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Abstract—We introduce a general framework for end-to-end
optimization of the rate–distortion performance of nonlinear
transform codes assuming scalar quantization. The proposed
framework can be used to optimize any differentiable pair
of analysis and synthesis transforms in combination with any
differentiable perceptual metric. As an example, we optimize a
code built from a linear transform followed by a form of multi-
dimensional gain control. Distortion is measured with a state-
of-the-art perceptual metric. The code, optimized over a large
database of images, offers substantial improvements in bitrate
and perceptual appearance over fixed (DCT) codes, as well as
over linear transform codes optimized for mean squared error.

I. INTRODUCTION

Transform coding [1] is one of the most successful con-
cepts of signal processing. Virtually all modern image and
video compression standards operate by applying an invertible
transformation to the signal, quantizing the transformed data
to achieve a compressed representation, and inverting the
transform to recover an approximation of the original signal.

Generally these transforms have been linear. Non-
Gaussian/non-linear aspects of signal statistics are typically
handled by augmenting the linear system with carefully se-
lected non-linearities (for example, non-uniform quantization
via companding, prediction in the case of hybrid compression,
etc.). Deciding which combination of these operations, also
known as “coding tools,” are ultimately useful is a cum-
bersome process. The operations are generally studied and
optimized individually, with different objectives, and each
possible combination of coding tools must then be empirically
validated in terms of average code rate and distortion.

This is reminiscent of the state of affairs in the field of
object and pattern recognition about a decade ago. As in
the compression community, most solutions were built by
manually combining a sequence of individually designed and
optimized processing stages. In recent years, that field has seen
remarkable performance gains [2], which have arisen primar-
ily because of end-to-end system optimization. Specifically,
researchers have chosen architectures that consist of a cascade
of transformations that are differentiable with respect to their
parameters, and then used modern optimization tools to jointly
optimize the system over large databases of images.

Here, we take a step toward using such end-to-end optimiza-
tion in the context of compression. We develop an optimization
framework for nonlinear transform coding (fig. 1), which
generalizes the traditional transform coding paradigm. The
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Fig. 1. Nonlinear transform coding optimization framework. See text.

image vector x is transformed to a code domain vector
using an arbitrary differentiable function y = ga(x;θ) (the
analysis transform), parameterized by a vector θ (containing
linear filter coefficients, for example). The transformed y is
subjected to scalar quantization, yielding the vector of integer
quantization indices q and a reconstructed vector ŷ. The latter
is then non-linearly transformed back to the signal domain
to obtain the reconstructed image x̂ = gs(ŷ;φ), where the
synthesis transform gs is parameterized by vector φ.

The code rate is assessed by measuring the entropy, H ,
of the discrete probability distribution Pq of the quantization
indices over an ensemble of images. Traditionally, the dis-
tortion is assessed directly in the image domain by taking
the squared Euclidean norm of the difference between x and
x̂ (or equivalently, the peak signal-to-noise ratio, PSNR).
However, it is well known that PSNR is not well-aligned with
human perception [3]. To alleviate this problem, we allow an
additional “perceptual” transform of both vectors z = h(x)
and ẑ = h(x̂), on which we then compute distortion using
a norm. With an appropriate transform h, this can provide a
better approximation of subjective visual distortion [4].

II. OPTIMIZATION FRAMEWORK

In the transform coding framework given above, we seek to
adjust the analysis and synthesis transforms ga and gs so as
to minimize the rate–distortion functional:

L[ga, gs] = H[Pq] + λE ‖z − ẑ‖. (1)

The first term denotes the discrete entropy of the vector
of quantization indices q. The second term measures the
distortion between the reference image z and its reconstruction
ẑ in a perceptual representation. Note that both terms are
expectations taken over an ensemble of images.
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We wish to minimize this objective. Standard optimization
methods (e.g., gradient descent) require differentiable func-
tions, but both terms in the functional depend on the quantized
values in q, and the derivative of a quantizer only takes zero
or infinite values. In what follows, we introduce dithered
quantization to make the objective differentiable with respect
to the parameters of ga and gs.

A uniform scalar quantizer applies a piecewise constant
function to each of the elements of y: ŷi = round(yi).1 In a
dithered quantizer, the quantization bins are shifted randomly
with an i.i.d. noise source u:

ŷi = round(yi + ui)− ui. (2)

With an appropriate noise source, the “quantization noise”
∆yi = ŷi−yi can be made independent of yi [5], which allows
us to rewrite the quantization as an addition of independent
random variables (here, with uniform noise):

ŷi = yi + ∆yi with ∆yi ∼ rect, (3)

where rect denotes the uniform density between − 1
2 and 1

2 .
With dithering, the discrete entropy of a quantization index
qi is equal to the differential entropy of the corresponding
element in ŷ:

H[Pqi ] = −E log2

∫ ŷi+
1
2

ŷi− 1
2

pyi(yi) dyi

= −E log2

(
pyi ∗ rect

)
(ŷi) = h[pŷi ], (4)

where pyi and pŷi are the marginal densities of one element
of the code vector yi and its dithered version ŷi, respectively.
Note that the probability distribution Pqi , obtained without
dithering, is identical to the pŷi defined above, sampled at all
integers qi ∈ Z: Pqi(qi) = pŷi(qi). Between these points, pŷi
is a smooth interpolator, as it arises from a convolution with
rect, a moving average kernel. Dithering can thus be seen as
providing a continuous relaxation of the discrete optimization
problem in (1). Altogether, the rate–distortion functional can
be rewritten as a function of the transform parameters:

L(θ,φ) = Ex,∆y

(
− log2 pŷ(ga(x;θ) + ∆y)

+ λ
∥∥h(gs(ga(x;θ) + ∆y;φ)

)
− h(x)

∥∥), (5)

where pŷ(ŷ) =
∏
i pŷi(ŷi). We can now take derivatives of L

with respect to θ and φ, and use stochastic gradient descent
to minimize it. Note that finding the global optimum is not
guaranteed. However, optimization problems of this type are
known to behave very well in practice.

III. REVIEW OF PARAMETRIC TRANSFORMS

In a traditional transform code, both analysis and synthesis
transforms are linear, and exact inverses of each other. In
general, this need not be the case, so long as the system

1Without loss of generality, we assume that the quantization bin size is 1,
since we can always modify the analysis/synthesis transforms to include
a rescaling. Further, we can implement non-uniform quantization by using
nonlinear transforms (as in companding).

minimizes the rate–distortion functional. We have previously
shown that a linear transform followed by a particular form
of joint normalization (generalized divisive normalization,
GDN) is well-matched to the local probability structure of
photographic images [6]. This suggests that jointly normalized
representations might also prove useful for compression. To
demonstrate the use of our optimization framework, we exam-
ine GDN as a candidate analysis transform, and introduce an
approximate inverse as the corresponding synthesis transform.
For the perceptual transform, we use the normalized Laplacian
pyramid [4] (NLP), which mimics the local luminance and
contrast behaviors of the human visual system.

A. Generalized divisive normalization (GDN)
The GDN transform consists of a linear decomposition H

followed by a joint nonlinearity, which divides each linear
filter output by a measure of overall filter activity:

y = ga(x;θ) s.t. yi =
vi(

βi +
∑
j γij |vj |αij

)εi
and v = Hx, (6)

with parameter vector θ = {α,β,γ, ε,H}.
B. Approximate inverse of GDN

The approximate inverse we introduce here is based on the
fixed point iteration for inversion of GDN introduced in [6]. It
is similar in spirit to the LISTA algorithm [7], in that it uses
the parametric form of the inversion iteration, but unties its
parameters from their original values for faster convergence.
We find that for purposes of image compression, one iteration
is sufficient:

x̂ = gs(ŷ;θ) s.t. x̂ = H ′w

and wi = ŷi ·
(
β′i +

∑
j

γ′ij |ŷj |α
′
ij
)ε′i , (7)

where the parameter vector consists of a distinct set of
parameters: φ = {α′,β′,γ′, ε′,H ′}.
C. Normalized Laplacian pyramid (NLP)

The NLP imitates the transformations associated with the
early visual system: local luminance subtraction and local
gain control [4]. Images are decomposed using a Laplacian
pyramid [8], which subtracts a local estimate of the mean
luminance at multiple scales. Each pyramid coefficient is
then divided by a local estimate of amplitude (a constant
plus the weighted sum of absolute values of neighbors).
Perceptual quality is assessed by evaluating the norm of
the difference between reference and reconstruction in this
normalized domain. The parameters (constant and weights
used for amplitudes) are optimized to best fit perceptual
data in the TID2008 database [9], which includes images
corrupted by artifacts arising from compression with block
transforms. This simple distortion measure provides a near-
linear fit to the human perceptual judgments in the database,
outperforming the widely-used SSIM [10] and MS-SSIM [11]
quality metrics [4]. Examples and code are available at http:
//www.cns.nyu.edu/~lcv/NLPyr.

http://www.cns.nyu.edu/~lcv/NLPyr
http://www.cns.nyu.edu/~lcv/NLPyr
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Fig. 2. Rate–distortion results averaged over the entire Kodak image set
(24 images, 752 × 496 pixels each). Reported rates are average discrete
entropy estimates. Reported distortion is average PSNR (top) and distance
in the normalized Laplacian pyramid domain (bottom – see text).

IV. EXPERIMENTAL RESULTS

The proposed framework can be used to optimize any
differentiable pair of analysis and synthesis transforms in
combination with any differentiable perceptual metric. Here,
we optimized two types of transforms: a set of linear analysis
and synthesis transforms operating on 16 × 16 pixel blocks
(in this case, θ and φ consist only of the filter coefficients)
and a 16 × 16 block GDN transform with the approximate
inverse defined above. We optimized for two types of distortion
metrics, mean squared error (MSE) and distance in the NLP
domain [4]. Each combination of transform and distortion
metric was optimized for different values of λ.

We also include a fixed linear transform, the 16 × 16
discrete cosine transform (DCT), which serves as a baseline.
For DCT results, we also include a dead-zone quantizer (i.e.,
uniform, except for a different-size bin around zero), which
is commonly used to improve rate–distortion performance.
All other codes (i.e., those optimized in our framework) are
constrained to use uniform quantization.

The marginal densities pŷi were nonparametrically modeled
using piecewise linear functions. We used the Adam algo-
rithm [12], a variation of stochastic gradient descent, and a
large collection of images from the ImageNet database [2] to
perform all optimizations. For each step of the optimization,
we used a randomly selected mini-batch of 4 images of
128×128 pixels. Note that, for each value of λ, we optimize a
separate transform. Each optimization takes two to three days

NLP-GDN, 0.190 bit/px. PSNR: 20.95 D-NLP: 0.21 MS-SSIM: 0.868

DCT (dead z.), 0.204 bit/px. PSNR: 21.81 D-NLP: 0.28 MS-SSIM: 0.827

Original, 8 bit/px. PSNR: ∞ D-NLP: 0 MS-SSIM: 1

Fig. 3. Example image from Kodak set (bottom), compressed with DCT and
hand-optimized (for MSE) dead-zone quantization (middle), and GDN with
uniform quantization optimized in the NLP domain (top).

to complete on a current GPU board. This optimization is en-
tirely offline: once the parameters are determined, no iterative
procedure is required to use the transforms for compression.

Dithering was used only during optimization, not for coding
the images for evaluation. To estimate code rate, we collected
histograms of the quantization index vector q ∈ Z256 for



NLP-GDN, 0.044 bit/px. PSNR: 26.37 D-NLP: 0.21 MS-SSIM: 0.881

DCT (dead z.), 0.044 bit/px. PSNR: 26.93 D-NLP: 0.24 MS-SSIM: 0.857

Original, 8 bit/px. PSNR: ∞ D-NLP: 0 MS-SSIM: 1

Fig. 4. A second example image from the Kodak set (see caption for fig. 3).

each λ, over all images in the test set, and computed the
discrete entropy of these histograms. To prevent overfitting
to the training database, we performed all evaluations on a
gray-scale version of the Kodak image set.2

2Downloaded from http://www.cipr.rpi.edu/resource/stills/kodak.html. We
computed linear luminance values assuming sRGB primaries and sRGB
gamma, and re-applied the sRGB gamma to get the gray-scale images. We
also discarded 8 pixels from each side to eliminate boundary artifacts.

For evaluation of the distortion, we first computed the mean
squared error (MSE) over the entire set for each λ, and then
converted these values into PSNRs (fig. 2, top panel). In
terms of PSNR, the optimized linear transform is slightly
worse than the DCT. The reason is that the statistics of the
ImageNet database are slightly different from the Kodak set (if
we validate on a held-out test set of images from ImageNet,
the two transforms perform equally well). For comparison,
the DCT with dead-zone quantization is better, but it doesn’t
outperform the MSE-optimized GDN transform, which uses
only uniform quantization. The NLP-optimized transforms
don’t perform well in terms of PSNR.

The situation is reversed, however, when we examine per-
formance in terms of perceptual distortion (fig. 2, bottom).
Here, we evaluated the norm in the NLP domain (D-NLP)
for each image in the set, and then averaged across images.
Note that this norm is almost (inversely) proportional to the
subjective mean opinion score (MOS) across several image
databases [4]. Overall, the combination of NLP and GDN
achieves an impressive rate savings at similar quality when
compared with MSE-optimized methods, and with the DCT
(both uniform and dead-zone quantizers).

It is also interesting to note that in terms of NLP distance,
the optimized linear transform with uniform quantization out-
performs both versions of the DCT. This may be due to the
fact that the optimized filters tend to be spatially localized (as
well as oriented and bandpass), which may lead to visually
less disturbing artifacts (not shown).

For visual evaluation, we also show results on two example
images (figs. 3 and 4). Results for the entire test set are
available at http://www.cns.nyu.edu/~balle/nlpgdn. The figures
serve to illustrate the main effect of using a perceptual metric
that is aware of local, relative contrast. Traditional, linear
systems optimized for MSE give too much preference to
high-contrast regions (e.g., the snow-covered mountains in the
background, or the pebbles/debris in the foreground; fig. 3,
center image). By performing joint normalization before quan-
tization, the NLP-optimized GDN transform allocates more
bits to represent detail in low-contrast regions (such as the
forest in the depicted scene; top image). Overall, the rate
allocation is perceptually more balanced, which leads to a
more pleasing visual appearance.

V. DISCUSSION

We have introduced a framework for end-to-end optimiza-
tion of nonlinear transform codes, which can be applied to
any set of parametric, differentiable analysis and synthesis
transforms. In optimizing a nonlinear transform for a percep-
tual metric over a database of photographs, we obtained a
nonlinear code that respects the perception of local luminance
and contrast errors, allowing for significant rate savings.

The earliest instance of a linear transform optimized for
signal properties may be the Karhunen–Loève transform
(KLT), or principal components analysis (PCA). The DCT
was originally introduced as an efficient approximation to the
KLT for a separable autoregressive process of order 1 [13].

http://www.cipr.rpi.edu/resource/stills/kodak.html
http://www.cns.nyu.edu/~balle/nlpgdn


Other studies have optimized transform parameters specifically
for perceptual compression (e.g., [14, 15]), but these were
generally limited to optimizing weighting matrices for the
DCT. Models that use “matched” non-linear transformations as
a means of converting to/from a more desirable representation
of the data are known in the machine learning literature as
autoencoders [16]. However, we are unaware of any work that
directly aims to optimize discrete entropy.

We assume uniform quantization in the transform domain,
and use dithering to relax the discrete optimization problem
into a differentiable one. Dithering was used in some early
image coders [17], but generally does not improve rate–
distortion performance. To our knowledge, it has not been
used as a form of continuous relaxation for optimization
purposes. While uniform quantization has been shown to be
asymptotically optimal [18], it is well known that dead-zone
quantization generally performs better for linear transform
coding of images. Here, we demonstrate empirically that the
use of nonlinear transforms with uniform quantization allows
equivalent or better solutions, and our framework provides a
means of finding these transforms.

Divisive normalization has previously been used in DCT-
based image compression, e.g., [19, 20]. These approaches use
the normalized representation both for coding and distortion
estimation, reasoning that this domain is both perceptually
and statistically uniform, and thus well-suited for both. The
framework introduced here offers more flexibility, by allowing
the perceptual domain and the code domain to be distinct
(fig. 1). Further, previous methods required the decoder to
invert the normalization transform, either by solving an itera-
tive set of linear equations for every block [19], estimating
the multipliers (i.e., the values of the denominators) from
neighboring blocks [20], or embedding the multipliers into
the code as side information. Our framework eliminates this
problem by introducing a highly efficient approximate inverse
transform, which is jointly optimized along with the normal-
ization transform.

There are several directions in which to proceed with
this work. Well-known techniques to improve performance of
linear transform codes, such as run-length encoding, adaptive
entropy coding, and signal-adaptive techniques in general,
should be investigated in the context of nonlinear transform
coding. Furthermore, our framework offers a means for ex-
ploring much more sophisticated nonlinear analysis/synthesis
transforms as well as perceptual metrics, since it is built on the
highly successful paradigm of end-to-end optimization over
training data.
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