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ABSTRACT

We introduce a parametric nonlinear transformation that is well-suited for Gaus-
sianizing data from natural images. The data are linearly transformed, and each
component is then normalized by a pooled activity measure, computed by ex-
ponentiating a weighted sum of rectified and exponentiated components and a
constant. We optimize the parameters of the full transformation (linear transform,
exponents, weights, constant) over a database of natural images, directly minimiz-
ing the negentropy of the responses. The optimized transformation substantially
Gaussianizes the data, achieving a significantly smaller mutual information be-
tween transformed components than alternative methods including ICA and radial
Gaussianization. The transformation is differentiable and can be efficiently in-
verted, and thus induces a density model on images. We show that samples of this
model are visually similar to samples of natural image patches. We demonstrate
the use of the model as a prior probability density that can be used to remove
additive noise. Finally, we show that the transformation can be cascaded, with
each layer optimized using the same Gaussianization objective, thus offering an
unsupervised method of optimizing a deep network architecture.

1 INTRODUCTION

The learning of representations for classification of complex patterns has experienced an impres-
sive series of successes in recent years. But these results have relied heavily on large labeled data
sets, leaving open the question of whether such representations can be learned directly from ob-
served examples, without supervision. Density estimation is the mother of all unsupervised learning
problems. A direct approach to this problem involves fitting a probability density model, either
drawn from a parametric family, or composed as a nonparametric superposition of kernels, to the
data. An indirect alternative, which can offer access to different families of densities, and in some
cases an easier optimization problem, is to seek an invertible and differentiable parametric function
y = g(x;θ) that best maps the data onto a fixed target density py(y). The inverse image of this
target density then provides a density model for the input space.

Many unsupervised learning methods may be interpreted in this context. As a simple example, con-
sider principal component analysis (PCA; Jolliffe, 2002): we might fix py as a multivariate standard
normal and think of PCA as either a linear whitening transformation, or as a density model px de-
scribing the data as a normal distribution with arbitrary covariance. Independent component analysis
(ICA; Cardoso, 2003) can be cast in the same framework: In this case, the data x is modeled as a
linear combination of independent heavy-tailed sources. We may fix g to be linear and py =

∏
i pyi

to be a product of independent marginal densities of unknown form. Alternatively, we can apply
nonparametric nonlinearities to the marginals of the linearly transformed data so as to Gaussianize
them (i.e., histogram equalization). For this combined ICA-marginal-Gaussianization (ICA-MG)
operation, py is again standard normal, and the transformation is a composition of a linear transform
and marginal nonlinearities. Another model that aims for the same outcome is radial Gaussianiza-
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tion (RG; Lyu & Simoncelli, 2009b; Sinz & Bethge, 2010), in which g is the composition of a linear
transformation and a radial (i.e., operating on the vector length) Gaussianizing nonlinearity. The
induced density model is the family of elliptically symmetric distributions.

The notion of optimizing a transformation so as to achieve desired statistical properties at the output
is central to theories of efficient sensory coding in neurobiology (Barlow, 1961; Ruderman, 1994;
Rieke et al., 1995; Bell & Sejnowski, 1997; Schwartz & Simoncelli, 2001), and also lends itself nat-
urally to the design of cascaded representations such as deep neural networks. Specifically, variants
of ICA-MG transformations have been applied in iterative cascades to learn densities (Friedman
et al., 1984; Chen & Gopinath, 2000; Laparra et al., 2011). Each stage seeks a linear transformation
that produces the “least Gaussian” marginal directions, and then Gaussianizes these using nonpara-
metric scalar nonlinear transformations. In principle, this series of transformations can be shown
to converge for any data density. However, the generality of these models is also their weakness:
implementing the marginal nonlinearities in a non-parametric way makes the model prone to error
and requires large amounts of data. In addition, since the nonlinearities operate only on marginals,
convergence can be slow, requiring a lengthy sequence of transformations (i.e., a very deep network).

To address these shortcomings, we develop a joint transformation that is highly effective in Gaus-
sianizing local patches of natural images. The transformation is a generalization of divisive normal-
ization, a form of local gain control first introduced as a means of modeling nonlinear properties
of cortical neurons (Heeger, 1992), in which linear responses are divided by pooled responses of
their rectified neighbors. Variants of divisive normalization have been found to reduce dependen-
cies when applied to natural images or sounds and to produce approximately Gaussian responses
(Ruderman, 1994; Schwartz & Simoncelli, 2001; Malo & Laparra, 2010). Simple forms of divisive
normalization have been shown to offer improvements in recognition performance of deep neural
networks (Jarrett et al., 2009). But the Gaussianity of these representations has not been carefully
optimized, and typical forms of normalization do not succeed in capturing all forms of dependency
found in natural images (Lyu, 2010; Sinz & Bethge, 2013).

In this paper, we define a generalized divisive normalization (GDN) transform that includes paramet-
ric forms of both ICA-MG and RG as special cases. We solve for the parameters of the transform by
optimizing an unsupervised learning objective for the non-Gaussianity of the transformed data. The
transformation is continuous and differentiable, and we present an effective method of inverting it.
We demonstrate that the resulting GDN transform provides a significantly better model for natural
photographic images than either ICA-MG or RG. Specifically, we show that GDN provides a better
fit to the pairwise statistics of local filter responses, that it generates more natural samples of image
patches, and that it produces better results when used as a prior for image processing problems such
as denoising. Finally, we show that a two-stage cascade of GDN transformations offers additional
improvements in capturing image statistics, laying the groundwork for its use as a general tool for
unsupervised learning of deep networks.

2 PARAMETRIC GAUSSIANIZATION

Given a parametric family of transformations y = g(x;θ), we wish to select parameters θ so as
to transform the input vector x into a standard normal random vector (i.e., zero mean, identity
covariance matrix). For a differentiable transformation, the input and output densities are related by:

px(x) =

∣∣∣∣∂g(x;θ)

∂x

∣∣∣∣ py(g(x;θ)
)
, (1)

where | · | denotes the absolute value of the matrix determinant. If py is the standard normal distri-
bution (denoted N ), the shape of px is determined solely by the transformation. Thus, g induces a
density model on x, specified by the parameters θ.

Given px, or data drawn from it, the density estimation problem can be solved by minimizing the
Kullback–Leibler (KL) divergence between the transformed density and the standard normal, known
as the negentropy:

J(py) = Ey
(

log py(y)− logN (y)
)

= Ex
(

log px(x)− log
∣∣∣∂g(x;θ)

∂x

∣∣∣− logN (g(x;θ))
)
, (2)
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where we have rewritten the standard definition (an expected value over y) as an expectation over x
(see appendix). Differentiating with respect to the parameter vector θ yields:

∂J(py)

∂θ
= Ex

−∑
ij

[
∂g(x,θ)

∂x

]−>
ij

∂2gi(x,θ)

∂xj∂θ
+
∑
i

gi(x,θ)
∂gi(x,θ)

∂θ

 , (3)

where the expectation can be evaluated by summing over data samples, allowing the model to be fit
using stochastic gradient descent. It can be shown that this optimization is equivalent to maximizing
the log likelihood of the induced density model.

Note that, while optimization is feasible, measuring success in terms of the actual KL divergence in
eq. (2) is difficult in practice, as it requires evaluating the entropy of px. Instead, we can monitor
the difference in negentropy between the input and output densities:

∆J ≡ J(py)− J(px) = Ex
(

1
2

∥∥y∥∥2

2
− log

∣∣∣ ∂y∂x ∣∣∣− 1
2

∥∥x∥∥2

2

)
. (4)

This quantity provides a measure of how much more Gaussian the data become as a result of the
transformation g(x;θ).

3 DIVISIVE NORMALIZATION TRANSFORMATIONS

Divisive normalization, a form of gain control in which responses are divided by pooled activity of
neighbors, has become a standard model for describing the nonlinear properties of sensory neurons
(Carandini & Heeger, 2012). A commonly used form for this transformation is:

yi = γ
xαi

βα +
∑
j x

α
j

,

where θ = {α, β, γ} are parameters. Loosely speaking, the transformation adjusts responses to
lie within a desired operating range, while maintaining their relative values. A weighted form of
normalization (with exponents fixed at α = 2) was introduced in (Schwartz & Simoncelli, 2001),
and shown to produce approximately Gaussian responses with greatly reduced dependencies. The
weights were optimized over a collection of photographic images so as to maximize the likelihood
of responses under a Gaussian model. Normalization has also been derived as an inference method
for a Gaussian scale mixture (GSM) model for wavelet coefficients of natural images (Wainwright
& Simoncelli, 2000). This model factorizes local groups of coefficients into a Gaussian vector and
a positive-valued scalar. In a specific instance of the model, the optimal estimator for the Gaussian
vector (after decorrelation) can be shown to be a modified form of divisive normalization that uses
a weighted L2-norm (Lyu & Simoncelli, 2008):

yi =
xi(

β2 +
∑
j γjx

2
j

) 1
2

.

However, the above instances of divisive normalization have only been shown to be effective when
applied to spatially local groups of filter responses. In what follows, we introduce a more general
form, with better Gaussianization capabilities that extend to to more distant responses, as well as
those arising from distinct filters.

3.1 PROPOSED GENERALIZED DIVISIVE NORMALIZATION (GDN) TRANSFORM

We define a vector-valued parametric transformation as a composition of a linear transformation
followed by a generalized form of divisive normalization:

y = g(x;θ) s.t. yi =
zi(

βi +
∑
j γij |zj |αij

)εi
and z = Hx. (5)

The full parameter vector θ consists of the vectors β and ε, as well as the matricesH , α, and γ, for
a total of 2N + 3N2 parameters (where N is the dimensionality of the input space). We refer to this
transformation as generalized divisive normalization (GDN), since it generalizes several previous
models. Specifically:
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• Choosing εi ≡ 1, αij ≡ 1, and γij ≡ 1 yields the classic form of the divisive normalization
transformation (Carandini & Heeger, 2012), with exponents set to 1.

• Choosing γ to be diagonal eliminates the cross terms in the normalization pool, and the
model is then a particular form of ICA-MG, or the first iteration of the Gaussianization
algorithms described in Chen & Gopinath (2000) or Laparra et al. (2011): a linear “unmix-
ing” transform, followed by a pointwise, Gaussianizing nonlinearity.

• Choosing αij ≡ 2 and setting all elements of β, ε, and γ identical, the transformation
assumes a radial form:

y =
z(

β + γ
∑
j z

2
j

)ε =
z

‖z‖2
g2

(
‖z‖2

)
where g2(r) = r/(β + γr2)ε is a scalar-valued transformation on the radial component
of z, ensuring that the normalization operation preserves the vector direction of z. If, in
addition, H is a whitening transformation such as ZCA (Bell & Sejnowski, 1997), the
overall transformation is a form of RG (Lyu & Simoncelli, 2009b).

• More generally, if we allow exponents αij ≡ p, the induced distribution is anLp-symmetric
distribution, a family which has been shown to capture various statistical properties of
natural images (Sinz & Bethge, 2010). The corresponding transformation on the Lp-radius
is given by gp(r) = r/(β + γrp)ε.

• Another special case of interest arises when partitioning the space into distinct, spheri-
cally symmetric subspaces, with the kth subspace comprising the set of vector indices Sk.
Choosing αij ≡ 2, βi = β′k, εi = ε′k, and γij = γ′k, all for i, j ∈ Sk (and γij = 0 if i or j
is not in the same set), the nonlinear transformation can be written as

yi =
zi(

β′k + γ′k
∑
j∈Sk z

2
j

)ε′k ,
where k is chosen such that i ∈ Sk. This is the Independent Subspace Analysis model
(ISA; Hyvärinen & Hoyer, 2000), expressed as a Gaussianizing transformation.

The topographic ICA model (TICA; Hyvärinen et al., 2001) and the model presented in Köster &
Hyvärinen (2010) are generalizations of ISA that are related to our model, but have more constrained
nonlinearities. They are formulated directly as density models, which makes them difficult to nor-
malize. For this reason, the authors must optimize approximated likelihood or use score matching
(Hyvärinen, 2005) to fit these models.

3.2 WELL-DEFINEDNESS AND INVERTIBILITY

For the density function in eq. (1) to be well defined, we require the transformation in eq. (5) to be
continuous and invertible. For the linear portion of the transformation, we need only ensure that the
matrixH is non-singular. For the normalization portion, consider the partial derivatives:

∂yi
∂zk

=
δik(

βi +
∑
j γij |zj |αij

)εi − αikγikεizi|zk|αik−1 sgn(zk)(
βi +

∑
j γij |zj |αij

)εi+1 (6)

To ensure continuity, we require all partial derivatives to be finite for all z ∈ RN . More specifically,
we require all exponents in eq. (6) to be non-negative, as well as the parenthesized expression in the
denominator to be positive.

It can be shown that the normalization part of the transformation is invertible if the Jacobian matrix
containing the partial derivatives in eq. (6) is positive definite everywhere (see appendix). In all
practical cases, we observed this to be the case, but expressing this precisely as a condition on the
parameters is difficult. A necessary (but generally not sufficient) condition for invertibility can be
established as follows. First, note that, as the denominator is positive, each vector z is mapped
to a vector y in the same orthant. The cardinal axes of z are mapped to themselves, and for this
one-dimensional mapping to be continuous and invertible, it must be monotonic. Along the cardinal
axes, the following bound holds:

|yi| =
|zi|(

βi + γii|zi|αij
)εi ≤ |zi|

γεiii |zi|αiiεi
= γ−εiii |zi|

1−αiiεi .

4
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For the magnitude of yi to grow monotonically with |zi|, the exponent 1− αiiεi must be positive.

In summary, the constraints we enforce during the optimization are αij ≥ 1, βi > 0, γij ≥ 0,
and 0 ≤ εi ≤ α−1

ii . We initialize the parameters such that ∂y∂z is positive definite everywhere (for
example, by letting γ be diagonal, such that the Jacobian is diagonal, the transformation is separable,
and the necessary constraint on the cardinal axes becomes sufficient).

Suppose that during the course of optimization, the matrix should cease to be positive definite.
Following a continuous path, the matrix must then become singular at some point, because going
from positive definite to indefinite or negative definite would require at least one of the eigenval-
ues to change signs. However, the optimization objective heavily penalizes singularity: The term
− log |∂y∂x | in the objective (which separates into − log |∂y∂z | and − log | ∂z∂x |) grows out of bounds
as the determinant of the Jacobian approaches zero. Therefore, given a sensible initialization and a
sufficiently small step size, it is highly unlikely that the Jacobian should cease to be positive definite
during the optimization, and we haven’t observed this in practice.

Finally, we find that the GDN transformation can be efficiently inverted using a fixed point iteration:

z
(0)
i = sgn(yi)

(
γεiii |yi|

) 1
1−αiiεi

z
(n+1)
i =

(
βi +

∑
j

γij
∣∣z(n)
j

∣∣αij)εiyi.
Other iterative inverse solutions have been proposed for this purpose (Malo et al., 2006; Lyu &
Simoncelli, 2008), but these only apply to special cases of the form in eq. (5).

4 EXPERIMENTS

The model was optimized to capture the distribution of image data using stochastic descent of the
gradient expressed in eq. (3). We then conducted a series of experiments to assess the validity of the
fitted model for natural images.

4.1 JOINT DENSITY OF PAIRS OF WAVELET COEFFICIENTS

We examined the pairwise statistics of model responses, both for our GDN model, as well as the ICA
model and the RG model. First, we computed the responses of an oriented filter (specifically, we
used a subband of the steerable pyramid (Simoncelli & Freeman, 1995)) to images taken from the
van Hateren dataset (van Hateren & van der Schaaf, 1998) and extracted pairs of coefficients within
subbands at different spatial offsets up to d = 1024. We then transformed these two-dimensional
datasets using ICA, RG, and GDN. Figure 1 (modelled after figure 4 of Lyu & Simoncelli (2009b))
shows the mutual information in the transformed data (note that, in our case, mutual information is
related to the negentropy by an additive constant.) For very small distances, a linear ICA transfor-
mation reduces some of the dependencies in the raw data. However, for larger distances, a linear
transformation is not sufficient to eliminate the dependencies between the coefficients, and the mu-
tual information of the ICA-transformed data is identical to that of the raw data. An elliptically
symmetric model is good for modeling the density when the distance is small, and the RG trans-
form reduces the mutual information to neglegible levels. However, the fit worsens as the distance
increases. As described in (Lyu & Simoncelli, 2009b), RG can even lead to an increase in the mu-
tual information relative to that of the raw data, as seen in the right hand side of the plot. The
GDN transform, however, captures the dependencies at all separations, and consistently leaves a
very small residual level of mutual information.

In figure 2, we compare histogram estimates of the joint wavelet coefficient densities against model-
fitted densities for selected spatial offsets. The GDN fits are seen to account well for the shapes of
the densities, particularly in the center of the plot, where the bulk of the data lie. Note that GDN is
able to capture elliptically symmetric distributions just as well as distributions which are closer to
being marginally independent, whereas RG and ICA each fail in one of these cases, respectively.
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Figure 1: Mutual information in pairs of wavelet coefficients after various transformations, plotted
as a function of the spatial separation between the coefficients.
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Figure 2: Contour plots of pairwise wavelet coefficient densities. Each row corresponds to a model
arising from a different transformation (ICA-MG, RG, GDN). Each column corresponds to a pair
of coefficients spatially separated by distance d (pixels). Gray: contour lines of histogram density
estimate. Black: contour lines of densities induced by best-fitting transformations. As distance
increases, the empirical density between the coefficients transitions from elliptical but correlated to
separable. The RG density captures the former, and the ICA density captures the latter. Only the
GDN density has sufficient flexibility to capture the full range of behaviors.
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Figure 3: Histograms of transformed data. Top: Radial component for ICA-MG and GDN. Bottom
left and right: Marginals for RG and GDN, respectively. Gray lines indicate the expected distribu-
tions (Chi for radial, and Gaussian for marginals).

4.2 JOINT DENSITY OVER IMAGE PATCHES

We also examined model behavior when applied to vectorized 16× 16 blocks of pixels drawn from
the Kodak set1. We used the stochastic optimization algorithm ADAM to facilitate the optimiza-
tion (Kingma & Ba, 2014) and somewhat reduced the complexity of the model by forcing α to be
constant along its columns (i.e., αij ≡ αj). We also fitted versions of the model in which the nor-
malization (denominator of eq. (5)) is constrained to marginal transformations (ICA-MG) or radial
transformations (RG). For higher dimensional data, it is difficult to visualize the densities, so we use
other measures to evaluate the effectiveness of the model:

Negentropy reduction. As an overall metric of model fit, we evaluated the negentropy difference
∆J given in (4) on the full GDN model, as well as the marginal and radial models model (ICA-MG
and RG, respectively). We find that ICA-MG and RG reduce negentropy by 2.04 and 2.11 nats per
pixel, respectively, whereas GDN reduces it by 2.43 nats.

Marginal/radial distributions of transformed data. If the transformed data is multivariate stan-
dard normal, its marginals should be standard normal, as well, and the radial component should be
Chi distributed with degree 256. Figure 3 shows these distributions, in comparison to those of ICA-
MG and RG. As expected from (Lyu & Simoncelli, 2009b), RG fails to Gaussianize the marginals,
and ICA-MG fails to transform the radial component into a Chi distribution. GDN comes close to
achieving both goals.

Sampling. The density model induced by a transformation can also be visualized by examining
samples drawn from a standard normal distribution that have been passed through the inverse trans-
formation. Figure 4 compares sets of 25 image patches drawn from the GDN model, the ICA-MG
model, and randomly selected from a database of images. GDN notably captures two features of
natural images: First, a substantial fraction of the samples are constant or nearly so (as in the nat-
ural images, which include patches of sky or untextured surfaces). Second, in the cases with more
activity, the samples contain sparse “organic” structures (although less so than those drawn from the
natural images). In comparison, the samples from the ICA-MG model are more jumbled, and filled
with random mixtures of oriented elements.

Denoising. The negentropy provides a particular metric for assessing the quality of our results, but
it need not agree with other measures (Theis et al., 2015). Another test of a probability model comes

1downloaded from http://www.cipr.rpi.edu/resource/stills/kodak.html

7



Published as a conference paper at ICLR 2016

Figure 4: Sample image patches. From left to right, 25 samples drawn from: the image training set;
the ICA-MG model; the GDN model.

from using it as a prior in a Bayesian inference problem. The most basic example is that of removing
additive Gaussian noise. For GDN, we use the empirical Bayes solution of Miyasawa (1961), which
expresses the least-squares optimal solution directly as a function of the distribution of the noisy
data:

x̂ = x̃+ σ2∇ log px̃(x̃), (7)

where x̃ is the noisy observation, px̃ is the density of the noisy data, σ2 is the noise variance, and
x̂ is the optimal estimate. Note that, counterintuitively, this expression does not refer directly to the
prior density, but it is nevertheless exactly equivalent to the Bayesian least squares solution (Raphan
& Simoncelli, 2011). Although the GDN model was developed for modeling the distribution of
clean image data, we use it here to estimate the distribution of the noisy image data. We find that,
since the noisy density is a Gaussian-smoothed version of the original density, the model fits the
data well (results not shown).

For comparison, we implemented two denoising methods that operate on orthogonal wavelet coef-
ficients, one assuming a marginal model (Figueiredo & Nowak, 2001), and the other an elliptically
symmetric Gaussian scale mixture (GSM) model (Portilla et al., 2003). Since the GDN model is
applied to 16× 16 patches of pixels and is restricted to a complete (i.e., square matrix) linear trans-
formation, we restrict the wavelet transform employed in the other two models to be orthogonal, and
to include three scales. We also report numerical scores: the peak signal to noise ratio (PSNR), and
the structural similarity index (SSIM; Wang et al., 2004) which provides a measure of perceptual
quality. Fig. 5 shows the denoising results. Both marginal and spherical models produce results with
strong artifacts resembling the basis functions of the respective linear transform. The GDN solution
has artifacts that are less perceptually noticeable, while at the same time leaving a larger amount of
background noise.

Average model likelihood. To further assess how our model compares to existing work, we trained
the model on image patches of 8 × 8 pixels from the BSDS300 dataset which had the patch mean
removed (see Theis & Bethge, 2015, left column of table 1). We followed the same evaluation
procedures as in that reference, and measured a cross-validated average log likelihood of 126.8 nats
for ICA-MG and 151.5 nats for GDN, similar to the values reported there for the RIDE model, but
worse than the best-performing MCGSM and RNADE models. On the other hand, GDN achieves a
model likelihood of 3.47 bits/pixel for image patches of 8× 8 pixels without mean removal, which
is essentially equal to the best reported performance in the middle column of table 1 (ibid.).2

4.3 TWO-STAGE CASCADED MODEL

In the previous section, we show that the GDN transformation works well on local patches of im-
ages. However, this cannot capture statistical dependencies over larger spatial distances (i.e., across
adjacent patches). One way of achieving this is to cascade Gaussianizing transformations (Chen &
Gopinath, 2000; Laparra et al., 2011). In previous implementations of such cascades, each stage
of the transformation consists of a linear transformation (to rotate the previous responses, expos-

2Note, however, that the middle column in table 1 of Theis & Bethge (2015) was generated under the
assumption that the patch mean is statistically independent from the rest of the data, which artificially impedes
the performance of the reported models.
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noisy marginal: PSNR 20.6, SSIM 0.68

GSM: PSNR 22.4, SSIM 0.75 GDN: PSNR 22.6, SSIM 0.78

Figure 5: Bayesian least squares denoising using different prior models. Top: noise-corrupted orig-
inal; denoised with marginal model in an orthonormal wavelet decomposition. Bottom: denoised
with GSM model in an orthonormal wavelet decomposition; denoised with GDN-induced density
model. Below each image, errors against the original image are quantified with PSNR in dB, and
the perceptual SSIM metric (for both measures, bigger is better).

ing additional non-Gaussian directions) and a Gaussianizing nonlinear transformation applied to the
marginals. We have implemented a cascade based on GDN that benefits from two innovations. First,
by jointly Gaussianizing groups of coefficients (rather than transforming each one independently),
GDN achieves a much more significant reduction in negentropy than MG (see Figure 1), thereby
reducing the total number of stages that would be needed to fully Gaussianize the data. Second, we
replace the ICA rotations with convolutional ICA (CICA; Ballé & Simoncelli, 2014). This is a better
solution than either partitioning the image into non-overlapping blocks (which produces artifacts at
block boundaries) or simply increasing the size of the transformation, which would require a much
larger number of parameters for the linear transform than a convolutional solution (which allows
“weight sharing” (LeCun et al., 1990)).

The central question that determines effectiveness of a multi-layer model based on the above in-
gredients is whether the parametric form of the normalization is suitable for Gaussianizing the data
after it has been transformed by previous layers. According to our preliminary results, this seems
to be the case. We constructed a two-stage model, trained greedily layer-by-layer, consisting of the
transformations CICA–GDN–CICA–GDN. The first CICA instance implements a complete, invert-
ible linear transformation with a set of 256 convolutional filters of support 48× 48, with each filter
response subsampled by a factor of 16 (both horizontally and vertically). The output thus consists
of 256 reduced-resolution feature maps. The first GDN operation then acts on the 256-vectors of re-
sponses at a given spatial location across all maps. Thus, the responses of the first CICA–GDN stage
are Gaussianized across maps, but not across spatial locations. The second-stage CICA instance is
applied to vectors of first-stage responses across all maps within a 9× 9 spatial neighborhood – thus
seeking new non-Gaussian directions across spatial locations and across maps. Histogram estimates
of the marginals of these directions are shown in figure 6. The distributions are qualitatively similar
to those found for the first stage CICA operating on image pixels, although their heavy-tailedness is
less pronounced. The figure also shows histograms of the second-stage GDN marginals, indicating
that the new directions have been effectively Gaussianized.
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Figure 6: Marginal histograms of two-stage model responses. Left: marginals of 256 features,
obtained by performing linear CICA on first stage GDN responses. Right: marginals after the
second stage GDN. The thick gray line corresponds to a Gaussian distribution.

5 CONCLUSION

We have introduced a new probability model for natural images, implicitly defined in terms of an in-
vertible nonlinear transformation that is optimized so as to Gaussianize the data. This transformation
is formed as the composition of a linear operation and a generalized form of divisive normalization,
a local gain control operation commonly used to model response properties of sensory neurons. We
developed an efficient algorithm for fitting the parameters of this transformation, minimizing the KL
divergence of the distribution of transformed data against a Gaussian target. The resulting density
model is not closed-form (because we need to evaluate the determinant of the Jacobian matrix),
but it does allow direct computation of probability/likelihood, and is readily used for sampling and
inference.

Our parametric transformation includes previous variants of divisive normalization as special cases,
and the induced density model generalizes forms of ICA/ISA and elliptically symmetric models. We
show that the additional complexity of our generalized normalization transform allows a significant
increase in performance, in terms of Gaussianization, denoising, and sampling. In addition, we
found that the fitted parameters of our model (in particular, the interactions governed by γ) do
not resemble any of these special cases (not shown), and we expect that their detailed structure
will be useful in elucidating novel statistical properties of images. It will also be important to
compare this induced density model more thoroughly to other model forms that have been proposed
in the literature (e.g., finite mixtures of Gaussians or GSMs (Guerrero-Colón et al., 2008; Lyu &
Simoncelli, 2009a; Zoran & Weiss, 2012; Theis et al., 2012), and sparse factorization (Culpepper
et al., 2011)).

Our method arises as a natural combination of concepts drawn from two different research endeav-
ors. The first aims to explain the architecture and functional properties of biological sensory systems
as arising from principles of coding efficiency (Barlow, 1961; Rieke et al., 1995; Bell & Sejnowski,
1997; Schwartz & Simoncelli, 2001). A common theme in these studies is the idea that the hi-
erarchical organization of the system acts to transform the raw sensory inputs into more compact,
and statistically factorized, representations. Divisive normalization has been proposed as a trans-
formation that contributes to this process. The new form we propose here is highly effective: the
transformed data are significantly closer to Gaussian than data transformed by either marginal or
radial Gaussianization, and the induced density is thus a more factorized representation of the data.

The second endeavor arises from the statistics literature on projection pursuit, and the use of Gaus-
sianization in problems of density estimation (Friedman et al., 1984). More recent examples include
marginal and radial transformations (Chen & Gopinath, 2000; Lyu & Simoncelli, 2009b; Laparra
et al., 2011), as well as rectified-linear transformations (Dinh et al., 2014). Our preliminary exper-
iments indicate that the fusion of a generalized variant of the normalization computation with the
iterated Gaussianization architecture is feasible, both in terms of optimization and statistical validity.
We believe this architecture offers a promising platform for unsupervised learning of probabilistic
structures from data, and are currently investigating techniques to jointly optimize the stages of more
deeply stacked models.
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6 APPENDIX

6.1 NEGENTROPY

To see that the negentropy J of the transformed data y can be written as an expectation over the
original data, consider a change of variables:

J(py) = Ey
(

log py(y)− logN (y)
)

=

∫
py(y)

(
log py(y)− logN (y)

)
dy

=

∫
px(x)

∣∣∣∂y
∂x

∣∣∣−1
(

log
(
px(x)

∣∣∣∂y
∂x

∣∣∣−1)
− logN (y)

)∣∣∣∂y
∂x

∣∣∣ dx

= Ex

(
log px(x)− log

∣∣∣∂y
∂x

∣∣∣− logN (y)

)

6.2 INVERTIBILITY

Here, we show that a transformation g : x 7→ y is invertible if it is continuous and its Jacobian
g′ : x 7→ ∂y

∂x positive definite everywhere. First note that g is invertible if and only if any two
nonidentical inputs xa, xb are mapped to nonidentical outputs ya, yb, and vice versa:

∀xa,xb : xa 6= xb ⇔ ya 6= yb.

Since g is a function, the left-hand inequality follows trivially from the right. To see the converse
direction, we can write the inequality of the two right-hand side vectors as

∃u : u>∆y 6= 0,

where ∆y is their difference. Second, we can compute ∆y by integrating the Jacobian along a
straight line Lab between xa and xb:

∆y =

∫
Lab

g′(x) dx.

Writing the integral as a Riemann limit, invertibility can be stated as:

xa 6= xb ⇔ ∃u : u>∆y = lim
T→∞

T−1∑
t=0

u>g′
(
xa + t

∆x

T

)∆x

T
6= 0.

If ∆x 6= 0 (the left-hand inequality is true) and g′ is positive definite everywhere, all terms in the
sum can be made positive by choosing u = ∆x

T . Hence, for g′ positive definite, the right-hand
inequality follows from the left.

6.3 PREPROCESSING

We performed two preprocessing steps on the van Hateren dataset before fitting our model: removal
of images with saturation artifacts and passing the intensity values through a nonlinearity. To remove
heavily saturated images, we computed a histogram of intensity values for each of the images. If
more than 0.1% of the pixel values were contained in the highest-valued histogram bin, we removed
the image from the dataset. We passed the remaining 2904 images through a pointwise nonlinearity.
In the literature, a logarithm is most commonly used, although there is no particularly convincing
reason for using precisely this function. Since the GDN densities are zero-mean by definition, mean
removal is necessary to fit the density. Instead of the logarithm, we used the inverse of a generalized
logistic function, which is very similar, but can be chosen to marginally Gaussianize the intensity
values, which is in line with our objective and also removes the mean.

For the Kodak dataset, we converted the integer RGB values to linear luminance intensities using
the transformation specified in the sRGB colorspace definition. Then, a pointwise nonlinearity was
fitted to the data to remove the mean and marginally Gaussianize the intensity values, analogous to
the nonlinearity used on the van Hateren dataset. To follow established conventions for the denoising
experiment, the gamma removal/pointwise nonlinearity was considered part of the model.
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