively
concealing the quantized nature of the representation.

5 DISCUSSION

We have presented a complete image compression system based on nonlinear transform coding, and
a methodology to optimize it end-to-end for rate–distortion performance. The system offers signif-
icant improvements in rate–distortion performance over JPEG and JPEG 2000 for most images and
bitrates. More remarkably, although the system was optimized using mean squared error as a dis-
tortion metric, the compressed images are much more natural in appearance than those compressed
with JPEG or JPEG 2000, both of which suffer from the severe artifacts commonly seen in linear
transform coding methods. Consistent with this, MS-SSIM values show substantial improvement
across all images and bitrates that we have examined. We think this is because these cascaded non-
linear transformations have been optimized to capture the features and attributes of images that are
represented in the statistics of the data, parallel to the processes of evolution and development that
are believed to have shaped visual representations within the human brain (Simoncelli and B. Ol-
shausen, 2001). Nevertheless, additional visual improvements might be possible if the system were
trained using a perceptual metric in place of MSE (Ballé, Laparra, and Simoncelli, 2016).

For comparison to standard linear transform coders, we can interpret our analysis transform as a
single-stage linear transform followed by a complex vector quantizer. As in many other learned rep-
resentations (e.g., sparse coding; Lewicki and B. A. Olshausen, 1998), as well as many engineered
representations (e.g., the steerable pyramid, Simoncelli, Freeman, et al., 1992; curvelets, Candès
and Donoho, 2002; and dual-tree complex wavelets, Selesnick, Baraniuk, and Kingsbury, 2005), the
filters in this first stage are localized and oriented and the representation is overcomplete (128 filters,
each subsampled by a factor of 16). Whereas most transform coders use complete (often orthogonal)
linear transforms with spatially separable filters, the overcompleteness and orientation tuning of our
initial transform may explain the ability of the system to better represent features and contours with
continuously varying orientation, position and scale (Simoncelli, Freeman, et al., 1992).

Our work is related to two previous publications that learn image representations for use in com-
pression. Gregor, Besse, et al. (2016) introduce an interesting hierarchical representation of images,
in which degradations are more natural looking than those of linear representations. They derive
discrete entropy estimates from the model by quantizing the learnt continuous representation, and
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obtain images at different entropy levels by eliminating parts of the representation. This is not likely
to be optimal for the reasons outlined in section 2.1 (which the authors do acknowledge, stating
that the discretization needs further “tuning”). Our end-to-end optimization methodology offers a
more systematic way to handle the rate–distortion trade-off. Toderici et al. (2016) acknowledge
the need to optimize for various operating points in the rate–distortion sense, and their formulation
has the advantage over ours that a single representation is sought for all rate points (this is a topic
we are currently exploring). However, it is not clear whether their formulation necessarily leads to
rate–distortion optimality, and their empirical results seem to suggest that this is not the case.

We are currently testing systems that use simpler rectified-linear or sigmoidal nonlinearities, to de-
termine how much of the performance and visual quality of our results is due to use of biologically-
inspired joint nonlinearities. Preliminary results indicate that qualitatively similar results are achiev-
able with other activation functions we tested, but that rectified linear units generally require a
substantially larger number of model parameters to achieve the same rate–distortion performance as
the GDN/IGDN nonlinearities, which might be an advantage for real-world implementation of our
method (say, in embedded systems). The results may indicate that GDN/IGDN are more efficient
for this particular task (producing better models with fewer stages of processing, as we found for
density estimation; Ballé, Laparra, and Simoncelli, 2015). However, such conclusions are based
on a limited set of experiments and should at this point be considered provisional. More generally,
GDN/IGDN nonlinearities offer a multivariate generalization of a particular type of sigmoidal func-
tion. As such, we expect that some variant of a universal function approximation theorem should
hold for them.

The rate–distortion objective may be seen as a particular instantiation of the general unsupervised
learning or density estimation problems. Since the transformation to a discrete representation may
be viewed as a form of classification, it is worth considering whether our framework offers any
insights that might be transferred to more specific supervised learning problems, such as object
recognition. For example, the additive noise used in the objective function as a relaxation of quan-
tization might also serve the purpose of making supervised classification networks more robust to
small perturbations, and thus allow them to avoid catastrophic failures that have been demonstrated
in previous work (Szegedy et al., 2013). In any case, our results provide a strong example of the
power of end-to-end optimization in achieving a new solution to a classical problem.
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6 APPENDIX

6.1 NETWORK ARCHITECTURE AND OPTIMIZATION

As described in the main text, our analysis transform consists of three stages of convolution, down-
sampling, and GDN – details of the architectural choices are provided in figure 8. These choices are
somewhat ad-hoc, and a more careful exploration of alternative architectures could potentially lead
to significant performance improvements.

We have previously shown that GDN is highly efficient in Gaussianizing the local joint statistics
of natural images (Ballé, Laparra, and Simoncelli, 2015). Even though Gaussianization is a quite
different optimization problem than the rate–distortion objective with the set of constraints defined
above, it is similar in that we are assuming a marginally independent latent model in both cases.
When optimizing for Gaussianization, the exponents in the parametric form of GDN control the
tail behavior of the Gaussianized densities. Since tail behavior is less important here, we chose to
simplify the functional form, fixing the exponents and forcing the weight matrix to be symmetric
(i.e., γij = γji).

The synthesis transform is meant to function as an approximate inverse transformation, so we con-
struct it by applying a principle known from the LISTA algorithm (Gregor and LeCun, 2010) to the
fixed point iteration previously used to invert the GDN transform (Ballé, Laparra, and Simoncelli,
2015). We refer to this nonlinear transform as “inverse GDN” (IGDN). The full synthesis trans-
form consists of three stages of IGDN, upsampling, and convolution, where the optimization of the
synthesis parameters is untied from those used in the analysis stages.

The full model (analysis and synthesis filters, GDN and IGDN parameters) were optimized over
a subset of the ImageNet database (Deng et al., 2009) consisting of 6507 images. We applied a
number of preprocessing steps to the images from the database in order to reduce artifacts and
other unwanted contaminations: first, we eliminated images with excessive saturation. We added a
small amount of uniform noise, corresponding to the quantization of pixel values, to the remaining
images. Finally, we downsampled and cropped the images to a size of 256× 256 pixels each, where
the amount of downsampling and cropping was randomized, but depended on the size of the original
image. In order to reduce high-frequency noise and compression artifacts, the resampling factor was
never permitted to be greater than 0.75; we discarded the images that were not large enough.

To ensure a fast and stable optimization, we used the following techniques:
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Figure 8: Architecture of synthesis (gs) and analysis (ga) transforms for grayscale images. conv:
convolutional layer, with filter support (x×y) and number of feature maps (output×input). down-
/upsample: regular down-/upsampling (by x×y factors, implemented jointly with the adjacent con-
volution). add: elementwise addition of a bias parameter per feature map. GDN/IGDN: generalized
divisive normalization across feature maps (but not across space), and its approximate inverse; see
text. Number of parameters for each layer given at the bottom.
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• We used the Adam optimization algorithm (Kingma and Ba, 2014) to obtain values for the
parameters φ and θ, starting with α = 10−4, and subsequently lowering it by a factor of
10 whenever the improvement of both rate and distortion stagnated, until α = 10−7.
• We parameterized the linear filters using their discrete cosine transform (DCT) coefficients.

We found this to be slightly more effective in speeding up the convergence than discrete
Fourier transform (DFT) parameterization (Rippel, Snoek, and Adams, 2015).

• We parameterized the GDN/IGDN β parameters in terms of the elementwise relationship

βi = (β′i)
2 − 2−10.

This ensures that gradients are smaller around parameter values close to 0, a regime in
which the optimization can otherwise become unstable. To ensure an unambiguous map-
ping, we projected each β′i onto the interval [2−5,∞) after each gradient step. We applied
the same treatment to the elements of γ, and additionally averaged γ′ with its transpose
after each step in order to make it symmetric.

• To remove the scaling ambiguity between the each linear transform and its following
nonlinearity (or preceding nonlinearity, in the case of the synthesis transform), we re-
normalized the linear filters after each gradient step, dividing each filter by the square
root of the sum of its squared coefficients. For the analysis transform, the sum runs over
space and all input feature maps, and for the synthesis transform, over space and all output
feature maps.

We represented each of the marginals pỹi as a piecewise linear function (i.e., a linear spline), using
10 sampling points per unit interval. The parameter vector ψ(i) thus simply consists of the value
of pỹi at these sampling points. We did not use Adam to update ψ(i); rather, we used ordinary
stochastic gradient descent to minimize the negative expected likelihood:

Lψ(ψ(0),ψ(1), . . . ) = −Eỹ

∑
i

pỹi(ỹi;ψ
(i)). (13)

and renormalized the marginal densities after each step. This yields unbiased running estimates of
the marginal densities, unlike minimizing the loss function given in (5) over ψ(i). After every 106

gradient steps, we used a heuristic to adapt the range of the spline approximation to the values of ỹi
that had been actually observed.

6.2 ENTROPY CODE

We implemented an entropy coder based on the context-adaptive binary arithmetic coding (CABAC)
framework defined by Marpe, Schwarz, and Wiegand (2003). Arithmetic entropy codes are designed
to compress discrete-valued data to bit rates closely approaching the entropy of the representation,
assuming that the probability model used to design the code describes the data well. The following
information was encoded into the bitstream:

• the size of the image (two 16-bit integers, bypassing arithmetic coding),
• whether the image is grayscale or RGB (one bit, bypassing arithmetic coding),
• the value of λ (one 16-bit integer, bypassing arithmetic coding), which provides an index

for the parameters of the analysis and synthesis transforms as well as the initial probability
models for the discrete codes (these are learned during training, and assumed to be available
to encoder and decoder).

• the value of each element of q, iterating over feature maps, and over space in raster-scan
order, using the arithmetic coding engine.

Since CABAC operates on binary values, the quantized values in q need to be converted to binary
decisions. We follow a simple scheme inspired by the encoding of H.264/AVC transform coefficients
as detailed by Marpe, Schwarz, and Wiegand (2003). For each qi, we start by testing if the encoded
value is equal to the mode of the distribution. If this is the case, the encoding of qi is completed.
If not, another binary decision determines whether it is smaller or larger than the mode. Following
that, each possible integer value is tested in turn, which yields a bifurcated chain of decisions as
illustrated in figure 9. This process is carried out until either one of the binary decisions determines
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qi = qi,mode

qi > qi,mode END

qi = qi,mode − 1

qi = qi,mode − 2 END

qi = qi,min

END

EG fallback END

qi > qi,mode + 1

END qi > qi,mode + 2

END
qi > qi,max

END EG fallback

Figure 9: Binarization of a quantized value for binary arithmetic coding. Each circle represents
a binary decision encoded with its own CABAC context. Arrows pointing left represent “false”,
arrows pointing right “true”. On reaching END, the encoding of the quantized value is completed.
On reaching EG fallback, the magnitude of qi which falls outside of the range [qi,min, qi,max] is encoded
using an exponential Golomb code, bypassing the arithmetic coding engine.
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Figure 10: Rate–distortion comparison of adaptive vs. non-adaptive entropy coding, averaged (for
each value of λ) over the 24 images in the Kodak test set. The non-adaptive entropy code is simulated
by computing the entropy of q assuming the probability model learned during training (which is also
used to initialize the adaptive code).

qi, or some minimum (qi,min) or maximum (qi,max) value is reached. In case qi is outside of that
range, the difference between it and the range bound is encoded using an exponential Golomb code,
bypassing the arithmetic coding engine.

Adaptive codes, such as CABAC, can potentially further improve bit rates, and to some extent correct
model error, by adapting the probability model on-line to the statistics of the data. In our code, this
is achieved by sharing the marginal probability model Pqi of each element in q across space within
each feature map. We derived the initial probability models by subsampling the continuous densities
pỹi learned during training, as in (4). However, note that the coding scheme presented above only
crudely exploits spatial adaptation of the probability model compared to existing coding methods
such as JPEG 2000 and H.264/AVC. Thus, the performance gains compared to a well-designed non-
adaptive entropy code are relatively small (figure 10), and likely smaller than those achieved by the
JPEG 2000 coder to which we compare.

6.3 EVALUATION DETAILS AND ADDITIONAL EXAMPLE IMAGES

Although it is desirable to summarize and compare the rate–distortion behavior of JPEG, JPEG 2000
and our coder across an image set, it is difficult to do this in a way that is fair and interpretable. First,
rate–distortion behavior varies substantially across bit rates for different images. For example, for
the image in figure 12, our method achieves the same MSE with roughly 50% of the bits needed
by JPEG 2000 for low rates, and about 30% for high rates. For the image in figure 17, the gains
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Figure 11: Summary rate–distortion curves, computed by averaging results over the 24 images in
the Kodak test set. Each point is connected by translucent lines to the set of 24 points corresponding
to the individual image R-D values from which it was derived. JPEG results are averaged over
images compressed with identical quality settings. Results of the proposed method are averaged
over images compressed with identical λ values (and thus, computed with exactly the same forward
and inverse transforms). The two JPEG 2000 curves are computed with the same coder, by averaging
over images compressed with the same target rate or the same target quality. Note that these two
methods of selecting points to be averaged lead to significantly different average results.

are more modest, although still significant through the range. But for the image in figure 15, our
method only slightly outperforms JPEG 2000 at low rates, and under-performs it at high rates.
These behaviors are different for MS-SSIM, which shows a significant improvement for all images
and bitrates (consistent with their visual appearance).

Second, there is no obvious or agreed-upon method for combining rate–distortion curves across
images. More specifically, one must decide which points in the curves to combine. For our coder, it
is natural to average the MSE and entropy values across images compressed using the same choice
of λ, since these are all coded and decoded using exactly the same representation and quantization
scheme. For JPEG, it seems natural to average over images coded at the same “quality” setting,
which appear to be coded using the same quantization choices. The OpenJPEG implementation of
JPEG 2000 we use allows selection of points on the rate–distortion curve either through specification
of a target bit rate, or a target quality. This choice has no effect on rate–distortion plots for a
individual images (verified, but not shown), but has a substantial effect when averaging, since the
two choices lead one to average over a different set of R-D points. This is illustrated in figure 11.
Even if points were selected in exactly the same fashion for each of the methods (say, matched to
a given set of target rates), summary plots can still over- or underemphasize high rate vs. low rate
performance.

We conclude that summaries of rate–distortion are of limited use. Instead, we encourage the reader
to browse our extensive collection of test images, with individual rate–distortion plots for each im-
age, available at http://www.cns.nyu.edu/˜lcv/iclr2017 in both grayscale and RGB.

In the following pages, we show additional example images, compressed at relatively low bit rates,
in order to visualize the qualitative nature of compression artifacts. On each page, the JPEG 2000
image is selected to have the lowest possible bit rate that is equal or greater than the bit rate of
the proposed method. In all experiments, we compare to JPEG with 4:2:0 chroma subsampling,
and the OpenJPEG implementation of JPEG 2000 with the default “multiple component transform”.
For evaluating PSNR, we use the JPEG-defined conversion matrix to convert between RGB and
Y’CbCr. For evaluating MS-SSIM (Wang, Simoncelli, and Bovik, 2003), we used only the resulting
luma component. Original images are not shown, but are available online, along with compressed
images at a variety of other bit rates, at http://www.cns.nyu.edu/˜lcv/iclr2017.
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Proposed method, 3749 bytes (0.106 bit/px), PSNR: 32.43 dB/34.00 dB, MS-SSIM: 0.9767

JPEG 2000, 3769 bytes (0.107 bit/px), PSNR: 29.49 dB/32.99 dB, MS-SSIM: 0.9520

Figure 12: RGB example, from our personal collection, downsampled and cropped to 752 × 376
pixels.
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Figure 13: RGB example, from our personal collection, downsampled and cropped to 752 × 376
pixels.
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Figure 14: RGB example, from our personal collection, downsampled and cropped to 752 × 376
pixels.
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Figure 15: RGB example, from our personal collection, downsampled and cropped to 752 × 376
pixels.
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Figure 16: RGB example, from our personal collection, downsampled and cropped to 752 × 376
pixels.
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Figure 17: Grayscale example, from our personal collection, downsampled and cropped to 752×376
pixels.
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Figure 18: Grayscale example, from our personal collection, downsampled and cropped to 752×376
pixels.

22



Under review as a conference paper at ICLR 2017

0.0 0.2 0.4 0.6 0.8 1.0

bit rate [bit/px]

0.75

0.80

0.85

0.90

0.95

1.00
M

S
-S

S
IM

JPEG

JPEG 2000

proposed

0.0 0.2 0.4 0.6 0.8 1.0

bit rate [bit/px]

24

26

28

30

32

34

36

38

40

42

P
S
N

R
 [

d
B

]

JPEG

JPEG 2000

proposed

Proposed method, 3875 bytes (0.110 bit/px), PSNR: 31.75 dB, MS-SSIM: 0.9577

JPEG 2000, 3877 bytes (0.110 bit/px), PSNR: 31.24 dB, MS-SSIM: 0.9511

Figure 19: Grayscale example, from our personal collection, downsampled and cropped to 752×376
pixels.
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Figure 20: Grayscale example, from our personal collection, downsampled and cropped to 752×376
pixels.
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Figure 21: Grayscale example, from the Kodak test set, downsampled and cropped to 752 × 376
pixels.
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